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Obtaining genus 2 Heegaard
splittings from Dehn surgery

KENNETH L BAKER

CAMERON GORDON
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Let K0 be a hyperbolic knot in S3 and suppose that some Dehn surgery on K0 with
distance at least 3 from the meridian yields a 3–manifold M of Heegaard genus
2 . We show that if M does not contain an embedded Dyck’s surface (the closed
nonorientable surface of Euler characteristic �1), then the knot dual to the surgery is
either 0–bridge or 1–bridge with respect to a genus 2 Heegaard splitting of M . In
the case that M does contain an embedded Dyck’s surface, we obtain similar results.
As a corollary, if M does not contain an incompressible genus 2 surface, then the
tunnel number of K0 is at most 2 .

57M27

1 Introduction

Let M DK0. / be the manifold obtained by Dehn surgery on a knot K0 in S3 along
a slope  . In K0. /, the core of the attached solid torus is a knot which we denote
by K . It is natural to consider the properties of K as a knot in M . In this paper
we are interested in the relationship between K and the Heegaard splittings of M ;
more specifically, if yF is a Heegaard surface in M of genus g , what can we say
about the bridge number br.K/ of K with respect to yF ? Assume K0 is a hyperbolic
knot, meaning that its complement S3�K0 admits a complete Riemannian metric of
constant sectional curvature �1. It follows from Rieck and Sedgwick [31] (see also
Moriah and Rubinstein [28] and Rieck [30]) that for all but finitely many slopes  ,
K can be isotoped to lie on yF , ie br.K/ D 0. Let � D �.; �/ be the distance of
the surgery, in other words the minimal geometric intersection number on @N.K0/ of
the slope  and the meridian � of K0 . Since the trivial Dehn surgery K0.�/D S3

represents the maximal possible degeneration of Heegaard genus, one would expect
the Heegaard splittings of K0. / to reflect those of the exterior of K0 as � gets large.
Indeed, it follows from [30] that for any Heegaard surface yF of K0. / of genus g if
�� 18.gC 1/ then br.K/D 0, and so after at most one stabilization yF is isotopic to
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a Heegaard surface for the exterior of K0 . Also, in [3] we show that if �� 2,  is not
a boundary slope for K0 , and M has a strongly irreducible Heegaard splitting of genus
g , then the bridge number br.K/ of K with respect to some genus g splitting of M

is bounded above by a universal linear function of g . In contrast, this is not true for
�D 1: By Teragaito [34] there exists a family of knots K0n and a  with �.; �/D 1

such that K0n. / is the same small Seifert fiber space M for all n, and we show in
[2] that the set of bridge numbers of the corresponding cores Kn with respect to any
genus 2 Heegaard splitting of M is unbounded.

Turning to small values of g , note that the impossibility of getting S3 by nontrivial
Dehn surgery on a nontrivial knot (see the second and third authors’ [19]) can be
expressed as saying that if g D 0 and � > 0 then br.K/D 0. When g D 1, K0. /

is a lens space and here the Cyclic Surgery Theorem (see Culler, Shalen, the second
and third authors’ [9]) says that if �> 1 then K0 is a torus knot, which is easily seen
to imply br.K/D 0, while if �D 1 and K0 is hyperbolic the Berge Conjecture [4]
asserts that br.K/ D 1. In the present paper we consider the case g D 2 and show
that if �> 2 then, generically, br.K/� 1 (with respect to some genus 2 splitting). In
fact we consider 1–sided as well as 2–sided genus 2 Heegaard splittings of M ; recall
that such a splitting is defined by a closed (connected) nonorientable surface of Euler
characteristic �1 in M , the complement of an open regular neighborhood of which is
a genus 2 handlebody. Such a surface is a connected sum of three projective planes
and is also known as a cross cap number 3 surface or as a Dyck’s surface; in this paper
we shall adopt the latter terminology.

Theorem 2.4 Let K0 be a hyperbolic knot in S3 and assume M DK0. / has a 1–
or 2–sided Heegaard splitting of genus 2. Assume that �.; �/ � 3, where � is the
meridian of K0 . Denote by K the core of the attached solid torus in M . Then either:

(1) K is 0–bridge or 1–bridge with respect to a 1– or 2–sided, genus 2 Heegaard
splitting of M . In this case, the tunnel number of K0 is at most two.

(2) M contains a Dyck’s surface, bS , such that the orientable genus 2 surface yF
that is the boundary of a regular neighborhood of bS is incompressible in M .
Furthermore, K can either be isotoped onto bS as an orientation-reversing curve
or can be isotoped to intersect bS once. In the latter case, the intersection of yF
with the exterior of K (which is also the exterior of K0 ) gives a twice-punctured,
incompressible, genus 2 surface in that exterior.

Conclusion (2) is an artifact of the proof and probably not necessary, but allowing it
simplifies an already lengthy argument. Similarly, the assumption that K0 is hyperbolic
simplifies the argument; we will consider the case where K0 is a satellite knot elsewhere.
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As a warning, the Heegaard splitting of conclusion (1) may be different than the one
you started with. For example, starting with a 2–sided genus 2 Heegaard splitting
of K0. /, the proof of Theorem 2.4 may produce a 1–sided splitting with respect to
which K is 1–bridge.

Theorem 2.4 fails dramatically when �D1. For the Teragaito examples [34] mentioned
above, Theorem A.2 of the appendix shows that the ambient Seifert fiber space, M ,
contains no Dyck’s surface; thus conclusion .2/ of Theorem 2.4 does not apply and
every genus 2 splitting of M is 2–sided. On the other hand, [2] shows there are
knots in the Teragaito family with arbitrarily large bridge number with respect to any
genus 2 splitting of M . In the same vein, [2] gives examples of families of knots
in S3 , where each member of the family admits an integral surgery that is the same
hyperbolic manifold M and where the genus 2 bridge numbers of the corresponding
family of core curves in M are unbounded. In these examples M can be chosen so
that it contains no Dyck’s surface.

Theorem 2.4 says that there exists a Heegaard splitting of M with respect to which K

is at most 1–bridge. If the bridge number is more than one, the proof of Theorem 2.4
constructs a new genus 2 splitting with respect to which the bridge number is smaller.
By keeping a track of when such a modification is necessary, we see that the proof
typically shows that K is at most 1–bridge with respect to any genus 2 splitting of M .
We make this precise in Theorem 2.6 below. For this we need the following definitions.

Definition 1.1 Let HB [ yF HW be a genus 2 (2–sided) Heegaard splitting of M .
Assume there is a Möbius band on one side of the Heegaard surface yF , whose boundary
is a primitive curve on the other side of yF . A new Heegaard splitting of M , of the
same genus, can be formed by removing a neighborhood of the Möbius band from one
side of yF and adding it to the other side. We say that this new splitting is obtained
from the old by adding/removing a Möbius band.

Definition 1.2 Let M be a Seifert fiber space over the 2–sphere with three exceptional
fibers. A vertical Heegaard splitting of M is a genus 2 splitting for which one of
the Heegaard handlebodies is gotten by tubing together the neighborhoods of two
exceptional fibers, where the tube connecting them is the neighborhood of a cocore arc
of a vertical annulus connecting the neighborhoods of these exceptional fibers.

Theorem 2.6 Let K0 be a hyperbolic knot in S3 . Let HB [ yF HW be a genus 2

(2–sided) Heegaard splitting of M DK0. /. Assume that �.; �/ � 3, where � is
the meridian of K0 . Furthermore assume that M does not contain a Dyck’s surface.
Denote by K the core of the attached solid torus in M . Then either:
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(1) K is 0–bridge or 1–bridge with respect to a Heegaard splitting of M obtained
from HB [ yF HW by a (possibly empty) sequence of adding/removing Möbius
bands; or

(2) M is a Seifert fiber space over the disk with three exceptional fibers, one of which
has order 2 or 3, and K is 0–bridge or 1–bridge with respect to a Heegaard
splitting gotten from a vertical Heegaard splitting of the Seifert fiber space M

which has been changed by a (possibly empty) sequence of adding/removing
Möbius bands; or

(3) M is n=2–surgery on a trefoil knot, n odd, and K is 0–bridge or 1–bridge with
respect to the Heegaard splitting on M coming from the genus 2 splitting of the
trefoil knot exterior. Note that in this case M is a Seifert fiber space over the
2–sphere with three exceptional fibers, one of order 2 and a second of order 3.

In particular, if M is not a Seifert fiber space over the 2–sphere with an exceptional
fiber of order 2 or 3, and if the Heegaard surface yF has no Möbius band on one side
whose boundary is a primitive curve on the other, then K must be 0–bridge or 1–bridge
with respect to the given splitting HB [ yF HW .

Remark 1.3 The situations in which the Heegaard splitting HB [ yF HW must be
altered in Theorem 2.6 are special. The situation when M contains a Dyck’s surface is
discussed in more detail below, for example in Theorem 7.2 (see also the appendix).
It is conjectured that the second and third conclusions of Theorem 2.6 never hold,
that a Seifert fiber space never arises by nonintegral surgery on a hyperbolic knot.
Finally, the existence of a Möbius band in one Heegaard handlebody of HB [ yF HW

whose boundary is primitive on the other is a special case of this Heegaard splitting
having Hempel distance 2 (see Hempel [25] and Thompson [36]), which also places
restrictions on what M can be. Presumably these exceptions are artifacts of the proof,
and that in fact K is at most 1–bridge with respect to any genus 2 splitting when
�� 3.

Our results give information on the relationship between the Heegaard genus of M

and that of X D S3�N.K0/, the exterior of K0 . Recall that a Heegaard splitting of
X is a decomposition X D V [S W , where V is a handlebody with @V D S and W

is a compression body with @W D S t @X . The Heegaard genus g.X / of X is the
minimal genus of S over all such decompositions.

In this context one often talks about the tunnel number t.K0/ of K0 , the minimum
number of arcs (“tunnels”) that need to be attached to K0 so that the complement of an
open regular neighborhood of the resulting 1–complex is a handlebody. It is easy to see
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that g.X /D t.K0/C1. For any slope  , V [S W . / is a Heegaard splitting of M D

K0. /; in particular g.M /� g.X /. In fact, by Rieck and Sedgwick [32], generically
we have g.M /D g.X /. More precisely, recall that for all but finitely many slopes  ,
br.K/D 0 with respect to any Heegaard surface yF of M . Taking yF to have minimal
genus, it is then easy to see that when br.K/D 0 either g.M /D g.X /D t.K0/C1 or
g.M /D g.X /�1D t.K0/. See Rieck [30] for details. By [32], the second possibility
can happen for only a finite number of lines of slopes (where a line of slopes is a set
of slopes  such that �.; 0/D 1 for some fixed slope 0 ). We know no examples
where the Heegaard genus of K0. / ( ¤ �) is less than t.K0/.

Question Is t.K0/� g.K0. // for all  ¤ �?

Now it is easy to see that an upper bound on br.K/ in M , with respect to a 1– or
2–sided Heegaard surface, gives an upper bound on t.K0/. In particular part (1) of
Theorem 2.4 gives:

Corollary 1.4 Let K0 be a hyperbolic knot in S3 and suppose K0. / has Heegaard
genus 2 and does not contain an incompressible genus 2 surface, where �.; �/� 3.
Then the tunnel number of K0 is at most 2.

Corollary 1.4 is sharp: there exist hyperbolic tunnel number 2 knots K0 having non-
Haken Dehn surgeries K0. / of Heegaard genus 2 with �.; �/ arbitrarily large. To
see this, let K0 be a knot that lies on a standard genus 2 Heegaard surface in S3 , and
let � be the (integral) slope on @N.K0/ induced by the surface. Then for any  such
that �.; �/ D 1, K0. / has a (2–sided) Heegaard splitting of genus 2. Note that
the tunnel number of K0 is at most 2; on the other hand one can arrange that it is 2,
and that K0. / is non-Haken. Explicit examples are provided by the pretzel knots
K0 D P .p; q; r/, where jpj; jqj; jr j are distinct odd integers greater than 1. Such a
knot K0 lies on the standard genus 2 surface in S3 , with � the canonical longitude
(slope 0). Hence K0. / has a genus 2 Heegaard splitting for all  of the form 1=n

(with the usual parametrization of slopes for knots). Note that �.; �/D jnj can be
arbitrarily large. By Trotter [38], K0 is noninvertible, and therefore does not have
tunnel number 1. The double branched cover of K0 is a Seifert fiber space over S2 with
three exceptional fibers, which does not contain an incompressible surface, and hence
by Litherland and the second author [17] S3�K0 contains no closed essential surface.
It follows that K0 is hyperbolic. It also follows that if K0. / is Haken then  is a
boundary slope. Since any knot has only finitely many boundary slopes (Hatcher [24]),
K0.1=n/ will be non-Haken for all but finitely many values of n. (Other pretzel knots
provide similar examples, using Morimoto, Sakuma and Yokota [29] to ensure that
they have tunnel number 2.)
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One reason we are interested in the genus 2 case is that this includes the situation where
M is a Seifert fiber space over S2 with three exceptional fibers. Here it is expected
that (when K0 is hyperbolic) �D 1, although to date the best known upper bound is
8; see Lackenby and Meyerhoff [26]. The techniques of this article ought to enable
further restrictions on nonintegral, Seifert fibered surgeries on hyperbolic knots in S3 .
We will explore this elsewhere.

We derived the bound on the tunnel number t.K0/ from the bound on the bridge number
br.K/ in K0. / given in Theorem 2.4. We point out that the latter bound is stronger:
for example for any t � 1 there are knots in S3 with tunnel number t whose bridge
number with respect to the genus t splitting of S3 is arbitrarily high; see Minsky,
Moriah and Schleimer [27]. Also, although Teragaito’s family [34] of knots mentioned
above have tunnel number 2, we show [2] that the set of their bridge numbers with
respect to any genus 2 Heegaard splitting of the small Seifert fiber space is unbounded.
At any rate, the bound on bridge number in Theorem 2.4 allows us to use a result of
Tomova [37] to get a statement about the distance of splittings of exteriors of knots
with genus 2 Dehn surgeries. If S is a Heegaard surface for some 3–manifold, we
denote by d.S/ the (Hempel) distance of the corresponding splitting; see Hempel [25].

Corollary 1.5 Let K0 be a hyperbolic knot in S3 whose exterior has a Heegaard
splitting S with d.S/ > 6. Let  be a slope with �.; �/� 3, where � is a meridian
of K0 , and suppose the manifold K0. / does not contain a Dyck’s surface and has
Heegaard genus 2. Then S has genus 2.

Thus the distance of a splitting of a knot exterior is putting a limit on the degeneration
of Heegaard genus under Dehn filling. For instance, this applies to the examples of
Minsky, Moriah and Schleimer [27]. First note that the condition that K0. / not contain
a Dyck’s surface (or indeed any closed nonorientable surface) can be easily ensured
by taking  D p=q with p odd. Now by [27], for any g � 3, there are knots K0 in
S3 whose exteriors have genus g Heegaard splittings S with d.S/ > 6, in fact with
d.S/ arbitrarily large (such knots are necessarily hyperbolic). Corollary 1.5 says that
for such a knot K0 , if q � 3 and p is odd, K0.p=q/ does not have Heegaard genus 2.

Proof of Corollary 1.5 Let K0; ;S be as in the hypothesis. By Theorem 2.4, the
bridge number of K with respect to some genus 2 Heegaard surface yF of K0. / is at
most 1. Thus K can be put in bridge position with respect to yF so that 2��. yF�K/D

2� .�2� 2/ D 6. Since d.S/ > 6 by assumption, the main result of Tomova [37]
implies that, in K0. /, yF is isotopic to a stabilization of S . Hence S has genus 2
(and yF is isotopic to S in K0. /).
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In the course of proving Theorem 2.4, we consider Dehn surgeries that produce Dyck’s
surfaces, leading to conclusion (2) of that theorem. If a knot K0 in S3 has a maximal
Euler characteristic spanning surface S with �.S/ D �1 (so that K0 has genus 1

or cross cap number 2) then surgery on K0 along a slope  of distance 2 from @S

produces a manifold with Dyck’s surface embedded in it. There is a Möbius band
embedded in the surgery solid torus whose boundary coincides with @S so that together
they form an embedded Dyck’s surface zS . The core of the surgery solid torus is the
core of the Möbius band, and hence the surgered knot lies as a simple closed curve on
zS . Furthermore, such a surgery slope  may be chosen so that it has any desired odd
distance �D�.; �/ from the meridian � of K0 . Any knot with (Seifert) genus more
than 1 and crosscap number 3 has an integral surgery containing a Dyck’s surface
that does not come from this construction, and there are many such hyperbolic knots,
the smallest being 63 (see eg the tables of Cha and Livingston [8]). However, we
conjecture that this is the only way a Dyck’s surface arises from a nonintegral (ie
�> 1) Dehn surgery on a hyperbolic knot:

Conjecture 7.1 Let K0 be a hyperbolic knot in S3 and assume that K0. / contains
an embedded Dyck’s surface. If �.; �/ > 1, where � is a meridian of K0 , then there
is an embedded Dyck’s surface, bS �K0. /, such that the core of the attached solid
torus in K0. / can be isotoped to an orientation-reversing curve in bS . In particular, K0

has a spanning surface with Euler characteristic �1.

In Section 7, we prove the following, which goes a long way towards verifying this
conjecture.

Theorem 7.2 Let K0 be a hyperbolic knot in S3 and assume that M D K0. /

contains an embedded Dyck’s surface. If �.; �/ > 1, where � is a meridian of K0 ,
then there is an embedded Dyck’s surface in M that intersects the core of the attached
solid torus in M transversely once.

Conjecture 7.1 fits in well with earlier results on small surfaces in Dehn surgery on a
knot in the 3–sphere. When � � 2, M cannot contain an essential sphere [18], an
embedded projective plane ([18] and [9]), or an embedded Klein bottle [21]. When
��3 (as in fact must be the case when M contains an embedded, closed, nonorientable
surface and �> 1), M cannot contain an essential torus [20].

1.1 Sketch of the argument for Theorem 2.4

The idea of the proof of Theorem 2.4 is as follows. Assume M DK0. / has a 2–sided,
genus 2 Heegaard splitting. Assume K has the smallest bridge number with respect
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to this splitting, among all 2–sided, genus 2 splittings of M . The typical situation
is when this bridge position of K is also a thin position of K with respect to this
splitting (see Section 2.1). This thin presentation of K in M and one of K0 in S3

allow us to find a genus 2 Heegaard surface yF of the splitting of M and a genus 0

Heegaard surface bQ of S3 such that F D yF � N.K/ and QD bQ� N.K0/ intersect
essentially. The arcs of F \Q form graphs GF ;GQ on yF ; bQ. Then t D jK\ yF j is
twice the bridge number of K in M . We show that t � 2, thereby implying that K is
0–bridge or 1–bridge with respect to this splitting. We do this typically by showing
that if t > 2 then we can thin the presentation (ie find one with smaller bridge number)
with respect to some genus 2 Heegaard splitting in M . To find such “thinnings” of K ,
we show that GQ has a special subgraph, ƒ, called a great 2–web (Section 5.1). Disk
faces of ƒ are thought of as disks properly embedded M � N.K[ yF / (at least when
there are no simple closed curves of F \Q). Within ƒ we look for configurations of
small faces that can be used to locate K in its bridge presentation with respect to yF .
For example, a configuration called an “extended Scharlemann cycle” (an ESC, see
Figure 1) leads to a “long Möbius band” (Figure 3), which, when long enough, leads
to an essential torus in M (which does not happen since �� 3) or to a thinning of K

(eg Lemmas 8.5 and 8.10). For t � 6, configurations of bigons and trigons at “special
vertices” of ƒ (Section 5.3) are often used to construct a new Heegaard splitting of M

with respect to which K has smaller bridge number.

As a note to the reader, the generic argument (showing that K is at most 4–bridge with
respect to some genus 2 splitting of M ) is given in Sections 2, 4, 5.1, 5.2, 8 and 9.
The arguments get more complicated as the supposed bridge number of K in M gets
smaller. In particular, almost half of the current paper is from Section 13 on, showing
that the minimal bridge number of K is not 2 (ie t ¤ 4).

1.2 Notation

By N. � / we denote a regular open neighborhood or its subsequent closure as the
situation dictates.

Let Y be a subset of the manifold X , typically a properly embedded submanifold
(such as an arc or loop in a surface or a surface or handlebody in a 3–manifold). By
X nY we denote X chopped or cut along Y . That is, X nY may be viewed as either
X � Int N.Y / or the closure of X �Y in the path metric.

For Y a connected codimension 1 properly embedded submanifold of X , any newly
created maximal connected submanifold of the boundary of X nY is an impression of
Y . In other words, an impression of Y is a component of the closure of @.X nY /�@X .
Note that the impressions of Y form a double cover of Y . Suitably identifying
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@.X nY / along them will reconstitute X with Y inside. Alternatively X with Y may
be reconstituted by suitably attaching N.Y / to X nY .
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2 Thin-bridge position, GQ , GF , the proof of Theorem 2.4

2.1 Heegaard splittings, thin position and bridge position

Given a (2–sided) Heegaard surface † of a closed 3–manifold Y there is a product
†�R�Y so that †D†�f0g and the complement of the product is the union of spines
for each of the two handlebodies. This defines a height function on the complement
of spines for each of the handlebodies. Consider all the circles C embedded in the
product that are Morse with respect to the height function and represent the knot type
of J . The following terms are all understood to be taken with respect to the Heegaard
splitting.

Following [13] (see also [35]), the width of an embedded circle C is the sum of the
number of intersections jC \†�fyigj, where one regular value yi is chosen between
each pair of consecutive critical values. The width of a knot J is the minimum width
of all such embeddings. However, if J can be isotoped to a curve embedded in a level
surface †� fyg, we define such an embedding as having width 0. An embedding
realizing the width of J is a thin position of J , and J is said to be thin. If the critical
point immediately below yi is a minimum and the critical point immediately above yi

is a maximum, then the level †� fyig is a thick level.

The minimal number of maxima among Morse embeddings of C is the bridge number
of J , and denoted br.J /. An embedding realizing the bridge number of J may be
ambient isotoped so that all maxima lie above all minima, without introducing any
more extrema. The resulting embedding is a bridge position of J , and J is said to be
bridge. If J can be isotoped into a level surface †�fyg, we define such an embedding
as having bridge number 0.

Algebraic & Geometric Topology, Volume 13 (2013)



2480 Kenneth L Baker, Cameron Gordon and John Luecke

With J in bridge position, the arcs of J intersecting a Heegaard handlebody are
collectively @–parallel. There is an embedded collection of disks in the handlebody
such that the boundary of each is formed of one arc on † and one arc on J . A single
such disk is called a bridge disk for that arc of J , and the arc is said to be bridge.

A thin position for a knot may have smaller width than that of its bridge position, with
respect to the same Heegaard splitting. That is, thin position may not be bridge position.
However, this only happens when the meridian of the knot in the ambient manifold is a
boundary slope of the knot exterior.

Definition 2.1 Let E be an orientable 3–manifold with a single torus boundary. Let
 be the isotopy class of a nontrivial curve on @E . Then  is said to be a boundary
slope for E if there is an incompressible, @–incompressible, orientable surface, P ,
properly embedded in E with nonempty boundary, such that each component of @P is
in isotopy class  .  is said to be a g–boundary slope if there is such a surface P

with genus at most g .

Lemma 2.2 Assume J is a knot in a 3–manifold M . If J has a thin position which
is not a bridge position with respect to a genus g Heegaard splitting of M , then the
meridian of J is a g–boundary slope for the exterior of J .

Proof This is proved in [35] when g D 0. The same proof works here. We sketch it
for the convenience of the reader.

Let † be the Heegaard surface of a genus g splitting of M with respect to which J is
in thin position but not bridge position. Then there must be a thin level; a level surface
†�fyg at a regular value of the height function such that the first critical level below the
surface is a maximum and the first critical level above the surface is a minimum. There
can be no bridge disks for J to the thin level surface, else such a disk would give rise to
a thinner presentation of J . Maximally compress .†� fyg/� N.J / in the exterior of
J . Either some component of the result is an incompressible, @–incompressible surface
of genus at most g whose boundary components are meridians of J , or the result is a
nonempty collection of boundary parallel annuli along with some closed surfaces. But
each boundary parallel annulus gives rise to a bridge disk of J onto †�fyg, which is
not possible. Thus the meridian is a g–boundary slope for the exterior of J .

We tend to consider the situation where thin position is not bridge position as nongeneric.
For example we have the following useful result.

Lemma 2.3 Let K0 be a hyperbolic knot in S3 with meridian �. Assume there is a
Heegaard splitting of M DK0. / with respect to which the core of the attached solid
torus, K , has a thin position which is not a bridge position. If �.; �/� 2 then M is
not Seifert fibered.
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Proof Assume M is Seifert fibered. By [5, Corollary 1.7] or [22, Theorem 1.1], M

is non-Haken. Considering K in M , Lemma 2.2 says that  is a boundary slope for
the exterior of K . But this contradicts [9, Theorem 2.0.3] (M is irreducible and K.�/

is non-Haken).

2.2 The proof of Theorem 2.4

We now give the proof of the main theorem, which defines the graphs GQ;GF studied
throughout the rest of the paper.

Theorem 2.4 Let K0 be a hyperbolic knot in S3 and assume M DK0. / has a 1–
or 2–sided Heegaard splitting of genus 2. Assume that �.; �/ � 3, where � is the
meridian of K0 . Denote by K the core of the attached solid torus in M . Then either:

(1) K is 0–bridge or 1–bridge with respect to a 1– or 2–sided, genus 2 Heegaard
splitting of M . In this case, the tunnel number of K0 is at most two.

(2) M contains a Dyck’s surface, bS , such that the orientable genus 2 surface yF
that is the boundary of a regular neighborhood of bS is incompressible in M .
Furthermore, K can either be isotoped onto bS as an orientation-reversing curve
or can be isotoped to intersect bS once. In the latter case, the intersection of yF
with the exterior of K gives a twice-punctured, incompressible, genus 2 surface
in that exterior.

Remark 2.5 In this proof and throughout the article, since K0 is hyperbolic and
�� 3, M cannot contain an essential sphere [18], an embedded projective plane ([18]
and [9]), an embedded Klein bottle [21], or an essential torus [20].

Proof Let K0 be a hyperbolic knot in S3 , and let M D K0. /. Assume � D
�.; �/� 3. Let K be the core of the attached solid torus in M DK0. /.

If M contains an embedded Dyck’s surface, the theorem follows from Corollary 7.14.
This includes the case where M has a 1–sided genus 2 Heegaard splitting. We assume
hereafter that M contains no embedded Dyck’s surface.

Thus M has 2–sided, genus 2 Heegaard splitting. Note that any such splitting is
irreducible, since M is neither a lens space nor a connected sum ([9] and [18]).
Consequently, such a splitting is also strongly irreducible (the disjoint disks can be
taken to be separating, hence to have isotopic boundaries).

Assume we have a genus 2 Heegaard splitting of M for which K does not have bridge
number 0. Take K to be in bridge position. By Theorem 2.7, we may assume that K
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is also in thin position with respect to this Heegaard splitting of M . In S3 , put K0

into thin position with respect to the genus 0 Heegaard splitting. By [30, Theorem 6.2]
(by assumption K;K0 cannot be isotoped onto their Heegaard surfaces), there exist
thick level surfaces, yF of M and bQ of S3 such that:

.�/ Each arc of F \Q is essential in each of F D yF � N.K/ and QD bQ� N.K0/.

As the exterior of K0 is irreducible, after an isotopy we may assume:

.��/ There are no simple closed curves of F \Q trivial in both F and Q.

On bQ and yF form the fat vertexed graphs of intersection GQ and GF , respectively,
consisting of the fat vertices that are the disks N.K0/\ bQ and N.K/\ yF and edges
that are the arcs of F \Q.

Choosing an orientation on K �M , we may number the intersections of K with yF ,
and hence the vertices of GF , from 1 to t D jK\ yF j in order around K . Similarly, if
jK0\ bQjDu, by choosing an orientation on K0�S3 we may number the intersections
of K0 with bQ and hence the vertices of GQ from 1 to u in order around K0 .

Each component of @F intersects each component of @Q a total of � times. Thus
a vertex of GQ has valence �t and a vertex of GF has valence �u. Since each
component of @F \ @Q is an endpoint of an arc of F \Q, each endpoint of an edge
in GQ may be labeled with the vertex of GF whose boundary contains the endpoint.
Thus around the boundary of each vertex of GQ the labels f1; : : : ; tg appear in order
� times. Similarly around the boundary of each vertex of GF the labels f1; : : : ;ug
appear in order � times.

Now t=2 is the bridge number of K with respect to the Heegaard surface yF . We show
that t � 2, thereby implying that K is 0–bridge or 1–bridge with respect to this genus
2 splitting.

The arguments typically divide into the two cases:

� SITUATION NO SCC There are no closed curves of Q\F in the interior of
disk faces of GQ .

� SITUATION SCC There are closed curves of Q\F in the interior of disk faces
of GQ . The strong irreducibility of the Heegaard splitting allows us then to
assume (Section 3.2) that any such closed curve must be nontrivial on yF and
bound a disk on one side of yF .
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In SITUATION SCC there is then a meridian disk on one side of the genus 2 splitting
that is disjoint from K and Q. This imposes strong restrictions on the graph GF .
Typically then, the arguments are simpler (though different) than those for SITUATION

NO SCC.

Now assume that yF is a Heegaard surface for M for which K has the smallest bridge
number among genus 2 splittings of M . The paper is divided into sections ruling out
various values of t , which are necessarily even as yF is separating. Theorems 9.1, 10.1
and 11.1 show in sequence t < 10; t < 8; t < 6 in both SITUATION NO SCC and
SITUATION SCC. Theorem 13.2 then implies that t � 2 in SITUATION NO SCC, and
Theorem 18.11 that t � 2 in SITUATION SCC. That is, K is at most 1–bridge with
respect to the genus 2 splitting yF .

To see that K (and hence K0 ) has tunnel number at most 2, write K in M as the
union of an arc in yF and a trivial arc in a handlebody H on one side of yF (this can be
done if K is 0–bridge as well). Attaching two tunnels to K to form core curves of H

thickens to a genus 3 handlebody whose complement is a handlebody in M . Thus the
tunnel number of K is at most two.

Keeping track of when and how we are forced to modify the Heegaard splitting in the
proof of Theorem 2.4 gives the following:

Theorem 2.6 Let K0 be a hyperbolic knot in S3 . Let HB [ yF HW be a genus 2

(2–sided) Heegaard splitting of M DK0. /. Assume that �.; �/ � 3, where � is
the meridian of K0 . Furthermore assume that M does not contain a Dyck’s surface.
Denote by K the core of the attached solid torus in M . Then either

(1) K is 0–bridge or 1–bridge with respect to a Heegaard splitting of M obtained
from HB [ yF HW by a (possibly empty) sequence of adding/removing Möbius
bands (Definition 1.1); or

(2) M is a Seifert fiber space over the disk with three exceptional fibers, one of which
has order 2 or 3, and K is 0–bridge or 1–bridge with respect to a Heegaard
splitting gotten from a vertical Heegaard splitting of the Seifert fiber space M

which has been changed by a (possibly empty) sequence of adding/removing
Möbius bands; or

(3) M is n=2–surgery on a trefoil knot, n odd, and K is 0–bridge or 1–bridge with
respect to the Heegaard splitting on M coming from the genus 2 splitting of the
trefoil knot exterior. Note that in this case M is a Seifert fiber space over the
2–sphere with three exceptional fibers, one of order 2 and a second of order 3.
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In particular, if M is not a Seifert fiber space over the 2–sphere with an exceptional
fiber of order 2 or 3, and if the Heegaard surface yF has no Möbius band on one side
whose boundary is a primitive curve on the other, then K must be 0–bridge or 1–bridge
with respect to the given splitting HB [ yF HW .

Proof Let HB [ yF HW be a genus 2 Heegaard splitting of M for which K is not
0–bridge or 1–bridge. As in the proof of Theorem 2.4, the arguments of Sections 8–18
show, or can be adapted to show, that either

� M contains a Dyck’s surface; or

� HB [ yF HW can be altered by adding/removing a Möbius band so that we get a
new genus 2 splitting for which K has smaller bridge number; or

� M is a Seifert fiber space over the 2–sphere with an exceptional fiber of order
2 or 3 and we can find a vertical splitting of this Seifert fiber space for which
K has smaller bridge number; or

� M is an n=2–surgery on the trefoil knot, n odd, and K is shown to be at most
1–bridge with respect to a genus 2 splitting of M coming from the Heegaard
splitting of the trefoil exterior (ie remove a neighborhood of the unknotting
tunnel from the exterior of the trefoil for one handlebody of the splitting of M ,
then the filling solid torus in union with a neighborhood of the unknotting tunnel
is the other). This conclusion only occurs at the very end of Section 18.

In Sections 8–18, there are a few places where the argument given needs to be altered
slightly to see that in fact one of the items above occurs. We have included remarks
to that end when necessary. Repeated applications of the above alternatives lead to a
genus 2 splitting of M with respect to which K is 0–bridge or 1–bridge as claimed
by Theorem 2.6. Note that the statement there when M is a Seifert fiber space with an
exceptional fiber of order 2 or 3 follows by starting with a vertical splitting of M .

2.3 When thin position is not bridge position

We finish this section with the proof of Theorem 2.4 in the special case that thin position
is not bridge position. Here the arguments of the preceding proof are applied to thin
level surfaces rather than thick.

Theorem 2.7 Let K0 be a hyperbolic knot in S3 . Assume there is a genus two
Heegaard splitting of M DK0. / with respect to which K , the core of the attached
solid torus, has a thin position which is not a bridge position. If �.; �/� 3 then M

contains an embedded Dyck’s surface.
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Proof Let K0;K;M be as given. Assume M has a genus 2 Heegaard splitting with
respect to which K (in M ) has a thin presentation which is not a bridge presentation.
Note that this implies K is not isotopic onto the Heegaard surface of the splitting. As
M is neither a lens space nor a connected sum, the splitting is irreducible and therefore
strongly irreducible. Let yF be a thin level surface: a level surface at a regular value of
the height function such that the first critical level below the surface is a maximum and
the first critical level above the surface is a minimum.

Lemma 2.8 Let yF be a thin level surface in a thin presentation of K . There is no
trivializing disk D for a subarc ˛ of K with respect to yF . That is, there is no embedded
disk D �M such that:

(1) The interior of D is disjoint from K .

(2) @D D ˛[ˇ , where ˛ is a subarc of K and ˇ lies in yF .

Proof After an isotopy we may assume that D lies above yF near ˇ and otherwise
D intersects yF transversely. Among all the arcs of Int D \ yF , let ˇ0 be outermost
with respect to ˇ , and let D0 be the outermost disk that it cuts from D . (If none exists
take ˇ0 D ˇ and D0 DD .) Then @D0 D ˛0[ˇ0 , where ˛0 is a component of K� yF .
D0 guides an isotopy of ˛0 to ˇ0 , giving a positioning of K with smaller width, a
contradiction.

In S3 , put K0 into thin position with respect to the genus 0 Heegaard splitting. The
thin position argument of [13], shows that there exists a level surface bQ of S3 such
that F D yF� N.K/ and QD bQ� N.K0/ intersect transversely and each arc of F\Q

is essential in F . Furthermore, Lemma 2.8 shows that each arc of F \Q is essential
in Q (@F; @Q are taken to intersect minimally on the boundary of the knot exterior).
As the exterior of K0 is irreducible, after an isotopy we may further assume there are
no simple closed curves of F \Q that are trivial in both F and Q.

We set up the fat vertexed graphs of intersection GQ in bQ and GF in yF as in the proof
of Theorem 2.4, recording the intersection patterns of F and Q. Let t D j yF \Kj> 0.

Exactly as in the context of Theorem 2.4, there are two cases to consider:

� SITUATION NO SCC There are no closed curves of Q\F in the interior of
disk faces of GQ .

� SITUATION SCC There are closed curves of Q\F in the interior of disk faces
of GQ . The strong irreducibility of the Heegaard splitting allows us then to
assume (Section 3.2) that any such closed curve must be nontrivial on yF and
bound a disk on one side of yF . In SITUATION SCC, there is then a meridian disk
on one side of the genus 2 splitting that is disjoint from K and Q.
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The following arguments assume familiarity with Sections 3–6 and, in particular,
Section 8. The reader is recommended to return here after looking at those sections.
The arguments of Sections 3, 4 and 5 apply just as in the context of Theorem 2.4 giving
rise to ESCs and SCs, and their corresponding long Möbius bands and Möbius bands.
The constituent annuli and Möbius bands of the long Möbius bands are almost properly
embedded on either side of yF , and they are properly embedded in SITUATION NO SCC.

The arguments beginning with Section 8 assume that the given thin presentation of K

from which yF is taken is a bridge presentation of K . When this is not the case and
we use a thin surface yF , which will satisfy Lemma 2.8, the arguments of Section 8
simplify and strengthen. In particular we now have the following stronger versions of
Lemmas 8.5 and 8.13.

Lemma 2.9 Let � be a proper .n � 1/–ESC in GQ . Let A D A1 [ � � � [ An be
the corresponding long Möbius band and let ai 2 a.�/ be @Ai � @Ai�1 for each
i D 2; : : : ; n and a1 D @A1 . Assume that, for some i < j , ai ; aj cobound an annulus
B in yF . Then K must intersect the interior of B .

Proof The context of Section 8 is that of Theorem 2.4, that K is in a bridge position
that is also thin. However, the proof of Lemma 8.5 proves the above, using a thin
presentation of K , and inserting Lemmas 2.8 and 2.3 when necessary. In particular,
the final conclusion of Lemma 8.5, that V guides an isotopy of Aj to B , contradicts
Lemma 2.8.

Lemma 2.10 Assume M contains no Dyck’s surface. If GQ contains a proper r –
ESC then r � 1. Furthermore, if � is a proper 1–ESC then the two components of
a.�/ are not isotopic on yF .

Proof Let � be a proper .n� 1/–ESC in GQ for which n is largest. We assume
n � 2. Let A D A1 [A2 [ � � � [An be the long Möbius band associated to � . Let
a.�/ be the collection of simple closed curves ai D @Ai \ @AiC1 . If no two elements
of a.�/ are isotopic on yF , then either nD 3 and a1; a2; a3 cobound a 3–punctured
sphere in yF , contradicting (Lemma 8.12) that M contains no Dyck’s surface, or nD 2

and we satisfy the second conclusion. Thus we assume ai ; aj are isotopic on yF for
some i < j . Let B be the annulus cobounded by ai ; aj on yF . We may assume that
the interior of B is disjoint from a.�/.

Lemma 2.9 shows that there is a vertex x of K\ Int B . Since, by Corollary 5.4, ƒx

contains a bigon, there is a proper ESC, � , and a corresponding long Möbius band
Ax whose boundary is a curve comprising two edges of ƒx meeting at x and one
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other vertex. Therefore this curve cannot transversely intersect @B and thus must
be contained in B . By Lemma 4.3, �; � must have the same core labels. But this
contradicts the maximality of n.

Finally, observe:

Lemma 2.11 If GQ contains a 1–ESC, � , and an SC, � , on disjoint label sets, then
M contains a Dyck’s surface.

Proof Let AD A1 [A2 be the long Möbius band corresponding to � and A3 the
almost properly embedded Möbius band corresponding to � . By Lemma 2.10, the
components of @A2 are not isotopic on yF . Neither is isotopic to @A3 , else M would
contain a Klein bottle. By Lemma 8.12, M contains a Dyck’s surface.

To finish the proof of the theorem, assume M contains no Dyck’s surface. Lem-
mas 2.12, 2.13, 2.15 and 2.16 now eliminate the possibilities for t .

Lemma 2.12 t < 8

Proof By Corollary 5.4 and Lemma 2.10, each label of GQ belongs to a 1–ESC or to
an SC. Assume t � 8. If GQ contains no 1–ESC, then there are three SCs on disjoint
label sets, and Lemma 8.11 contradicts that M contains no Dyck’s surface.

So assume GQ contains a 1–ESC, � , on labels, say, f1; 2; 3; 4g, ie whose core is a
.23/–SC. By Lemma 2.11, the label 7 of GQ belongs to a 1–ESC on labels f7; 8; 1; 2g.
Similarly, label 6 must belong to a 1–ESC on labels f3; 4; 5; 6g. The latter 1–ESCs
contradict Lemma 2.11.

Lemma 2.13 t ¤ 6

Proof

Claim 2.14 With t D 6, GQ cannot have two 1–ESCs on different label sets whose
core SCs lie on the same side of yF .

Proof WLOG assume �; � 0 are 1-ESCs on labels f1; 2; 3; 4g; f3; 4; 5; 6g (respectively).
Let AD A1 [A2;A

0 D A0
1
[A0

2
be the long Möbius bands corresponding to �; � 0 .

First assume SITUATION NO SCC. Then A2;A
0
2

are (nonseparating) incompressible
annuli in a handlebody on one side of yF intersecting in the single arc .34/ of K . A
boundary compressing disk of A2 can be taken disjoint from A0

2
(or vice versa). This

disk can be used to construct a trivializing disk for .34/, contradicting Lemma 2.8.
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So assume we are in SITUATION SCC and let D be a meridian disjoint from Q and K .
As each component of @A2 intersects @A0

2
in a single point, @D must be separating

in yF . In particular, one component of yF � @D contains vertices f2; 3; 6g of GF and
the other contains vertices f4; 5; 1g. But the arcs .34/; .61/ of K contradict that D is
separating on one side of yF .

Assume t D 6. By Corollary 5.4 and Lemma 2.10, each of the six labels of GQ belong
to either a 1–ESC or SC in GQ . If GQ contains no 1–ESC, then GQ must have three
SCs on disjoint label sets. Lemma 8.11 shows that M contains a Dyck’s surface. So
assume GQ contains a 1–ESC on labels, say, f1; 2; 3; 4g.

If GQ also contains a 1–ESC on a different label set, then by Claim 2.14 and
Lemma 2.11, we may assume it is on labels f2; 3; 4; 5g. Now label 6 must belong to a
1–ESC or an SC. A 1–ESC contradicts Claim 2.14, an SC contradicts Lemma 2.11.

So we assume all 1–ESCs are on label set f1; 2; 3; 4g. Corollary 5.4 then implies
there is a .45/–SC and a .61/–SC (a .56/–SC contradicts Lemma 2.11). But then
Lemma 8.11 says that M contains a Dyck’s surface.

Lemma 2.15 t ¤ 4

Proof Let t D 4. By Corollary 5.4, GQ either contains a 1–ESC or two SCs on
disjoint label sets. First assume we have SITUATION NO SCC. In the case of a 1–ESC
a boundary compression of the associated incompressible annulus and in the case of
two SCs a boundary compression of one Möbius band disjoint from the second, gives
rise to a trivializing disk for an arc of K� yF , contradicting Lemma 2.8.

So assume we are in SITUATION SCC, and let D be a meridian on one side of yF
disjoint from Q and K . Let N be the solid torus or tori obtained by surgering the
handlebody in which D lies along D , and that have nonempty intersection with K .

Assume GQ has a 1–ESC, and let ADA1[A2 be the associated long Möbius band.
After an isotopy we may take A1;A2 as properly embedded in N or its exterior. If
A2 lies in N , then a boundary compression of A2 in N gives a trivializing disk for an
arc of K� yF . Thus A2 lies outside of N . If both components of @A2 lie on the same
component of N , then O D N.N [A2/ is Seifert fibered over the annulus with an
exceptional fiber of order two. As the exterior of K is atoroidal and irreducible, some
component of M� IntO bounds a solid torus T . As M is irreducible and atoroidal and
as M is not a Seifert fiber space (Lemma 2.3), O[T is a solid torus whose exterior in
M has incompressible boundary. Again as the exterior of K is atoroidal and irreducible,
K must be isotopic to a core of the solid torus O[ T and consequently to the core of
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N . But then K can be isotoped to lie on the Heegaard surface; a contradiction. So we
may assume N consists of two solid tori, each containing a component of @A2 . But
then a boundary compression of A1 in the solid torus component containing it, gives
rise to a trivializing disk for an arc of K� yF .

So it must be that GQ contains SCs on disjoint labels sets. Let A;A0 be the corre-
sponding almost properly embedded Möbius bands. As M contains no Klein bottle
or projective plane, @A; @A0 must lie on different components of N . Then D is a
separating meridian of one side of yF and must lie on the same side as the A;A0

(by the separation of vertices of GF ). After surgering away simple closed curves of
intersection, A and A0 can be taken to be properly embedded Möbius bands in separate
components of N . Then a boundary compression of either gives rise to a trivializing
disk for an arc of K� yF .

Lemma 2.16 t ¤ 2

Proof By Corollary 5.4, GQ contains an SC. Let A be the corresponding almost
properly embedded Möbius band. In SITUATION NO SCC, A is properly embedded on
one side of yF . A boundary compression of A then gives rise to a trivializing disk for
an arc of K� yF , contradicting Lemma 2.8. So we assume SITUATION SCC, and let D

be a meridian disjoint from Q and K . Let N be the solid torus obtained by surgering
the handlebody in which D lies along D and taking that component containing @A.
We may surger the interior of A off of @N , so that A is properly embedded in N or
its exterior. If A now lies in N , then a boundary compression of it will give rise to a
trivializing disk for an arc of K � yF . So we assume A is properly embedded in the
exterior of N and set OD N.N [A/. If @A is longitudinal in N , then O is a solid
torus containing K . As M is not a lens space and the exterior of K is atoroidal and
irreducible, K must be isotopic to a core of O . On the other hand, the core L of N is
a .2; 1/–cable of the core of O , and hence of K . As L has tunnel number one in M ,
Claim 8.7 implies that K can be isotoped to lie on the Heegaard surface.

Thus we assume @A is not longitudinal in N . Then N is a Seifert fiber space over the
disk with two exceptional fibers (M contains no projective planes). As both M and
the exterior of K are irreducible and atoroidal, the exterior of O is a solid torus, and
M is a Seifert fiber space. This contradicts Lemma 2.3.

This completes the proof of Theorem 2.7.
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3 More on GQ; GF and simple closed curves of F \Q

Assume K0 is a hyperbolic knot in S3 and K0. / has a 2–sided genus 2 Heegaard
splitting. Let yF ;F; bQ;Q be as in the proof of Theorem 2.4. Let GQ;GF be the
labeled graphs of intersection defined there. In this section we define some terminology
for GQ;GF , and discuss simple closed curves of intersection between Q and F .

3.1 The Parity Rule, Black and White, labels and corners, parallelisms

On each of GQ and GF , if the labels around two vertices occur in the same direction
(equivalently: the oriented intersections of K0 with bQ or K with yF at those spots have
the same signs) then we say the vertices are parallel; otherwise they are antiparallel.
The orientability of F and Q and the knot exterior gives the following:

Parity Rule An edge connects parallel vertices on one of GF ;GQ if and only if it
connects antiparallel vertices on the other.

We may refer to an edge of GF or GQ with endpoints labeled 1 and 2, for example,
as a 12–edge. We will also say that f1; 2g is the label pair of the edge.

In M , the Heegaard surface yF bounds two genus 2 handlebodies HB and HW :
M DHB [ yF HW . We refer to HB as Black and HW as White and similarly color
the objects inside them.

A face of GQ is a component of the complement of the edges of GQ in Q. We color
it Black or White according to the side of yF on which a small collar neighborhood of
its boundary lies. The arcs of intersection between the boundary of a face and a vertex
are the corners of the face; a vertex is chopped into corners. We shall refer to both
the corners of GQ between labels 2 and 3 and the arc of K �M from intersection
2 to 3, for example, as .23/, as a .23/–corner, or as a .23/–arc. For a contiguous
run of corners .t1/;.12/;.23/ around a vertex or arcs of K we may write .t123/. An
interval of labels is either a single label or the set of labels appearing in a corner or
a contiguous run of corners. For example the interval .t3/ is the run of corners with
labels ft; 1; 2; 3g. Analogously, in discussing a subgraph of GQ , we talk about the
corners of the faces of that subgraph.

Two edges of F \Q are parallel on F or on Q if they cobound an embedded bigon
in that surface (with corners on the vertices). We also refer to such edges as parallel
on GF or GQ . Two faces g and g0 of GQ are parallel if there is an embedding of
g� Œ0; 1� into M � N.K/ such that g�f0g D g , g�f1g D g0 and the components of
@g� Œ0; 1� are alternately composed of rectangles on @N.K/ and parallelisms on F

between edges of g and g0 .
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3.2 Simple closed curves of Q\F

The intersection graphs GQ;GF are given by the arc components of F \Q. However,
there may also be simple closed curves in Q\F . By .��/ of the proof of Theorem 2.4,
we may assume no such curve is trivial on both Q and F . We show in this subsection
that any such that is trivial on Q must, WLOG, be a meridian on one side of yF .

Lemma 3.1 No simple closed curve of Q\F that is trivial in Q is trivial in yF .

Proof Otherwise let bD � yF be the disk bounded by such a simple closed curve. Let
GD be GF restricted to bD . By .��/, GD is nonempty. Then there are no 1–sided
faces in GD , and no 1–sided faces in the subgraph of GQ corresponding to the edges
of GD . The argument of [9, Proposition 2.5.6], along with the assumption that �� 3,
implies that one of GD or GQ contains a Scharlemann cycle. Such a Scharlemann cycle
would imply the contradiction that either S3 or M contains a lens space summand.

Corollary 3.2 Any simple closed curve of F \Q that is trivial on Q is a meridian of
either HW or HB .

Proof This follows immediately from Lemma 3.1, Lemma 3.3 below, and the fact
that HW \ yF HB is a genus 2, strongly irreducible Heegaard splitting of M .

For Corollary 3.2, we need the following which generalizes [33, Proposition 1.5 and
Lemma 2.2].

Lemma 3.3 Let M D HW [ yF HB be a Heegaard splitting, where M is a closed
3–manifold other than S3 . Let C be a simple closed curve in yF such that

(1) C does not bound a disk in HW or HB , and

(2) C lies in a 3–ball in M .

Then the splitting HW [ yF HB is weakly reducible.

Remark 3.4 By the uniqueness of Heegaard splittings of S3 , Lemma 3.3 also holds
when M is S3 , provided g. yF /¤ 1.

Proof Since M is not S3 , the boundary of the 3–ball containing C is essential in
M �C , so M �C is reducible. Since M �C DHW [ yF�C HB , and HW and HB

are irreducible, this implies that yF �C is compressible in HW or HB , say HW .
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Let D be a maximal (with respect to inclusion) disjoint union of properly embedded
disks in HW such that @D � yF �C , no component of @D bounds a disk in yF �C ,
and no pair of components of @D cobound an annulus in yF �C . Note that D¤∅.

There is a collar yF � I of yF D yF � f0g in HW and a regular neighborhood N.D/ of
D in HW such that

N.D/\C D∅;

N.D/\ . yF � I/D .N.D/\ yF /� I:

Let HW0
be the compression body . yF � I/ [ N.D/ with any 2–sphere boundary

components capped off with 3–balls in HW . Let @�HW0
D @HW0

� yF . Since C does
not bound a disk in HW by hypothesis, C � f1g is not contained in any 2–sphere
component of @�HW0

. By the maximality of D , it follows that @�HW0
has exactly

one component, G , say, and C � f1g is contained in G .

Let HW1
� HW be the handlebody bounded by G , and isotope C into Int HW1

.
By the maximality of D , G is incompressible in HW1

�C . This, together with the
irreducibility of HW1

, implies also that HW1
�C is irreducible. Let M0DHB[HW0

.
Since M � C Š M0 [G .HW1

� C / is reducible, either M0 is reducible or G is
compressible in M0 . This implies that the splitting of M0 given by HW0

[ yF HB is
reducible or weakly reducible, by [23] or [7], respectively. Hence the same holds for
HW [ yF HB .

Many of the arguments in later sections naturally divide themselves into the two basic
cases:

� SITUATION NO SCC There are no closed curves of Q\F in the interior of
disk faces of GQ . In the later sections, this assumption will allow us to think of
the faces of GQ as disks in a Heegaard handlebody of M .

� SITUATION SCC There are closed curves of Q\F in the interior of disk faces
of GQ . By Corollary 3.2, any such curve must be nontrivial on yF and bound
a disk on one side of yF . A disk face of GQ containing such a curve does not
sit in one Heegaard handlebody of M , hence some of the arguments applied
in SITUATION NO SCC will not apply. However, an innermost such curve will
supply a meridian disk D of either HW or HB which is disjoint from both K

and Q. This places strong restrictions on GF and yet the combinatorics of the
faces of GQ remain the same. Also, one can usually think of the faces of GQ

then as living in the exterior of yF surgered along D . Together, these facts allow
simpler, though somewhat different arguments in SITUATION SCC.
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4 Scharlemann cycles, (forked) extended Scharlemann cycles
and long Möbius bands

4.1 SC, ESC, FESC

A Scharlemann cycle (of length n) is a disk face of GQ or GF with n edges, all with
the same labels {a; b}, and all connecting parallel vertices of the graph. We use the
same term for the set of edges defining the face. Typically, the Scharlemann cycles
considered in this paper are on GQ and of length 2, so we designate such by the
abbreviation SC. For specificity, an .ab/–SC is one whose edges have labels fa; bg. A
.23/–SC whose corners are on the vertices x and y is depicted in Figure 1(a). Though
it is a rectangle, by virtue of alternatively naming its sides “corners” and “edges”, we
call it a bigon. A Scharlemann cycle of length 3 is shown in Figure 1(b). Its face is a
trigon.

y z

2
32

3

32

x

(d) forked extended Scharlemann cycle

34 t5

5t

x

y

(a) Scharlemann cycle

(c) twice extended Scharlemann cycle

(b) Scharlemann cycle of length 3

4 3 2
1

1 2 3 4

x

y z

23

2 3

x

y

1 2 3 4

12

Figure 1

For n� 0, an n–times extended Scharlemann cycle of length 2, abbreviated n–ESC,
is a set of 2.nC 1/ adjacent parallel edges and the 2nC 1 bigon faces they delineate
between two parallel vertices of a fat vertexed graph such that the central bigon is a
Scharlemann cycle of length 2. This central bigon is referred to as the core Scharlemann
cycle for the n–ESC. When n > 0, we sometimes refer to an n–ESC as simply an
“extended Scharlemann cycle”, abbreviated as “ESC”. Figure 1(c) shows a 2–ESC on
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the corner .t12345/. An n–ESC is called proper if in its corner no label appears more
than once. As with SCs, to emphasize the labels along the corner of an ESC, we will
also call an ESC on the corner .t123/, for example, an .t123/–ESC.

A forked n–times extended Scharlemann cycle is an .n� 1/–times extended Scharle-
mann cycle of length 2 with an extra bigon and trigon at its two ends. Figure 1(d)
shows a forked 1–time extended Scharlemann cycle. In this paper, a “forked extended
Scharlemann cycle,” which is abbreviated “FESC,” means a forked 1–time extended
Scharlemann cycle.

We will often use the letters � and � to refer to the sets of edges of these various sorts
of SCs and the letters f , g and h to refer to the faces within them.

4.2 Almost properly embedded surfaces, long Möbius bands

Definition 4.1 Let H be a handlebody on one side of yF . A surface, A, in M is
almost properly embedded in H if

(1) @A� yF and A near @A lies in H ;

(2) Int A is transverse to yF and A\ yF consists of @A along with a collection of
simple closed curves, referred to as @I A. Each component of @I A is trivial in
A, essential in yF and bounds a disk on one side of yF (ie is a meridian for HW

or HB ).

We use the disk faces of GQ to build almost properly embedded surfaces in HW ;HB .

Assume .23/ is a White arc of K\HW �M . By N..23// we indicate the closed 1–han-
dle neighborhood I�D2 of .23/�HW that is a component of HW � Int.M � N.K//.

y

g

23

x

32

g 2 yx

3

(b) Möbius band(a) Scharleman cycle

Figure 2

Let g be the bigon face of a .23/–SC of GQ shown in Figure 2(a). Then in M the
two corners of g both run along the 1–handle N..23//�HW extending radially to the
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.23/–arc of K . This forms a White Möbius band A23D g[.23/. Refer to Figure 2(b).
If Int g is disjoint from yF , then A23 is properly embedded in HW ; otherwise, by
Corollary 3.2, it is almost properly embedded in HW .

g

h

1 2 3 4

f h

1234

x

y

g

h

f

f

g

4

x y1

2

3

(a) extended Scharleman cycle (b) long Möbius band

Figure 3

Assume the two Black .12/;.34/–bigons f and h flank g as in Figure 3(a). Identifying
their corners to the arcs .12/ and .34/ of K accordingly in M forms a Black annulus
A12;34 D f [ .12/[h[ .34/, which by Corollary 3.2 is almost properly embedded in
HB . As @A23 is a component of @A12;34 , together A23[A12;34 is a Möbius band.
We regard it as a long Möbius band, where the annulus A12;34 extends the Möbius
band A23 . See Figure 3(b). Note that the arc .1234/ is a spanning arc of the long
Möbius band.

More generally, given � , an .n� 1/–times ESC (n� 2), we may again form a long
Möbius band A1[A2[ � � � [An , where A1 is an almost properly embedded Möbius
band arising from the core Scharlemann cycle and each Ai , i � 2, is an (almost
properly embedded) extending annulus formed from successive pairs of flanking bigons.
The Ai with odd indices i will have one color and those with even indices will
have the other color. Let ai denote the boundary component @Ai \ @AiC1 . Let
a.�/D fai j i D 1; : : : ; n� 1g. Denote by L.�/, the label set for � , the set of labels
appearing on a corner of � . The core labels for � are the two labels of its core
Scharlemann cycle. For example, if � is as in Figure 3(a), L.�/D f1; 2; 3; 4g and the
core labels of � are f2; 3g.

Generically we will use this notation, A1[A2[� � �[An , for a long Möbius band and
its constituent annuli and Möbius band, but when n� 3 we will often use the notation
A23;A12;34; : : : described above to emphasize the arc of K on the long Möbius band
or its constituent annuli.
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The consideration of long Möbius bands falls into two basic contexts (see Section 4.2):

� SITUATION NO SCC There are no closed curves of Q\F in the interior of
disk faces of GQ . Thus the annuli, Möbius band constituents of a long Möbius
band are each properly embedded in HW or HB .

� SITUATION SCC There are closed curves of Q\F in the interior of disk faces
of GQ . By Corollary 3.2, any such curve must be nontrivial on yF and bound a
disk on one side of yF . In this case the annuli, Möbius band constituents of a long
Möbius band are each almost properly embedded on one side of yF . Furthermore,
there is a meridian disk D of either HW or HB which is disjoint from both K

and Q.

The fact that in SITUATION SCC, the constituent annuli of the long Möbius bands are
almost properly embedded rather than properly embedded, complicates the picture of
these surfaces. On the other hand, the existence of the meridian disk D in this case
(disjoint from Q), greatly restricts what Q can look like and usually simplifies the
arguments considerably.

We finish this subsection by describing some properties of long Möbius bands.

Lemma 4.2 Let � be an n–ESC, n� 0. Then no component of a.�/ bounds a disk
on either side of yF .

Proof Otherwise, the long Möbius band corresponding to � coupled with the meridian
disk bounded by the component of a.�/ can be used to create an embedded projective
plane in M . Since M is K0. /, where �� 3, this contradicts either [18] or [9].

Lemma 4.3 Let � be a proper n1 –ESC and � a proper n2 –ESC of GQ . If there are
components a� ; a� of a.�/; a.�/ (respectively) that are isotopic on yF , then �; � have
the same core labels.

Addendum: Let D be a meridian disk of HB;HW disjoint from K and Q. Let F�

be yF surgered along D . If components a� ; a� of a.�/; a.�/ (respectively) are isotopic
on F� , then �; � have the same core labels.

Proof The argument for the Addendum is the same as that for the Lemma with F�

replacing yF , so we give only the argument for the Lemma itself.

For the proof of this Lemma, we use ESC to refer to an n–ESC for which n� 0. Let
A.�/;A.�/ be the long Möbius bands corresponding to �; � . By possibly working
with ESCs within �; � , we may assume a� D @A.�/ and a� D @A.�/. We write
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A.�/ D E� [ F� ;A.�/ D E� [ F� , where F� ;F� is the union of faces of �; �
(respectively) (thought of as disks in, XK , the exterior of K ) and where E� ;E� are
rectangles in N.K/ describing an extension of F� ;F� across N.K/ to form the long
Möbius band. Thus, @E� \ @XK D @F� \ @XK and @E� \ @XK D @F� \ @XK . In
all but Case IV’ below (and Case II when �; � have the same core labels), we will
choose E� ;E� to be disjoint, making A.�/;A.�/ disjoint long Möbius bands whose
boundaries are isotopic on yF . Such long Möbius bands can be used to construct an
embedded projective plane or Klein bottle in M (note that each component of A.�/\ yF

is either a component of a.�/ or a meridian of HW ;HB ; the same for A.�/). This
contradicts either [9], [18] or [20]. Thus in each case below, it suffices to show how to
construct the desired E� ;E� .

Let f˛; ˇg be the corners of � , f˛0; ˇ0g the corners of � (thought of as arcs in @XK ).
Let fx; zg be the labels at the endpoints of the corners of � , and fy; wg the labels at
the endpoints of the corners of � . See Figure 4.

�

z

ˇ

x

˛0

y

w y

ˇ0

w

�

z

˛

x

Figure 4

Let L.�/;L.�/ denote the label set of �; � .

Case I L.�/\L.�/D∅

In this case E� ;E� are automatically disjoint, and A.�/;A.�/ can be used to construct
the forbidden projective plane or Klein bottle.

Case II L.�/�L.�/

We may assume that, say, y ¤ x; z . Let b� be the component of a.�/ through vertex
y , connecting y to another vertex r . If r D w , then �; � have the same core labels
and we are done.

Thus we assume r ¤ y; w;x; z (r ¤ y by the Parity Rule). Then b� intersects a� in
a single point (at the vertex y ). Since b� is disjoint from a� , and a� is isotopic to a�

Algebraic & Geometric Topology, Volume 13 (2013)



2498 Kenneth L Baker, Cameron Gordon and John Luecke

on yF , b� must intersect a� tangentially. That is, as one transverses around (fat) vertex
y of GF the labels f˛; ˇg are not separated by the labels f˛0; ˇ0g. Thus in N.K/,
we may choose disjoint E� ;E� as pictured in Figure 5 (thereby making A.�/;A.�/

disjoint).

˛

x

˛0 ˇ0

E�E�

ˇ

z

w

y

Figure 5

Case III L.�/\L.�/ is a single interval of labels .xy/ (including a point interval).

First we consider the case of a point interval, that is, when x D y (and Case II does
not hold). Then a� ; a� intersect in a single point (at vertex x D y ). As a� ; a� are
isotopic on yF , they must be nontransverse around vertex x on GF . This means that
as one reads around vertex x on GF , labels f˛; ˇg do not separate the labels f˛0; ˇ0g.
We choose disjoint E� ;E� as pictured in Figure 6 (with x D y ), making A.�/;A.�/

disjoint.

Thus we may assume that fx; zg \ fy; wg D ∅. Let b� be the component of a.�/

through vertex y . Then b� intersects a� in a single point (at y ). Again b� is disjoint
from a� which is isotopic to a� , so b� must intersect a� tangentially. Thus, as one
transverses vertex y in GF the f˛; ˇg labels do not separate f˛0; ˇ0g. We then may
choose disjoint E� ;E� as pictured in Figure 6.

Case IV L.�/\L.�/ contains all labels of GQ , and L.�/ overlaps L.�/ in two
intervals of labels: .xy/ and .wz/. See Figure 7.

If fx; zg D fy; wg then @A.�/; @A.�/ are isotopic on yF and both go through vertices
x; z of yF . Thus A.�/;A.�/ can be amalgamated along their boundary to create an
embedded Klein bottle.
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Next assume that x D y but z ¤ w . Let b� be the component of a.�/ through
vertex w . As b� is disjoint from a� and intersects a� once at w , b� and a� intersect
nontransversely. Thus around vertex w , the labels f˛; ˇg do not separate f˛0; ˇ0g.
Similarly, as a� ; a� intersect in a single point at vertex x and yet are isotopic, their
intersection is nontransverse. That is, around vertex x , the labels f˛; ˇg do not separate
f˛0; ˇ0g. Figure 8 (with x D y ) shows that we can choose disjoint E� ;E� .

Thus we may assume fx; zg\ fy; wg D∅. Let b� be the component of a.�/ through
vertex y , and let r be the other vertex of GF to which b� is incident. Then r ¤ x; z .

Assume r ¤w . Then as b� intersects a� once and is disjoint from a� , it must intersect
a� nontransversely. That is, around vertex y the labels f˛; ˇg do not separate f˛0; ˇ0g.
Let c� be the component of a.�/ through vertex w . Again, c� must intersect a�
nontransversely at w . Hence around w in GF , the labels f˛; ˇg do not separate
f˛0; ˇ0g. Thus we may choose disjoint disks E� ;E� in N.K/ as pictured in Figure 8.

This leaves us with the case that r D w , whose argument is slightly different from the
preceding ones.

Case IV’ In Case IV above, r D w .
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This is the case when the core labels of �; � are “antipodal” labels. Let b� be the
component of a.�/ through vertices y and w of GF . Then b� and a� intersect twice.
Since b� is disjoint from a� which is isotopic to a� , the algebraic intersection number
of b� and a� is 0. Thus we can choose E� ;E� in N.K/ so that they are either (1)
disjoint or (2) intersect in exactly two arcs. See Figure 9. This follows since the labels
f˛; ˇg must separate f˛0; ˇ0g either (1) around neither vertices y; w or (2) around both
vertices y; w .

w

y x

ˇ˛

E� ˛0
ˇ0

E�

xy

w z

˛

ˇ

E�

ˇ0 ˛0

E�

z

Figure 9

Let B be the annulus on yF between a� and a� . If Int B contains a vertex u of GF

(ie a vertex other than x;y; w; z ), then there must be another, v , such that u; v lie on
the same component of a.�/ or a.�/. If only one, say a.�/, then we let � 0 be the
ESC within � on labels u; v . Then we may apply the argument of Case I to � 0; � . If
u; v lie on components of both a.�/ and a.�/, then we let � 0; � 0 be the ESC within
�; � (respectively) with labels fu; vg. We apply the argument at the beginning of Case
IV (when fx; zg D fy; wg).

Thus we may assume Int B is disjoint from the vertices of GF . Consider A.�/ D

E�[F� ;A.�/DE�[F� , where F� ;F� is the union of faces of �; � . Then A.�/;A.�/
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are either (1) disjoint or (2) intersect in two double arcs (from x to y and w to z along
K ). If (1), M contains an embedded Klein bottle. If (2), S DA.�/[B [A.�/ is a
Klein bottle that self-intersects in a single double-curve (note that the core of B cannot
be a meridian of HW ;HB else we obtain a projective plane from A.�/. Thus we may
assume A.�/;A.�/ are disjoint from B except along a.�/; a.�/). The two preimage
curves are disjoint from the cores of each of A.�/;A.�/ and B , and consequently
bound disjoint disks, Möbius bands in the preimage. We may surger along the double
curve to obtain an embedded projective plane or Klein bottle in M .

5 Combinatorics

Let GQ;GF be the graphs of intersections defined in the proof of Theorem 2.4.

5.1 Great webs

Say a label around a vertex of a subgraph ƒ of GQ is a ghost label of ƒ if no edge
of ƒ is incident to the vertex at that label. A ghost edge is an edge of GQ incident
to a ghost label. Let ` denote the number of ghost labels, or equivalently the number
of ghost edges counted with multiplicity. Recall that t D jK\ yF j and hence it is the
number of vertices of GF .

A g–web ƒ is a connected subgraph of GQ whose vertices are parallel (Section 3)
and has at most tC2g�2 ghost labels: `� tC2g�2. If U is a component of bQ�ƒ
then we say D D bQ�U is a disk bounded by ƒ. A great g–web is a g–web ƒ such
that there is a disk bounded by ƒ containing only vertices of ƒ. When ƒ is a great
g–web this disk is unique (since there must be vertices of GQ antiparallel to those in
ƒ) and so we say it is the disk bounded by ƒ.

For each label x , the subgraph of a great g–web ƒ consisting of all vertices of ƒ and
edges of ƒ with an endpoint labeled x is denoted ƒx . Say an x–label on a vertex of
ƒx is a ghost x–label if the edge incident to it does not belong to ƒx . Let `x denote
the total number of ghost x–labels of ƒx . Observe that a ghost x–label of ƒx is a
ghost label of ƒ.

Given a great g–web ƒ and a disk D bounded by ƒ containing only vertices of ƒ,
the disk Dƒ that is the closure of bQ�D is the outside face of ƒ; all other faces of ƒ
are ordinary faces and are contained in D . A corner (Section 3) of a vertex v of ƒ is
outside or ordinary according to whether it is the corner of an outside or ordinary face.
A vertex v of ƒ is an outside vertex if and only if it has an outside corner, otherwise it
is an ordinary vertex.

Algebraic & Geometric Topology, Volume 13 (2013)



2502 Kenneth L Baker, Cameron Gordon and John Luecke

Lemma 5.1 [15, Theorem 6.1] Since � � 3 > 2 and yF has genus 2, then GQ

contains a great 2–web ƒ.

5.2 The abundance of bigons

Let ƒ be a great g–web of GQ . When g D 2 its existence is ensured by Lemma 5.1.
For any label x , regard ƒx as a graph in bQ. Refer to the sole face of ƒx �

bQ that
contains the outside face of ƒ as the outside face of ƒx (similarly for a component of
ƒx ).

Lemma 5.2 If �� 3 and t � g� 1 then either ƒx contains a bigon which is not its
outside face for each label x or ƒ has just one vertex and t D g� 1.

Proof First consider the case that ƒ has just one vertex. Then ƒ has no edges, else
GQ would have a monogon. Therefore �t D `� tC2g�2. Since �� 3, this implies
t � g� 1. Thus if t � g� 1 and ƒ has just one vertex, then t D g� 1.

Now fix a label x . We will show if ƒx does not contain a bigon but has more than
one vertex, then g� 2� t .

First we assume ƒx is connected. Assume the outside face has k � 1 corners. We
count vertices (corners) and edges in a face locally, ie the same edge or vertex of GQ

may contribute more than once to k .

Let V , E , and F denote the number of vertices, edges, and faces of ƒx . By the Parity
Rule (Section 3), ED�V �`x . Let ki be the number of corners in the outside face of
ƒx with exactly i ghost x–labels. Then k D

P�
iD0 ki and `x D

P�
iD1 iki . (Recall

that a vertex has at most � x–labels.)

Suppose ƒx contains no bigons other than possibly its outside face. Then

2E � 3.F � 1/C k D 3F C .k � 3/;

F � 2=3E � 1=3.k � 3/;

2D V �ECF � V �EC 2=3E � 1=3.k � 3/;

E � 3V � .kC 3/:

Hence .�� 3/V C .kC 3/� `x . Because the outer face of ƒx has k corners, some
corner(s) of the outer face must have more than one ghost x–label.

Let V2 be the number of corners in the outside face with exactly 2 ghost x–labels. Let
V�3 be the number of corners in the outside face with at least 3 ghost x–labels. Since a
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corner may have at most � ghost x–edges, ��3, and kC�� .��3/VC.kC3/�`x ,
then

(|) V2C 2V�3 � 3 and V2CV�3 � 2:

(The count k C� � `x shows that, at worst, each of the k corners has at least one
ghost x–edge though there are at least � more. Since a corner has at most � ghost
x–labels, there must be at least 2 corners with more than one ghost x–label. Hence
V2CV�3 � 2. Since �� 3, the possible distributions of these last � ghost x–labels
implies V2C 2V�3 � 3.)

Since there are t � 1 labels between two consecutive ghost x–labels on a corner of
the outside face, there are at least .t C 1/V2 ghost labels on all corners of the outside
face with exactly 2 ghost x–labels. (No ghost labels of ƒ are separated by a cycle of
edges in ƒ.) Similarly there are at least .2t C 1/V�3 ghost labels on all corners of the
outside face with at least 3 ghost x–labels. Therefore if ` is the total number of ghost
labels for ƒ, then

(}) tC2g�2� `� .tC1/V2C.2tC1/V�3D t.V2C2V�3/C.V2CV�3/� 3tC2:

Hence g� 2� t .

Now assume ƒx is not connected. The argument above shows that an innermost
component of ƒx must have ghost x–edges, so there is no nesting of components of
ƒx . This implies no component of ƒx has a monogon. Furthermore, the argument
above shows that (|) holds for each connected component of ƒx with at least 2

vertices, using V2 and V�3 to count the corners of the component’s outside face.

Define a ghost x–interval of ƒ to be an interval of labels on a fat vertex of ƒ that
lies between consecutive ghost x–labels such that no x–edge of ƒ is incident to this
interval.

Consider a component ƒa
x of ƒx . To each ghost x–interval, I , between consecutive

ghost x–labels on a corner of its outside face we associate at least t �1 different ghost
labels of ƒ: If all labels of I are already ghost labels of ƒ, then we use these. If there
is an edge of ƒ incident to I , then (because the ghost x–labels bounding the interval
cannot be separated by a cycle in ƒ) removing from ƒ all edges, E , incident to I

produces a disconnected graph of which one component contains our initial component
ƒa

x . Let CI be another component of ƒ�E . To I we associate the t �1 ghost labels
within the ghost x–interval given by the following Claim. Note that if I; I 0 are distinct
ghost x–intervals on ƒa

x , then CI ;CI 0 cannot share vertices, hence the assigned ghost
labels will be different.
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Claim 5.3 There is a ghost x–interval on a vertex of CI consisting entirely of ghost
labels.

Proof CI must contain a component ƒb
x of ƒx such that at most one ghost x–interval

in ƒb
x has edges of ƒ incident; else there would be a cycle of edges of ƒ separating

ghost x–edges. (Start at I and follow an edge of E to CI . Create a cycle by always
leaving a ghost x–interval via an edge of ƒ or connecting to a ghost x–interval by
x–edges of ƒ.) If ƒb

x has at least two vertices, then by (|) there must be another
ghost x–interval consisting entirely of ghost labels. If ƒb

x has only one vertex then its
labels outside this single ghost x–interval, at least �t � .t � 1/� 2t C 1 of them, are
all ghost labels.

If ƒa
x has at least two vertices, then (}) still holds with V2 and V�3 counting corners

of ƒa
x and using the associated ghost labels above. If ƒa

x has just one vertex, then
since it has no edges (else GQ would have a monogon) and there is another component
of ƒx we may associate, as above, more than �t ghost labels to ƒa

x . In either case
we may conclude that t < g� 1.

Corollary 5.4 If �� 3 and g D 2 then ƒx contains a bigon for each label x . Thus,
for each label x , ƒ contains a proper ESC or SC with (outermost) label x .

Proof Apply Lemma 5.2 with g D 2 to get the first statement. Note that t > 1. The
second statement follows immediately from the first, as a bigon face of ƒx corresponds
to an ESC or SC of ƒ.

5.3 Special vertices

By Lemma 5.1 we have a great 2–web ƒ�GQ that resides in the sphere bQ.

Here we seek the existence of a so-called special vertex of our great 2–web ƒ with a
large number of ordinary corners incident to bigons, though permitting fewer bigons at
the expense of a greater number of trigons.

Definition 5.5 Let V be the set of vertices of ƒ. At each vertex v 2 V let �i.v/

count the number of its ordinary corners incident to i –gon faces of ƒ. We have thatP
i �i.v/��t for each vertex v . This is an equality if and only if v is ordinary. Since

only the outside face of ƒ may be a monogon, �1.v/ D 0 for all v . Thus we shall
write �.v/D .�2.v/; �3.v/; : : : /.
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Definition 5.6 Let Fi denote the number of faces of ƒ (including the outside face)
that are i –gons; let F i denote the number of ordinary faces of ƒ that are i –gons.
The total number of faces of ƒ is thus F D

P
i Fi D 1 C

P
i F i . Furthermore

iF i D
P
v2ƒ �i.v/ for each i and also 2E D

P
i iFi .

Definition 5.7 Let �D .�2; �3; �4; : : : / be a sequence of nonnegative integers. We
say that � is of type Œk2; : : : ; km� if

�2 D k2; : : : ; �m�1 D km�1 and �m � km:

A vertex v is said to be of type Œk2; : : : ; km� if �.v/ is of type Œk2; : : : ; km�.

Each integer N � 2 gives a weight to which we associate a measure of a sequence of
integers �D .�2; �3; : : : /:

˛N .�/D

NX
iD2

�
N �i

i

�
�i :

We say that v is a special vertex (of weight N ) of ƒ if

˛N .�.v// >
N �2

2
�t �N:

Recall that since ƒ is a 2–web, the number of ghost labels ` is at most t C 2. Hence
setting V to be the total number of vertices of ƒ and E to be the number of edges,
then 2E D�tV � `.

Proposition 5.8 Assume the outside face of ƒ is a k –gon. Then for any integer
N � 2 there exists a vertex v of ƒ with

˛N .�.v//�

��
N � 2

2

�
�t �N

�
C

kCN �
�

N�2
2

�
`

V

with equality only if F i D 0 for i >N . In particular, using that `� t C 2,

˛N .�.v//�

��
N � 2

2

�
�t �N

�
C

kC 2�
�

N�2
2

�
t

V
:

Proof Multiplying the equation
P

Fi D F D E � V C 2 by N and subtractingP
iFi D 2E yields:
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NX
iD2

.N � i/Fi D .N � 2/E �N V C 2N;

NX
iD2

.N � i/Fi D

�
N � 2

2

�
2E �N V C 2N C

X
i>N

.i �N /Fi ;

NX
iD2

.N � i/F i D

�
N � 2

2

�
.�tV � `/�N V C 2N C

X
i>N

.i �N /F i C .k �N /;

NX
iD2

.N � i/F i �

��
N � 2

2

�
�t �N

�
V C

�
kCN �

�
N � 2

2

�
`

�
;

with equality only if F i D 0 for i >N .

Since iF i D
P
v2V �i.v/ for all i ,

NX
iD1

.N � i/F i D

X
v2V

NX
iD1

�
N � i

i

�
�i.v/D

X
v2V

˛N .�.v//:

Hence

(})
X
v2V

˛N .�.v//�

��
N � 2

2

�
�t �N

�
V C

�
kCN �

�
N � 2

2

�
`

�
:

Therefore there exists a vertex v such that

˛N .�.v//�

��
N � 2

2

�
�t �N

�
C

kCN �
�

N�2
2

�
`

V

as claimed.

Furthermore, using that `� t C 2,

˛N .�.v//�

��
N � 2

2

�
�t �N

�
C

kC 2�
�

N�2
2

�
t

V
:

Proposition 5.9 Assume there are j distinct outside vertices v1; : : : ; vj with vi con-
tributing ki corners to the outside face of ƒ (so that the outside face is a k –gon, where
k D

Pj
iD1

ki ). If ƒ has an ordinary vertex, then for any integer N � 2 there exists an
ordinary vertex v with

˛N .�.v// >

��
N � 2

2

�
�t �N

�
C

N.1C 1
2
k � j /

V � j
:
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Proof Let `vi
be the number of ghost labels incident to the outside vertex vi . If vi

contributes ki corners to the outside face, then vi has �t � `vi
� ki ordinary corners.

Since there can be no ordinary monogons,

˛N .�.vi//�

�
N � 2

2

�
.�t � `vi

� ki/;

where equality is only possible in the event that every ordinary face incident to vi is a
bigon. Assuming ƒ has an ordinary vertex, then this cannot be an equality for every
outside vertex. This induces the strict inequality in the calculation below.

Continuing from (}) in the proof of Proposition 5.8 (which is an equality only if every
ordinary face has N sides or less),

X
Vnv1;:::;vj

˛N .�.v//C

jX
iD1

˛N .�.vi//�
��

N �2

2

�
�t �N

�
V C

�
kCN �

�
N �2

2

�
`
�
:

ThusX
Vnv1;:::;vj

˛N .�.v//�
��

N �2

2

�
�t �N

�
.V � j /C

��
N �2

2

�
�t �N

�
j

C

�
kCN �

�
N �2

2

� jX
iD1

`vi

�
�

jX
iD1

˛N .�.vi//

>
��

N �2

2

�
�t �N

�
.V � j /C

��
N �2

2

�
�t �N

�
j

C

�
N C k �

�
N �2

2

� jX
iD1

`vi

�
�

jX
iD1

�
N �2

2

�
.�t � `vi

� ki/

D

��
N �2

2

�
�t �N

�
.V � j /�Nj C .N C k/C

�
N �2

2

�
k

D

��
N �2

2

�
�t �N

�
.V � j /CN.1C 1

2
k � j /:

Thus there exists an ordinary vertex v 2 Vnv1; : : : ; vj such that

˛N .�.v// >
��

N �2

2

�
�t �N

�
C

N.1C 1
2
k � j /

V � j
:

5.3.1 The existence of special vertices In most of the following lemmas, we con-
clude that our great 2–web ƒ either has a special vertex or a large number of mutually
parallel edges. In the applications of these lemmas such numbers of mutually parallel
edges will be prohibited thereby implying the existence of a special vertex.
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Lemma 5.10 If t D 8 then ƒ either has a special vertex v of weight N D 3 or 19

mutually parallel edges.

Proof By Proposition 5.8 there exists a vertex v 2ƒ such that

˛3.�.v//� .4�� 3/C
k�2

V
;

where k is the length of the outside face. Thus if k � 3 then v is special.

If k D 1 or 2, then let j � k be the number of vertices contributing to the k outside
corners. If ƒ has an ordinary vertex, then by Proposition 5.9 there exists an ordinary
vertex v 2ƒ such that

˛3.�.v// > .4�� 3/C
3.1C 1

2
k � j /

V � j
:

This is the special vertex.

If ƒ has no ordinary vertices and j D 1, then each edge of ƒ must bound a monogon.
This cannot occur.

Thus we now assume ƒ has no ordinary vertices and .k; j /D .2; 2/. Then all ordinary
faces of ƒ are bigons. Since there may be at most 10 ghost edges, ƒ consists of two
vertices and at least 8�� 5� 19 mutually parallel edges.

Lemma 5.11 If t D 6 then ƒ either has a special vertex of weight N D 4 or 8

mutually parallel edges.

Proof By Proposition 5.8 there exists a vertex v 2ƒ such that

˛4.�.v//� .6�� 4/C
k�4

V
;

where k is the length of the outside face. Thus if k � 5 then v is special. Therefore
assume k D 1; 2; 3, or 4 and j � k is the number of vertices contributing to the k

outside corners.

If ƒ has no ordinary vertex then the only vertices of ƒ are the j outside vertices.
Consider the reduced graph of ƒ obtained by amalgamating mutually parallel edges
in the disk bounded by ƒ. Assuming ƒ does not have 8 mutually parallel edges,
each edge of this reduced graph represents at most 7 edges. Thus a vertex (of this
reduced graph) of valence n must have at least 6�� 7n ghost edges. Since � � 3,
a valence 1 vertex has at least 11 ghost edges and a valence 2 vertex has at least 4

ghost edges. Since the total number of incidences of ghost edges to ƒ is at most 8

there can be no valence 1 vertices and no more than two valence 2 vertices. Hence it
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must be that .k; j /D .4; 4/, where there the reduced graph has two valence 2 vertices.
The remaining two vertices of ƒ have no ghost labels and must be of valence 3. Both
these vertices have � D .6�� 3; 2/ and are thus special vertices of weight N D 4.

Now assume there is an ordinary vertex in ƒ. Then by Proposition 5.9 there exists an
ordinary vertex v 2ƒ such that

˛4.�.v// > .6�� 4/C
4.1C 1

2
k � j /

V � j
:

Hence v is necessarily special unless .k; j / is .4; 4/ or .3; 3/. For these two situations
we must push the proof of Proposition 5.9 further:

Let v1; : : : ; vk be the outside vertices of ƒ. Since k D j , each outside vertex has just
one outside corner. Again `vi

denotes the number of ghost labels on the outside corner
of vi . Then vi has 6�� `vi

� 1 ordinary corners which occur consecutively.

Assume ƒ does not have 8 mutually parallel edges. Then there may be at most 6

consecutive bigons. Let ni be the number of ordinary corners of vi that do not belong
to bigons. Then

˛4.�.vi//�

�
N � 2

2

�
.�t � `vi

� 1� ni/C

�
N � 3

3

�
ni

D

�
N � 2

2

�
.�t � `vi

� 1/�
N

6
ni

and hence

˛4.�.vi/� .6�� `vi
� 1/� 2

3
ni :

If for some i , `vi
D 0 and ni � 2, then vi is a special vertex of weight N D 4. So we

assume this is not the case. Since �� 3, ni � 1 implies that ni D 1 and `vi
� 4. If

there are two vi with ni D 1, then, as `D
P
`vi
� tC2D 8, all others have no ghost

labels. Together these observations mean that
Pk

iD1ni � 2k � 1.

Hence

kX
iD1

˛4.�.vi//�

kX
iD1

�
.6�� `vi

� 1/� 2
3
ni

�
D .6�� 1/k �

kX
iD1

`vi
�

kX
iD1

2
3
ni

� .6�� 1/k � `� 2
3
.2k � 1/:

Algebraic & Geometric Topology, Volume 13 (2013)



2510 Kenneth L Baker, Cameron Gordon and John Luecke

Thus, again continuing from (}) in the proof of Proposition 5.8 (as we did in the proof
of Proposition 5.9), where now j D k ,X
Vnv1;:::;vk

˛N .�.v//�
��

N �2

2

�
�t �N

�
.V � k/C

��
N �2

2

�
�t �N

�
k

C

�
kCN �

�
N �2

2

�
`
�
�

kX
iD1

˛N .�.vi//

so thatX
Vnv1;:::;vk

˛4.�.v//� .6�� 4/.V � k/C .6�� 4/kC .4C k � `/�

kX
iD1

˛4.�.vi//

� .6�� 4/.V � k/C .6�� 4/kC .4C k � `/

� .6�� 1/kC `C 2
3
.2k � 1/

D .6�� 4/.V � k/� 4kC 4C kC kC 4
3
k � 2

3

D .6�� 4/.V � k/C
10�2k

3
:

Therefore there is an ordinary vertex v 2 Vnv1; : : : ; vk such that

˛4.�.v//� .6�� 4/C
10� 2k

3.V � k/
:

Since k D 3 or 4, 10� 2k > 0. Hence

˛4.�.v// > 6�� 4:

Thus v is a special vertex. This completes the proof of Lemma 5.11.

Lemma 5.12 If t D 4 then ƒ either has a special vertex v of weight N D 4 or 9

mutually parallel edges.

Proof By Proposition 5.8 there exists a vertex v 2ƒ such that

˛4.�.v//� .4�� 4/C
k�2

V
;

where k is the length of the outside face. Thus if k � 3 then v is special.

If ƒ has an ordinary vertex, then Proposition 5.9 implies there is a special vertex of
weight N D 4 if k D 1; 2. Thus we assume ƒ has no ordinary vertex and k D 1; 2.
Let j � k be the number of vertices contributing to the outside corners.

Since ƒ contains no ordinary vertices, any loop edge must bound a monogon (1–sided
face), which does not happen in GQ . Thus j ¤ 1. Thus .k; j /D .2; 2/, ƒ consists of
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two vertices and all the ordinary faces are bigons between the two vertices. Since there
may be at most 6 ghost edges, these bigons must be induced by at least 4�� 3 � 9

mutually parallel edges.

5.3.2 Types of special vertices See Definition 5.7 for vertex type.

Lemma 5.13 A special vertex of weight N D 3 has type Œt�� 5�.

Proof If v is a special vertex of weight N D 3, then

˛3.�.v//D
1
2
�2.v/ >

1
2
t�� 3:

Hence �2.v/ > t�� 6. Thus �2.v/� t�� 5 and v is of type Œt�� 5�.

Lemma 5.14 A special vertex of weight N D 4 has type Œ�t � 5; 4�, Œ�t � 4; 1� or
Œ�t � 3�.

Proof If v is a special vertex of weight N D 4, then

˛4.�.v//D �2.v/C
1
3
�3.v/ > �t � 4:

Hence 3�2.v/ C �3.v/ > 3�t � 12. Then since �2.v/ C �3.v/ � �t , we have
2�2.v/� 2�t � 11. Thus �2.v/��t � 5.

In order to maintain that ˛4.�.v// > �t � 4,

� if �2.v/D�t � 5 then �3.v/� 4;

� if �2.v/D�t � 4 then �3.v/� 1;

� if �2.v/D�t � 3 then �3.v/� 0.

The conclusion now follows.

6 Elementary surfaces in genus 2 handlebodies

Handlebodies are irreducible. Every properly embedded connected surface in a handle-
body is either compressible, @–compressible, the sphere or the disk.

Throughout this article we will repeatedly be considering disks, annuli and Möbius
bands that are properly embedded in a genus 2 handlebody H and the results of
chopping the handlebody along these surfaces.
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meridional disk
disjoint

primitive curve

primitivizing disk meridional disk
disjoint

cabled curve

cabling disk

meridional disk

meridional curve

Figure 10

6.1 Definitions and notation

On the boundary of a solid torus T a nonseparating simple closed curve c is:

� Meridional if it bounds a (meridional) disk in T .

� Longitudinal (or primitive) if it transversely intersects a meridian of T once and
thus runs once around T .

� Cabled if it is neither meridional nor longitudinal and thus runs more than once
around T .

Analogously, there are three notable types of nonseparating simple closed curves c on
the boundary of a genus 2 handlebody H depicted in Figure 10.

� If c bounds a disk in H , then c is meridional or a meridian. The disk is a
compressing disk which, in this case, we also describe as meridional. (Note:
In later sections we refer to any compressing disk for the handlebody to be a
meridian, regardless of whether or not it is separating.)

� If there is a compressing disk of H whose boundary transversely intersects
c once, then c is primitive. We say such a meridional compressing disk is a
primitivizing disk for c . Given a primitivizing disk for a primitive curve there is
necessarily a meridional compressing disk disjoint from both.

� If c is neither meridional nor primitive and there is a disjoint meridional com-
pressing disk for H then c is cabled. A meridional disk of H whose boundary
transversely intersects c nontrivially and coherently (with respect to some chosen
orientations) is a cabling disk if there is another meridional disk disjoint from
both it and c .
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Indeed, in each of the three cases there is a nonseparating compressing disk D for H

that is disjoint from c . Then c is an essential simple closed curve on the boundary of
the solid torus H nD . Hence c is either meridional on H nD and H , longitudinal
on H nD and primitive on H , or wound n > 1 times longitudinally on H nD and
cabled on H .

Denote the attachment of a 2–handle to H along c by H hci.

� If c is primitive, then H hci is a solid torus.

� If c is cabled, then H hci is the connect sum of a solid torus and a nontrivial
lens space.

6.2 Disks in genus 2 handlebodies

meridional,
compressing

separating,
non-@–parallel,

compressing
@–parallel,

noncompressing
one genus 2 handlebody and one ball

one solid torus two solid tori

Figure 11

Let D be a disk properly embedded in the genus 2 handlebody H . Then we have the
following trichotomy depicted in Figure 11:

� D is a nonseparating compressing disk; H nD is one solid torus.

� D is a separating compressing disk; H nD is two solid tori.

� D is @–parallel; H nD is one genus 2 handlebody and one 3–ball.

6.3 Annuli

Let A be an incompressible annulus properly embedded in the genus 2 handlebody
H . Then we have the following trichotomy:
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nonseparating annulus A in handlebody H

cabled (or primitive) annulus and primitive

Š

H nA

annulus on handlebody

Figure 12

primitive annulus in handlebody

Š Š

separating, non-@–parallel annulus A in handlebody H

H nA

cabled (or primitive) annulus in solid torus

Figure 13

� A is a nonseparating annulus. In this case, @A is nonseparating on @H .
� A is a separating but not @–parallel annulus. In this case, @A also bounds an

annulus on @H .
� A is a @–parallel annulus. Again, @A bounds an annulus on @H .

Examples of the first two situations are depicted in Figures 12 and 13.
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Let d be a @–compressing disk for A. Then @N.A[d/�@H is a properly embedded
disk D and a parallel copy of A in H . Let AC be the impression of A on the side of
H nA containing d . Let A� be the other impression of A. Then one of the following
occurs (situations (2) and (3) are not exclusive):

(1) If D is nonseparating, then A is nonseparating; H nA is a genus 2 handlebody
on which AC is primitive and A� either primitive or cabled. See Figure 12.

(2) If D is separating, then A is separating; H nA is a genus 2 handlebody on
which AC is primitive and a solid torus T on which A� is either primitive or
cabled. See Figure 13.

(3) If D is @–parallel, then A is @–parallel; H nA is a genus 2 handlebody on
which A� lies and a solid torus T on which AC is primitive.

In each of these situations d becomes a primitivizing disk for AC in H nA.

We say an annulus, A, in a handlebody, H , is primitive if there is a meridian disk of
H that intersects A in a single essential arc. Note that an annulus is primitive if and
only a component of its boundary is primitive in the ambient handlebody.

6.4 Möbius bands

Möbius band A in genus 2 handlebody H

cabling disk for boundary
splits into two @–compressing disks becomes primitivizing disk

primitive annulus on genus 2 handlebody H nA

former @–compressing disk

Figure 14

Let A be an incompressible Möbius band properly embedded in the genus 2 handlebody
H . Let d be a @–compressing disk for A. Then @N.A [ d/ � @H is a properly
embedded disk D . The disk D is separating and not @–parallel in H . Therefore
H nD is two solid tori, one of which contains the Möbius band A. Because there is a
unique embedding of a Möbius band in a solid torus (up to homeomorphism):

� Up to homeomorphism, there is a unique embedding of a Möbius band A in a
genus 2 handlebody H ; H nA is a genus 2 handlebody on which the annular
impression of A is primitive.

A @–compressing disk for A in H becomes a primitivizing disk for the impression of
A in H nA. This is depicted in Figure 14.
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6.5 Cores of handlebodies

A curve embedded in the interior of the solid torus D2�S1 is a core if it is isotopic to
fzg �S1 for some point z 2D2 . A curve c embedded in the interior of a handlebody
H is a core if it is the core of a solid torus connect summand of H . This is equivalent
to saying c is isotopic to a primitive curve in @H .

7 Obtaining Dyck’s surface by surgery

A closed, connected, compact, nonorientable surface with Euler characteristic �1 is
the connect sum of three projective planes. It is known as a cross cap number 3 surface
and as Dyck’s surface [11].

If a knot K0 in S3 has maximal Euler characteristic spanning surface S with �.S/D�1

(so that K0 has genus 1 or cross cap number 2) then surgery on K0 along a slope  of
distance 2 from @S produces a manifold with Dyck’s surface embedded in it. There is
a Möbius band embedded in the surgery solid torus whose boundary coincides with
@S so that together they form an embedded Dyck’s surface zS . The core of the surgery
solid torus is the core of the Möbius band, and hence the surgered knot lies as a simple
closed curve on zS . Furthermore, such a surgery slope  may be chosen so that it has
any desired odd distance �D�.; �/ from the S3 meridian � of K0 . We conjecture
that this is the only way a Dyck’s surface arises from a nonintegral Dehn surgery on a
hyperbolic knot:

Conjecture 7.1 Let K0 be a hyperbolic knot in S3 and assume that K0. / contains an
embedded Dyck’s surface. If �D�.; �/> 1, where � is a meridian of K0 , then there
is an embedded Dyck’s surface, bS �K0. /, such that the core of the attached solid
torus in K0. / can be isotoped to an orientation-reversing curve in bS . In particular, K0

has a spanning surface with Euler characteristic �1.

The following goes a long way towards verifying this conjecture.

Theorem 7.2 Let K0 be a hyperbolic knot in S3 and assume that M D K0. /

contains an embedded Dyck’s surface. If � D �.; �/ > 1, where � is a meridian
of K0 , then there is an embedded Dyck’s surface in M that intersects the core of the
attached solid torus in M transversely once.

Proof The proof of this Theorem occupies most of this section. Initially it closely
follows [20, Sections 6 and 7], where an analogous theorem is proven for a Klein bottle.
We refer the reader to these sections and note where the proofs diverge in our situation.
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For homological reasons (see eg [20, Lemma 6.2]), or just by explicit construction of a
closed nonorientable surface in the exterior of K0 , if M were to contain an embedded
closed nonorientable surface, then � cannot be even. Hence we assume � � 3 and
odd.

Assume that a Dyck’s surface does embed in M DK0. /. Note that any embedding
of Dyck’s surface in M must be incompressible since otherwise a compression would
produce an embedded Klein bottle or projective plane; neither of these may occur since
�> 1.

Let K be the core of the attached solid torus in M D K0. /. As S3 contains no
embedded Dyck’s surface there is no such surface in M that is disjoint from K . Thus
if K can be isotoped onto a Dyck’s surface in M , it must be as an orientation-reversing
curve, and can thus be perturbed to intersect the surface transversely once. So we may
assume this does not happen. Among all embeddings of Dyck’s surfaces in M that
intersect K transversely, take bS to be one that intersects K minimally. Let bT be the
closed orientable genus 2 surface that is the boundary of a regular neighborhood of bS .
Let S and T be the intersection of bS and bT respectively with the exterior E of K0 .
Let t D j@T j D 2j@S j. As mentioned above, we assume t > 0. The goal is to show
that t D 2.

Let bQ be a 2–sphere in S3 . As in [20], via thin position we may assume bQ intersects
K0 (in S3 ) transversely so that Q D bQ \E intersects S transversely and no arc
component of Q\S is parallel in Q to @Q or parallel in S to @S . Moreover, as T

“double covers” S , Q intersects T transversely and no arc component of Q\T is
parallel in Q to @Q or parallel in T to @T . We may now form the labeled fat vertexed
graphs of intersection GQ in bQ and GT in bT whose edges are the arc components
of Q \ T as well as the graphs GS

Q
in bQ and GS in bS whose edges are the arc

components of Q\S . Furthermore, the incompressibility of bS allows us to assume
no disk face of either GS

Q
or GQ contains a simple closed curve component of Q\S

or Q\T respectively.

The proofs in [20, Section 2] go through for the pair GQ and GT after replacing
“web” with “2–web” throughout to accommodate that T has genus 2 rather than 1. In
particular, [20, Theorem 6.3] becomes:

Lemma 7.3 GQ contains a great 2–web ƒ.

We refer to the side of bT containing bS as Black and the other side as White. Corre-
spondingly the faces of GQ are divided into Black and White faces. Each Black face
of GQ is a bigon and corresponds to an edge of GS

Q
.
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Lemma 7.4 (cf [20, Theorem 6.4]) If t � 4 then no Scharlemann cycle in GQ of
any length bounds a White face.

Proof The proof of [20, Theorem 6.4] goes through replacing the Klein bottle with
Dyck’s surface.

Lemma 7.5 (cf [20, Theorem 6.5]) If �1 , �2 , �3 and �4 are SCs in GQ , then two
of them must have the same pair of labels.

Proof Assuming no two of the SCs have the same label pair, it must be that t � 4.
Since the faces of each of these SCs must be Black by Lemma 7.4, then their label pairs
are all mutually distinct. Hence they give rise to four disjoint Möbius bands properly
embedded in the Black side of bT . Their intersections with bS form four mutually
disjoint orientation reversing curves. But this contradicts that bS is the connect sum of
only three projective planes.

Lemma 7.6 (cf [20, Theorem 6.6]) If t � 6 then GQ does not contain a 1–ESC (see
Section 4.1).

Proof Follow the proof of [20, Theorem 6.6] until the last three sentences. Recall
there is a Möbius band A such that @AD y̨ and the core curve of A is y̌. An arc of
K is a spanning arc of A. On bS the curves y̨ and y̌ are disjoint, embedded nontrivial
loops. On bS , y̨ is orientation preserving and y̌ is orientation reversing. A small
neighborhood of y̌ on bS is a Möbius band B .

If y̨ is separating, then on bS it must bound either a Möbius band, once-punctured
Klein bottle, or once-punctured torus P that is disjoint from y̌. If P is a Möbius band,
then P [A is a Klein bottle. By assumption (since �> 2) this cannot occur. If P is
a once-punctured Klein bottle or once-punctured torus, then bP D P [A is a closed
nonorientable surface with �D �1. We may now perturb bP to be transverse to K

and have fewer intersections with K . This contradicts the minimality of bS .

If y̨ is nonseparating then consider the annulus A0 DAn y̌. Then A0 may be pushed
off A keeping @A0 on bS so that @A0 is a push-off of y̨ and @B . Then cutting bS open
along y̨ and @B , we may attach A and A0 to the resulting boundary components to
form bP , a new embedded instance of Dyck’s surface. Again we may now perturbbP to be transverse to K and have fewer intersections with K . This contradicts the
minimality of bS .

Let L be the set of labels of GQ that are labels of SCs in GQ .
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Lemma 7.7 (cf [20, Theorem 6.7]) If t � 6 then jLj � .4t � 2/=5.

Proof The proof is the same as that of [20, Theorem 4.3], using Lemma 7.3 instead
of [20, Corollary 2.7] and Lemma 7.6 instead of [20, Theorem 3.2].

Lemma 7.8 t is not a positive multiple of 4.

Proof If t D 4k , then jK \ bS j D 2k . Therefore bS may be tubed k times along
K to form a closed nonorientable surface in the exterior of K . This forms a closed,
embedded, nonorientable surface in S3 : a contradiction.

Lemma 7.9 t � 6

Proof By Lemma 7.7 if t � 10 then there must be at least seven labels that appear as
labels of SCs in GQ . This contradicts Lemma 7.5. Lemma 7.8 forbids t D 8. Hence
t � 6.

Lemma 7.10 If t D 6, then three consecutive bigons in ƒ must be Black-White-Black
with a Black SC. In particular, there may be at most 4 mutually parallel edges on ƒ.

Proof In a stack of three consecutive bigons, each corner has four labels. Since t D 6,
the two sets of four labels of the two corners either completely coincide or overlap in just
two labels. The former situation implies the stack is an ESC; this violates Lemma 7.6.
The latter situation implies one of the outer bigons is an SC. By Lemma 7.4, this bigon
must be Black. The lemma at hand now follows.

Lemma 7.11 If t D 6, there cannot be a forked (once) extended Scharlemann cycle
(see Section 4.1).

Proof Assume there is a forked extended Scharlemann cycle. By symmetry we may
assume, without loss of generality, that it has labels and faces marked as in Figure 15(a).
The edges of @f and @g form the subgraph of GT shown in Figure 15(b).

Collapse N.bS/ back down to bS expanding the two faces f and g into f and g as
shown in Figure 16(a). Since the two 34–edges of Figure 15(b) bound a single Black
bigon, they are collapsed into one orientation reversing loop on GS . Because the other
edges of @f and @g belong to distinct bigons, they remain distinct edges of @f and
@g . In particular the two 25–edges continue to form an orientation preserving loop on
GS . The corresponding subgraph of GS is shown in Figure 16.
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A small collar neighborhood of the 34–edge on GS is a Möbius band. Nearby, the
faces f and g encounter the 3=4 vertex as in Figure 17(a). To separate these faces we
may perturb K near the vertex, introducing two new intersections with bS as shown in
Figure 17(b). The perturbation is done so that the resulting five edges of @f and @g
are disjoint.

Now we surger bS along the two arcs of K that form the corners of f and g . This
produces a new closed nonorientable surface bR that K intersects 2 fewer times than
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bS , though �.bR/D�5. Finally, since the boundaries of the faces f and g are disjoint
on bR and nonseparating both individually and together, they simultaneously give
compressions of bR yielding a closed nonorientable surface bS 0 with �.bS 0/D�1 that
K intersects transversely just once. This contradicts the minimality assumption onbS .

Lemma 7.12 If t D 6 and ƒ contains a Black .34/;.56/–bigon, then there is only
one parallelism class of Black .12/–SC.

Proof By Lemma 7.7 there must be at least five labels that appear as labels of SCs
in GQ . Hence all 6 labels are labels of SCs. In particular, there are .12/–, .34/– and
.56/–SCs. Choose a representative SC for each Black label pair. Since these Black
bigons are disjoint, after their corners are identified along K , they project to three
mutually disjoint orientation reversing simple curves on bS . Thus the complement of
these three curves is a thrice-punctured sphere P . A Black .34/;.56/–bigon projects to
a properly embedded arc a on bS connecting two of the punctures on P . Given a new
.12/–SC, it projects to a properly embedded arc b on P disjoint from a and connects
the third puncture to itself. Since Pna is an annulus, b must be boundary parallel.
Hence the new .12/–SC must be parallel to the original representative .12/–SC.

Theorem 7.13 t � 2

Proof By Lemma 7.9 we have t � 6. Since t ¤ 4 by Lemma 7.8, we assume for a
contradiction that t D 6. Since bigons may occur in at most runs of three according
to Lemma 7.10, Lemmas 5.14 and 5.11 imply that ƒ has a special vertex v of type
Œ6�� 5; 4�, Œ6�� 4; 1� or Œ6�� 3�. Thus there are bigons at at least 6�� 5 corners
of v . By Lemma 7.10 at most 3

4
of the corners around a vertex may belong to bigons,

however. Hence 6�� 5� 3
4
�t D 9

2
� and so �� 10

3
. Thus �D 3. Therefore v has

type Œ13; 4� or Œ14� (which includes both types Œ14; 1� and Œ15�).

If v is of type Œ14� then there are at most 4 faces around v that are not bigons. Hence
there must be some run of at least 4 bigons. This contradicts Lemma 7.10.

4 5 1 2 3 4 5 6 1 2 3 4 5 661 2 3

gap gapgap gap gap gap

Figure 18
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If v is of type Œ13; 4� and not type Œ14� then the 13 bigons must appear around v as in
Figure 18 up to relabeling. In Figure 18, each “gap” marks a nonbigon (the two on the
ends mark the same corner); at least 4 mark a trigon. Since each gap must correspond
to a White corner at v , there are either three bigons or just one bigon between gaps.
Hence around v there must be four runs of three consecutive bigons, as pictured, each
containing a Black SC by Lemma 7.10.

Because at most one nonbigon around v is not a trigon, at least two of the trigons lie
between two of these runs of bigons. Such a trigon is adjacent to 0, 1 or 2 SCs in the
two runs of bigons. Lemma 7.4 prohibits such a trigon being adjacent to 0 SCs. If such
a trigon is adjacent to 1 SC, then it must be part of a forked extended Scharlemann
cycle as in Figure 15; Lemma 7.11 prohibits this configuration. Hence every such trigon
must be adjacent to 2 SCs. This implies that there cannot be three consecutive runs
of bigon triples at v ; that the central gap in Figure 18 is the one not filled by a trigon
in ƒ. The labeling is now completely forced, except for that of the singleton Black
bigon at the left of the figure. It must be a .12/–SC, otherwise one of the trigons on
either side is a White SC, contradicting Lemma 7.4. But then there are three .12/–SCs
incident to v , along with a .34/;.56/–bigon. Lemma 7.12 implies that there are 12

edges incident to v that are parallel on GT . The argument of Lemma 8.15 applied to
GT ;GQ shows that K is a cable knot; a contradiction.

The above lemma provides the conclusion of Theorem 7.2.

Corollary 7.14 Let K0 be a hyperbolic knot in S3 and assume that M D K0. /

contains an embedded Dyck’s surface. If �D�.; �/ > 1, where � is a meridian of
K0 , then there is an embedded Dyck’s surface, bS , in M that intersects transversely
once the core, K , of the attached solid torus. Let bN DM � N.bS/. Either:

(1) @bN is incompressible in bN (hence in M ). Furthermore, either K can be
isotoped in M onto bS as an orientation-reversing curve, or the twice-punctured,
genus 2 surface @bN � N.K/ is incompressible in the exterior of K .

(2) bN is a genus 2 handlebody in which K\ bN is a trivial arc. That is, bS gives a
1–sided Heegaard splitting for M with respect to which K is 1–bridge. In this
case, K0 has tunnel number at most 2.

Proof Theorem 7.2 provides the Dyck’s surface bS in M that intersects K at most
once. If K in M can be isotoped onto bS , then it must be an orientation-reversing
curve in that surface (as S3 admits no embedded, closed, nonorientable surfaces) and
we are done (if bN has incompressible boundary, it is the first conclusion, if not, it
is the second as M is atoroidal and bS is incompressible). So assume K cannot be
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isotoped onto bS . Using a thin position of K0 in S3 , find surfaces bS ;S; bT ;T as at
the beginning of the proof of Theorem 7.2. Now we have t D 2. By Lemma 7.3, GQ

contains a great 2–web. This web must contain some White face, f , which must be a
Scharlemann cycle (though not necessarily a bigon). We view f as giving an essential
disk in N D bN � N.K/.

Assume the twice-punctured, genus 2 surface @bN � N.K/ is incompressible in the
exterior of K . This is equivalent to its incompressibility in bN � N.K/. As f gives a
compressing disk for the boundary of N , [9, Lemma 2.1.1] (Handle Addition Lemma)
implies that @bN is incompressible in bN and hence in M . This is one of the desired
conclusions.

So we assume that @bN � N.K/ is compressible in the exterior of K , hence in N .
Compress @bN � N.K/ maximally in N . As K is hyperbolic, no component of the
result can be an essential annulus in N . Thus @bN � N.K/ must compress so that the
component containing its boundary is either a twice-punctured, essential torus or a
boundary parallel annulus in N . Assume first it is a twice-punctured, essential torus.
That is, we may assume there is a compressing D for @bN that is disjoint from K , such
that some component of @bN � N.K/ surgered along D is a twice-punctured essential
torus, F . Let yF be the corresponding torus component obtained by compressing @bN
along D . Note that yF is incompressible on the side containing bS as any compressing
disk could be taken disjoint from both bS and D . On the other hand, yF is also
incompressible on the side, O , lying in bN by [9, Lemma 2.1.1]: surgering the disk f
off of D , gives rise to an essential disk in O� N.K/. Thus, yF is an incompressible
torus in M , a contradiction.

Thus @bN � N.K/ must compress to a boundary parallel annulus in N . Thus for the
arc � DK\ bN , there is a disk D� in bN such that @D� D �[ ı , where ı � @bN . That
is, D� is a “bridge disk” for � in bN .

First, assume that @bN does not compress in bN .

Claim 7.15 Let A be the annulus N \ N.�/, and ˛ be the core of A. There are
disjoint disks D1;D2 properly embedded in N such that @D1 intersects ˛ once and
@D2 intersects ˛ algebraically and geometrically n> 1 times.

Proof Initially, set D1 D D� ;D2 D f . Isotope D1 so that it is disjoint from D2

along A. Subject to this condition, isotop D1 to intersect D2 minimally. If D1;D2

are disjoint, we are done. Otherwise, there is an outermost arc of intersection, � , on
D1 cutting off a disk d which is disjoint from D2 except along � and also disjoint
from ˛ . By minimality, each side of � in D2 contains components of @D2\A. If one
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side of � contains a single component of @D2\A, then add this side of � in D2 to d ,
thereby getting a new disk D1 disjoint from the disk D2 as desired. Otherwise, surger
D2 along d and take either component as the new D2 . Then D1;D2 still satisfy the
desired intersection properties with ˛ but have fewer components of intersection with
each other. Repeating, we eventually get disjoint D1;D2 .

Note that N � N.D1/ is isotopic to bN . Under this isotopy the disk D2 becomes a
disk in bN whose boundary is easily seen to be nonseparating in @bN . This contradicts
the incompressibility of @bN in bN . Thus it must be that K could be isotoped onto bS .

Finally, assume @bN compresses in bN . Since M is atoroidal, bN is a genus 2 han-
dlebody. That is, bS is a 1–sided Heegaard surface for M , and D� says that K is
1–bridge with respect to this splitting. Adding the cores of bN as tunnels to K gives a
genus 3 handlebody isotopic to bN [N.K/. Since the neighborhood of a punctured
nonorientable surface (in an orientable 3–manifold) is a handlebody, these two tunnels
provide a tunnel system for K , hence also for K0 .

8 Scharlemann cycles, Möbius bands and annuli

See Section 4 for definitions regarding extended Scharlemann cycles, long Möbius bands
and almost properly embedded surfaces. Recall that M DK0. / with �D�.; �/>2,
where � is a meridian of K0 . In particular, as K0 is hyperbolic this implies that M

does not contain an essential 2–sphere, 2–torus, projective plane or Klein bottle and is
not a lens space. M DHB[ yF HW is a strongly irreducible genus 2 Heegaard splitting
of M . We assume that thin position of K , the core of the attached solid torus in M ,
with respect to this splitting is the minimal bridge position for K among all genus 2
Heegaard splittings of M and that we have surgered Q to get rid of any simple closed
curves of Q\F that are trivial on both.

In this and subsequent sections, we will often need to divide the argument into the two
cases:

� SITUATION NO SCC There are no closed curves of Q\F in the interior of
faces of GQ . Thus the annuli, Möbius band constituents of a long Möbius band
are each properly embedded on one side of yF .

� SITUATION SCC There are closed curves of Q\F in the interior of faces of
GQ . Recall (Corollary 3.2) that any such must be nontrivial on yF and bound a
disk on one side of yF . In this case the annuli, Möbius band constituents of a long
Möbius band are each almost properly embedded on one side of yF (Section 4.2).
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Lemma 8.1 Assume A is an almost properly embedded Möbius band in one handle-
body of a Heegaard splitting HW [ yF HB of a 3–manifold M . If a core curve of A

lies in a 3–ball in M then the Heegaard splitting is weakly reducible.

Proof @A cannot be a meridian of either HW or HB since M contains no projective
planes. But @A can be isotoped into a neighborhood of the core of A. Hence @A lies
in a 3–ball in M , and Lemma 3.3 says the splitting is weakly reducible.

Lemma 8.2 The exterior of K contains no properly embedded, essential, twice-
punctured torus with boundary slope  , the meridian of K in M .

Proof Assume T is a properly embedded, essential, twice-punctured torus contained
in M � N.K/. Then T caps off to a separating torus bT in M that is punctured twice
by K , T D bT � N.K/. Color the two components of M n bT Black and White and
denote them MB and MW respectively.

The thin position argument of [13] shows that we may find a thick sphere bQ for
K0 � S3 in thin position so that the fat-vertexed graph GQ of intersection on bQ
between QD bQ� N.K0/ and F in the exterior of K has no monogons. (A monogon
of GQ would give a bridge disk for an arc of K n bT and hence give a compression
of T .) We may now follow [20, Lemmas 8.2 and 8.3] to show that both MB � N.K/
and MW � N.K/ are genus 2 handlebodies.

Since MB is recovered from the handlebody MB � N.K/ by attaching a 2–handle
along the core of the annulus @.MB � N.K//�T , the Handle Addition Lemma [9,
2.1.1] implies that bT D @MB is incompressible in MB . The same argument showsbT D @MW is also incompressible in MW . Thus the torus bT is incompressible in M ,
a contradiction since M is atoroidal.

Lemma 8.3 Let N �M be a small Seifert fiber space over the disk with two excep-
tional fibers. Assume N contains a properly embedded Möbius band A such that @A
does not lie in a 3–ball in M (for example, @A lies on a genus 2 Heegaard splitting of
M , Lemma 3.3). Furthermore, assume K\N is a spanning arc of A. Then there is a
genus 2 Heegaard splitting of M in which K is 0–bridge.

Remark 8.4 Note that the proof of Lemma 8.3 actually shows that under the given
hypotheses, M is a Seifert fiber space with at most three exceptional fibers, one of
which has order 2. Furthermore, the new splitting constructed is a vertical splitting of
the Seifert fiber space and K is a core of this vertical splitting.
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Proof Since @A, hence N , does not lie in a 3–ball in M , and M is atoroidal,
M � Int N must be a solid torus. Let T D @N . As @N.A/�T must be an essential
annulus in N , T � N.K/ is incompressible in N � N.K/. Lemma 8.2 implies
T � N.K/ must compress in .M � Int N /� N.K/ to give a boundary parallel annulus.
This gives an isotopy of K\ .M � Int N / onto T through M � Int N .

Attaching the 1–handle N.K/\N to M � Int N then forms a genus 2 handlebody
where K is isotopic onto its boundary. Since N � N.A/ must be a solid torus,
N � N.K/ is a genus 2 handlebody. Thus we have the desired Heegaard splitting.

Recall that an ESC is called proper if in its corner no label appears more than once.
Section 4 describes how an ESC gives rise to an almost properly embedded, long
Möbius band.

Lemma 8.5 Let � be a proper .n � 1/–ESC in GQ . Let A D A1 [ � � � [ An be
the corresponding long Möbius band and let ai 2 a.�/ be @Ai � @Ai�1 for each
i D 2; : : : ; n and a1 D @A1 . Assume that, for some i < j , ai ; aj cobound an annulus
B in yF that is otherwise disjoint from K . Then j D i C 1 and Aj cobounds a solid
torus V with B . Furthermore, Aj is longitudinal in V , the interior of V is disjoint
from K and V guides an isotopy of Aj to B .

Addendum: Let D be a meridian disk of HB or HW disjoint from K and A, and let
F� be yF surgered along D . If ai ; aj cobound an annulus B of F� (rather than yF )
that is otherwise disjoint from K , then the above conclusion is still valid (ie Aj DAiC1

is isotopic to B ).

Proof The proof of the Addendum is the same as the proof for the Lemma, replacing
yF with F� , after noting that A can be surgered off of B . So we proceed with the

proof of the Lemma.

Let B be the annulus on yF cobounded by ai and aj whose interior is disjoint from K .
Any simple closed curves of A\B in the interior of B must be meridians of either
HB or HW , and we could use such with A to create a projective plane in M . Hence
we may assume A is disjoint from the interior of B . Then T DAiC1[ � � � [Aj [B

is an embedded 2–torus in M . M is atoroidal, so let D be a compressing disk for T .
The proof now splits into three cases depending on the relationship of AiC1;Aj ;D

with respect to yF .

Case I AiC1 and Aj lie on opposite sides of yF .

Compressing T along D gives a sphere which bounds a ball B3 in M . If D is not
contained in B3 then T bounds a solid torus to the side containing D (and B3 ). In
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this situation, the unfurling move from [1, Section 4.3] applies to reduce the width of
K . (Let V be the solid torus bounded by T . K intersects V as a single arc partitioned
as a pair of spanning arcs � and �00 on the annulus AiC1[� � �[Aj union an arc �0 in
Int V with its boundary on a single boundary component of this annulus. With support
in a small neighborhood of V , there is an isotopy of K (which may be viewed as
rotations of V ) that returns �0 to its original position and replaces �; �00 by spanning
arcs of B (these may be taken to be on B \ yF for the Addendum). A further slight
isotopy in a neighborhood of the new �; �00 puts K in bridge position with respect to
yF again, but with smaller bridge number (width).) Since this contradicts the presumed

thinnest positioning of K , D must be contained in B3 . On the other hand, if B3

contains D then T lies in B3 , hence ai does also. But this contradicts Lemma 3.3.

Case II AiC1 and Aj lie on the same side of yF , and D near B lies on the opposite
side of yF .

Let V be the closure of the component of M nT containing D . As ai does not lie
in a 3–ball by Lemma 3.3, V is a solid torus. Isotop K into the interior of V . Since
M is irreducible and not a lens space, and since the exterior of K is irreducible and
atoroidal, K must be a core of V . Now A0DA1[� � �[Ai is a Möbius band properly
embedded in V . Thus K is isotopic to the core of A0 , hence of A1 . The following
contradicts either that K has bridge number greater than zero with respect to yF or that
K is hyperbolic.

Claim 8.6 The core of A1 is isotopic to a core curve of HW or HB or has exterior
which is a Seifert fiber space over the disk with at most two exceptional fibers.

Proof In SITUATION NO SCC, A1 is a properly embedded Möbius band in one of
the Heegaard handlebodies. So the core of A1 is a core curve of the handlebody. So
assume we are in SITUATION SCC. Then there is a meridian disk E of a Heegaard
handlebody H on one side of yF that is disjoint from both K and Q. Let N be the
component of H � N.E/ containing @A1 . We may isotop A1 in M , fixing @A1 , so
that its interior is disjoint from @N . If A1 �N then the core of A1 is isotopic to a
core of H . Thus we assume that A1 is properly embedded in the exterior of N in M .
Let n be the number of times @A1 winds around the core of N . As M contains no
projective plane, n> 0. If n> 1 then, U D N.N [A1/ is a Seifert fiber space over
the disk with two exceptional fibers. @U must compress in M �U . As @A1 does not
lie in a 3–ball by Lemma 3.3, M �U must be a solid torus. Thus the exterior of the
core of A1 is a Seifert fiber space over the disk with at most two exceptional fibers.
Finally, assume nD 1. Let L be a core of N . Then L is a .2; 1/–cable of the core of
A1 . Claim 8.7 below shows that the core of A1 , since it is isotopic to K and therefore
hyperbolic, is isotopic to a core of HB or HW .
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Claim 8.7 Let L be a cable of a hyperbolic knot K in a 3–manifold M 6Š S3 .
Assume that L is a core of HB in a strongly irreducible genus 2 Heegaard splitting
HB [ yF HW of M . Then K is isotopic to a core of either HB or HW .

Proof Let Y D M � N.L/. Let A be the cabling annulus for L considered as
properly embedded in Y . Because K is hyperbolic, A is the unique essential annulus
in Y up to isotopy. Let E be a nonseparating disk in HB disjoint from L, and let
˛ D @E � @HW . Then A is the unique essential annulus in HW [N.E/D Y . Now
@HW �˛ is incompressible in HW by the strong irreducibility of the splitting. Apply
[10, Theorem 1], where M D HW and M˛ D Y . First assume [10, Theorem 1(a)]
holds and let A0 be the ˛–essential annulus. By [10, Proposition C] (and the uniqueness
of essential annuli in Y ), A0 is isotopic to A in Y . Then A0 is a separating essential
annulus in HW and consequently cobounds a solid torus T with an annulus A00 on
@HW . As A00 is disjoint from @E , T is isotopic to the solid torus cobounded by A

and @Y . Thus K can be isotoped in Y to a core of T and hence to a core of HW . So
assume [10, Theorem 1(b)] holds and let S be the essential annulus of Y described.
Then again, S is isotopic to A. Furthermore, the solid torus T must be the cabling
solid torus in Y whose core is K . As �1 described in [10, Theorem 1] is also a core
of T , K is isotopic to �1 . As �1 is a core of HB , so is K .

Case III AiC1 and Aj lie on the same side of yF , and D near B lies on the same
side of yF .

Let V be the component of M nT containing D . Then K may be perturbed to miss
V completely. Since K cannot lie in a 3–ball (by the irreducibility of the exterior of
K ), V is a solid torus. A0 D A1 [ � � � [Ai is a Möbius band properly embedded in
M �V . We may assume @D intersects @A0 minimally on T . Let n be this intersection
number. If nD 0, then we may use A0 and D to construct a projective plane in M , a
contradiction. If nD 1 then B is longitudinal in V . If furthermore, j > i C 1 then
we can use V to thin K (by reducing the bridge number), a contradiction. Thus, when
nD 1 we have the conclusion of the Lemma.

So assume n> 1. Let N D N.V [A0/. Then N is a Seifert fiber space over the disk
with two exceptional fibers of order 2; n. Lemma 8.3 now applies to give a genus
2 Heegaard splitting of M in which K is 0–bridge. This contradicts the presumed
minimal bridge position of K with respect to the original splitting HB [ yF HW .

We make the following useful observation:

Lemma 8.8 Let � be a bridge collection of arcs in a handlebody H . Let A be an
annulus or Möbius band properly embedded in H that is disjoint from � . Let � be a
cocore of A. Then f�g[� is a bridge collection of arcs in H .
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Proof Let D be a collection of bridge disks in H for � . If D is disjoint from A,
then a @–compressing disk of A (ie a disk intersecting A in a single arc essential in
A) can be isotoped to give a bridge disk for � . We may isotope this disk to be disjoint
from D , thereby showing that � [� is a bridge collection.

So we assume that D can be chosen to meet A in a nonempty collection of cocores
of A. An outermost arc, �0 , of A\D in D cuts out an outermost disk D . After
perturbing D slightly, D becomes a bridge disk for �0 disjoint from D , showing that
�0[� is a bridge collection. As � is isotopic to �0 in A, this proves the Lemma.

Lemma 8.9 Let A D A1 [ � � � [An be the long Möbius band corresponding to a
proper ESC, and assume we are in SITUATION NO SCC. Assume, as in the conclusion
of Lemma 8.5, some Aj cobounds a solid torus V with an annulus B in yF , that Aj is
longitudinal in V , and the interior of V is disjoint from K . Then j D n.

Proof Assume for contradiction that j <n. We use V to isotop Aj to B and then into
the opposite handlebody, HW say. Then Aj�1[Aj [AjC1 is a properly embedded,
incompressible annulus or Möbius band in HW . Lemma 8.8 shows that we can reduce
the bridge number of K by replacing the arcs K \ .Aj�1 [Aj [AjC1/ with the
cocores of this properly embedded annulus or Möbius band.

Lemma 8.10 Let a; a0; a00 be components of a.�/ for a proper ESC, � . If a; a0 and
a0; a00 each cobound annuli on yF with interiors disjoint from K , then K can be thinned.

Addendum: Let D be a meridian disk of HB or HW disjoint from K and Q. Let
F� be yF surgered along D . If a; a0 and a0; a00 each cobound annuli on F� (rather
than yF ) with interiors disjoint from K , then K can be thinned.

Proof The argument for the Addendum is the same as the argument below with yF
replaced by F� .

Assume a; a0 cobound an annulus B on yF , and a0; a00 cobound B0 on yF , with int(B ),
int(B0 ) disjoint from K . Let ADA1[ � � � [An be the long Möbius band associated
to � and ai D @Ai � @Ai�1 be the components a.�/. Then by Lemma 8.5 (and its
Addendum for the Addendum here), we can write aD ai ; a

0 D aiC1; a
00 D aiC2 for

some i . Furthermore, AiC1 [B;AiC2 [B0 bound solid tori V;V 0 whose interiors
are disjoint from K and which guide isotopies of AiC1;AiC2 to B;B0 (respectively).
Together these define an isotopy of the arcs K\ .AiC1[AiC2/ onto B;B0 . We can
then perturb the resulting arcs off of yF , resulting in a thinning of K .

Algebraic & Geometric Topology, Volume 13 (2013)



2530 Kenneth L Baker, Cameron Gordon and John Luecke

Lemma 8.11 M contains a Dyck’s surface if either:

(1) There are three mutually disjoint Möbius bands in M , each almost properly
embedded in HB or HW .

(2) There is a Möbius band in M almost properly embedded in either HB or HW

whose boundary is separating on yF .

Proof First assume the Möbius bands are properly embedded in the Heegaard handle-
bodies. Note that 3 mutually disjoint Möbius bands cannot all be properly embedded
in a single genus 2 handlebody. Thus to have 3 mutually disjoint Möbius bands in M

each properly embedded in either HB or HW , two must lie to one side of yF and one
must lie to the other. Furthermore their boundaries must be in different isotopy classes
on yF , else M contains an embedded Klein bottle.

If the boundary of a Möbius band that is properly embedded in either of these han-
dlebodies has separating boundary on yF , then it divides yF into two once-punctured
tori. Capping off one of these with the Möbius band produces an embedding of Dyck’s
surface in the handlebody, a contradiction. Thus the boundaries of these 3 Möbius bands
cut yF into two thrice-punctured spheres. Capping off one of these thrice-punctured
spheres with the 3 Möbius bands produces an embedding of Dyck’s surface in M .

Now assume that some Möbius band is almost properly embedded. Then there is
a meridian disk disjoint from all three Möbius bands. After surgering yF along this
disk the hypotheses above guarantee that M contains an embedded Klein bottle or
projective plane (either some Möbius band boundary becomes trivial or two become
isotopic), contrary to assumption.

Lemma 8.12 Assume there is an annulus, A, almost properly embedded in either
HB or HW whose boundary components are in distinct, essential isotopy classes
in yF neither of which is a meridian of either handlebody. If there is an almost
properly embedded Möbius band in either handlebody that is disjoint from A and
whose boundary is not isotopic on yF to either boundary component of A, then M

contains a Dyck’s surface.

Proof Note that in fact the annulus and Möbius band are properly embedded, else
the hypothesis would imply the existence of an embedded projective plane in M . Let
A be the annulus and B be the Möbius band. By Lemma 8.11 we assume @B is not
separating on yF . Since A is nonseparating and incompressible, each component of @A
is nonseparating in yF (A is disjoint from a nonseparating meridian disk). Therefore all
three components of @.A[B/ are nonseparating. The complement of these three curves
on yF is two copies of the thrice punctured sphere. Let one be P . Then P [A[B is
an embedding of Dyck’s surface in M .
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Lemma 8.13 Assume M does not contain a Dyck’s surface. In SITUATION NO SCC:

(1) If GQ contains a proper r –ESC then r � 2.

(2) The long Möbius band A1 [A2 [A3 arising from any proper 2–ESC must
have @A2 nonisotopic on yF , @A3 cobounding an annulus B on yF . A3 [B

cobounds a solid torus V whose interior is disjoint from K and in which A3 is
longitudinal. That is, V guides an isotopy of A3 in M to B .

Proof Consider an .n � 1/–times extended Scharlemann cycle (an .n � 1/–ESC;
see Section 4), � , in GQ for which n is largest and that is still proper. Let A D

A1 [ A2 [ � � � [ An be its associated long Möbius band. Let ai D @Ai \ @AiC1 .
Assume A1 is Black so that Ai is White for i even and Black for i odd.

Assume there exists a proper 3–ESC so that n � 4 (� is maximal). Since there are
at most 3 isotopy classes of mutually disjoint simple loops on yF , two curves of a.�/

must be isotopic. Let B be the annulus cobounded by adjacent ones.

If the interior of B is not disjoint from K then there is a vertex x of K\ Int B . Since,
by Corollary 5.4, ƒx contains a bigon, there is a proper extended Scharlemann cycle,
� , and a corresponding long Möbius band Ax whose boundary is a curve comprising
two edges of ƒx meeting at x and one other vertex. Therefore this curve cannot
transversely intersect @B and thus must be contained in B . By Lemma 4.3, �; � must
have the same core labels. But this contradicts the maximality of � .

Hence K\ Int B D∅. Thus by Lemma 8.5 and Lemma 8.9, since K does not lie on
a genus 2 splitting of M and Int B \K D∅, @B D an�1[an . That is, an�1; an are
the only components of a.�/ parallel on yF . Since n� 4, nD 4 and the components
of @A4 , a3 and a4 , cobound an annulus on yF . Moreover the curves a1; a2; a3 are in
different isotopy classes on yF . But then A1 and A3 contradict Lemma 8.12 (no ai

bounds a disk else M contains a projective plane).

Now assume there exists a 2–ESC so that nD 3. Then by Lemma 8.12 some pair of
boundary components of A1 and A3 must be isotopic. Lemma 8.5, Lemma 8.9, and
the argument above (now a 2–ESC is maximal) show this pair must be @A3 and prove
part (2).

Lemma 8.14 If there are 3 SCs in GQ with disjoint label pairs then M contains a
Dyck’s surface.

Proof Assume there are 3 SCs with disjoint label pairs. These give rise to 3 mutually
disjoint Möbius bands each almost properly embedded in either HB or HW . By
Lemma 8.11 M contains a Dyck’s surface.
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Lemma 8.15 No two edges may be parallel in GF that meet a vertex at the same
label.

Proof Assume there were two such parallel edges in GF . If the two vertices of GF

that these edges connect are parallel, then there must be a length 2 Scharlemann cycle
in GF which can be used to create an embedded projective plane in the meridional
surgery on K ; a contradiction. If the two vertices that the parallel edges connect are
antiparallel, then the argument of [16, Section 5, Case (2)], implies that K is a cable
knot, contradicting that K is hyperbolic.

Lemma 8.16 In SITUATION NO SCC, assume there is a White .23/–SC. Let A23 be
its corresponding Möbius band in HW . Then there are mutually disjoint bridge disks
for all of the White arcs K\HW whose interiors are also disjoint from A23 .

Proof First take a bridge disk D23 for .23/ disjoint from the other bridge arcs
K\HW . This disk may be chosen to have interior disjoint from A23 since otherwise
there is a compression, @–compression, or a banding that will form a new bridge disk
for .23/ intersecting A23 fewer times.

Then @N.D23[A23/�@HW is a separating meridian disk in HW . Any collection of
bridge disks for the remaining arcs of K\HW may be pushed off this disk.

Lemma 8.17 Two properly embedded, non-@–parallel arcs in a Möbius band with the
same boundary are isotopic rel @.

Proof Let a and b be two properly embedded, non-@–parallel arcs in a Möbius band
such that @aD @b . Let a0 be a push-off of the arc a. Isotop b rel-@ to minimize both
ja0\ bj and ja\ bj.

If ja0 \ bj D 0, then a and b are isotopic rel-@. If ja0 \ bj ¤ 0 then the two arcs of
b� a0 sharing an end point with a either lie on the same side of a[ a0 or on different
sides. If they lie on the same side, then there must be a bigon with boundary composed
of an arc in a0 and an arc in b with interior disjoint from a0 [ b . Thus there is an
isotopy rel-@ of b to reduce ja0 \ bj contrary to assumption. If they lie on different
sides, then their union must be b with b parallel into the boundary of the Möbius band.
This too is contrary to assumption.

9 t < 10

In this section we prove:

Theorem 9.1 Either M contains a Dyck’s surface or t < 10.
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Proof This is Proposition 9.2 of Section 9.1 when we are in SITUATION NO SCC, and
Proposition 9.8 of Section 9.2 in SITUATION SCC.

9.1 t � 10 and SITUATION NO SCC

Proposition 9.2 In SITUATION NO SCC, either M contains a Dyck’s surface or t <10.

Proof Assume we are in SITUATION NO SCC, M does not contain a Dyck’s surface
and t � 10. By Lemma 8.13, there are three cases to consider:

(A) There is a 2–ESC in ƒ.

(B) There is an ESC in ƒ but no 2–ESC.

(C) There is no ESC in ƒ.

Case A There is a 2–ESC in ƒ.

Assume GQ contains � , the 2–ESC depicted in Figure 19 (WLOG as labeled there and
with Black and White as pictured). It gives rise to a long Möbius band A1[A2[A3

in which A1 is a Black Möbius band, A2 is a White annulus and A3 is a Black
annulus. By Lemma 8.13 the components of @A2 lie in two distinct isotopy classes on
yF whereas the components of @A3 are isotopic to each other.

36

1 2 3 4 5 6

�

1245

Figure 19

Lemma 9.3 There is no SC whose label set is disjoint from the labels f2; 3; 4; 5g.

Proof Assume there is a SC disjoint from the labels f2; 3; 4; 5g. This gives rise to
a Möbius band properly embedded in HB or HW which must be disjoint from the
annulus A2 . Since M contains no Klein bottles, the boundary of this Möbius band
cannot be isotopic to either component of @A2 . By Lemma 8.12, however, this cannot
occur.
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Recall Corollary 5.4, that for each label x the subgraph ƒx �ƒ must contain a bigon
and hence an ESC or SC. By Lemma 9.3, the SC in a bigon of ƒx must have label pair
intersecting f2; 3; 4; 5g, and by Lemma 8.13(1) an ESC may be at most twice extended.
Thus x can be no more than 3 away from the label 2 or 5; at its furthest, x D t �1 or
x D 8. Therefore t D 10.

For ƒ9 the only possibility is a 2–ESC with labels f9; 10; 1; 2; 3; 4g; it contains an SC
with label pair f1; 2g. Similarly, for ƒ8 the only possibility is a 2–ESC with labels
f3; 4; 5; 6; 7; 8g; it contains an SC with label pair f5; 6g. The SC in � has label pair
f3; 4g. But now the existence of these three SCs with disjoint label pairs contradicts
Lemma 8.14. (Really this contradicts that there cannot be 3 disjoint, properly embedded
Möbius bands in a genus 2 handlebody.) This completes the proof in Case A.

Case B There is an ESC in ƒ but no 2–ESC.

Assume GQ contains � , the ESC depicted in Figure 20.

�

3

2 3 4 5

245

Figure 20

Lemma 9.4 There cannot be two ESCs whose SCs have opposite colors and for which
the corresponding long Möbius bands are disjoint.

Proof Assume otherwise. Let A1 and A2 be the Möbius band and annulus respectively
arising from one ESC and B1 and B2 be the Möbius band and annulus respectively
arising from the other. We may assume A1 and B2 are Black while A2 and B1

are White. No component of @A2 is isotopic on yF to a component of @B2 since
otherwise the two long Möbius bands will form an embedded Klein bottle. Then by
Lemma 8.12 the components of @A2 must be isotopic as must the components of @B2 .
By Lemma 8.5, A2 and B2 are parallel into yF (note that since these ESCs are of
maximal length, we may apply the argument of Lemma 8.13 to show that the annuli on
yF between the components of @A2 and @B2 respectively must be disjoint from K ).

These two parallelisms however give a thinning of K . This is a contradiction.

We now consider the possible bigons of ƒ7 and ƒ9 . The possibilities are shown in
Figure 21. Lemma 9.4 immediately rules out 7(d).
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Claim 9.5 9(c) is impossible.

Proof Consider the bigons of ƒ1 . The four possibilities are listed in Figure 22. With
� and 9(c), each of 1(a), 1(b) and 1(c) contradict Lemma 8.14. Together 9(c) and 1(d)
contradict Lemma 9.4.

1(d)1(a)

1

1

�

�

� � � 1

���1

1 2 3 4

1234

ƒ1 W

1(b)

2

2

1

1
1(c)

Figure 22

Claim 9.6 7(a) and 7(c) are impossible.

Proof With � and 7(a), each of 9(a), 9(b) and 9(d) (the remaining possible bigons
of ƒ9 ) contradict Lemma 8.14. Similarly with � and 7(c), each of 9(a), 9(b) and 9(d)
contradict Lemma 8.14.

Claim 9.7 7(b) is impossible.

Proof With � and 7(b), each of 9(b) and 9(d) contradict Lemma 8.14. Therefore we
must have 9(a). Hence we have SCs with label pairs f3; 4g, f7; 8g and f8; 9g. Again,
ƒ1 must have one of the bigons listed in Figure 22. Each of the SCs contained within
1(a), 1(b) and 1(c) form, along with two of those with labels pairs f3; 4g, f7; 8g and
f8; 9g, a triple of mutually disjoint SCs. This contradicts Lemma 8.14.
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So we assume we have 1(d) along with � , 7(b) and 9(a). The possible bigons of ƒ6

are 7(a), 9(c), an SC on labels f5; 6g and a 1–ESC on labels f3; 4; 5; 6g. The first two
have already been ruled out. Each of the two remaining gives rise to an SC that joins
with those above to contradict Lemma 8.14.

This completes the proof in Case B.

Case C There is no ESC in ƒ.

In this case every label belongs to an SC. Lemma 8.14 then forces t � 6 contrary
to the assumed t � 10. This completes the proof in Case C and thus the proof of
Proposition 9.2.

9.2 t � 10 and SITUATION SCC

Proposition 9.8 In SITUATION SCC, either M contains a Dyck’s surface or t < 10.

Proof Assume we are in SITUATION SCC. Then there is a meridian disk D of HW

or HB disjoint from K and Q. Let F� be yF surgered along D . Then F� is one or
two tori. For contradiction, assume M does not contain a Dyck’s surface, and t � 10.

Lemma 9.9 If GQ contains an r –ESC then r � 3.

Proof Let r be the largest value such GQ contains a proper r –ESC, � . Assume for
contradiction, r � 4. Then ja.�/j � 5 and there must be at least three components of
a.�/ that are isotopic on F� . Let B be an annulus between two components of a.�/

on F� whose interior is disjoint from a.�/. Any vertex of GF in Int B must belong
to a component, a, of a.�/ for some r 0–ESC, � , of ƒ. Since a intersects a.�/ at
most once, it must lie in B and (Lemma 4.2) be isotopic to the components @B of
a.�/. But this would contradict the Addendum to Lemma 4.3 and the maximality of r .
Thus Int B must be disjoint from K . That is, there are components a1; a2; a3 of a.�/

such that a1; a2 and a2; a3 cobound annuli in F� whose interiors are disjoint from
K . This contradicts the Addendum to Lemma 8.10.

Lemma 9.10 GQ contains no 3–ESC.

Proof Suppose � is a 3–ESC. As argued in the preceding lemma, the Addendum to
Lemma 4.3 and the maximality of � show that if B is an annulus of F� cobounded by
components of a.�/ such that Int B is disjoint from a.�/, then Int B must be disjoint
from K . Then the Addendum to Lemma 8.10 shows that at most two components of
a.�/ are isotopic on F� . Since ja.�/j D 4, F� must be two tori with exactly two
components of a.�/ on each. But the argument above then says that every vertex of
GF must lie on a.�/, contradicting that t � 10.
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Lemma 9.11 There is no 2–ESC.

Proof Let � be a 2–ESC. The argument of Lemma 9.10 coupled with its conclusion
that there is no 3–ESC, implies that F� must consist of two tori: T1 containing two
components of a.�/ and T2 containing one. Again, the argument of Lemma 9.10,
shows that the only vertices of GF on T1 are those lying on the two components of
a.�/.

Assume � is given by Figure 19. By Corollary 5.4 there is a bigon of ƒ8 . This can
be taken to be a proper r –ESC, � (where r D 0 means an SC). Then r � 2. By the
Addendum to Lemma 4.3, each component of a.�/ must intersect a component of
a.�/. Enumerating the possibilities for the labels of � consistent with these conditions
we have:

(a) f5; 6; 7; 8g

(b) f8; 9; 10; 1; 2; 3g

(c) f3; 4; 5; 6; 7; 8g

But (a) is not possible as vertices 7; 8 of GF must lie on T2 , but the corresponding
components of a.�/ intersect two different components of a.�/. The same argument
with vertices 8; 9 rules out (b). So we assume the labels of � are given by (c). Since
vertices 7; 8 of GF lie in T2 , then vertices 3,4 must also lie in T2 while vertices
1; 2; 5; 6 must be those in T1 .

Now take a bigon of ƒ10 giving a proper n–ESC, � . By the Addendum to Lemma 4.3,
as argued above, each component of a.�/ must intersect both a.�/ and a.�/. Further-
more, n� 2. These conditions guarantee that the label set for � is f10; 1; 2; 3; 4; 5g.
But this contradicts that vertex 2 lies on T1 and vertex 3 on T2 .

Lemma 9.12 There is no 1–ESC.

Proof Assume there is an ESC, � , on the labels f1; 2; 3; 4g. By Corollary 5.4, there is
a proper r –ESC, � , coming from a bigon of ƒ5 , and a proper n–ESC, � , coming from
a bigon of ƒ9 . Furthermore, 0� r; n� 1. A simple enumeration shows the possible
label pairs of the core SC for � are: f3 4; 4 5; 5 6; 6 7g. The possible labels for the core
SC of � are: f7 8; 8 9; 9 10; 10�g (where the label � means either 1 or 11). Three SCs
on disjoint label pairs would allow us to use F� to form a Klein bottle in M . Thus
the label pairs of the core SCs of two of f�; �; �g must intersect. The possibilities are:

(a) �; � , where � has label set f2; 3; 4; 5g.

(b) �; � , where � has label set f5; 6; 7; 8g and � has label set f6; 7; 8; 9g.
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Both lead to the same contradiction. We consider (b). The edges of �; � force the
vertices 5; 6; 7; 8; 9 to lie on the same torus component of F� . There is a component
of a.�/ disjoint from a component of a.�/. Hence these components are isotopic on
F� . But this contradicts the Addendum to Lemma 4.3.

The preceding lemmas, along with Corollary 5.4, imply that every label of ƒ belongs
to an SC. But then Lemma 8.14 along with the assumption that t � 10 implies that M

contains a Dyck’s surface. This contradiction concludes the proof of Proposition 9.8.

10 t < 8

By Theorem 9.1, t � 8. In this section we prove:

Theorem 10.1 Either M contains a Dyck’s surface or t < 8.

Proof This is Proposition 10.2 of Section 10.1 when we are in SITUATION NO SCC,
and Proposition 10.17 of Section 10.3 in SITUATION SCC.

10.1 t D 8 and SITUATION NO SCC

Proposition 10.2 In SITUATION NO SCC, either M contains a Dyck’s surface or
t < 8.

Proof Assume M does not contain a Dyck’s surface and t D 8. By Lemma 8.13,
there are three cases to consider:

(A) There is a 2–ESC in ƒ.

(B) There is a 1–ESC in ƒ but no 2–ESC.

(C) There is no ESC in ƒ.

The proof in Case B relies upon Corollary 10.16 and Proposition 10.27 which are
proven in subsections following the present proof.

Case A There is a 2–ESC in ƒ.

As in Case A of Theorem 9.1, assume GQ contains � , the 2–ESC depicted in Figure 19.
It gives rise to a long Möbius band A� D A1 [ A2 [ A3 in which A1 is a Black
Möbius band, A2 is a White annulus and A3 is a Black annulus. By Lemma 8.13 the
components of @A2 are not isotopic on yF whereas the components of @A3 are.

Figure 23 lists all possible bigons of ƒ7 that are at most 2–ESCs (ie containing at
most 6 edges). We proceed to rule out all of these bigons, thereby contradicting
Corollary 5.4.
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Claim 10.3 7(a), 7(b) and 7(d) are impossible.

Proof Each of these bigons contain an SC whose associated Möbius band is disjoint
from A2 . The boundary of such a Möbius band must not be isotopic to a component of
@A2 , else there would be an embedded Klein bottle in M . This contradicts Lemma 8.12.

Claim 10.4 7(c) and 7(f) are impossible.

Proof Each 7(c) and 7(f) contain an SC whose associated Möbius band B intersects
A3 along a component of A3 \K . Because A3 is separating in the Black side of
yF , the intersection of B with A3 is not transverse. Therefore the Möbius band B

may be isotoped in HB to be disjoint from A3 and hence A2 . Since @B cannot be
isotopic on yF to either component of @A2 , together B and A2 form a contradiction to
Lemma 8.12.

Claim 10.5 7(e) is impossible.

Proof Figure 24 lists all possible bigons of ƒ8 that are at most 2–ESCs. Analogously
to Claims 10.3 and 10.4, we may rule out all but 8(e). Yet now 7(e) and 8(e) cannot
coexist as the proof of Claim 10.4 applies analogously with 7(e) and 8(e) in lieu of
7(c) and � respectively.

This completes the proof in Case A.

Case B There is a 1–ESC in ƒ but no 2–ESC.
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Assume GQ contains � , the ESC depicted in Figure 20.

Lemma 10.6 There cannot be two 1–ESCs whose label sets intersect in one label.

Proof Assume otherwise. Then their SCs have opposite colors. Let A1 and A2 be
the Möbius band and annulus arising from one ESC; let B1 and B2 be the Möbius
band and annulus arising from the other. Since A1 and B1 are on opposite sides, so
are A2 and B2 .

By Lemma 8.12 some pair of curves of @A1 [ @B2 must be isotopic as must some
pair of curves of @B1[ @A2 . Since we may not form any embedded Klein bottles, the
two components of @B2 must be isotopic as must the two components of @A2 . Then
by Lemma 8.5 it follows that A2 and B2 are each parallel into yF . (The ESCs are of
maximum length, so the argument of Lemma 8.13 shows that the parallelism between,
say, @A2 is disjoint from K .)

By assumption, @A2 and @B2 intersect in one point, and thus this intersection is not
transverse. Hence, as with Lemma 9.4, the parallelisms of A2 and B2 into yF give a
thinning of K . This is a contradiction.

Let us now consider the possible ESCs, SCs coming from bigons of ƒ8 and ƒ7 . These
possibilities are shown in Figure 25.

Claim 10.7 Neither 7(d) nor 8(d) may occur.

Proof Since each of these shares one label with � , Lemma 10.6 rules them out.

Claim 10.8 Neither 7(c) nor 8(c) may occur.
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Proof Since 7(c) and 8(c) have disjoint labels, by Proposition 10.27 at most one may
occur. Assume 7(c) does occur. Then either 8(a) or 8(b) must also occur (because 8(d)
cannot by the preceding Claim). But then there will be three disjoint SCs, contradicting
Lemma 8.14. A similar argument shows 8(c) cannot occur.
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Figure 26 shows the possible ESCs, SCs coming from bigons of ƒ1 and ƒ6 . These
will be of use in the next two claims.

Claim 10.9 Neither 7(a) nor 8(b) may occur.

Proof Assume 7(a) occurs. With 7(a) and the SC in � , each of 1(a) and 1(b) form
a triple of disjoint SCs, contradicting Lemma 8.14. 1(c) violates Proposition 10.27.
Therefore 1(d) must occur.
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With relabeling (subtracting 1 from each label), we may now apply Corollary 10.16
to show that there is another genus 2 Heegaard splitting of M with respect to which
K is 3–bridge. (The SC in 1(d) plays the role of � , � is again � and 7(a) is the
SC disjoint from the labels f2; 3; 4g.) This contradicts our minimality assumptions
(3–bridge means t D 6).

A similar argument rules out 8(b), using ƒ6 in place of ƒ1 .

Claim 10.10 ƒ does not contain a .78/–SC.

Proof Assume there is a .78/–SC ie 7(b) and 8(a) occur. By Proposition 10.27, this
SC cannot be contained within an ESC. We must consider the bigons of ƒ1 and ƒ6

shown in Figure 26.

Proposition 10.27 rules out 1(c) and 6(d). Corollary 10.16 rules out 1(d) and 6(c) as in
the proof of Claim 10.9. Lemma 8.14 forbids each of 1(b) and 6(a) as they are SCs
each disjoint from the SC in � and the .78/–SC.

Thus 1(a) and 6(b) must occur. But then 1(a), 6(b) and the SC in � form 3 mutually
disjoint SCs in violation of Lemma 8.14.

The above claims imply that all bigons of ƒ8 are forbidden, contradicting Corollary 5.4.
This completes the proof of Theorem 10.1 in Case B.

Case C There is no 1–ESC in ƒ.

By Corollary 5.4, every label belongs to an SC. Lemma 8.14 then forces t � 6 contrary
to the assumption that t D 8. This completes the proof in Case C.

Given the proofs of Corollary 10.16 and Proposition 10.27 in subsequent subsections,
the proof of Theorem 10.1 is now complete.

10.2 A proposition and a corollary for Claim 10.9

For Claim 10.9 and Claim 10.10 above we use Corollary 10.16 which is a consequence
of Proposition 10.11. In this subsection we prove the proposition and its corollary.

Proposition 10.11 Assume we are in SITUATION NO SCC and there exists an ESC �

and SC � as in Figure 27. Let A23 be the White Möbius band arising from the SC
in � , and let A12 be the Black Möbius band arising from � . If @A23 intersects @A12

transversely on yF then there is a new Heegaard splitting of M in which K is 3–bridge.
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Proof Let A12;34 be the Black annulus arising from � that extends A23 . We assume
@A23 intersects @A12 transversely. Let E be a neighborhood in yF of the union of the
vertices f1; 2; 3; 4g and the edges of �; � . The labeling of these edges on yF must be
as in Figure 28. Let A be yF �E .

Claim 10.12 A is an annulus in yF .

Proof Let C1 and C2 be the two curves on yF as shown that form @E D @A. Since
�.E/D�2D �. yF /, we have �.A/D 0. If either C1 or C2 were to bound a disk in
the complement of E , then such a disk could be joined to itself across an edge of f4

to form an annulus in yF . Then this resulting annulus together with the annulus A12;34

would form an embedded Klein bottle. This cannot occur. Hence A is an annulus.

Let N D N.A12[A12;34/�HB . Then @HB �N DA and set HB �N D T .

Claim 10.13 T is a solid torus and the annulus A is longitudinal on @T .
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Proof Consider D , a disjoint collection of bridge disks for K\HB . By considering the
intersections of these disks with the faces f1; f3; f4 , surgering along outermost arcs of
intersection in D , and banding along f1; f3; f4 , we can take the bridge disks D12;D34

for .12/;.34/ to have interiors disjoint from A12[A12;34 . Hence HB �N D T is a
solid torus in which A is longitudinal.

By Claim 10.13, N is isotopic to HB through T .

Claim 10.14 The arcs .12/, .34/, .56/ and .78/ in HB have mutually disjoint bridge
disks that lie in T and provide an isotopy of these arcs onto A.

Proof The above proof of Claim 10.13 shows that there are bridge disks D12 and
D34 for .12/ and .34/ respectively, disjoint from the other arcs of K\HB , which lie
in T and provide an isotopy of these arcs onto A. Indeed these are meridional disks of
T . Since bridge disks D56 and D78 for the other two arcs .56/ and .78/ are disjoint
from D12 and D34 , the arcs of .D56[D78/\ .@T � Int A/ may be either isotoped
along @T � Int A� .D12 [D34/ onto A or banded to D12 or D34 to form bridge
disks for .56/ and .78/ as desired.

Attach a neighborhood of the White Möbius band A23 in HW to HB DN [T . Write
N 0 DHB [N.A23/D N.A12[A12;34[A23/[ T and yF 0 D @N 0 .

Claim 10.15 M DN 0[ yF 0 .M nN 0/ is a genus 2 Heegaard splitting.

Proof We must show that N 0 and M nN 0 are each genus 2 handlebodies.

To see that N 0 is a genus 2 handlebody, we show that the curve @A23 on yF is primitive
in HB . It suffices to show that @A23 is primitive in N since A23 is disjoint from T
and T provides an isotopy of N to all of HB .

In N a cocore of the annulus A12;34 (such as the arc .34/) thickens to a meridian
disk of N and thus extends through T to a meridian disk D of HB . Since @A23 is a
component of @A12;34 , it intersects D once. Hence @A23 is primitive in HB and N 0
is a genus 2 handlebody.

To see that M nN 0 is a genus 2 handlebody, observe that it is the complement of a
neighborhood of a Möbius band in HW .

To complete the proof of Proposition 10.11 we must show that K is 3–bridge with
respect to the Heegaard splitting M DN 0[ yF 0 .M nN 0/.
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Claim 10.14 shows that the arcs .56/ and .78/ are bridge in N 0 . As .1234/ D

.12/[ .23/[ .34/ is a cocore of the properly embedded Möbius band A12;34[A23

in the handlebody N 0 , it is bridge as well.

By Lemma 8.16, the arcs .45/, .67/ and .81/ have mutually disjoint bridge disks in
HW that are also disjoint from A23 . Therefore they remain bridge in HW � N.A23/,
which is isotopic to M nN 0 .

Hence K is 3–bridge with respect to this new Heegaard splitting.

Corollary 10.16 Assume we are in SITUATION NO SCC. If there is an ESC � and
an SC � as in Figure 27 as well as an SC disjoint from the labels f1; 2; 3g then K is
3–bridge with respect to some genus 2 Heegaard splitting of M .

Proof Given such a set-up, the boundaries of the Möbius bands arising from the SCs
in � and � cannot be isotoped to be disjoint. Otherwise there would be three disjoint
Möbius bands contrary to Lemma 8.14. Proposition 10.11 now applies.

10.3 t D 8 and SITUATION SCC

Proposition 10.17 In SITUATION SCC, either M contains a Dyck’s surface or t < 8.

Proof Assume we are in SITUATION SCC. Then there is a meridian disk D of HW

or HB disjoint from K and Q. Let F� be yF surgered along D . Then F� is one or
two tori. For contradiction, assume M does not contain a Dyck’s surface, and t D 8.

Lemma 10.18 GQ contains no 3–ESC.

Proof Otherwise, there is a 3–ESC, � . Note that this is a maximal proper ESC when
t D 8. Thus the argument of Lemma 9.10 shows that F� must be two tori, T1;T2 ,
with exactly two components of a.�/ on each. WLOG assume the core SC of � is
a .45/–SC. Let A D A1 [ � � � [A4 be the long Möbius band associated to � and
ai 2 a.�/ be @Ai � @Ai�1 . By the Addendum to Lemma 8.5 isotopic components of
a.�/ on F� must be consecutive in A. Thus we may take a1; a2 in T1 and a3; a4

in T2 . That is, vertices f3; 4; 5; 6g of GQ lie on T1 and vertices f1; 2; 7; 8g on T2 .
Recall that D is the meridian disk along which yF is surgered to get T1[T2 . Because
D is disjoint from K , vertex 3 lies on T1 , and vertex 2 lies on T2 , D must lie on the
opposite side of yF to the .23/–arc of K . Taking .23/ to lie in HW , D must lie in
HB . Let N DHB � N.D/DN1[N2 , where N1;N2 are solid tori with @Nj D Tj .
Since the components of a.�/ cannot bound disks in either handlebody, the Ai of the
long Möbius band meet F� in their interiors in simple closed curves which are trivial
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on F� . We surger along these curves to make the Ai properly embedded in either N
or M � IntN . By the separation of a.�/ in T1;T2 , A1;A3 lie in the exterior of N ,
A2 lies in N1 and A4 in N2 .

Claim 10.19 A2i is a longitudinal annulus in Ni for i D 1; 2.

Proof Assume not. Then U D N.N [A1[A3/ is a Seifert fiber space over the disk
with two or three exceptional fibers (the core of A1 being one). Furthermore K\U

lies as a cocore in the Möbius band ADA1[A2[A3[A4 properly embedded in
U , where @A is a Seifert fiber of U .

In fact U must be Seifert fibered with exactly two exceptional fibers. Otherwise,
V D U � N.A/ would be a Seifert fiber space over the disk with two exceptional
fibers that is disjoint from K . As V does not lie in a 3–ball by Lemma 3.3 and the
exterior of K is irreducible and atoroidal, then V would be isotopic to the exterior of
K , contradicting that K is hyperbolic.

Now Lemma 8.3 applies to give a genus 2 Heegaard splitting of M in which K is
0–bridge, a contradiction.

Let U D N.N [ A1 [ A3/. Then K \ U lies as a cocore in the Möbius band
ADA1[A2[A3[A4 properly embedded in U . The preceding Lemma means that
U is a solid torus, and hence that K\U is isotopic onto @U fixing its endpoints. Let
W be the genus 2 handlebody U [N.K/. Then K is isotopic onto @W .

Claim 10.20 An edge of a Black bigon of ƒ is parallel in T1 or T2 to an edge of � .

Proof Let � be a black bigon with a .12/–corner. The argument for the other black
corners is similar.

Assume � is a SC . Let A0 be the almost properly embedded Möbius band corre-
sponding to � . After surgery along trivial disks in T2 , we may take A0 to be properly
embedded in N2 . Consider the annulus A4 in N2 and the edges of � in T2 lying in
@A4 . Using the fact that N2 contains no Klein bottle, a close look at the labeling of
the edges of � and � on T2 shows that @A0 can be perturbed to be disjoint from @A4 .
But this contradicts that @A4 is longitudinal in N2 .

So � is not a SC . As the edges of GF lie in either T1 or T2 , the edges of � must be
a 27–edge and an 81–edge. Looking at the edges of � in T2 , we see the edges of �
must be parallel to these.

Claim 10.21 There is no bigon in ƒ with an .81/–corner.
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Proof Let � be such a bigon. An edge of � must lie in T2 , implying that � is an
.81/–SC. But then the corresponding almost properly embedded Möbius band could
be surgered to produce a properly embedded Möbius band in the complement of N
whose boundary was parallel to @A4 on T2 . Along with A we would see a Klein bottle
in M .

By Lemmas 5.10 and 5.13, there is a special vertex v in ƒ of type Œ8��5� (Claim 10.21
implies there can be no more than eight consecutive bigons in ƒ). This means that all
but five corners at v belong to bigons of ƒ. By Claim 10.21, no .81/–corner belongs
to a bigon of ƒ. So there must be a black corner, say .12/, such that every .12/–corner
at v belongs to a bigon of ƒ. By Claim 10.20, the edges of these bigons incident to v
at label 2 must be 27–edges parallel in T2 to the edges of � . In particular, there are
two parallel edges in T2 both incident to vertex 2 in T2 with label v . This contradicts
Lemma 12.15.

To finish the proof of Proposition 10.17, we now follow the outline of the proof of
Proposition 10.2, indicating the necessary modifications.

By Lemma 10.18, there are three cases to consider:

(A) There is a 2–ESC in ƒ.

(B) There is a 1–ESC in ƒ but no 2–ESC.

(C) There is no ESC in ƒ.

Case A There is a 2–ESC in ƒ.

Assume GQ contains � , the 2–ESC depicted in Figure 19. It gives rise to a long
Möbius band A� D A1 [A2 [A3 in which A1 is, say, a Black Möbius band, A2

is a White annulus and A3 is a Black annulus (each almost properly embedded in
HW or HB ). As argued in Lemma 9.11, F� consists of two tori T1 containing two
components of a.�/ and T2 containing one. Furthermore, the only vertices of GF

on T1 must be those lying on the two components of a.�/; the other four are on T2 .
Finally, by the Addendum of Lemma 8.5, components of a.�/ that are isotopic on F�

must cobound some Ai . Thus the vertices of GF on T1 are either

(i) f1; 2; 5; 6g or (ii) f2; 3; 4; 5g:

Figure 23 lists all possible bigons of ƒ7 that are at most 2–ESCs (ie containing at most
6 edges). We proceed to rule out all of these bigons in subcases (i) and (ii), thereby
contradicting Corollary 5.4.
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First, assume (i). Then 7(a), (d), (e) are impossible by the separation of vertices of GF .
7(b) is impossible as it can be used with the .34/–SC of � to create a Klein bottle in
M . So let f be the face bounded by the core SC of either 7(c) or 7(f). Int A3; Intf
intersect T1 in trivial curves (since M contains no projective planes). We surger away
these intersections. Let B be an annulus on T1 cobounded by the components of a.�/

and containing an edge of f . Since B[A3 is separating, f must lie on one side. But
this implies that the Möbius band, Af corresponding to f can be pushed off of A3 so
that @Af is parallel to @A3 on T1 . Then the long Möbius band A� can be combined
with Af to construct a Klein bottle in M . This rules out all possibilities in subcase (i).

So assume (ii). 7(c), (d), (e), (f) are ruled out by the separation of vertices. 7(b) is
impossible as then we can combine its face with the long Möbius band A� to see a
Klein bottle in M . Thus we assume ƒ contains the .67/–SC of 7(a). By Corollary 5.4
and Lemma 10.18, there is a bigon face of ƒ8 giving rise to an r –ESC with r � 2.
The possibilities are listed in Figure 24. But 8(c), (d), (e), (f) are ruled out by the
separation of vertices. 8(b) is impossible, else it and 7(a) combine along T2 to make a
Klein bottle in M . Finally, 8(a) can be combined with A� to give a Klein bottle in
M . This rules out possibility 7(a), hence (ii).

Case B There is a 1–ESC in ƒ, but no 2–ESC.

Assume GQ contains � , the ESC depicted in Figure 20. We follow the sequence of
lemmas for Case B in SITUATION NO SCC, modifying their proofs as necessary. Note
that Proposition 10.27 is proven in the next section under both SITUATION NO SCC

and SITUATION SCC.

Lemma 10.22 There cannot be two ESCs whose label sets intersect in one label.

Proof Let �; � be such ESCs. As their core SCs are on disjoint label sets, F� must
consist of two tori, each containing one of these SCs. Then one of these tori must contain
all of a.�/, say, and one component of a.�/. Since this component of a.�/ intersects
a.�/ once, they must all be isotopic on F� . But this contradicts the Addendum to
Lemma 4.3.

Let us now consider the possible bigons of ƒ8 and ƒ7 . These possibilities are shown
in Figure 25.

Claim 10.23 Neither 7(d) nor 8(d) may occur.

Proof Since each of these shares one label with � , Lemma 10.22 rules them out.
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Claim 10.24 Neither 7(c) nor 8(c) may occur.

Proof Since 7(c) and 8(c) have disjoint labels, by Proposition 10.27 at most one
may occur. Assume 7(c) does occur. Then either 8(a) or 8(b) must also occur (8(d)
cannot). But then there will be three disjoint SCs, contradicting Lemma 8.14. A similar
argument shows 8(c) cannot occur.

Figure 26 shows the possible bigons of ƒ1 and ƒ6 . These will be of use in the next
two claims.

Claim 10.25 Neither 7(a) nor 8(b) may occur.

Proof Assume 7(a) occurs. With 7(a) and the SC in � each of 1(a) and 1(b) form a
triple of disjoint SCs, contradicting Lemma 8.14. 1(c) violates Proposition 10.27.

Therefore 1(d) must occur. Call this 1–ESC, � . Because of 7(a), F� must consist of
two tori. By the Addendum to Lemma 4.3, one of these, T1 , contains a.�/, and the
other, T2 , contains the edges of 7(a). But then, a.�/ must also lie in T1 . But then the
component of a.�/ containing vertex 4 of GF must be isotopic to the components of
a.�/, contradicting the Addendum to Lemma 4.3. This rules out 1(d), and hence 7(a).

A similar argument rules out 8(b), using ƒ6 in place of ƒ1 .

Claim 10.26 There cannot be a .78/–SC.

Proof Assume there is a .78/–SC; ie 7(b) and 8(a) occur. We must consider the
bigons of ƒ1 and ƒ6 shown in Figure 26.

Proposition 10.27 rules out 1(c) and 6(d). The argument of Claim 10.25 rules out 1(d)
and 6(c). Lemma 8.14 forbids each of 1(b) and 6(a) as they are SCs each disjoint from
the SC in � and the .78/–SC.

Thus 1(a) and 6(b) must occur by Corollary 5.4. But then 1(a), 6(b) and the SC in
� form 3 mutually disjoint SCs in violation of Lemma 8.14. Thus there cannot be a
.78/–SC.

The above claims imply that all bigons of ƒ8 are forbidden, contradicting Corollary 5.4.

Case C There is no ESC in ƒ.

In this case every label belongs to an SC. Lemma 8.14 then forces t � 6 contrary to
the assumed t D 8. This completes the proof in Case C.

Given the following subsection, the proof of Proposition 10.17 is now complete.
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10.4 A proposition for the preceding subsections

This subsection is devoted to the proof, in both SITUATION NO SCC and SITUATION

SCC, of Proposition 10.27 stated below. This proposition was used in the preceding
subsections.

Proposition 10.27 Assume M contains no Dyck’s surface and t D 8. If there is no
2–ESC in ƒ then there cannot be two disjoint ESCs.

Throughout this subsection we assume that there is no 2–ESC and that there exists two
disjoint 1–ESCs � and � 0 on the corners .1234/ and .5678/ as shown in Figure 29 (with
Black and White faces as pictured). At the end of this section we prove Proposition 10.27
by obtaining a contradiction. To do so we must first develop several lemmas.

Let A23 and A12;34 be the White Möbius band and Black annulus arising from � .
Let A67 and A56;78 be the White Möbius band and Black annulus arising from � 0 .
By Lemma 8.12 the two components of @A12;34 are parallel on yF as are the two
components of @A56;78 (as M contains no Klein bottle and no Dyck’s surface). By
Lemma 8.5 the two annuli A12;34 and A56;78 are parallel into yF (the ESCs are
maximal, hence K must be disjoint from their parallelism).

� 0
78

871 2 3 4

1234
�

5 6

56

Figure 29

Claim 10.28 In SITUATION SCC, there is a separating, meridian disk D of HB

disjoint from K and Q (ie disjoint from Q in the exterior of K ) such that @D separates
@A12;34 from @A56;78 .

Proof Otherwise there is a meridian disk, D , on one side of yF which is disjoint
from K and Q (see Section 4.2). In particular, D is disjoint from A23[A12;34 and
A67[A56;78 . But then @D must separate @A12;34 and @A56;78 (else compressing yF
along D gives a 2–torus which allows one to find a Klein bottle in M ). The disk D

cannot be in HW since it is disjoint from the arc .45/ of K \HW . Thus D lies in
HB as a separating disk.
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Lemma 10.29 The only possible Black bigons of ƒ are .12/;.34/– and .56/;.78/–
bigons.

Proof Assume there exists a Black SC. It gives rise to a Black Möbius band A0 that
meets either A12;34 or A56;78 along an arc of K . Since these two annuli are separating,
this intersection cannot be transverse. Hence A0 may be slightly nudged to be disjoint
from both of these annuli. Thus there are three mutually disjoint Möbius bands in M

each properly embedded in HB or HW . This is contrary to Lemma 8.11.

The lemma follows immediately in SITUATION SCC since the disk D of Claim 10.28
separates vertices f1; 2; 3; 4g from f5; 6; 7; 8g on yF . So we assume that we are in
SITUATION NO SCC. In particular, the above Möbius bands and annuli are properly
embedded on the White or Black sides of yF .

Assume there exists a .34/;.56/–bigon g . (A similar argument works for .34/;.78/–,
.12/;.56/– and .12/;.78/–bigons.) Let D34 and D56 be bridge disks for the arcs .34/

and .56/ contained in the solid tori cut off from the Black handlebody HB by the
annuli A12;34 and A56;78 . Then, since g is not contained in either of these solid
tori, together D34 [ g [D56 forms a primitivizing disk for @A23 (ie a disk in HB

intersecting @A23 once). Note D34 [ g [D56 also forms a primitivizing disk for
@A67 .

Since @A23 is primitive with respect to the Black handlebody HB , H 0
B
DHB[N.A23/

is again a handlebody. Now K intersects H 0
B

in the arcs .1234/D .12/[ .23/[ .34/,
.56/ and .78/. Note that the bridge disks for .56/, .78/ may be taken to be disjoint
from N.A23/ hence the arcs .56/ and .78/ are bridge in H 0

B
. The arc .1234/ lies in

the properly embedded Möbius band A12;34[A23 in H 0
B

and hence has a bridge disk
in H 0

B
disjoint from the bridge disks for .56/ and .78/. Hence the arcs for K\H 0

B

are bridge in H 0
B

.

Furthermore since A23 is a Möbius band, H 0
W
DHW � N.A23/ is also a handlebody.

By Lemma 8.16, the arcs K\H 0
W

are bridge in H 0
W

. Therefore H 0
B

and H 0
W

form
a genus 2 Heegaard splitting of M with respect to which K is at most 3–bridge. This
contradicts that t D 8.

Recall that two edges in a graph G are in the same edge class or are parallel if they
cobound a bigon in the graph (not necessarily a bigon face of the graph).

Lemma 10.30 For one of the pairs .x;y/ among the set of pairs f.2; 3/; .4; 1/; .6; 7/,
.5; 8/g, there are at most two edge-classes between the vertices x;y in GF .
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Proof Otherwise each pair has three such edge-classes. This contradicts that yF is
genus two.

Lemma 10.31 For one of either i D 1 or i D 5 the following holds: at each vertex
of ƒ, there are at most two Black bigons of ƒ incident to its .i; i C 1/–corners and at
most two Black bigons of ƒ incident to its .i C 2; i C 3/–corners.

Proof After Lemma 10.30, assume that there are only two edge classes in GF connect-
ing vertices 4; 1 of GF . Assume there is a vertex v of ƒ that has three .12/–corners
belonging to Black bigons of ƒ. By Lemma 10.29, the bigons incident at these .12/–
corners are .12/;.34/–bigons. In particular, each such corner has a 41–edge incident
at label 1. But this means that one of the edges classes connecting vertices 4; 1 on GF

has two edges incident to vertex 1 with label v . This contradicts Lemma 8.15. We get
a similar contradiction if there is a vertex of ƒ that has three .34/–corners belonging
to the same Black bigons of ƒ.

Lemma 10.32 A White bigon of ƒ with a .23/– or .67/–corner is a SC.

Proof We may assume we are in SITUATION NO SCC as otherwise by Claim 10.28
there are no edges of GF connecting vertices f1; 2; 3; 4g with f5; 6; 7; 8g.

Assume g is a bigon of ƒ with a .23/–corner that is not an SC (the argument for the
.67/–corner is analogous). Hence its other corner is a .45/–, .67/– or an .81/–corner.
Note that g is disjoint from the Scharlemann cycle face of � . Thus looking at the
.23/–corner of g along @N..23// along with the ordering of labels of the Scharlemann
cycle of yF around vertices 2 and 3, the two edges of g (as edges in yF ) must lie on
different components of yF � @A12;34 . This implies that g cannot have a .67/–corner
since vertices 6; 7 of GF are connected by an edge (of � 0 ). Let us therefore assume
that g has a .45/–corner; the argument for a .81/–corner is similar. As @A23; @A67

are not parallel on yF (no Klein bottles), the 34–edge of g must be a spanning arc of
the annular component of yF � @A12;34 (to which A12;34 is parallel).

Let r be an arc in the annulus A12;34 sharing endpoints with .34/ that projects through
the @–parallelism of A12;34 onto the 34–edge of g . Note that up to isotopy rel
endpoints, r is just .34/ twisted along @A12;34 . So we may take r to have a single
critical value (indeed the same as for .23/) under the height function on M for the
thin presentation of K . Let r 0 be an arc in the annulus A12;34 disjoint from r and
sharing endpoints with .12/. Similarly r 0 can be taken to have a single critical value
with respect to the height function on M . Then r 0[ .23/[ r and .12/[ .23/[ .34/

are two properly embedded, non-@–parallel arcs in the Möbius band A23 [A12;34
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with the same boundary. By Lemma 8.17, these two arcs are isotopic rel-@ within this
long Möbius band. After this isotopy the bridge arcs .34/;.23/;.12/ are replaced with
bridge arcs r; .23/; r 0 . We may now isotop .23/[ r [ .45/, rel @, onto the 25–edge
of g : isotop r onto the 34–edge of g using the @–parallelism of A12;34 , then use g

to guide the remainder of the isotopy. Perturbing the result slightly into HW gives a
smaller bridge presentation of K .

Lemma 10.33 There is a 23–edge class in GF that contains an edge of every .23/–SC
of ƒ. The analogous statement for .67/–SCs also holds.

Proof We prove this for .23/–SCs. The same proof works for .67/–SCs.

We assume first that we are in SITUATION NO SCC. Let e1; e2 be the edges of the
.23/–SC in � , and let f be the face that they bound. We assume for contradiction
that there is a .23/–SC, �1 , with no edge parallel to e1 in GF and a .23/–SC, �2 , of
GQ with no edge parallel to e2 . Let g1;g2 be the faces of GQ bounded by �1; �2 .
Because of the orderings of the labels around vertices of GF , one edge of gi must lie
in the annulus of yF bounded by @A12;34 . This implies that one edge of gi is parallel
to ej , where fi; j g D f1; 2g (note that the interior of this annulus is disjoint from K ).
By identifying f with g1 along their parallel edges (in the class of e2 ) we get a disk
D1 properly embedded in HW whose boundary is given by the curve e1[ e1 , where
e1 is the edge of �1 not parallel to e2 . Similarly identifying f with g2 , we get a
meridian disk D2 of HW whose boundary is the curve e2[ e2 , where e2 is the other
edge of �2 . By looking at the ordering of these edges around the vertices 2; 3 of GF

we see that we can take D1;D2;A23 (along with A67 ) to be disjoint. Both D1;D2

must be separating in HW (else there is a Klein bottle or projective plane in M ). Then
@D1 , say, must separate @D2 from @A23 . But again looking at the ordering of the
edges of these SCs around vertices 2; 3 of GF shows that this does not happen.

Thus we assume we are in SITUATION SCC. Let D be the separating disk of HB

given by Claim 10.28. Then there can be at most three edge-classes of 23–edges in
GF (surgering yF along D gives two 2–tori, one containing @A12;34 and the other
@A56;78 ). If the Lemma is false, then there must be exactly three such edge-classes and
there must be three .23/–SCs of length two representing each pair of these edge-classes.
One of these SCs is that of � , and again let e1; e2 be its edges. The other two of these
SCs �1; �2 , each have an edge in the 23–edge class, � , not represented by e1; e2 . Let
f1; f2 be the faces bounded by �1; �2 in GQ . Identifying f1; f2 along their edges in
class � gives a disk D0 which is almost properly embedded in HW whose boundary is
the curve e1[ e2 in yF . Then Lemma 3.3 implies that @D0 bounds a disk, D00 on one
side of yF . But then A23 and D00 can be used to construct a projective plane in M , a
contradiction.
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Corollary 10.34 At every vertex of ƒ there are at most two bigons of ƒ at .23/–
corners and at most two bigons at .67/–corners.

Proof Lemma 10.32 says that any bigon of ƒ at a .23/– or .67/–corner must be an
SC. By Lemma 10.33, there is a 23–edge class containing an edge of any .23/–SC
and a 67–edge class containing an edge of any .67/–SC. Hence if there were three
.23/–SCs or three .67/–SCs at a vertex, then two of the edges would be parallel on
GF meeting a vertex at the same label. Lemma 8.15 forbids this.

Proof of Proposition 10.27 By Lemmas 5.10 and 5.13, ƒ has a vertex v of type
Œ8�� 5� (there are no 2–ESCs). Hence v has at most 5 gaps, ie corners to which
bigons of ƒ are not incident. By Lemma 10.31, without loss of generality there exists
a gap at a .12/–corner and a .34/–corner of v . By Corollary 10.34, there must be
a gap at a .23/–corner and a .67/–corner. This accounts for 4 of the gaps. We now
enumerate and rule out the possibilities for the remaining gap.

Since �� 3, v has at least three runs of the sequences of labels 4567812. The .23/–
gap and .34/–gap are not contained in these sequences. Each such sequence must have
at least one gap, else by Lemma 10.32, there would be a 2–ESC (contradicting our
assumptions). Thus �D 3 and the .67/–gap, the .12/–gap and the fifth gap must be
in different runs of the sequence. But the run containing the .12/–gap will have five
consecutive bigons on 456781, and, as above, Lemma 10.32 guarantees a 2–ESC.

11 t < 6

The goal of this section is the proof of:

Theorem 11.1 Either M contains a Dyck’s surface or t < 6.

Proof For contradiction we assume M contains no Dyck’s surface and, by the earlier
sections, that t D 6. Given Corollary 5.4, there are four ways in which ƒx contains a
bigon for each x :

(A) There is a 2–ESC in ƒ.

(B) There are two 1–ESCs in ƒ whose label sets overlap in exactly two labels.

(C) There are three SCs whose corresponding Möbius bands are disjoint.

(D) There is a 1–ESC and a disjoint SC in ƒ.

Hence we proceed to address these four cases. The arguments will need to account for
each of the two possibilities: SITUATION NO SCC and SITUATION SCC.
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Case A There is a 2–ESC in ƒ.

Assume � is a 2–ESC in ƒ with corner .612345/ so that it contains a .23/–SC. Let
A23 be the White, say, Möbius band, A12;34 be the Black annulus, and A61;45 be
the White annulus of the long Möbius band corresponding to � , where the subscripts
indicate the subarcs of K lying in these surfaces.

Subcase A(i) SITUATION NO SCC holds.

Then A23;A12;34;A61;45 are properly embedded on each side of yF . Furthermore, by
Lemma 8.13, @A12;34 is nonseparating in HB and A61;45 is isotopic in HW onto yF .

Lemma 11.2 There is a nonseparating disk D in HB disjoint from A12;34 and all
arcs of K\HB .

Proof One can find a bridge disk for the arc .12/ of K whose interior is disjoint
from A12;34 and K . Using this to @–compress a push-off of A12;34 gives the desired
disk.

Let T be the solid torus obtained by cutting HB along D . Then A12;34 is properly
embedded in T and A23;A61;45 in M �T . Then a.�/ is three parallel curves on @T .
Let B;B0 be the annuli on T between @A61;45; @A12;34 (respectively) on @T whose
interiors are disjoint from K . Because A12;34 is nonseparating in HB , B0 intersects
N.D/ in a disk. B is disjoint from N.D/. The Addendum to Lemma 8.5 applied to
the long Möbius band A23[A12;34 (ie to the 1–ESC), with @T as F� , shows that
B0[A12;34 bounds a solid torus, V 0 whose interior is disjoint from K and in which
B0 is longitudinal. That is, V 0 guides an isotopy of A12;34 to B0 , and, hence, an
isotopy (rel endpoints) of the arcs .12/ and .34/ of K onto yF \B0 . At the same time,
there is an isotopy in HW of A61;45 onto B , and hence of the arcs .61/ and .45/ (rel
endpoints) onto B . This allows us to thin K to be 1–bridge, contradicting that t D 6

and thereby proving Theorem 11.1 in Subcase A(i).

Subcase A(ii) SITUATION SCC holds.

There is a meridian disk, D , disjoint from K and Q. Let F� be yF surgered along
D . By Lemma 4.2 and the Addendum to Lemma 8.10, F� consists of two tori: T1

containing two components of a.�/, and T2 containing one. Finally, by the Addendum
to Lemma 8.5, components of a.�/ that are isotopic on F� must be consecutive along
the long Möbius band. Thus the vertices of GF on T2 are either:

(i) f2; 3g

(ii) f5; 6g
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Assume (i) holds. The separation of vertices implies there are no bigons of ƒ with
corner .56/. (Since there are no 25–edges or 36–edges, such a bigon would have
to be an SC. Its corresponding Möbius band would have boundary isotopic on T1 to
a component of @A61;45 permitting the construction of an embedded Klein bottle.)
Furthermore, any face of ƒ containing a .23/–corner must be a .23/–SC and, since
M contains no Klein bottles, the edges of any two such .23/–SCs must be parallel
on T2 (ie lie in two edge classes on T2 ). Again by separation, any Black bigon of ƒ
with either a .12/–corner or a .34/–corner must be a .12/;.34/–bigon, and the 41–
edges of any such bigon must be parallel on T1 to one of the 41– edges of � . Thus
by Lemma 8.15, at most two .23/–corners, at most two .12/–corners, and at most
two .34/–corners of bigons of ƒ may be incident to a vertex of ƒ. Since �� 3, the
above implies that a vertex of ƒ must have at least 6 corners (in fact at least 9) not
incident to bigons of ƒ. So Lemmas 5.11 and 5.14 imply that ƒ must have an edge
class containing 8 edges. But among 8 consecutive mutually parallel edges of ƒ one
must have a bigon at a .56/–corner.

Thus we may assume that (ii) occurs. We are assuming .45/ of K lies in HW ; thus, by
separation, the meridian disk D along which we surger to get F� must be a meridian
of HB . Then HB � N.D/ is two solid tori, N DN1[N2 , where @Ni D Ti . After
surgery along trivial curves of intersection on F� , we may take A23;A12;34;A61;45

to be properly embedded in N or its exterior.

First assume @A61;45 is longitudinal in each of the solid tori N1 and N2 . Then
W DN [N.A23[A61;45/ is a solid torus. Since K lies entirely in W , the exterior
of K is irreducible and atoroidal, and M is not a lens space, K must be isotopic to a
core of W . But then the core, L, of the solid torus N1 is a (2,1)–cable of K . As L is
a core of HB , Claim 8.7 contradicts that t D 6.

Next assume that @A61;45 is not longitudinal in N2 . Let A0DA23[A12;34[A61;45 be
the long Möbius band properly embedded in the exterior of N2 and set U DN2[N.A0/.
Then U is Seifert fibered over the disk with two exceptional fibers. We may isotop K

in U so that K is the union of two arcs: ˛ in @U \N.A0/, and ˇ isotopic to the arc
.56/ of K\N2 . Since .56/ is bridge in HB , it is bridge in N2 . Let  be a cocore of
the annulus N.A0/\N2 . Then V D U � N. / is a genus two handlebody in which
ˇ is bridge (the intersections of a bridge disk with N.A0/\N2 can be isotoped onto
N. /). Furthermore, M �U must be a solid torus (the exterior of K is irreducible
and atoroidal); hence, M � V is genus 2 handlebody. Thus K is at most 1–bridge
(t � 2) with respect to the Heegaard handlebody V of M , contradicting that t D 6.

Thus @A61;45 must be longitudinal in N2 and hence must not be longitudinal in N1 .
Let U DN1[N.A23/ and A0 DA23[A12;34 . Then U is a Seifert fiber space over
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the disk with two exceptional fibers and A0 is a properly embedded Möbius band in
U whose boundary is a Seifert fiber. As K\U is a spanning arc of A0 , Lemma 8.3
contradicts that t D 6.

This final contradiction finishes the proof of Theorem 11.1 in Subcase A(ii).

Case B There are two 1–ESCs in ƒ whose label sets overlap in two labels.

First note that we may assume in Case B that SITUATION NO SCC holds. For if
SITUATION SCC holds, there is a meridian disk D of either HW or HB disjoint from
Q and K . WLOG we may assume the two ESCs are as in Figure 30. The edges of
Figure 30 show that either @D on yF must separate vertices f1; 4; 5g from f2; 3; 6g or
there is a projective plane or Klein bottle in M . The first is impossible as D is disjoint
from K , the second since the surgery slope is nonintegral.

Assume there are two ESCs � and � 0 on the corners .1234/ and .3456/ respectively
as shown in Figure 30.

� 0�
3 456

62 3 4

124

1 3 54

3

Figure 30

Let A23 and A45 be the two White Möbius bands arising from the SCs contained
within � and � 0 . Let A12;34 and A34;56 be the two Black annuli arising from the
remaining two pairs of bigons. As we are in SITUATION NO SCC we have that
A23;A12;34;A45;A34;56 are properly embedded on their sides of yF .

If either A12;34 or A34;56 is separating in HB , then since A12;34\A34;56D .34/ they
cannot intersect transversely. Hence A12;34 and A34;56 may be slightly isotoped to be
disjoint. In particular, after this isotopy we may assume @A23 is disjoint from @A34;56

(and isotopic to neither component) and similarly @A45 is disjoint from @A12;34 . Then
by Lemma 8.12 the components of @A12;34 must be parallel and the components of
@A34;56 must be parallel. Thus both of these annuli are separating.

Therefore either both A12;34 and A34;56 are separating in HB or both are nonseparating
in HB .
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Subcase B(i) Both A12;34 and A34;56 are separating in HB .

As noted above, A12;34 and A34;56 must intersect nontransversely along the arc .34/

and can be perturbed to be disjoint. The annulus A12;34 separates HB into a solid
torus T and a genus 2 handlebody. As M contains no Klein bottle, A34;56 lies outside
of T . Surgering along innermost closed curves and outermost arcs of intersection, we
can find a bridge disk, D34 , for .34/ of K \HB that intersects A12;34 only along
.34/. We first assume D34 lies outside T , ie it intersects it only in the arc .34/. Then
@N.D34[A12;34/ n @HB is an essential disk D and an annulus A.

The annulus A chops HB into a solid torus T 0 on which one impression of A on @T 0
runs n� 1 times longitudinally and a genus 2 handlebody H 0

B
that contains A34;56

and A12;34 such that A12;34 is @–parallel to the other impression of A on @H 0
B

.
Then D34 marks @A23 as a primitive curve on H 0

B
. Also note that by banding across

A12;34[D34 , the arc .56/ has a bridge disk D56 that is disjoint from N.A12;34[D34/

and thus from D .

Attach N.A23/ to H 0
B

along the annulus N.@A23/ to form H 00
B

. Since @A23 is primitive
in H 0

B
, H 00

B
is a genus 2 handlebody. Note that the arc .1234/ of K \H 00

B
lies in a

Möbius band in H 00
B

and hence is bridge. The arc .56/ is bridge in H 00
B

as it has a
bridge disk disjoint from D .

By Lemma 8.16 both arcs .45/ and .61/ have bridge disks in HW disjoint from A23 .
Thus they both have bridge disks in the genus 2 handlebody H 0

W
DHW � N.A23/.

Attach T 0 to H 0
W

along the annulus A0 D @T 0 nAD @T 0\@HW to form H 00
W

. Since
A0 has @A23 as one of its boundary components it is primitive on H 0

W
and thus H 00

W

is a genus 2 handlebody. Moreover, since T 0 is disjoint from K , so is A0 ; thus the
bridge disks for .45/ and .61/ may be assumed to be disjoint from A0 as well. Hence
these two arcs are bridge in H 00

W
.

Therefore H 00
B
[H 00

W
is a new genus 2 Heegaard splitting for M in which K has a

2–bridge presentation. This is contrary to assumption. Hence it must be that D34 lies
in T .

Remark 11.3 If @A23 is longitudinal in T 0 , the new Heegaard splitting, H 00
B
\H 00

W
,

comes from the old (up to isotopy) by adding/removing a primitive Möbius band as
described in the proof of Theorem 2.6. If @A23 is not longitudinal in T 0 , then M is
a Seifert fiber space over the 2–sphere with an exceptional fiber of order 2. In this
case, we could find a vertical splitting with respect to which K has smaller bridge
number by applying Lemma 8.3 to N.A23/[ T 0 , a Seifert fiber space over the disk.
This would then be consistent with the proof of Theorem 2.6.
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Let T 00 be the solid torus that A34;56 separates off HB . Since M contains no Klein
bottles, T lies outside of T 00 ; hence, so is D34 . Apply the above argument to A34;56

in place of A12;34 to get a 2–bridge presentation of K .

Subcase B(ii) Both A12;34 and A34;56 are nonseparating in HB .

Since no pair of the four components of @A12;34[@A34;56 may be isotopic on yF (else
we get a Klein bottle), A12;34 and A34;56 intersect transversely along .34/. Since
HB is a handlebody, HB � N.A12;34 [A34;56/ is a single solid torus on which the
annulus @HB n @.A12;34[A34;56/ is a longitudinal annulus. That is, HB is isotopic
to N.A12;34[A34;56/. Then @A23 is primitive in HB . Furthermore, the arc .56/ has
a bridge disk in HB disjoint from A12;34 .

Since @A23 is primitive in HB , we may form the genus 2 handlebody H 0
B

by attaching
N.A23/ to HB along N.@A23/. Its complement H 0

W
DHW � N.A23/ is also a genus

2 handlebody. Thus together H 0
W

and H 0
B

form a new genus 2 Heegaard splitting for
M .

The White arcs K\HW other than .23/ continue to be bridge in H 0
W

. Furthermore,
since there is a bridge disk D56 in HB for the Black arc .56/ that is disjoint from
A12;34 , D56 continues to be a bridge disk for .56/ in H 0

B
. Finally, the arc .1234/ is

bridge in H 0
B

as it lies in the Möbius band A12;34[A23 .

Thus the handlebodies H 0
W

and H 0
B

form a new genus 2 Heegaard splitting for M in
which K is at most 2–bridge. This contradicts the assumption that t D 6.

This completes the proof of Subcase B(ii) and hence Case B cannot occur.

Case C There are three mutually disjoint SCs in ƒ.

Lemma 8.11 (independent of SITUATION NO SCC and SITUATION SCC) implies Case C
does not occur.

Case D There is a 1–ESC and disjoint SC in ƒ.

This case is considered in the following Section 12. Proposition 12.1 shows Case D
cannot occur.

This completes the proof of Theorem 11.1.
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12 Case D of Theorem 11.1

In this section we show:

Proposition 12.1 Case D of Theorem 11.1 cannot occur. That is, if

(1) t D 6,

(2) ƒ contains no 2–ESC,

(3) ƒ contains a 1–ESC and an SC on a disjoint label sets,

then M contains a Dyck’s surface.

Proof Assume M does not contain a Dyck’s surface. Assume there is an ESC � with
labels f1; 2; 3; 4g and an SC � with labels f5; 6g as shown in Figure 31. Let A23 and
A12;34 be the White Möbius band and Black annulus arising from � . Let A56 be the
Black Möbius band arising from � . By Lemma 8.12 (and that M contains no Klein
bottle or projective plane) the components of @A12;34 must be parallel on yF bounding
an annulus B12;34 in yF . Then by Lemma 8.5, A12;34 is isotopic in M to B12;34 .

6234
� �

5 6

5

1 2 3 4

1

Figure 31

We consider the arguments of this subsection under both possibilities, SITUATION NO

SCC and SITUATION SCC.

Claim 12.2 In SITUATION SCC, there is a separating, meridian disk D of HB disjoint
from K and Q. Let F� be yF surgered along D . Then F� is two tori, T1;T2 , where
vertices f1; 2; 3; 4g lie on T1 and vertices f5; 6g on T2 .

Proof Recall that SITUATION SCC implies that there is a meridian disk on one side
of yF that is disjoint from K and from Q. First assume this disk was nonseparating.
Compressing yF along it would produce a 2–torus that intersected the interiors of
A23;A56 only in trivial curves. Surgering away such intersections exposes either a
projective plane or Klein bottle in M . So this disk must be separating on one side of
yF . It is disjoint from B12;34 else it along with A23 forms a projective plane in M .

Thus the boundary of this disk must separate vertices f1; 2; 3; 4g in yF from vertices
f5; 6g. Since the disk is disjoint from the .45/–arc of K , it must be in HB .
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Lemma 12.3 In SITUATION NO SCC, the edges of all .23/–SCs of ƒ belong to
two parallelism classes in GF . In SITUATION SCC, all .23/–edges belong to two
parallelism classes in GF� , where GF� is the graph induced on F� from GF .

Proof First assume SITUATION SCC holds and Claim 12.2 applies. Because the
components of @A12;34 are disjoint, essential curves in T1 , any 23–edge of ƒ is
parallel on GF� to one of the 23–edges of � .

Thus we assume we are in SITUATION NO SCC. Let � be the core .23/–SC of � , and
assume there is another .23/–SC, �0 , with an edge that is not parallel on GF to either
edge of � . Let f; f 0 be the faces bounded by �; �0 . Let A0

23
be the Möbius band

corresponding to f 0 . By the ordering of the labels around the vertices 2; 3 of GF ,
one edge, e0

1
, of �0 must lie within B12;34 and the other, e0

2
, outside. That is, e0

1
is

parallel in GF to an edge e1 of � .

We may use the parallelism between e1; e
0
1

, along with the parallelisms of the corners
of f; f 0 along @N..23//, to band together f; f 0 to get a properly embedded disk D0

in HW . Here @D0 is the curve e2[ e0
2

on yF , where e2 is the edge of � other than e1 .
By an inspection of the labeling around vertices 2; 3 of GF , one can see that the D0

can be taken to be disjoint from both A23;A
0
23

and K . As e2; e
0
2

are not parallel on
GF , @D0 is not trivial on yF . @D0 must separate @A23; @A

0
23

from @A56 on yF , since
M contains no Klein bottles. But this contradicts that D0 is disjoint from the .45/–arc
of K .

Lemma 12.4 In SITUATION NO SCC, no White bigon or trigon has an edge that is a
spanning arc of B12;34 .

Proof Let f be a White bigon or trigon with such an edge e . We assume e is a
34–edge, the argument for when it is a 12–edge is the same. There is a bridge disk
(disjoint from the remaining bridge disks) for some arc of K \HW that is disjoint
from f (except possibly along that arc) and hence from Int e (after removing trivial
arcs and simple closed curves of intersection of f with a collection of bridge disks,
D , an outermost arc of intersection on D will cut out the desired bridge disk, after
possibly banding along f to K\HW ).

Let r be an arc in the annulus A12;34 sharing endpoints with .34/ that projects through
the @–parallelism of A12;34 onto the 34–edge of f . That is, there is a bridge disk
for r , Dr , that intersects yF in e . Note that up to isotopy rel endpoints, r is just .34/

twisted along @A12;34 . So we may take r to have a single critical value (indeed the
same as for .34/) under the height function on M for the thin presentation of K . Let
r 0 be an arc in the annulus A12;34 disjoint from r and sharing endpoints with .12/.
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Similarly r 0 can be taken to have a single critical value with respect to the height
function on M . Then r 0[ .23/[ r and .12/[ .23/[ .34/ are two properly embedded,
non-@–parallel arcs in the Möbius band A23 [A12;34 with the same boundary. By
Lemma 8.17, these two arcs are isotopic rel-@ within this long Möbius band. Perform
this isotopy, then use the Black bridge disk Dr along with the White bridge disk of
the preceding paragraph to give a thinner presentation of K ; a contradiction.

Lemma 12.5 The only type of White bigon in ƒ that is not an SC is a .45/;.61/–
bigon.

3

32

61

54

61

54

2

Figure 32

Proof The three possible non-Scharlemann White bigons are shown in Figure 32.
We will rule out the two that have a .23/–corner. Note that we may assume we
have SITUATION NO SCC because of the separation that comes from Claim 12.2 in
SITUATION SCC. Let us focus on the bigon R with the 12–edge as the proof is
analogous for the other.

Since R has a .23/–corner, the labeling around vertices 2; 3 of GF forces the edges
12 and 36 to be incident to the vertices 2 and 3 on opposite sides of @A23 in yF .
Therefore since the 36–edge must connect vertex 3 to vertex 6, the 12–edge must lie
in the annulus B14;23 . But this contradicts Lemma 12.4.

Corollary 12.6 At most two .23/–corners at a vertex belong to bigons of ƒ.

Proof Assume there are three .23/–corners at vertex x of ƒ belonging to bigons of
ƒ. By Lemma 12.5, these bigons must all be SCs. By Lemma 12.3 these six edges
belong to two parallelism classes on either GF or GF� . Therefore two of these six
edges must be incident to the same vertex of GF (GF� ) at the label x and parallel.
This violates Lemma 8.15 (Lemma 12.15). (If only two bigons are incident at these
three corners, two of the edges will have label x at both ends in GF and Lemma 8.15
(Lemma 12.15) is still violated).

Lemma 12.7 ƒ does not contain a .12/– or a .34/–SC.
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Proof Assume there exists a .34/–SC. Let A34 be the corresponding Möbius band.

Since the annulus A12;34 cobounds a solid torus with B12;34 , the Möbius band A34

must intersect A12;34 tangentially. Therefore A34 may be isotoped to be disjoint from
A23 . Since it is also disjoint from A56 , Lemma 8.11 implies that M contains a Dyck’s
surface.

A similar argument rules out the existence of a .12/–SC.

Lemma 12.8 There cannot be an ESC with labels f4; 5; 6; 1g.

Proof Assume there is such an ESC and take � to be its core SC. Let A45;61 be
the corresponding annulus formed from the bigons that flank � . Observe that A45;61

is disjoint from the Möbius band A23 , and A12;34 is disjoint from the Möbius band
A56 . Then by Lemma 8.12 (and that there are no Klein bottles in M ) the components
of @A45;61 must be parallel as must the components of @A12;34 . This contradicts
Claim 12.2 in SITUATION SCC. In SITUATION NO SCC, Lemma 8.5 implies these
annuli must be isotopic into yF . Together these parallelisms give a thinning of K .

Corollary 12.9 There cannot be three consecutive bigons around a vertex with a
.4561/–corner.

(c)
5

5 64

612

1

3
(a) (b)

5 64

456

1

1

5 64

234

1

Figure 33

Proof Assume there were. Then there are three possibilities according to whether
opposite the .56/–corner is the .56/–, .34/– or .12/–corner. These are shown in
Figure 33. The first is ruled out by Lemma 12.8 since it is an ESC with labels
f4; 5; 6; 1g. The second and third are ruled out since they contain the non–SC White
bigons prohibited by Lemma 12.5.

Lemma 12.10 In SITUATION NO SCC there cannot be a White trigon with a single
.23/–corner. In SITUATION SCC the only White trigon with a single .23/–corner, is
possibly a .23/; .45/; .61/–trigon consisting of 34; 56; 12–edges.
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Proof If there were such a trigon, then its two edges incident to that corner must be
incident to opposite sides of @A23 on yF . Thus one of these edges must be a spanning
arc of B12;34 . In SITUATION NO SCC this is prohibited by Lemma 12.4. In SITUATION

SCC the separation of Claim 12.2 guarantees there are no 25– or 36–edges, giving the
desired conclusion.

Lemma 12.11 There cannot be a Scharlemann cycle of length 3 on the labels f2; 3g.

Proof Assume g is the trigon face of such a .23/–Scharlemann cycle. The ends of
two edges of g incident to the same corner of g must be incident to opposite sides of
@A23 as they lie on yF . Since the annulus B12;34 has @A23 as a boundary component,
around @g the edges are alternately in or not in B12;34 . This of course cannot occur
since g has three edges.

Lemma 12.12 In ƒ, a trigon cannot have exactly two .23/–corners.

Proof First we assume SITUATION SCC holds. This means there is a Black meridian
disjoint from GF separating vertices f1; 2; 3; 4g and f5; 6g. The third corner of a
trigon with two .23/–corners must be either a .61/–corner or a .45/–corner. But then
GF has an edge joining either vertices 2 and 5 or vertices 3 and 6, a contradiction.

Thus we may assume we are in SITUATION NO SCC. Assume g is a trigon with two
.23/–corners and, WLOG, one .61/–corner. We shall construct a bridge disk for .61/

that does not intersect the interior of B12;34 . Such a bridge disk for .61/ is disjoint
from a bridge disk for .34/ and hence provides a contradictory thinning of K .

Because the 12–edge and the 36–edge of g must be incident to the side of @A23

opposite from which the 23–edge is incident (by the labeling around vertices 2; 3 of
GF ), neither of them lie in the annulus B12;34 . Furthermore, the 23–edge is parallel
in GF to a 23–edge of the SC in � . Let f be the bigon face of the SC in � . Let ı be
the rectangle of parallelism on GF between the two 23–edges of g and f ; its other
two sides are arcs of the vertices 2 and 3. Let � and �0 be the disjoint rectangles on
@N.K/ between the two .23/–corners of g and the two .23/–corners of f ; the other
two sides of each of �; �0 being arcs of the vertices 2 and 3. Then g[ ı[ �[ �0[f

forms a disk D61 whose boundary is composed of the .61/–corner of g and an arc
on yF ; see Figure 34. By a slight isotopy, the interior of this arc on yF may be made
disjoint from B12;34 . Thus D61 is the desired bridge disk for .61/.

Lemma 12.13 If a trigon in ƒ has a .23/–corner, then we are in SITUATION SCC,
and it must be a .23/; .45/; .61/–trigon consisting of 34; 56; 12–edges.

Proof This is a combination of Lemmas 12.11, 12.12 and 12.10.
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12.1 Special vertices for Case D of Theorem 11.1

As ƒ contains no 2–ESCs there may be no more than 7 edges that are mutually
parallel.

Since t D 6, Lemmas 5.11 and 5.14 imply there exists a vertex v of ƒ of type
Œ6�� 5; 4�, Œ6�� 4; 1� or Œ6�� 3�. We refer to a corner at v that is not incident to a
bigon of ƒ as a gap. Thus there are at most 5 gaps at v . We will argue by contradiction,
in each case showing that there must be more gaps than specified.

By Corollary 12.9, each of the � corners .4561/ around v must have a gap. By
Corollary 12.6 at least �� 2 .23/–corners must have gaps as well. Thus there must
be at least 2�� 2 gaps. If �� 4 then there must be at least 6 gaps; a contradiction.
Hence �D 3.

When �D 3 the vertex v is of type Œ13; 4�, Œ14; 1�, or Œ15�. Type Œ15� is prohibited
since using �D 3 in the argument of the preceding paragraph implies v must have at
least 4 gaps. We eliminate the remaining types in the following subsections.

12.2 Vertex v is of type Œ14; 1�

There are at most 4 gaps at v . By Corollary 12.9, each of the three sequences of the
labels .4561/ must have a gap. By Corollary 12.6 one .23/–corner must be a gap. Thus
there are two sequence of bigons with a .1234/–corner. Therefore by the following
Lemma 12.14 there must be a gap at the remaining .12/–corner or .34/–corner at v .
This however requires 5 gaps at v .
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Lemma 12.14 If there are two .23/–corners at a vertex x that belong to bigons of
ƒ, then at the other .23/–corner of x one of the adjacent corners does not belong to a
bigon of ƒ.

Proof Assume two .23/–corners at x belong to bigons of ƒ. By Lemma 12.5 these
bigons are SCs, �1; �2 (we assume they are distinct else a similar argument holds).
Assume there is another .23/–corner at x such that there is a bigon incident to its
adjacent .12/–corner (if the .34/–corner, the same argument applies). Let e2; e3

be the edges of GQ incident to this .23/–corner (where e2 has label 2 at x ). By
Lemma 12.7, e2 is either a 23–edge or a 25–edge of ƒ. As an edge of GF , e2 must
lie outside of B12;34 (if it were a 23–edge, then it along with edges of �1 , �2 would,
by Lemma 12.3, violate Lemma 8.15 or Lemma 12.15). But then e3 as an edge in
GF must lie inside B12;34 (by the ordering of the labels around vertices 2,3 of GF

coming from .23/–Scharleman cycle of � and e2; e3 ). If e3 is also in a bigon of ƒ,
then it must be a 23–edge (by Lemma 12.7 and since vertex 6 does not lie in B12;34 ).
As e3 lies in B12;34 , it must be parallel to edges of �1; �2 , which by Lemma 12.3
would violate Lemma 8.15 or Lemma 12.15.

12.3 Vertex v is of type Œ13; 4�

There are at most 5 gaps around v ; at least 4 of these gap corners belong to trigons
of ƒ; there is at most one corner that may belong to neither a bigon nor trigon of ƒ.
Note that this implies that every edge incident to v lies in ƒ.

By Corollary 12.9 each of the three .4561/–corner sequences around v must be missing
a bigon. Thus among the three .1234/–corner sequences, only two may be missing a
bigon. Let us distinguish these three .1234/–corner sequences around v by marking
them as c , c0 and c00 . Furthermore let ei , e0i and e00i be the edge of ƒ incident to c ,
c0 and c00 respectively at the label i for i D 1; 2; 3; 4.

Note that there can be no .23/; .45/; .61/–trigon consisting of 34; 56; 12–edges incident
to a .23/–corner of the vertex v . Because there would have to be a bigon on one side of
this corner at v . This bigon would be a .12/– or .34/–SC contradicting Lemma 12.7.

By Corollary 12.6 at least one .23/–corner is a gap, say the one at c . Since there is not
a trigon with a .23/–corner by Lemma 12.13, only c may have a gap at its .23/–corner.
Thus the two .23/–corners at c0 and c00 have bigons. These bigon faces are SCs by
Lemma 12.5. By Lemmas 12.3, 8.15 and 12.15, neither e2 nor e3 may be parallel on
GF to one of the 23–edges in @B12;34 . Thus the labeling around vertices 2; 3 of GF

forces one edge to be a spanning arc of B12;34 and the other to lie outside B12;34 and
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not parallel into @B12;34 . Without loss of generality, let us assume e3 is a spanning
arc of B12;34 and thus is a 34–edge (by the Parity Rule of Section 3).

Since e3 is a 34–edge, the adjacent .34/–corner cannot belong to a bigon. Otherwise
such a bigon would be a Black .34/–SC. By Lemma 12.7 this does not occur. Thus the
adjacent .34/–corner must belong to a trigon g . Since the edge e3 of this Black trigon
g is a spanning arc of B12;34 , g lies in the solid torus of parallelism of A12;34 into
B12;34 . Hence g has a second .34/–corner and a .12/–corner. (It cannot be a .34/–SC
as A12;34 is parallel into B12;34 .) Moreover edge e4 of g is a 14–edge. Since e4 is
contained in B12;34 , it belongs to one of the two 14–edge classes of @B12;34 .

Because there are at most 5 corners of v without bigons, the two .1234/–corner
sequences at c0 and c00 must entirely belong to bigons and thus form ESCs. Furthermore,
the .12/–corner at c must be a bigon h in ƒ. It is either a .12/;.34/–bigon or a
.12/;.56/–bigon.

Assume h is a .12/;.34/–bigon. At v we have identified three 41–edges incident to v
at label 4, e4; e

0
4
; e00

4
, and three 23–edges incident to v at label 2. By Lemma 8.15,

the 41–edges, as well as the 23–edges, must be in distinct edges classes in GF . To
a neighborhood of the union of B12;34 and these 41–edges and 23–edges, add any
complementary disk components of yF . The resulting surface S is a 4–punctured
sphere in yF . This immediately rules out SITUATION SCC as there would have to be a
separating Black meridian disjoint from S . We assume SITUATION NO SCC. As e4 is
parallel to one of the 41–edges of @B12;34 , it must be that e0

4
, say, is not in one of the

edge classes of @B12;34 . By Lemma 12.3, there must be a .12/;.34/–bigon f of �
and .12/;.34/–bigon f 0 containing e0

4
such that the 23–edges of f; f 0 are parallel but

the 41–edges are not. Banding f; f 0 together along the parallelism of the 23–edges in
GF , along with the corresponding rectangles along the boundary of the knot exterior,
gives a Black disks D0 whose boundary on yF is the union of the 41–edges of f; f 0 .
This disk can be taken disjoint from K , and from the Möbius bands formed from �

and from the .23/–SC of � . Thus @D0 must be separating in yF (else we can form a
Klein bottle or projective plane with these Möbius bands). But @D0 can be isotoped to
@S , contradicting the fact that it is separating.

Thus we may assume h is a .12/;.56/–bigon. This immediately rules out SITUATION

SCC (vertices 2; 5 would have to be separated). Again let e4; e
0
4
; e00

4
be the 41–edges

incident to v with label 4. By Lemma 8.15, one of these (not e4 ), say e0
4

, is not parallel
to either of the 41–edges of @B12;34 . By Lemma 12.3, there must be a .12/;.34/–
bigon, f , of � and a .12/;.34/–bigon, f 0 , containing e0

4
whose 23–edges are parallel

but whose 41–edges are not. Banding f; f 0 along the parallelism of their 23–edges as
above gives a Black disk D0 which is disjoint from the Möbius bands formed from �
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and from � . Thus @D0 must be separating in yF . On the other hand, @D0 can be isotoped
to the boundary of the essential 4–punctured sphere formed from a neighborhood in yF
of the 25–edge in h, e0

4
, � and B12;34 ; hence, it cannot be separating.

This completes the proof of Proposition 12.1.

12.4 A generalization of Lemma 8.15 to GF �

We finish with a generalization of Lemma 8.15 that is needed for this section as well
for Section 18.

Lemma 12.15 Let D be a meridian disk of yF disjoint from Q and K and F� be yF
surgered along D (hence is either one or two tori). Let GF� be the induced graph on
F� . There cannot be parallel edges of GF� that are incident to a vertex at the same
label.

Proof Let e; e0 be parallel edges on GF� incident to a vertex v of GF� with the same
label. If there are no monogons (1–sided faces) of GF� in the parallelism between
these two edges, then the proof of Lemma 8.15 directly applies (after possibly surgering
away simple closed curves of intersection). But the graph GF� may contain monogons
even though GF does not. Any monogon of GF� must contain at least one impression
of D . In particular, there may be at most two innermost monogons of GF� .

Claim 12.16 Any monogon of GF� must be innermost.

Proof If there is a noninnermost monogon of GF� , then there is one that appears as
one in Figure 35. Each of these configurations gives a long disk1 for K as a knot in
S3 , contradicting its thinness there.

Figure 35

Claim 12.17 If there are monogons of GF� in the parallelism between e and e0 , then
there are exactly two and they appear as in Figure 36(a).

1See Lemma 15.2 here or [1, Lemma 2.2 and Figure 1] for the concept of a long disk.
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(a) (b) (c)

Figure 36

Proof Since there may be only two monogons and they are not nested, there are three
possible configurations for monogons between parallel edges. These are shown in
Figure 36(a), (b), (c). Configurations (b) and (c) give lopsided bigons2 for K as a knot
in S3 , contradicting its thinness there.

So we may assume there are two monogons as in Figure 36(a) among the parallel edges
between e and e0 . Note that e and e0 have the same label pairs. Abstractly band the
monogons together as in Figure 37 to take advantage of the arguments of [16].

e e0

e e0

Figure 37

We employ the notation of [16], substituting F� D P˛ and Q D Pˇ . We set nˇ D

jK \ bQj and may assume nˇ C 1 is the number of arcs from e to e0 . Let Am and
AmC1 be the arcs formed from banding the two monogons together, 1 < m < nˇ .
(Since nˇ is even, we have nˇC1 arcs, and neither Am nor AmC1 is e or e0 , then we
may relabel and take our nˇ parallel arcs so that neither Am nor AmC1 is outermost
among these nˇ arcs.) Let A0 and A00 be the arcs of the original monogons.

We first assume the vertices of GF� connected by e; e0 have the same parity (are paral-
lel). Using Am;AmC1 in place of A0;A00 , we apply the arguments in [16, Section 5] in

2See Lemma 15.2 here or the last two paragraphs of the proof of [1, Lemma 6.15] for the concept of a
lopsided bigon.
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the case .1/ �D�1. These show that these edges form an ESC on GF� which we may
assume is centered about the edges Am;AmC1 that form a SC (else S3 has an RP3

summand). The edges of this ESC other than Am;AmC1 then come in pairs, forming
disjoint simple closed curves on bQ. Some innermost pair of these edges then bounds a
disk in GQ (since the edges A0;A00 connect the remaining vertices fm;mC 1g). The
argument of [16], after possibly surgering away simple closed curves of intersection,
implies that K is a .1; 2/–cable knot, contradicting its hyperbolicity.

We next assume the vertices of GF� connected by e; e0 have the opposite parity. Again,
using Am;AmC1 in place of A0;A00 , we apply the arguments in [16, Section 5] in
the case .2/ � D 1. The map � partitions the arcs A1; : : : ;Anˇ into orbits of equal
cardinality of at least 2. Since the surface bQ is separating, the map � must have an
even number of orbits (i � �.i/ mod 2 by the Parity Rule). In particular, Am and
AmC1 belong to different orbits. Each orbit � , other than the ones containing Am

and AmC1 , gives rise to a simple closed curve C� on bQ. Exchanging Am;AmC1

for A0;A00 merges the two orbits containing vertices m;mC 1, giving rise to a single
simple closed curve C 0 on bQ. All of these simple closed curves are mutually disjoint
on bQ.

If there is a simple closed curve other than C 0 (ie if there are more than 2 orbits of � )
then there is one that is innermost on bQ; let this be the C� that is used to complete the
proof in [16].

If C 0 is the only simple closed curve then e and e0 must be parallel on GQ , bounding
a disk in GQ whose interior is disjoint from C 0 . The argument of [16] in case .1/
(above) applies to show that K is a (1,2)–cable knot, a contradiction.

13 When t D 4 and no SCC

In this section we assume that t D 4 and that we are in SITUATION NO SCC.

We use configurations of bigons and trigons at a special vertex of ƒ to either produce a
Dyck’s surface in M or to find a new genus two Heegaard splitting of M with respect
to which K has bridge number 0 or 1 (ie making t D 0 or t D 2).

ƒ cannot have 9 mutually parallel edges by Lemma 16.9. Therefore by Lemmas 5.12
and 5.14 there exists a special vertex x in ƒ of type Œ4��3�, Œ4��4; 1� or Œ4��5; 4�.
Recall from Section 5.3 that a special vertex, x , of ƒ is of type Œa; b� if, of the 4�

corners at x , a belong to bigons of ƒ and b belong to trigons of ƒ. Nothing is known
of the faces to which the remaining corners belong, indeed these faces might not even
belong to ƒ. We refer to the corners of x which belong to these latter faces as true
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gaps at x . Thus all but aC b corners of x are true gaps. We refer to those corners at
x as gaps which are not known to belong to bigons of ƒ at x (ie the true gaps as well
as the b corners that belong to trigons of ƒ). Thus, all but a corners at x are gaps. In
sequence around x we label the faces in ƒ as follows: B: bigon, S: an SC, M: mixed
bigon, T: trigon. A mixed bigon of ƒ is one that is not an SC. We label as g: gap, G:
true gap. If ABC and XYZ are two disjoint subsequences of faces around a vertex, we
write ABC+XYZ to indicate coherent ordering (orientation) without assuming relative
positions.

13.1 Main argument for t D 4 and SITUATION NO SCC

Lemma 13.1 If t D 4 and SITUATION NO SCC then either M contains a Dyck’s
surface or �� 3.

Proof Assume t D 4 and SITUATION NO SCC, that �� 4 and M does not contain a
Dyck’s surface. As mentioned above, Lemma 16.9 along with Lemmas 5.12 and 5.14
guarantee that there exists a special vertex x in ƒ of type Œ4�� 3�, Œ4�� 4; 1� or
Œ4�� 5; 4�.

x has type Œ4�� 3� Since �� 4, there must be five consecutive bigons around x .
This contradicts Lemma 16.9.

x has type Œ4� � 4; 1� First assume there are 4 consecutive bigons at x . By
Lemma 16.9, these must be flanked by two gaps. By relabeling we may assume these
four bigons contain a .1234/–ESC. By Lemma 16.7 all bigons or trigons of ƒ at
.23/–corners must actually be .23/–SCs; furthermore, the edges of any two such
bigons must come in parallel pairs on GF . By Lemma 8.15 then, all but at most
two .23/–corners at x are (true) gaps. As there are four gaps at x , two of which
are contiguous to the four consecutive bigons above and hence are not .23/–corners,
�D 4. By Lemma 16.9 the positions of these two remaining gaps at .23/–corners is
forced and there must exist a .3412/–ESC at x . But then there are four .41/–SCs at
x . Together Lemmas 16.7 and 8.15 provide a contradiction.

Since there cannot be four consecutive bigons at x , we must have �D 4 and there
must be four triples of bigons at x separated by single gaps. Since one of the gaps
is actually a trigon, Lemma 15.5 implies that the adjacent triples of bigons are ESCs.
Then Lemma 16.7 implies all four triples are ESCs. Since their SCs all have the same
labels, Lemmas 16.7 and 8.15 provide a contradiction.

x has type Œ4�� 5; 4� If there is a, say, .1234/–ESC, then it must be adjacent to a
true gap by Lemma 16.8. By Lemmas 16.7 and 8.15 there must also be a true gap at
some .23/–corner, but x has only one true gap. Hence there is no ESC at x .
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Since � � 4 and there is no ESC, there must appear BgSMSgB around x . Because
there is only one true gap at x , this sequence is actually either BTSMSTB or BTSMSGB
(or its reverse). Then, since there is only one true gap, applying Lemma 15.6 twice
for the former and once for the latter implies there are at most 10 corners around x , a
contradiction.

Theorem 13.2 If �� 3, t D 4 and SITUATION NO SCC then M contains a Dyck’s
surface.

Proof Assume t D 4 and SITUATION NO SCC, that �� 3 and M does not contain a
Dyck’s surface. By Lemma 13.1 and our hypothesis, �D 3. But then Theorems 13.6
and 13.7 contradict each other.

13.2 The lemmas to complete t D 4 and SITUATION NO SCC

The goal of this section is to finish the proof of Theorem 13.2 by proving Theorems 13.6
and 13.7. So for this subsection we assume t D 4, SITUATION NO SCC, M contains
no Dyck’s surface and �D 3. Thus a special vertex of ƒ is one of type Œ9�; Œ8; 1� or
Œ7; 4�.

Lemma 13.3 If �D 3 then a special vertex x of ƒ cannot have BBBB.

Proof By Lemma 16.9 there cannot be five bigons in a row. By Lemma 16.14 there
cannot be a trigon adjacent to these four bigons. Hence four consecutive bigons must
be flanked by true gaps. Thus, assuming a special vertex x of ƒ has BBBB, it has type
Œ9� or Œ8; 1�.

Up to relabeling, we may assume for this vertex we have:

1 2 3 4 1 2 3 4 1 2 3 4
G M S M S G G G G G G G G

By Lemma 16.7 the remaining two .23/–corners each have a G or S and the remaining
.41/–corner has a G, S, or Scharlemann cycle T. Lemmas 8.15 and 16.7 imply that one
of these two .23/–corners must have the last G so that the .41/–corner has an S or a
Scharlemann cycle T:

1 2 3 4 1 2 3 4 1 2 3 4
(1)
(2)

G M S M S G S G G G G G G
G M S M S G G G G G S G G
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If x has type Œ9�, then the remaining corners must be bigons. In line (2) above there
must be five consecutive bigons, contrary to Lemma 16.9. In line (1) above the three
bigons to the left of the G (at .23/) form an ESC with labeling contrary to Lemma 16.10.

Thus x has type Œ8; 1� and there must be a T. First, assume this T is at the remaining
.41/–corner, and hence is an SC. Then Lemma 16.15 contradicts both lines (1) and (2)
above (where the roles of labels 2; 3 and 4; 1 are interchanged). Thus we assume this
.41/–corner must belong to an S. Lemma 16.10 implies that the T must be adjacent to
this S. Since the bigon to the other side of this S must be an M, we have a FESC whose
presence violates Lemma 16.13.

Theorem 13.4 If �D 3 then a special vertex x of ƒ cannot have an ESC.

Proof Assume there is an ESC around x . By Lemma 16.8 this ESC must be adjacent
to a true gap. WLOG we assume the ESC is on the corner .1234/ with the true gap to
the left and, by Lemma 13.3, a gap to the right.

Case I The vertex x has type Œ7; 4�.

By Lemma 16.7, all three .23/ corners around x have SCs whose edges are parallel to
that of the ESC. This gives a contradiction via Lemma 8.15.

Case II The vertex x has type Œ8; 1� or Œ9�.

Up to relabeling we may assume we have one of the following:

1 2 3 4 1 2 3 4 1 2 3 4
(1)
(2)

G M S M G G G G G G G G G
G M S M T G G G G G G G G

By Lemmas 16.7 and 8.15 one of the remaining .23/–corners has a G and the other has
an S. (If both .23/–corners have a true gap then we are in (2) above, and the remaining
corners belong to bigons of ƒ. Then by Lemma 16.7 there is an ESC containing
a .41/–SC. This contradicts Lemma 16.10.) Furthermore Lemma 16.7 implies the
remaining .41/–corner has a G, S, or Scharlemann cycle T.

If x is as in line (1) then one of the remaining .23/–corners must take the last G. This
gives a run of five yet to be accounted corners. Without one of the last corners being
a T, there would be four consecutive bigons contrary to Lemma 13.3. So x cannot
have type Œ9� and must have type Œ8; 1�. Since the remaining .23/–corner in this run of
five must be an S, the two possible placements of the T give configurations GMSTSMG
and GMSMTMG (or GMTMSMG) overlapping the original GMSMG on one G. The former is
forbidden by Lemma 15.12. The latter may be seen as a case of line (2).
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We may now assume x is as in line (2). Note that the pictured T is a Scharlemann
cycle by Lemma 16.7. If the remaining .41/–corner has an S then Lemma 13.3 implies
that the final G must be between this S and the S at whichever of the two remaining
.23/–corners. In these two cases, the types of bigons may be determined at enough of
the remaining corners for Lemma 16.15 to apply and be contradicted by the number of
23–edges at the vertex. Therefore the remaining .41/–corner has a G. Whichever of the
remaining .23/–corners gets an S must then be flanked by M bigons and all remaining
bigons must be Black. Hence we must have the configuration gMSMgMSMgBgB, which
is forbidden by Lemma 16.12.

Theorem 13.5 If � D 3 then at a special vertex x of ƒ a triple of bigons must be
adjacent to a true gap.

Proof Assume otherwise. Then by Lemma 13.3 we must have TBBBT at x . By
Lemma 16.8 we have TSMST. Hence the vertex x must have type Œ7; 4�. By symmetry
we may assume we do not have the true gap immediately to the right, so that we have
either TSMSTB or TSMSTT. We then have the following possible configurations at x :

(1)
(2)
(3)
(4)
(5)

G B T S M S T B G
G B T S M S T T G
G T T S M S T T G
G G T S M S T B G
G G T S M S T T G

Lines (1) and (4) contradict Lemma 15.6 (too many true gaps). Note, as in all of these
lemmas, Lemma 15.6 applies equally well to the reverse ordering, BTSM.

In line (2), the B must be an S by Lemma 15.6. There are three remaining corners
of the same color as the M shown. Lemmas 15.10, 15.14 and 15.6 then imply the G
must be adjacent to the newly placed S and the other two corners are filled with an M
and the last T. Regardless of this last choice, the remaining two corners are both Ss
(Lemma 15.2). Thus five corners of the same color have an S. The edge shared by the
adjacent Ts is parallel to an edge of the M shown in line (2) by Lemmas 15.2 and 14.5.
Now Lemma 16.1 applies providing a contradiction to Lemma 8.15.

In lines (3) and (5) there must be two more bigons the same color as the M shown.
Lemma 15.14 implies each of these must be an M, but this contradicts Lemma 15.10.

Theorem 13.6 If �D 3 then a special vertex x of ƒ cannot contain a triple of bigons.
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Proof Assume there is BBB at the special vertex x . By Theorems 13.4 and 13.5, every
BBB is an SMS adjacent to a gap. In particular, we have GSMS.

Case I The vertex x has type Œ7; 4�. Then by Lemma 13.3 we must have GSMST.
Note that the true gap indicated is the only one at x . The FESC must be type I by
Lemma 15.2. Lemma 15.6 implies we cannot have GSMSTB. Thus we must have GSMSTT.
To the right of this there are 2, 1 or 0 Bs before the next T (Theorem 13.5).

Case Ia Assume we have GSMSTTBBT. If the BB are SM then we contradict Lemma 15.8.
If the BB are MS then by Lemmas 15.6 and 15.8 the remaining three spots are filled
with TMS. Yet this contradicts Lemma 15.10.

Case Ib Assume we have GSMSTTBT. The B is the same color as the M. Since three of
the remaining four positions get a bigon, one of these must be the same color as the M
too. This however contradicts Lemma 15.10 or 15.14.

Case Ic Assume we have GSMSTTT. Theorem 13.5 permits only two positions for the
final T:

(1)
(2)

G S M S T T T G T G G G G
G S M S T T T G G T G G G

Theorem 13.4 labels the triple of bigons in line (1) as SMS. Now Lemma 15.6 gives a
contradiction.

In line (2), the bigons to each side of this last T are the same color as the M. This
contradicts Lemma 15.10 or 15.14.

Case II The vertex x has type Œ8; 1�.

Thus we have four gaps (one trigon and three true gaps) and by Lemma 13.3 we must
have gSMSg (where at least one of these gaps is a true gap). By Lemma 16.17 we
cannot have gSMSgSMSg. Thus, up to symmetry, we must have one of the following
four configurations:

1 2 3 4 1 2 3 4 1 2 3 4
(1)
(2)
(3)
(4)

g S M S g g S M S g G G g
g S M S g G g G G g G G g
g S M S g G g S M S g G g
g S M S g G G g G g G G g

In line (1), filling in the last two blanks with either MS or SM produces a contradiction
to Lemma 17.1.
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In line (2), by Lemma 15.5 the initial g must be G so that the T occurs at one of the
remaining three. Lemmas 15.2 and 15.14 force configuration (i) below when the T is at
the second gap. When the T is at the third gap, Lemmas 15.2, 15.14 and 17.1 force
configurations (ii), (iii) and (iv) below. Lemma 15.5 determines the labelings of all the
bigons but one if the T is at the last g, giving (v) below:

1 2 3 4 1 2 3 4 1 2 3 4
(i)
(ii)
(iii)
(iv)
(v)

G S M S T S G S M G M S g
G S M S G S T S M G M S g
G S M S G S T M S G S M g
G S M S G M T M S G S M g
G S M S G B G S M T M S g

Lemma 16.1 (with the roles of 1; 2 and 3; 4 interchanged) applies to each of config-
urations (i), (ii) and (v), giving a contradiction to Lemma 8.15. (Notice that the T in
line (v) is an SC.) For (iv), Lemma 17.1 implies that a neighborhood of the 41–edges
of the MSGSM subconfiguration is a 1–punctured torus, and hence that the 23–edges
of the .23/–Scharlemann cycle (bigon and trigon) lie in a 1–punctured torus. This
contradicts Lemma 16.15. To eliminate (iii), consider the two .12/–SCs, S1; S2 , in that
configuration. The argument of Lemma 16.16 applied to the subconfigurations S1MS,
SM and S2 (with labels 1; 2; 3; 4 relabeled 3; 4; 1; 2), shows that S1; S2 are parallel
bigons. Thus we can think of the subconfigurations S1M; S2T together as one FESC.
That is, applying the argument of Lemma 15.13 to these faces and the .41/;.23/–SCs of
(iii) shows that three Möbius bands A41;A23;A12 corresponding to these Scharlemann
cycle faces can be perturbed to be disjoint. But Lemma 8.11 contradicts that M does
not contain a Dyck’s surface. We have eliminated configurations (i)–(v), and line (2)
does not occur.

In line (3), by symmetry we may assume the second g (just to the left of the first blank)
is actually T and the other g are all G. Then Lemma 15.6 implies that the first blank is
an S and the contiguous FESC is of type I. Applying Lemma 15.10 to this FESC and
the mixed bigon in the remaining SMS configuration contradicts Lemma 8.15.

In line (4) we examine where the T may go. It cannot be either of the first two gaps (at
the .41/–corners) by Lemma 15.5. So without loss of generality assume the trigon is
the third gap (at the .34/–corner). Now we have two cases according to whether the
bigon between the trigon and fourth gap is M or S.

If it is M, then to the left of the trigon there must also be an M. Otherwise we must
have MSTM contradicting Lemma 15.2. Thus around the trigon we have SMTM. But
now the SCs of the SMS provide a configuration contrary to Lemma 16.15 (where the
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.34/–corners and 12–edges play the role of the .23/–corners and 41–edges of the
Lemma).

If it is S, then it is a .41/–SC and we can apply Lemma 17.1(4) to conclude we obtain
MSTSGSM. But then Lemma 15.14 gives a contradiction.

Case III The vertex x has type Œ9�.

Since there are no MSM and no string of four bigons, there is just one configuration:

1 2 3 4 1 2 3 4 1 2 3 4
G S M S G S M S G S M S G

This configuration is forbidden by Lemma 16.1 and Lemma 8.15.

Theorem 13.7 If �D 3, then a special vertex x of ƒ must contain a triple of bigons.

Proof Assume there is no BBB at x . Then there can be neither ggg nor gg+gg at x ,
or else there would be a BBB at x .

Without loss of generality we may assume a .41/–corner of x has a G, a true gap. We
will use this G to mark the beginning and end of the sequence of faces around x as
follows:

1 2 3 4 1 2 3 4 1 2 3 4

G T T T T T T T T T T T G

The light grey G at the end is a repeat of the initial G.

Case I The vertex has type Œ7; 4� and there exists TT.

We enumerate the possibilities for the placement of this pair up to symmetry:

1 2 3 4 1 2 3 4 1 2 3 4
(1)
(2)
(3)
(4)
(5)

G T T T T T T T T T T T G
G T T T T T T T T T T T G
G T T T T T T T T T T T G
G T T T T T T T T T T T G
G T T T T T T T T T T T G

In each line two more Ts must be placed with the remaining being Bs. Any placement
of these two Ts in lines (1) and (4) contradicts having no BBB. In line (2), having no
BBB forces the placement of the remaining two Ts. One application of Lemma 15.5 to
the bigons around the central T renders the following:
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(2) G B T T S M T M S T B B G

But now a second application of Lemma 15.5 around the rightmost T gives a contradic-
tion.

For line (5), one T must be among the leftmost four spots and the other must be in
the middle of the rightmost five. Lemma 15.5 gives the labeling of these rightmost
five as SMTMS. Note that this T is a Scharlemann cycle. The two possibilities for the
leftmost four are: (i) BBTB and (ii) BTBB. Labeling (i) as MSTB contradicts Lemma 15.6
so it must be labeled as SMTB. But now the SMTM (reading right to left) along with the
.12/–SC call upon Lemma 16.15 to contradict that there are two more 34–edges at
x . Hence we must have (ii). Labeling it as BTMS forms MSTTSM which contradicts
Lemma 15.8. Thus it must be labeled as BTSM giving us, by Lemma 15.6, the following
configuration. Lemma 16.1 (with the roles of labels 1; 2 and 3; 4 interchanged) then
gives three parallel edges that provide a contradiction to Lemma 8.15.

(5) G S T S M T T S M T M S G

For line (3) both remaining Ts must be on the right side, and there are three possible
placements. The two bigons on the left are either MS or SM.

1 2 3 4 1 2 3 4 1 2 3 4

(3)

G M S T T M T S M T M S G
G M S T T S M T M T M S G
G M S T T M S T B B T M G
G S M T T M T S M T M S G
G S M T T S M T S T M S G
G S M T T S M T M S T S G

(i)
(ii)
(iii)
(iv)
(v)
(vi)

For lines (i) and (iv), first apply Lemma 15.5 to get the pictured configurations, then note
these contradict Lemma 15.6. To get the configuration for line (ii) apply Lemma 15.6.
But this line contradicts Lemma 15.8. For line (iii), apply Lemma 15.8 to get the
pictured configuration. This now contradicts Lemma 15.6.

For line (v) apply Lemma 15.6 twice to obtain the pictured configuration. Then
Lemma 15.2 applied to the TSM adjacent to the leftmost T implies the leftmost T is
a Scharlemann cycle. Lemma 14.5 shows that the 34–edges on either end of the
FESC TSM are parallel in GF . This parallelism allows us to apply the argument of
Lemma 16.15 to the subconfiguration SMT on the left-hand side and the middle M (for
the analog of SMTM) along with .34/–SC at the right. But then the five 12–edges
incident to x contradict the conclusion of that argument.
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For line (vi), apply Lemma 15.5 and then Lemma 15.6 to obtain the configuration
shown. Furthermore, Lemma 15.6 shows that the first T must be a Scharlemann cycle.
Lemma 16.1 then gives three parallel edges that provide a contradiction to Lemma 8.15.

Case II The vertex has type Œ7; 4� and no TT.

Case IIa Assume there exists MST.

Lemma 15.9 gives three configurations to consider:

1 2 3 4 1 2 3 4 1 2 3 4
(1)
(2)
(3)

G M M M M M M B T M S T G
G M M M M M B T M S T S G
G M M M M B T M S T S T G

Line (1) must have either TB or BT to the left of the labeled faces. In the former, since
no TT, we then have BTBBTMSTG. Each choice of MS or SM for the BB is incongruous
with Lemma 15.6. In the latter, the placement of the fourth T is forced and Lemma 15.5
gives:

G S M T M S T B T M S T G

The MSTB here contradicts Lemma 15.6 too.

In line (2), Lemma 15.14 forces the B to be an M. Then Lemmas 15.14 and 15.12 imply
that the remaining .23/ and .41/ corners take the final two Ts. Hence the remaining
three corners have bigons. Being adjacent to an M, the center .12/ corner takes an S.
Lemma 15.6 now gives a contradiction.

In line (3) the placement of the fourth T is forced. Lemma 15.5 then gives a labeling
contrary to Lemma 15.6.

Case IIb There exists no MST.

There must be BB, and it must be between the G and a T. Hence BB must be either GSMT
or TMSG. This forces:

1 2 3 4 1 2 3 4 1 2 3 4
G S M T B T B T B T M S G

If the left and the right B are both an S then we have the configuration of Figure 38.
Lemma 17.1 shows that no pair of e1; : : : ; e6 are parallel on GF . But Lemma 16.4
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Figure 38

shows that either there is a parallelism among e1 , e4 and e5 or there is a parallelism
among e2 , e3 and e6 . Hence WLOG the leftmost B is an M.

If at least one of the two remaining Bs is an M, then it will provide a fifth 12–edge
incident to x . Then we will have a configuration contrary to Lemma 16.15. If the
remaining Bs are each an S, then we may apply Lemma 17.1 to conclude that the
34–edges lie in a 3–punctured torus on yF (since the 12–edges fill out a 1–punctured
torus). This contradicts again Lemma 16.15.

Case III The vertex has type Œ8; 1�.

There are 8 bigons and 4 gaps. There cannot be gBg since this would imply the
existence of BBB. Hence the gaps are equally spaced. Due to symmetry, we may
designate any of these gaps to be the T and the others to be Gs; assume the T occurs
at a .12/–corner of x . Apply Lemma 15.5 to label the two pairs of bigons around
the T. If any of the remaining bigons are .12/–SCs, then the resulting configuration
will contradict Lemma 16.15 (with too many 34–edges). This leaves the configuration
shown in Figure 39.
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4 1

1

1

23

2

234

3 4

44 31

31 2

3

41 2

4

gapf1 f2 f3 f4

e1 e2 e3 e4 e5 e6

f6

e8

gap f9f7 f8g
e7

Figure 39

The faces f1; : : : ; f6 give the configuration and labeling in Figure 75, where f5 is now
a gap. The remaining three bigons are labeled f7; f8; f9 and the trigon is labeled g .

Let A34 be the Black Möbius band arising from f6 . Let A12;34 be the Black annulus
arising from f1 and f4 . By Lemma 17.1, A34 and A12;34 intersect transversely along
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the .34/–arc of K . The subgraph of GF arising from their edges is shown in Figure 79.
As a neighborhood of this subgraph is a twice punctured torus, Lemma 17.1(1) implies
its complement in yF is an annulus B yF . Furthermore, the .34/–arc of K has a bridge
disk otherwise disjoint from A12 [ A12;34 that meets this annulus along a single
spanning arc. Hence cutting HB open along N DN.A12[A12;34/ forms a solid torus
T on which B yF is a longitudinal annulus.

Since g is a properly embedded disk in T , and @g crosses three times along the
impressions of the 1–handle neighborhood of .12/, g must be a meridional disk of T .
From this, one can see that two of the edges of g must be parallel into @B yF and the
third runs from one component of @B yF to the other. In particular, the two edges that
are boundary parallel cobound contiguous squares in G yF as pictured in Figure 40(b).
The labelings of the endpoints of edges e7; e8 on vertices 3; 4 force one of e3 or e4 to
lie in one of these squares in GF . But this means that either e3 is parallel to one of
e2; e6 or e4 is parallel to one of e1; e5 , contradicting Lemma 17.1.

12

3 4(a) (b)

2

33

4

3

4

4

3

1

2

1
4

Figure 40

Case IV The vertex has type Œ9�.

There must be a triple of bigons contrary to hypothesis.

14 Thrice-punctured spheres, forked extended Scharlemann
cycles and an application when t D 4

In this section we assume that t D 4 and that we are in SITUATION NO SCC.
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14.1 Thrice-punctured spheres in genus 2 handlebodies

Let P be an incompressible, separating, thrice-punctured sphere in a genus 2 handle-
body H . Decompose H along P as H DM1[P M2 . Since P is an incompressible
surface in the handlebody H , it must be @–compressible. Assume P is @–compressible
into M2 . It is easy to see that M1 and M2 are genus 2 handlebodies.

Lemma 14.1
M2 D P � Œ0; 1�[A1[A2

T ;

where P is identified with P � f0g, A1 and A2 are disjoint, nonisotopic, nonnull-
homotopic annuli in P � f1g, and either

(1) T is the union of two solid tori, T1 and T2 , and Ai � @Ti is incompressible for
each i D 1; 2; or,

(2) T is a solid torus and A1[A2 � @T is incompressible.

In either case, if Ai is not longitudinal in T (Ti ), then the component ci of @P that is
isotopic (through P � Œ0; 1�) to the core of Ai is primitive in M1 .

Proof Let ı be a @–compressing disk for P in M2 . The @–compression of P along
ı yields A, an incompressible annulus or pair of annuli. Cutting M2 along ı yields T ,
either one or two solid tori, with A� @T . In the case that A is a single annulus, then T
is a single solid torus. Reversing the compression along ı , we see M2DP�Œ0; 1�[AT .
To get description (1) above, set T1 D T ;A1 DA and pick a second disjoint, essential
annulus, A2 �P �f1g along which we attach a solid torus T2 longitudinally (giving a
trivial decomposition). Otherwise, ADA1[A2 and reversing the compression along
ı gives either (1) or (2).

To prove the final statement, collapse M2 along P� Œ0; 1� to write H as M1[A1[A2
T

and let ci be the core of Ai . Ai must boundary compress in H , but if Ai is not
longitudinal in T such a compression can be taken disjoint from Int T . This gives a
meridian disk in M1 that marks ci as primitive in M1 .

14.2 Forked extended Scharlemann cycles

Consider a FESC � in GQ . Up to relabeling vertices of GF and GQ , we may assume
it is as illustrated in Figure 41(a). As shown, label the two Black faces f and g . Also
label and orient the two edges ˛ and ˇ . The subgraph of GF induced by the edges
of � then appears on yF as shown in Figure 41(b) or its mirror. We assume in this
subsection that we are in SITUATION NO SCC, so that f;g are properly embedded
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in HB � N.K/. The White SC between f and g gives rise to a Möbius band, A23 ,
properly embedded in HW .

Contracting the remaining three edges of � to a point � in this subgraph of GF , we may
view the edges ˛ and ˇ as oriented loops. A neighborhood on yF of this subgraph of
GF induced by the edges of � is a 3–punctured sphere P 0 . Its boundary components
may be identified with the loops ˛ , ˇ and ˛ˇ based at � also indicated in Figure 41(b).
We aim to show that ˇ bounds a disk in yF (Lemma 14.5).
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1
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z yx

Figure 42

Form the genus 2 handlebody M1 D N..12/[ .34/[ f [ g/ � HB . Since @M1 \

@HB D P 0 , P D @M1 n @HB is also a 3–punctured sphere. Thus we may write
@M1 D P [f˛;ˇ;˛ˇg P 0 and HB DM1 [P M2 . Figure 41(a) gives instructions for
the assembly of M1 which we may realize embedded in S3 as in Figure 42 with f
and g thickened. Note that one may thus visualize M1 as the trefoil complement
with the neighborhood of an unknotting tunnel removed: ˛ˇ is the cocore of the
unknotting tunnel and ˛ and ˇ result from a banding of ˛ˇ to itself. Recall that if
O is a 3–manifold with boundary and  is a curve in @O , then Oh i is O with a
2–handle attached along  .
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Figure 43

Claim 14.2 Let ˛; ˇ; ˛ˇ �M1 be as above.

(1) ˛ and ˇ are primitive in M1 . Indeed M1 contains disjoint meridian disks,
one intersecting ˛ once and disjoint from ˇ , the other disjoint from ˛ and
intersecting ˇ once.

(2) The arcs .12/;.34/ of K\M1 can be isotoped in M1 , fixing their endpoints, to
arcs on @M1 that are disjoint from ˛ and ˇ and that intersect @A23 � @M1 only
in their endpoints (at vertices 2; 3 of GF ). Furthermore, these arcs are incident
to the same side of @A23 in @M1 .

(3) M1h˛ˇi is homeomorphic to the exterior of the trefoil. In particular, ˛ˇ is
neither primitive nor cabled in @M1 .

Proof In Figures 41 and 42, ˛ and ˇ encircle the two visible holes of the embedded
genus 2 handlebody indicated by Figure 42. Let f;g be the black faces of � (Figure 41).
Let e1; e2 be disjoint properly embedded arcs in g parallel to the .34/–corners of g

along vertices x; z (respectively) of GQ . In M1 , a product neighborhood of e1 (e2 )
is a disk E1 (E2 ) in g� I such that @E1 (@E2 ) intersects ˛ (ˇ ) once but is disjoint
from ˇ (˛ ). E1 and E2 verify (1).

Let E0
1

be the disk component of E1 n e1 that is disjoint from ˛ . Band E0
1

to the
.34/–corner of g (to which e1 is parallel) to obtain a bridge disk D34 in M1 for the
arc .34/ of K . D34 is disjoint from both ˛ and ˇ and intersects @A23 only in vertex
3 of GF . Band the .12/–corner of f along f to D34 to obtain a bridge disk D12 of
.12/ of K in M1 which is disjoint from D34 , ˛ and ˇ ; and which intersects @A23

only at vertex 2. D12;D34 guide the isotopies of .12/; .34/ described in (2).

Figure 43 shows that M1h˛ˇi is homeomorphic to the exterior of the trefoil. Since
this is neither a solid torus nor the connect sum of a solid torus and a lens space, ˛ˇ
cannot be primitive or cabled in M1 .

Claim 14.3 P is incompressible in M1 .
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Proof If P were compressible in M1 , then either ˛; ˇ or ˛ˇ would bound a disk in
M1 . Claim 14.2 shows this cannot be.

Claim 14.4 There is no properly embedded disk D in M1 such that @D meets P in
a single essential arc.

Proof Let D be a properly embedded disk in M1 such that @D\P is an essential
arc in P .

First suppose D separates M1 , and let D1;D2 be meridian disks of the two solid tori
M1nD . Both points of @D\@P belong to the same component of  of @P . The other
two components 1; 2 of @P can be numbered so that i \ @Dj D∅; fi; j g D f1; 2g.
Hence f1; 2g D f˛; ˇg and i intersects Di in a single point, i D 1; 2. But then
 .D ˛ˇ/ intersects D1 (and D2 ) in a single point, contradicting the fact that M1h˛ˇi

is the trefoil exterior.

Next suppose D does not separate M1 . Let D0 be a disk in M1 disjoint from D such
that M1 n .D [D0/ is a 3–ball. If the two points of @D \ @P belong to the same
component of @P , then the other two components are disjoint form D , and hence must
be ˛ and ˇ . But then ˛ [ ˇ is disjoint from D , a contradiction. If the two ponts
of @D \ @P belong to different components of @P , then each of these components
intersects D once, and hence they are ˛ and ˇ , so the third component must be ˛ˇ .
But this component is disjoint from D , contradicting the fact that M1h˛ˇi is the trefoil
exterior.

Lemma 14.5 Assume we are in SITUATION NO SCC and there is a FESC centered
(WLOG) about a .23/–SC. Then the two 14–edges are parallel in GF .

Remark 14.6 We later use this lemma for an FESC put together by an MS and ST pair,
where the S are parallel bigons (merging the SCs to one to give the faces of the FESC).
We will also use this (Lemma 15.6) for an FESC put together by an ST and M where
the leftmost edge of the ST is parallel to an edge of M.

Proof Assume there is a FESC � , without loss of generality as shown in Figure 41.
Construct M1 from f;g and write HB DM1[P M2 as above. Observe that ˛ is the
boundary of the White Möbius band A23 �HW arising from the .23/–SC between f
and g on GQ . If P is incompressible in HB , then by Claim 14.4 it must boundary
compress in M2 and Lemma 14.1 holds. If P compresses in HB , it must compress in
M2 by Claim 14.3.

Case I P is incompressible in HB and (1) of Lemma 14.1 holds.
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Then collapsing along P � Œ0; 1�, we may write HB DM1[.A1[A2/ .T1[ T2/. The
cores of the annuli must be isotopic to either ˛; ˇ or ˛ˇ in P . If the core, c , of either
A1 or A2 is isotopic to ˛ˇ then, again by Lemma 14.1, c must be longitudinal in T
as ˛ˇ is not primitive in M1 . Thus if ˛; ˇ are not the cores of some A1;A2 in the
original decomposition, then we can replace the trivial decomposition along ˛ˇ with a
trivial decomposition along ˛ or ˇ . So we may assume that in P , the core of A1 is
isotopic to ˛ and the core of A2 to ˇ . By Claim 14.2(1), both ˛ and ˇ are jointly
primitive curves in M1 , and H 0

B
D N.A23/[˛ M1[A2

T2 is a genus 2 handlebody.
Since ˛ is a primitive curve in HW nA23 , H 0

W
D .HW nA23/[˛ T1 is also a genus

2 handlebody. Together H 0
B

and H 0
W

form a new genus 2 Heegaard splitting for M .

Since .41/ has a bridge disk D41 in HW that is disjoint from A23 (Lemma 8.16), it
continues to be bridge in HW nA23 . Moreover since D41 may be taken to be disjoint
from ˛ , D41 is a bridge disk for .41/ in H 0

W
. By Claim 14.2, arcs .12/;.34/ can be

isotoped to @H 0
B

, fixing their endpoints, so they intersect @A23 only at vertices 2; 3

(respectively) of GF and are incident to the same side of @A23 (the isotopy in M1 is
disjoint from ˛; ˇ ). Now we can write K as the union of two arcs .3412/ that is a
bridge arc of H 0

W
and .23/ which is a bridge arc of H 0

B
: After isotoping .34/;.12/ to

@H 0
B

, the arc .3412/ is isotopic as a properly embedded arc in @H 0
W

to .41/, which is
bridge in H 0

W
. On the other hand, .23/ can be isotoped as a properly embedded arc in

H 0
B

to be a cocore of the annulus N.A23/\ @HB . The primitivity of this annulus in
HB now describes .23/ as a bridge arc in H 0

B
. That is, K is 1–bridge with respect to

the splitting H 0
W
[H 0

B
. This contradicts that t D 4.

Remark 14.7 If A1 is longitudinal in T1 then @A23 will be primitive in HB and the
new splitting is gotten from the old by adding/removing a primitive Möbius band (in
this case, adding T1 to HW is isotopic to the splitting where T1 is not added). This
is consistent with the proof of Theorem 2.6. If A1 is not longitudinal in T1 then M

is a Seifert fiber space over the 2–sphere with an exceptional fiber of order 2. In this
case, we could find a vertical splitting with respect to which K has bridge number 0

by applying Lemma 8.3 to T1[˛ A23 , a Seifert fiber space over the disk. This would
then be consistent with the proof of Theorem 2.6.

Case II P is incompressible in HB and (2) of Lemma 14.1 holds.

Collapsing along P � Œ0; 1�, we view HB as M1[A1[A2
T . Then the cores of A1;A2

must be ˛; ˇ in M1 . This follows from Lemma 14.1 when A1 (hence A2 as well) is
not longitudinal in T , since ˛ˇ is not primitive in M1 . When A1;A2 are longitudinal
on T , assume for contradiction that the core of A1 is ˛ˇ . As A1 [A2 must be @–
compressible in HB , and ˛ˇ is not primitive in M1 , it must be that there is a meridian
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disk for M1 that is disjoint from A1 and crossing the core of A2 once. But then
we obtain the contradiction that the trefoil knot exterior, M1h˛ˇi, has compressible
boundary.

So we may assume the core of A1 is ˛ and the core of A2 is ˇ in M1 .

First consider the case where A1 runs n > 1 times longitudinally around T . There
is an annulus B contained in @M1 which we may assume contains @A23 and A1

and that intersects K only at vertices 2; 3 of GF (ie only along @A23 ). Let N be
N.B[A23[T /. Then N is a Seifert-fibered space over the disk with two exceptional
fibers. Furthermore, K\N lies as a cocore of the Möbius band A23 properly embedded
in N . Lemma 8.3 then gives a genus 2 splitting of M in which K is 0–bridge, a
contradiction.

Finally consider the case where A1;A2 are longitudinal in T . By Claim 14.2, there
are disjoint meridian disks D1;D2 of M1 such that Di intersects the core of Ai once
and is disjoint from Aj , where fi; j g D f1; 2g. Then there is a disk D3 in T such
that D DD1[D2[D3 forms a meridian disk in HB that intersects each of ˛ and
ˇ once. In particular, ˛ is primitive in HB . Then H 0

B
DHB [N.A23/ is a genus 2

handlebody. Also H 0
W
DHW � N.A23/ is a genus 2 handlebody. Hence H 0

B
[H 0

W
is

a genus 2 Heegaard splitting of M . We now show that K has bridge number one with
respect to this splitting, thereby contradicting the assumption that t D 4. By Claim 14.2,
arcs .12/;.34/ can be isotoped to @HB so they intersect @A23 only at vertices 2; 3

(respectively) of GF and are incident to the same side of @A23 (the isotopy in M1 is
disjoint from ˛; ˇ ). Now we can write K as the union of two arcs, .3412/ that is a
bridge arc of H 0

W
and .23/ which is a bridge arc of H 0

B
: After isotoping .34/;.12/ to

@HB , the arc .3412/ is isotopic as a properly embedded arc in @H 0
W

to .41/, which is
bridge in H 0

W
(Lemma 8.16). On the other hand, .23/ can be isotoped as a properly

embedded arc in H 0
B

to be a cocore of the annulus N.A23/\HB . The primitivity of
this annulus in HB now describes .23/ as a bridge arc in H 0

B
. That is, K is 1–bridge

with respect to the splitting H 0
W
[H 0

B
.

Case III P is compressible.

Because P is not compressible into M1 by Claim 14.3, some component of @P bounds
a disk D in M2 . The following then proves the lemma in this case.

Claim 14.8 Assume there is a disk D properly embedded in HB disjoint from M1

and with @D isotopic to ˛; ˇ or ˛ˇ in @HB . Then @D must in fact be isotopic to ˇ ,
and ˇ must bound a disk in @HB .

Proof If @D were isotopic to ˛ , then D[A23 forms an RP2 ; this is a contradiction.
If @D were ˛ˇ , then N.D/[˛ˇ M1 DM1h˛ˇi is a trefoil complement embedded in
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HB (Claim 14.2). Thus M1h˛ˇi must be contained in a 3–ball. By Lemma 3.3, ˛
bounds a disk in HB or HW which, as above, cannot occur. Thus @D is isotopic to ˇ .

Now assume ˇ , hence @D , is essential in @HB . Let O be the solid torus component
of HB� N.D/ containing M1 . Let N be O[N.A23/. Using D , we may extend the
isotopy from Claim 14.2(b) of arcs .12/;.34/, fixing their endpoints, to @O so that the
resulting arcs a; b are incident @A23 only at their endpoints and on the same side of
@A23 (alternatively, Lemma 14.9 constructs such an isotopy). Thus K can be written
as the union of two arcs: .34123/, �. Arc .34123/ is the union of the arcs a; b on @O ,
the arc .41/ of K\HW and an arc on @N.A23/�O (a cocore of this annulus) running
from vertex 2 to vertex 3. The arc � is a cocore of the annulus B D N.A23/\ @O
on yF . Note that .34123/ is the union of the .41/–arc of K with two arcs on @N .
Pushing .34123/ slightly into the exterior of N , we have K\N D �.

B winds n> 0 times around O . First assume n> 1. Then N is a Seifert fiber space
over the disk with two exceptional fibers. Furthermore, �DK\N is a cocore of the
annulus B �N , where B is vertical under the Seifert fibration. Lemma 8.3 applies to
give a new genus 2 Heegaard splitting of M in which K is 0–bridge, contradicting
that t D 4.

So assume nD 1. Then @A23 is primitive in HB . So H 0
B
DHB [N.A23/ is a genus

two handlebody, as is its exterior H 0
W
DHW � N.A23/. Then K\H 0

W
D .34123/ is

properly isotopic to the bridge arc .41/ of H 0
W

, hence is bridge in H 0
W

. K\H 0
B
D�

is properly isotopic to a cocore of B whose core is primitive in HB . Thus � is a bridge
arc in H 0

B
. That is, K is 1–bridge in the Heegaard splitting H 0

B
[H 0

W
, contradicting

that t D 4.

This completes the proof of Lemma 14.5.

Lemma 14.9 Assume SITUATION NO SCC and that there is a FESC centered, WLOG,
about a .23/–SC. There are bridge disks D12 and D34 disjoint from the edges of the
.23/–SC. These bridge disks guide isotopies of the arcs .12/;.34/, fixing endpoints,
onto arcs of yF that are incident to the same side in yF of the curve formed by the edges
of this SC. Let A23 be the Möbius band associated to this SC. If @A23 is primitive in
HB , then K is 1–bridge with respect to a genus two Heegaard splitting of M .

Proof WLOG we may assume there is a FESC � as shown in Figure 41(a). Its edges
induce the subgraph of GF shown in Figure 41(b).

Let E be a disk giving the parallelism guaranteed by Lemma 14.5. Let �12 and �34

be rectangles on @N..12// and @N..34/// respectively that are between f and g
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and meet E . Then together f [g[E [ �12[ �34 form a bridge disk D34 for .34/

as shown in Figure 44(a). With a slight isotopy so that D34 is now disjoint from
f [g[N..12// except along the x corner of g , it meets yF as shown in Figure 44(b).

D34\ bF
D34

E

ˇ

(a) (b)

˛

�34

2

1 4

2 3

E�12

1 x 4

3

y y

x

z

z

x yx y2

g

f

43

3

41

Figure 44

D12\ bF

D12 DD34[ �
0
34[f

E

˛
(a) (b)

ˇ
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y2 3
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z

z
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g

f

3

41

2

1 4

2 3

E�12 �34

2

3 4

43
1f

�034

1 4

Figure 45

Let �340 be a rectangle on @N..34// between the x corner of g and y corner of f
and containing the z corner of g . Banding D34 to .12/ with the rectangle �0

34
[ f

produces the bridge disk D12 DD34[ �
0
34
[f shown in Figure 45(a) which may be

made embedded and disjoint from D34 by a slight perturbation. Figure 45(b) shows
how D12 and D34 meet yF . In particular, they are incident to the same side of @A23 .
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Now assume @A23 is primitive in HB . So H 0
B
DHB[N.A23/ is a genus 2 handlebody,

as is its exterior H 0
W
DHW �N.A23/. Now argue as in the last paragraph of Claim 14.8.

That is, K\H 0
W
D .34123/ is properly isotopic to the bridge arc .41/ of H 0

W
, hence

is bridge in H 0
W

. K \H 0
B
D � is properly isotopic to a cocore of the annulus B , a

neighborhood in yF of @A23 . As @A23 is primitive in HB , � is a bridge arc in H 0
B

.
That is, K is 1–bridge in the Heegaard splitting H 0

B
[H 0

W
, contradicting that t D 4.

15 FESCs

Throughout this section assume t D 4, there are no Dyck’s surfaces embedded in M ,
and we are in SITUATION NO SCC.

Convention: In this section, we will be discussing an interval of labels where the same
label appears more than once. To distinguish the edges incident to that interval with
the same label, we will subdivide the interval into subintervals each containing at most
four labels. For example in Figure 48, the interval of labels at vertex x has two edges
incident at label 1. This interval is divided into subintervals, x;x0 . On GF then, the
edge incident to the subinterval x0 will be labeled with an x0 rather than x , as in
Figure 50.

15.1 Type I and II FESCs

Definition 15.1 By Lemma 14.5 two of the edges bounding a FESC are parallel on
GF . A FESC along a vertex x of GQ is type I or type II (at x ) according to whether
both or just one of these parallel edges are incident to the vertex. See Figure 46 for an
illustration of types I and II at the vertex x .

Type IIType I

x

1

1 2 3 4

1
2

4 3 2
1

1 2 3 4

x

3
4

4 3 2

Figure 46

The boldface notation in the lemmas of this section refers to that of Section 13.
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Lemma 15.2 MSTII D) MSTG

At a vertex x , the trigon of a type II FESC cannot be further adjacent to another bigon
or a trigon. In particular, a type II FESC must have its trigon adjacent to a true gap at x .

Proof Assume there is a type II FESC adjacent to another bigon or trigon. In the
case of a bigon we construct a long disk3 as in Figure 47. In the case of a trigon we
construct a lopsided bigon4 as in Figure 48. Hence in both cases there is a thinning of
K .
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�12 �34
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a
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Figure 48

3See also [1, Lemma 2.2].
4See also the last two paragraphs of the of [1, Lemma 6.15].
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In these figures ı is the disk of parallelism guaranteed by Lemma 14.5, and �ab denotes
a rectangle on the boundary of the .ab/ handle. Note that �23 and �0

23
have disjoint

interiors.

The long disk may be taken to lie on the boundary of the neighborhood of the 2–
complex formed from the four faces and K as they are embed in M . The lopsided
bigon will be embedded except at its short .a aC1/–corner; nevertheless, the lopsided
bigon guides an isotopy of K . Both the long disk and the lopsided bigon run over both
sides of the .23/–SC.

To verify these isotopies explicitly, one may construct models of these 2–complexes,
their neighborhoods and their intersections with yF . As the case when the adjoining
face, h, is a trigon can be viewed as a “splintering” of the case when h is a bigon, we
begin with the model of the bigon case.

The long disk Form a Möbius band out of the .23/–SC and the .23/–arc of K .
Complete K and take a small regular neighborhood. The attachment of f is unique.
The attachment of g is unique up to a choice of placement of its .34/–corner opposite
the 23–edge. These two choices give mirror images and are thus equivalent up to
homeomorphism. The boundary of ı is now set and we may attach it. The bigon h

may now also be attached along the 34–edge of g in a unique manner. Beginning from
the corners of ı , the choices for �12 , �23 , �34 and �0

23
are determined. One may now

“wrap” the long disk around this complex to exhibit an isotopy of .2341/ onto yF . The
graph on yF induced by the edges of these faces and the arc onto which the isotopy
lays down .2341/ is shown in Figure 49. Since K is isotopic to the arc .12/ and an
arc on yF , it is at most 1–bridge.

ı1 4

3

x

z

x yx y2

y

z

x

y

z

x0

Figure 49
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Remark 15.3 The long disk can also be pictured as the union of the bridge disk D34

of Lemma 14.9 and a White bigon on corners .23/;.41/ gotten by banding h and two
disjoint copies of the .23/–SC along the boundary of a neighborhood of the .23/–arc
of K . This white bigon and D34 agree on F along one edge of the bigon.
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3

x
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x yx y

Figure 50

The lopsided bigon Take the above constructed complex and break the 12–edge of h

by inserting a corner, thereby changing h from a bigon into a trigon. This new corner
will be either a .23/– or a .41/–corner. To complete this model, this corner must be
attached to K . The long disk isotopy now becomes an isotopy of .2341/ onto two
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arcs of yF and either the .23/– or .41/–arc of K . There are seven possible ways of
hooking up this new corner to its position on the complex: three for .23/ and four
for .41/. When the new corner is a .23/–corner, Figure 50 shows the three possible
graphs on yF and the resulting two arcs on yF after the isotopy of .2341/. Figure 51
shows four possibilities when the new corner is a .41/–corner. Note that 41–edge of
h cannot lie in ı by Lemma 8.15. Since K is isotopic to the union of arc .12/, two
arcs on yF and one of the arcs .23/ or .41/, it is at most 1–bridge.

ı

ıı

ı

1 4

3

x

z

x yx y2

y

z

x

y

z

ww0

x0

.a aC 1/D .41/

wx

z

x yx y2

y

z

x

y

z

w0

x0

.a aC 1/D .41/

1 4

3

x

z

x yx y2

y

z

x

y

z

x0 w

w0

.a aC 1/D .41/

1 4

3

x

z

x yx y2

y

z

x

y

z

x0

w0

.a aC 1/D .41/

w
1 4

3

Figure 51

Remark 15.4 As in the remark above for the long disk, the lopsided bigon can be
pictured as the union of the Black bridge disk D34 with a new White trigon gotten
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by banding h and two copies of the .23/–SC. The new trigon has the property that it
matches the bridge disk along one of its edges (and disjoint elsewhere).
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Figure 52

Lemma 15.5 BBTBB D) SMTMS. In particular, the T is a Scharlemann cycle.

Proof If the T were a Scharlemann cycle, then the desired conclusion would follow,
so assume otherwise. By Lemma 15.2, if one of the B adjacent to the T is an S, then
the other is too. Hence we assume we have MSTSM as shown, WLOG, in Figure 52(a).

By Lemma 14.5, the 41–edges of f1 and g are parallel as are the 23–edges of f4

and g . Using these parallelisms we may form the annulus f1[f2[f3[f4 shown in
Figure 52(b). Since the two boundary components of this annulus each run along K

once in opposite directions, joining them along K forms an embedded Klein bottle.
This is a contradiction.
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Figure 53

Lemma 15.6 MSTB D) MSTSG or MSTSTG.
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Proof Given MSTB at a vertex, BD S since otherwise MST would form a type II FESC,
giving a contradiction to Lemma 15.2. We cannot have MSTSB since this contradicts
Lemma 15.5. Thus we have either MSTSG or MSTST. We continue to examine the latter.

Since the initial MST forms a type I FESC, we have a parallelism ı on GF between the
leftmost edge of the M and the rightmost edge of the T. We may use this to attach the M
to the S of the subsequent ST to form a FESC. This is illustrated in Figure 53 (without
loss of generality we may use the labeling shown). By the proof of Lemma 14.5 (see
the remark there) there is a parallelism ı0 of the 23–edge of the M to a 23–edge of the
T. Lemma 8.15 forces this 23–edge of T to not be incident to the vertex and thus the
unlabeled corner in Figure 53 is a .12/–corner. Following the proof of Lemma 15.2
we may build either a long disk or lopsided bigon as shown in Figure 54.

S

a

aC 1

�341

S

S

4 1 2

T

3

M

ı0

1 4 41

ı

23

3 2

14

1 4

14

�412�341

S

4 1 2

T

3

M

ı0

1 4 41

ı

23

3 2

14

1 4

14

�412

Figure 54

(Note that the regions �341 and �412 in @N.K/ must be as in Figure 55(a) and not (b).
The corner x is labeled in each; in (b) two continue into ı0 contrary to Lemma 8.15.)
Therefore there cannot be a bigon or trigon incident to the 12–edge of this T.

Hence if we have MSTST, we then have MSTSTG.

Remark 15.7 From the point of view of the remarks in the proof of Lemma 15.2,
the White bigon or trigon constructed is the same as there, the difference is in the
construction of the Black bridge disk where the parallelism (here given by ı ) is used to
modify the bridge disk on the Black side to line up with the White bigon, trigon along
an edge.

Lemma 15.8 MSTTSM cannot occur.
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Proof Either MST or TSM must be a type II FESC. Since the trigon is not adjacent to a
gap, this is forbidden by Lemma 15.2.

Lemma 15.9 At a vertex of type Œ7; 4�, if no TT and no BBB then

MSTD) BTMST

8<:
G
SG
STG

9=; :
Proof First consider the faces to the right of MST. Since no TT, we must have either
MSTG or MSTB. For the latter, Lemma 15.6 gives MSTSG or MSTSTG. Now since there is
only one true gap at this vertex and having no TT and no BBB implies BT must be to
the left of MST.

15.2 More with FESC: Configurations SMST and MSTS

Lemma 15.10 Assume there is an SMST configuration incident to vertex x for which
the MST is a type I FESC. WLOG assume the bigon Scharlemann cycles of this configu-
ration are on the White side. Then any Black mixed bigon, f , must have an edge that is
parallel on GF to an edge in the MST subconfiguration (the FESC). Furthermore, if that
edge is parallel to an edge of the M in the MST, then f is parallel to the M. In particular,
there is at most one more Black mixed bigon incident to x , other than f and that in
the given FESC.

Proof WLOG we assume the configuration SMST and f on GQ are as in Figure 56.

Algebraic & Geometric Topology, Volume 13 (2013)



2598 Kenneth L Baker, Cameron Gordon and John Luecke

1

3 4

1 4 3 2 1 12
2

4 21 3 4

f

xx00 a

bzyy0

f3 f4f2f1

Figure 56

Let A23;A41 be the Möbius bands in HW gotten from the bigon Scharlemann cycles
of the SMST configuration. By Lemma 14.9, @A23 cannot be primitive in HB . A
similar argument shows that @A41 cannot be primitive: Otherwise consider the new
genus two Heegaard splitting gotten by attaching N.A41/ to HB . Then constructing
the right bridge disks �12 and �34 as in Lemma 14.9 (see the left or right of Figure 57,
ignoring the 23–edge with a; b endpoints and setting aD x00; bD y0 on vertices 4 and
1), one sees that the .12/–arc and .34/–arc of K can be isotoped (rel endpoints) to
arcs on yF that are incident to @A41 on the same side (and otherwise disjoint from it).
We then get a 1–bridge presentation of K with respect to the new splitting by isotoping
it to a .12341/–arc and an arc which is a cocore of N.@A41/; a contradiction.

We assume for contradiction that neither edge of f is parallel on GF to an edge of
f2; f3; f4 . Applying Lemma 14.5 to the FESC, the edges of f and of the FESC must
appear on GF as in one of the two configurations of Figure 57.
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Let A12;34 be the annulus gotten from the union of f2 and f . Since no two of the
edges of these faces are parallel on GF , each component of @A12;34 is essential in yF .
Furthermore, A12;34 must be incompressible in HB , otherwise we get a Black disk
that either makes @A23 primitive in HB or compresses yF to induce the formation of a
Klein bottle in M from A23;A41 .

As in the proof of Lemma 14.9, we construct a thinning disk �12 from f2; f4 . @–
compressing A12;34 along �12 , we get a Black disk, D , with the boundary as in
Figure 58. In Case (A) of that figure, @D intersects @A23 once, implying that @A23 is
primitive.
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x
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b
xz

y
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4

a

yx

Figure 58

Thus we assume we are in Case (B), where @D intersects @A23 algebraically zero
times and geometrically twice. If D is nonseparating, then we can construct a Dyck’s
surface in M by attaching to A23 the once-punctured torus or Klein bottle in HB

pictured in Figure 59.

Thus we may assume D is separating in HB . As D is homologous to A12;34 , this
annulus must be separating in HB . Let B be the annulus bounded by @A12;34 on yF .
Note that @D is not trivial in yF , for if so an edge of f would be parallel on GF to one
of the edges of f2 or f3 contrary to assumption. Thus A12;34 is an incompressible,
separating annulus in HB . Note that if A12;34 is parallel to @HB , then each component
of @A12;34 is primitive in HB . Let P be the 4–punctured sphere that is the union in
yF of the edges of f; f2; f3; f4 , the fat vertices of GF , and the disk of parallelism on
GF between the 41–edges of f2 and f4 . Then the closure of yF �P is two annuli,
one of which is B . Call the other B0 . See Figure 60.
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Claim 15.11 Let e be the 41–edge that f1 does not share with f2 . Then e on GF is
either (i) the dotted line in Figure 60, or (ii) parallel to the 41–edge of f .

Proof If e lies in B on GF then it isotopic into @B and hence is parallel to either
the 41–edge of f2 or f . The former cannot occur else M has a lens space summand,
the latter is conclusion (ii). If e lies in B0 then it is isotopic into @B0 and hence either
is parallel to the 41–edge of f yielding conclusion (ii), is parallel to the 41–edge
of f2 (a contradiction as above), is parallel to the dotted edge in Figure 60 yielding

Algebraic & Geometric Topology, Volume 13 (2013)



Obtaining genus 2 Heegaard splittings from Dehn surgery 2601

conclusion (i), or is such that @A41 would be isotopic on yF to @A23 giving a Klein
bottle in M .

Assume e is as in (i) of the Claim. Then A41;A12;34 and D can be perturbed to be
disjoint with boundaries as indicated in Figure 61 (by forming these with the given
faces and the appropriate rectangles along @N.K/). D divides HB into two solid
tori T [ T 0 , where @T contains @A41 . Since @A41 is not primitive in HB , it is not
longitudinal in T . Let N D T [N.A41/. Then N is a Seifert fiber space over the disk
with two exceptional fibers. A close look at Figure 61 shows that we can perturb K so
that K\N is a single arc, �, (basically the .41/–arc) which is isotopic to the cocore
of the Möbius band A41 . Lemma 8.3 now produces a genus 2 Heegaard splitting of
M in which K is 0–bridge, a contradiction.
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b
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b

4
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yx

@A41 @D

Figure 61

So assume e is as in conclusion (ii) of the Claim. As @A41 is isotopic to a component
of @A12;34 , and @A41 is not primitive in HB , A12;34 is not parallel into yF . We can
enlarge the annulus B slightly in yF so that it contains @A41 . Let T be the solid torus
bounded by B [A12;34 in HB . Then N D N.T [A41/ is a Seifert fiber space over
the disk with two exceptional fibers. K \N is a single arc which is a cocore of a
properly embedded Möbius band, A12;34 [A41 , in N . Lemma 8.3 now applies to
produce a genus 2 Heegaard splitting of M in which K is 0–bridge, a contradiction.

This last contradiction proves the first conclusion of the Lemma, that some edge of
f must be parallel in GF to an edge of f2; f3; f4 . Furthermore, if one edge of f is
parallel to an edge of f2 , then, in fact, f is parallel to f2 . For otherwise, banding f
and f2 together along these parallel edges, and perturbing slightly gives a disk in HB
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whose nontrivial boundary intersects @A23[ @A41 at most once. If this disk is disjoint
from @A23[@A41 , and the boundary of the disk is nonseparating in yF , then @A23 and
@A41 will be isotopic in yF surgered along this disk, and M contains a Klein bottle.
If disjoint and the boundary of the disk is separating, then one of @A23; @A41 must
be primitive in HB since M is irreducible, atoroidal, and the Heegaard splitting is
strongly irreducible (Lemma 3.3). If the disk intersects @A23[@A41 once, then one of
these Möbius bands will have primitive boundary in HB .

Finally, assume f is incident to vertex x . Then Lemma 8.15 says that f cannot be
parallel to f2 (both 41–edges of the FESC are parallel on GF ). Thus the 23–edge of
f must be parallel in GF with the 23–edge of f3 that is not shared with f2 . Applying
this argument to another mixed black bigon incident to vertex x , will then contradict
Lemma 8.15.

Lemma 15.12 Assume there is an MSTS configuration incident to vertex x . WLOG
assume the bigon Scharlemann cycles of this configuration are on the White side. Then
any Black mixed bigon, f , must have an edge which is parallel on GF to an edge in
the MST subconfiguration (the FESC). Furthermore, if that edge is parallel to an edge
of the M in the MST, then f is parallel to M . In particular, there is at most one more
Black mixed bigon incident to x .

Proof This is the same as the proof for Lemma 15.10. Note that the FESC is of type I
at x and in both contexts one edge of the additional White SC has an edge parallel to
both the M and T in the FESC, MST.

3

1 2 3 4

3

3 4

42

f3 f4f1 f2

Figure 62

Lemma 15.13 Assume ƒ contains a FESC and an SC on the side of yF opposite to
that of the SC in the FESC, then the corresponding Möbius bands can be perturbed to
be disjoint.

That is, WLOG assume we have the configurations of Figure 62, where one of f1; f3

is a bigon and the other is a trigon and where f4 is a Black SC (f4 could equally well
be a .12/–SC). Let A23;A34 be the Möbius bands corresponding to f2; f4 . If @A23

and @A34 intersect transversely once, then K is 1–bridge with respect to a genus two
Heegaard splitting of M .
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Proof Without loss of generality assume f1 is a bigon and f3 is a trigon. In this proof
we consider faces of GQ as disks properly embedded in HB � N.K/;HW � N.K/.
The proof of Lemma 14.9 shows that there are thinning disks �34 , �12 for .34/, .12/

disjoint from f2 .

In fact, the thinning disk �34 may be chosen to be disjoint from f4 as well as f2 :
Isotop @�34\N..34// so that it is disjoint from f2 and f4 , for example as in Figure 63.

@�34

f2

f4

@�34

f2

f4

3 3

44

Figure 63

After surgering �34 , we may assume it intersects f4 in transverse arcs (ie from one
edge of f4 to the other). Band an outermost disk of intersection along f4 to give a
thinning disk disjoint from both f2 and f4 .

Using �34 to @–compress A34 yields a Black disk intersecting @A23 transversely once.
See, for example, Figure 64. Thus @A23 is primitive in HB . Apply Lemma 14.9.

y3

2

4x yx y3

2

4x yx

Figure 64

Lemma 15.14 Assume GQ has a configuration SMST where WLOG the SCs are on
the White side. Then GQ contains no Black SC.

The same conclusion holds for the configuration MSTS.
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Proof WLOG we assume the SMST configuration on GQ is as in Figure 56 (without
the face f ). Assume for contradiction that GQ also contains a Black SC, h. Denote by
A23;A41;Ah , the Möbius bands that result from f1; f3; h (respectively). As argued
in Lemma 15.10, neither @A23 nor @A41 can be primitive in HB . By Lemma 15.13,
@Ah can be perturbed to be disjoint from @A23 . Since M contains no Dyck’s surface,
@A41 must intersect @Ah transversely once (at either vertex 1 or 4). Now follow
the argument of Lemma 15.13. Let �12; �34 be the bridge disks constructed as in
Lemma 14.9. These bridge disks can be taken disjoint from both f1 and h. Then
boundary compressing Ah along one of these disks gives a disk in HB intersecting
@A41 once. But this implies @A41 is primitive in HB .

Applying Lemma 14.5, the same argument shows that configuration MSTS where the S
are White implies there are no Black S.

16 Bigons and trigons when t D 4

Throughout this section assume t D 4, there are no Dyck’s surfaces embedded in M ,
and we are in SITUATION NO SCC. Recall that an .ab/–SC is a bigon Scharlemann
cycle on the labels a; b .

16.1 Embeddings of SCs and mixed trigons in a handlebody

Lemma 16.1 Given three .12/–SCs, one .34/–SC, and three more 34–edges, then
either three of the six 12–edges are parallel in GF or three of the five 34–edges are
parallel in GF . Furthermore, if the three extra 34–edges form a trigon Scharlemann
cycle then three 12–edges are parallel.

Proof Assume these SCs are contained in the handlebody H .

If there exists a compressing disk D in H that separates the .12/–SCs from the .34/–
SC, then in one of the solid tori of H nD the three .12/–SCs are all parallel. Hence
three of their 12–edges are parallel in GF .

If there exists a compressing disk D in H disjoint from these Scharlemann cycles that
is nonseparating, then H nD is a solid torus containing a .12/–SC and a .34/–SC.
Thus there are two disjoint Möbius bands in this solid torus, a contradiction.

If no compressing disk of H is disjoint from the .12/–SCs and the .34/–SC, then
any pair of .12/–SCs are either parallel or have no parallel edges (else band two
SCs together along parallel edges). In particular, only two are parallel. (If all three
.12/–SCs were parallel there would be a disk separating them from the .34/–SC.) The
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complement in H of these .12/–SCs and the .12/–arc of K is then one or two solid
tori, that meet yF in annuli, and a ball (the parallelism). Since the subgraph of GF

consisting of vertices 3 and 4 and the five 34–edges must lie in one of the annuli, three
34–edges must be parallel.

If the three extra 34–edges form a Scharlemann cycle trigon, then we must be in
the former case of three parallel 12–edges, as the edges of a .34/–SC and a .34/–
Scharlemann cycle trigon cannot lie together in an annulus (eg [14, Lemma 2.1]).

Lemma 16.2 Given two .12/–SCs and two .34/–SCs then either one pair is parallel
or each pair has a pair of parallel edges.

Proof Assume no pair of edges of the .12/–SCs are parallel. Then the complement of
the graph of these four edges and the vertices 1 and 2 in the boundary of the handlebody
must be a collection of annuli. Hence the edges of the .34/–SCs lie in an annulus.
Since handlebodies are irreducible and the edges of these Scharlemann cycles cannot
lie in a disk, the .34/–SCs are parallel.

Similarly, if no pair of edges of the .34/–SCs are parallel, then the .12/–SCs are
parallel.

Lemma 16.3 Given a .12/–SC, a .34/–SC and a trigon of ƒ with two .12/–corners
and one .34/–corner, then there are two embeddings in their genus 2 handlebody H

up to homeomorphism. One has a pair of parallel 12–edges; the other does not. These
are shown in Figure 65 with H cut along the two SCs.

Proof Let A12 and A34 be the Möbius bands associated to the two SCs in the handle-
body H . Then H n .A12[A34/ is a genus 2 handlebody H 0 . The impressions zA12

and zA34 of the Möbius bands are primitive annuli in H 0 and each has a primitivizing
disk disjoint from the other annulus. Attach a 2–handle to H 0 along the core of zA12

to form a solid torus T . The primitivizing disk for zA12 extends to a disk ı giving a
boundary-parallelism for the cocore c of this 2–handle. Moreover ı is disjoint from
the (now longitudinal) annulus zA34 .

Let g be the trigon. The two .12/–corners of g are identified along c to form zg in T .
If A12 and g meet transversely along .12/ in H , then zg is an annulus. Otherwise zg
is a Möbius band. In each situation, c is a spanning arc of zg , zg is properly embedded,
and @zg crosses the longitudinal annulus zA34 in @T just once.

If zg is a Möbius band, then its embedding in T is unique up to homeomorphism. If zg
is an annulus, then one boundary component is disjoint from zA34 and trivial on @T ;
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g
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Figure 65

because the spanning arc c (on zg ) is trivial in T , the embedding of zg in T is unique
up to homeomorphism. Recover H 0 with the impression zA12 from T n c . Carrying
the two possibilities of zg along produces the two embeddings of g in H 0 shown in
Figure 65. Reconstitute H and the two Möbius bands by sewing up zA12 and zA34 .
This gives the two claimed embeddings of g in H .

Lemma 16.4 Given a .12/–SC, a .34/–SC, a trigon of ƒ with two .12/–corners and
one .34/–corner, and a trigon of ƒ with two .34/–corners and one .12/–corner, then
either a pair of 12–edges or a pair of 34–edges must be parallel.

Proof Otherwise by Lemma 16.3 each trigon lives in H 0 D H n .A12 [ A34/ as
pictured in the second part of Figure 65. These trigon faces form a meridian system for
H 0 , where dual curves give generators x;y of H1.H

0/. Up to swapping the generators
and taking their inverses, the core of zA12 represents xy2 in H1.H

0/, and the core of
zA34 may be oriented to then represent either yx2 or yx�2 . In either case, attaching

2–handles to H 0 along the cores of zA12; zA34 gives a manifold with nontrivial torsion
in first homology. But from Figure 65, one sees that attaching such 2–handles gives a
3–ball.
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16.2 Configurations containing an ESC

Recall from Section 6.3 that an annulus is primitive if and only a component of its
boundary is primitive in the ambient handlebody.

Proposition 16.5 If there is an ESC such that the extending annulus is nonseparating
in its handlebody, then the boundary of the central Möbius band is primitive with respect
to the extending annulus’s handlebody. Hence the extending annulus is primitive in its
handlebody.

Proof Assume there is an ESC on the corner .1234/ giving rise to a central White
Möbius band A23 and an extending Black annulus A12;34 . Assume A12;34 is nonsep-
arating in HB and that @A23 is not primitive with respect to HB .

There exists a bridge disk D12 for .12/ that is disjoint from A12;34 . Indeed, D12

is a @–compressing disk for the annulus A12;34 . Performing the @–compression on
a push-off of this annulus produces a nonseparating disk DB in HB that is disjoint
from A12;34 and K . Let T be the solid torus obtained by compressing HB along DB .
Then A12;34 is contained in T and is @–parallel into @T .

Either both curves of @A12;34 are primitive on HB or both are nonprimitive. Since
@A23 is a component of @A12;34 , the former case is contrary to assumption. Hence we
may assume @A12;34 consists of two nonprimitive curves in HB . Therefore in T the
@–parallel annulus A12;34 wraps n> 1 times longitudinally. Then N D T [N.A23/

is a Seifert fiber space over the disk with two exceptional fibers of orders 2 and n.
Furthermore K \N is the arc .1234/ that is the cocore of the long Möbius band
A23[A12;34 . Lemma 8.3 now applies to produce a genus 2 Heegaard splitting of M

in which K is 0–bridge, a contradiction.

Lemma 16.6 If there is an ESC then the extending annulus is @–parallel in its handle-
body but is not primitive.

Proof Assume there is an ESC on the corner .1234/. Let A12;34 be the corresponding
extending Black annulus.

Assume @A23 is a primitive curve on @HB with respect to HB . It follows that H 0
B
D

HB[@A23
N.A23/ is a handlebody in which .1234/ is bridge. Also H 0

W
DHW nA23

is a handlebody in which .41/ remains bridge. Thus .H 0
B
;H 0

W
/ is a Heegaard splitting

of M in which K is 1–bridge. This contradicts the minimality assumption on t .
Hence @A23 cannot be primitive in HB .
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Consequently, Proposition 16.5 also implies that A12;34 must be separating in HB .
Chopping HB along A12;34 forms a genus 2 handlebody H 0

B
and a solid torus T .

We may assume A12;34 is not longitudinal in T . Lemma 8.3 applied to the Seifert
fiber space over the disk given by N.A23/[ T contradicts that t D 4.

13 24

1 32 4

f1 f2 f3

Figure 66

Lemma 16.7 Assume ƒ has an ESC. After relabeling so that the ESC is labeled as
in Figure 66, then in ƒ any White bigon is an SC and any White trigon is a .41/–
Scharlemann cycle. Furthermore any such .23/–SC must have its edges parallel to
those of f2 .

Proof Given the ESC on the corner .1234/ as in Figure 66 let A23 be the correspond-
ing White Möbius band and A12;34 be the extending Black annulus. By Lemma 16.6
the annulus A12;34 is parallel to an annulus B12;34 on yF .

The arguments of Lemma 12.4 prove that a White bigon must be a SC, while the
arguments of Lemma 12.10 prove there is no White trigon with just one .23/–corner.
Lemma 12.11 shows there cannot be a .23/–Scharlemann cycle of length 3. By an
argument similar to that of Lemma 12.12, a trigon with two .23/–corners and one
.41/–corner may be used in conjunction with the .23/–SC of the ESC to form a bridge
disk for .41/ with interior disjoint from B12;34 ; this provides a thinning of K . Hence
a White trigon must be a .41/–Scharlemann cycle.

Let � be a .23/–SC and f be the face it bounds. One of the edges of � must lie in
B12;34 , call it e1 , and the other, e2 , lies outside of B12;34 . Then e1 must be parallel
to an edge e0

1
of f2 . Let e0

2
be the other edge of f2 .

We assume e2 , e0
2

are not parallel on GF . Then f , f2 can be amalgamated along the
parallelism of e1 , e0

1
to give a White meridional disk D disjoint from K and B12;34 .

See Figure 67. But then K can be isotoped into the solid torus HW � N.D/ using the
parallelism of A12;34 to B12;34 , a contradiction.

Lemma 16.8 There must be a true gap contiguous to an ESC of ƒ.
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Proof Assume there is a bigon or trigon of ƒ on each side of an ESC on the corner
.1234/ as in Figure 66. We can find a bridge disk D for either .23/ or .41/ which is
disjoint (in the exterior of K ) from both of these faces as well as the White face of
the ESC. Let B12;34 be the annulus on yF to which the Black annulus A12;34 (arising
from the ESC) is parallel by Lemma 16.6. Since @D \ yF is disjoint from the edges
of the ESC, it either lies inside B12;34 and is isotopic to an edge of the ESC or it lies
entirely outside B12;34 . In either case, the parallelism of A12;34 to B12;34 along with
D gives a thinning of K .

Lemma 16.9 There cannot be five consecutive bigons.

Proof Assume there are five consecutive bigons. Then by Lemma 16.8, they appear as
MSMSM. No two of the M are parallel since otherwise either there would be a contradiction
to Lemma 8.15 or the boundary of a Möbius band arising from one of the SCs would
bound a disk in yF . Hence the two extending annuli of the two ESC are not parallel. In
particular the annuli on yF to which they are boundary parallel by Lemma 16.6 have
disjoint interiors. But since the two extending annuli share a spanning arc, the two
boundary parallelisms cause it two sweep out a compressing disk for the handlebody
that contains it. This disk however is a primitivizing disk for the annuli, contrary to
Lemma 16.6.

Lemma 16.10 There cannot be two ESCs extending the same color but differently
labeled SCs.

Proof Assume to the contrary that there are two ESCs as shown in Figure 68.
Lemma 16.9 accounts for when they share a Black bigon. Indeed, using Lemma 16.6
and the fact that the boundaries of two Möbius bands cannot be isotopic in yF (no Klein
bottle), a similar proof works when they do not share a bigon.
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Figure 68

Lemma 16.11 Any two ESCs of ƒ extending SCs of the same labels must have their
extending annuli parallel. In particular, the corresponding faces of these two ESCs are
parallel (see Section 2.1).

Proof After relabeling, we may assume the two ESCs are labeled as in Figure 66. By
Lemma 16.7, the SCs of these two ESCs have their edges parallel. Let A and A0 be
the extending annuli of the two ESCs. By Lemma 16.6, they are each @–parallel to
annuli B and B0 , respectively, in yF . Let D12 and D0

12
be bridge disks for .12/ swept

out by the parallelisms of A to B and A0 to B0 respectively. Assuming A and A0

are not parallel, B [B0 is a once-punctured torus. In particular, D12[D0
12

is a disk
in the handlebody containing A and A0 whose boundary transversally intersects each
component of @A and @A0 once. Thus A and A0 are primitive in their handlebody,
contradicting Lemma 16.6.

Lemma 16.12 If � D 3, then at a vertex of ƒ there cannot be two .1234/–ESCs
and bigons at the remaining .12/– and .34/–corners. That is, there cannot be the
configuration gMSMgMSMgBgB as shown in Figure 69.

2 1

M

3 2 1 4 3

S M MM

4

1 2 3 4

x00

1 2 3 4

x0

1 2 3 4

x

g g ggg S

Figure 69

Proof Assume the configuration shown in Figure 69 is around a vertex x in ƒ. Let
A12;34 and A0

12;34
be the Black annuli extending the two Möbius bands arising from

the two SCs. By Lemma 16.6 and Lemma 16.11 they are parallel to one another and
they are both @–parallel onto yF . Let B be the union of the annuli on yF to which
A12;34 and A0

12;34
are @–parallel. The edges of the two ESCs and the annulus B are

shown in Figure 70 with the relevant labelings of edges.

Algebraic & Geometric Topology, Volume 13 (2013)



Obtaining genus 2 Heegaard splittings from Dehn surgery 2611

B B

12

3 4

x

xx

x

x0 x0

x0 x0

2

3

x

x

x0

x0

1

4

x

x

x0

x0

Figure 70

If one of the two remaining Black bigons were an M with an edge in B , then that edge
would be parallel to an edge of each of the two ESCs. But then there would be three
parallel edges that all have an endpoint labeled x , contradicting Lemma 8.15. If one
of these bigons were an S with an edge in B , then it would form a Black Möbius band
with boundary in B . This would imply the existence of an embedded Klein bottle, a
contradiction. Thus the x00 labels on all four vertices must be outside B . This however
creates an ordering violation.

Lemma 16.13 In ƒ there cannot be an ESC and an FESC such that the two interior
SCs are the same color but have different labels.

Proof Assume otherwise. Then the ESC and FESC are either disjoint or coincide
on one bigon, and so up to relabeling we may assume the ESC and FESC appear as
in Figure 71. This FESC is the one shown in Figure 41(a). As in Figure 41(a), let f
denote the Black bigon and g denote the Black trigon of this FESC. Its White bigon
forms a White Möbius band A23 . Lemma 14.5 implies that the two 14–edges of it
cobound a disk ı in HB .

The ESC gives rise to a White Möbius band A41 and a Black annulus A34;12 . By
Lemma 16.6, this annulus A34;12 is @–parallel onto an annulus B34;12 on yF . Either
the trigon g is contained within this solid torus of parallelism T between A34;12 and
B34;12 or it is not.

Case I The trigon g lies within T . Then the edges of g lie within the annulus B34;12 .
The bigon f can neither lie within T nor also be a bigon of the ESC. Otherwise @A23

would lie in B34;12 and we could form either an embedded RP2 if it were inessential
or an embedded Klein bottle if it were essential (since it would be parallel to @A41 ).
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Since the 41–edge of g lies in B34;12 , it is parallel to a 41–edge of a Black bigon,
say h, of the ESC. (By the preceding paragraph, h is necessarily distinct from f .)
Then, since the 41–edges of f and g cobound the disk ı , there must be a disk ı0 that
the 41–edges of f and h bound. Furthermore we may assume the interior of ı0 is
disjoint from A34;12 .

Because f lies outside T , there are rectangles �12 and �34 on the boundaries of the
1–handle neighborhoods N..12// and N..34// between the corners of f and h that
have interiors disjoint from T . Then together f [ ı0[ h[ �12[ �34 forms a disk D

whose boundary is the union of the 23–edges of f and h (and arcs of the boundaries
of the fat vertices 2 and 3). We may now slightly lift the interior of D into HB off yF
so that it is disjoint from A41 . Attach D to the White Möbius band A23 along the
23–edge of f . Then D [A23 is an embedded Möbius band in M that is disjoint
from A41 and has boundary (formed of the 23–edges of g and h) lying in B34;12 .
As argued earlier, if this boundary were inessential we could form an embedded RP2 ,
and if it were essential we could form an embedded Klein bottle. Neither of these may
occur.

Case II The trigon g is not contained in T . Then the edges of g meet the annulus
B34;12 only at the vertices.

Assume f does not lie in T (so that f is also not a bigon of the ESC). We follow
the bridge disk construction of Lemma 14.9. There are rectangles that are disjoint
from T , �12 and �34 , on the boundaries of the 1–handle neighborhoods N..12// and
N..34// between corners of f and g , such that f [ ı[g[ �12[ �34 forms a disk
D whose interior may be lifted off A34;12 and T . Note that the .34/–corner of g
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incident to the 34–edge of g cannot lie in the rectangle �34 since otherwise g would
intersect the interior of ı . Then @D intersects A34;12 only along the arc .34/ (the
.34/ corner of g that was disjoint from �34 ) and at the vertex 2. A slight isotopy pulls
D off vertex 2. Now attach a bridge disk D34 for the .34/–arc contained in T to
D along the .34/–arc. Then D0 DD[D34 is a properly embedded disk in HB that
intersects B34;12 only in the spanning arc D34\B34;12 . Hence D0 is a primitivizing
disk for the component @A41 of @B34;12 . However, @A41 cannot be primitive in HB

by Lemma 16.6.

Thus we must assume f lies in T . Yet as in Case I (though using g instead of f there)
there is a Black bigon h of the ESC so that the 41–edges of g and h together bound a
disk ı0 . Using h and ı0 in lieu of f and ı we may apply the previous argument to
again conclude that @A41 is primitive in HB contradicting Lemma 16.6.

Lemma 16.14 There cannot be four bigons adjacent to a trigon.

Proof If there were, then by Lemma 16.8 they must form an ESC and a FESC that
share a bigon. Lemma 16.13 prohibits this configuration.

16.3 More configurations of bigons and trigons

Lemma 16.15 Assume that at a vertex, x , of GQ there is a configuration SMTM and
another S on the same corner as the T. That is, WLOG assume we have the configurations
of Figure 72. Then the edges of the length two and three .23/–Scharlemann cycles
cannot lie in yF in a subsurface which is a 3–punctured sphere or a 1–punctured torus.
In particular, there cannot be two more 41–edges incident to x .

x

f1 f4f3f2

x

32 43214

3 2 41
2
3 12

3

g

Figure 72

Proof Assume we have the configuration of Figure 72. Let A23 and A41 be the
two Black Möbius bands arising from the two SCs. Let A12;34 be the White annulus
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formed by joining f3 and f4 along the arcs .12/ and .34/. Write @A12;34D 23[41 ,
where 23 is the component formed from edges of g .

Let ‚23 be the Black “twisted � –band” gotten by identifying the corners of the
Scharlemann cycle trigon along the .23/–arc of K . By @‚23 we denote the � –graph
formed from the three edges of the Scharlemann cycle trigon and the vertices 2 and 3

that is the intersection of ‚23 with yF .

The edges of f1 and g , as edges in GF , cannot lie in a 3–punctured sphere. For by
Lemma 8.15, the edges of f1 would have to be separating in this punctured sphere and
this contradicts the labeling around vertices 2; 3 of the edges of g .

So we assume for contradiction that edges of f1;g lie in a 1–punctured torus in yF .
But then there is a properly embedded disk D in HB that separates A41 from A23

and ‚23 and that is disjoint from K (in the boundary of the 3–manifold gotten by
thickening the punctured torus, the .23/–arc of K and f1;g ).

Then HB � N.D/ is two solid tori T41 and T23 containing A41 and A23 [ ‚23

respectively. The subgraph of GF on @T23 consisting of the vertices 2 and 3 and the
edges of the two .23/–SCs has three parallel edges, two from g flanking one from
f1 (use Lemma 8.15, the fact that T23 is a solid torus, and the labeling at vertices
2; 3 of the edges of f1;g on @T23 ; also see Goda–Teragaito [14]). Furthemore @A23

lies in an annulus on @T23 that runs twice longitudinally and @‚23 lies in an annulus
running three time longitudinally along T23 (consider the lens space resulting from
attaching a 2–handle to T23 along these annuli). We may take 41 disjoint from D

and contained in @T41 . Since 23 � @‚23 , it is either trivial on @T23 or it runs three
times longitudinally around T23 . Furthermore, observe that .23/ and .41/ have bridge
disks disjoint from D and A23[‚23 and A41 .

If 23 is trivial on @T23 . Then it must be isotopic to @D on yF since otherwise the two
edges forming it would be parallel to a 23–edge of f1 violating Lemma 8.15. Thus
A12;34 is separating and @–parallel (else HB[D contains a lens space summand) onto
a neighborhood of @D � yF . Since there exists a bridge disk for .23/ in T23 disjoint
from D , there is an isotopy of the arc .1234/ onto yF fixing the complementary arc
.41/. Hence K is at most 1–bridge, a contradiction.

Thus we assume 23 runs three times longitudinally around T23 . If 41 bounds a disk
D0 on @T41 , then N.D0[A12;34[T23/ forms a punctured L.3; 1/. This cannot occur
since M is irreducible and not a lens space. Hence 41 is essential on @T41 .

Let N D T23 [N.A12;34/[ T41 . If 41 is longitudinal on @T41 , then N is a solid
torus containing K contradicting the hyperbolicity of K , that t D 4, or Lemma 3.3.
Thus N is a Seifert fiber space over the disk with two exceptional fibers. Hence M nN
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is a solid torus. Let H 0
B
D T23[N.f3/[ T41 and note that, by using the bridge disks

disjoint from the SCs, K is isotopic onto @H 0
B

. Viewing N.f4/ as a 1–handle attached
to the solid torus M nN , M nH 0

B
D .M nN /[N.f4/ is a genus 2 handlebody. Hence

K is 0–bridge with respect to this new genus 2 Heegaard splitting, a contradiction.
Thus the edges of f1;g do not lie on a 1–punctured torus in yF .

To prove the last sentence of the Lemma, note that the first part implies that all 41–edges
must lie in an annulus on yF . Given two more 41–edges with an endpoint labeled x ,
then we have at least five such total. There is then a violation of Lemma 8.15.

Lemma 16.16 Given a collection of bigons in GQ as shown in Figure 73, then the
two .34/–SCs must be parallel such that the two 34–edges of g and h are parallel.

3 421

h

2 1 4 3

31 42

g

31 4

f

2 41

43

h12 f41 g34h34

Figure 73

Proof Assume we do have the collection of bigons shown in Figure 73. Let f , g and
h denote the bigons as shown. Let A12 and A34 be the Black Möbius bands arising
from the two Black SCs h12 and h34 in the run of 3 bigons. Let A0

34
be the Black

Möbius band arising from the remaining Black SC g34 . Let A41 be the White Möbius
band arising from the White SC f41 .

Chop open HB along A12 and A34 to form the genus 2 handlebody H 0B . These
leave annular impressions zA12 and zA34 that are each primitive on H 0B . The bigon f
becomes a compressing disk that traverses the impressions zA12 and zA34 each once.
Further chopping along f leaves a solid torus in which the SC g34 may only have
two positions. Figure 74 shows the two possibilities of g34 in H 0B with respect to f .
Reforming HB by gluing zA12 and zA34 back into A12 and A34 , we observe that the
two .34/–SCs either have no two edges parallel or are parallel.

Assume no pair of edges of the two Black 34–SCs are parallel as in Figure 74(b). The
complement in yF of the subgraph of GF induced by the edges of the Black bigons
is seen to be one annulus and two disks. The annulus does not meet the vertices 1

or 2. Each disk meets each of the four vertices of GF . Around the boundary of one
disk we see the vertices in the cyclic order 143412; around the other we see 234321.
The 41–edge of f appears as the subarcs of the boundary of the first disk joining the
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g34
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zA12 f
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g34
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H 0B DHB n .A12[A34/

Figure 74

consecutive 1 and 4 vertices. The 41–edge of f41 that is not an edge of f cannot be
in the first disk, since then @A41 would be isotopic to @A12 and a Klein bottle could
be formed. Thus it must be an edge of the second disk, and this choice is unique.

We can now find bridge disks for the arcs .12/ and .34/ in HB that guide isotopies of
these arcs (rel @) to arcs on @HB that are disjoint from @A41 except at vertices 1 and 4,
and which arcs are incident to @A41 on the same side. Furthermore, we see that @A41

is primitive in HB (eg boundary compressing A12 along the above bridge disk for .12/

gives a disk intersecting @A41 once). Attaching a neighborhood of A41 to HB forms
a new genus 2 handlebody H 00

B
, whose complement H 00

W
DHW � N.A41/ is a genus

2 handlebody. As in the argument of Lemma 14.9, K can be isotoped to be 1–bridge
with respect to this new splitting (as the union of the arc .12341/, properly isotopic to
the bridge arc .23/ in H 00

W
, and an arc in H 00

B
that is a cocore of the attaching annulus

N.A41/\HB ). This contradicts the minimality of the presentation of K .

Hence the two .34/–SCs are parallel as in Figure 74(a). Assume the 34–edges of g

and h are not parallel. Then after an isotopy of the 34–edge of g , these two edges
form @A34 . Thus we may regard g[h as a White annulus A23;41 that has @A34 as a
boundary component. Thus A34[A23;41 is a long Möbius band as if it arose from an
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ESC centered at a Black SC. The argument of Lemma 16.7 now applies to show that
the Black bigon f should have been an SC.

Lemma 16.17 There cannot be two triples of SMS on the same corner at a vertex of ƒ.

Proof Assume there are two such triples on the corner .2341/ of a vertex of ƒ. Then
each triple contains a .23/–SC and a .41/–SC. By Lemma 16.2 either each pair of
like-labeled SCs has a pair of parallel edges or one pair of the SCs is parallel.

Thus an outside edge of one triple must be parallel on GF to an edge of the middle
mixed bigon, f , of the other triple. Say this outside edge belongs to a .23/–SC of
the first triple. Then the faces of the first triple, along with f and the .41/–SC of the
second triple, can be used in the argument of Lemma 16.8 to find a thinning. (The two
mixed bigons form the equivalent of an ESC about this .23/–SC).

17 Lemma 17.1 and its proof

Throughout this section assume t D 4, there are no Dyck’s surfaces embedded in M ,
and we are in SITUATION NO SCC.

Lemma 17.1 Assume the configurations shown in Figure 75 appear in ƒ. Then

(1) e3 is incident to opposite sides of e2[ e6 ,

(2) e4 is incident to opposite sides of e1[ e5 ,

(3) @A34 transversely intersects each component of @A12;34 once, and

(4) neither f0 nor f5 is a bigon.

Here A34 is the Black Möbius band arising from the SC f6 and A12;34 is the Black
annulus arising from gluing f1 and f4 together along .12/ and .34/.

4

4 3

1 2 3 4 1 2

44 23 1 3

3

z0

gapf0 f1 f2 f3 f4 f5 f6

e8

y

a

b

x0

z

x

e1 e2 e3 e4 e5 e6 e7

Figure 75
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Proof In addition to forming the Black annulus A12;34 and Black Möbius band A34

from f1 , f4 and f6 , the White SCs f2 and f3 form White Möbius bands A23 and
A41 respectively. By Lemma 8.15, no component of @A12;34 is trivial in yF .

Claim 17.2 The annulus A12;34 is nonseparating in HB .

Proof Assume A12;34 is separating in HB . Then @A12;34 bounds an annulus A in
@HB . Furthermore, no edge of GF may be incident to opposite sides of either e2[ e6

or e1[ e5 .

Subclaim 1a Both e3 and e4 are disjoint from A.

Proof By labelings, if e3 is incident to just one side of e2 [ e6 , then e4 must be
incident to just one side of e1[ e5 as indicated in Figure 76(i), where neither e3 nor
e4 lie in A or (ii), where both e3 and e4 lie in A. However in Figure 76(ii) either
@A23 or @A41 is trivial in A or both are isotopic to the core of A; hence an embedded
RP2 or Klein bottle may be created. (As drawn in Figure 76(ii), @A41 is trivial and a
RP2 may be created.) Thus the edges must appear as in Figure 76(i).

(ii)(i)
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Subclaim 1b Both edges e7 and e8 of f6 are disjoint from A.

Proof By labelings, if either e7 or e8 were to lie in A then so would the other.
Hence @A34 would be isotopic to the core of A. Thus A23 , A34 and A41 are three
disjoint Möbius bands, each properly embedded in either HB or HW . This contradicts
Lemma 8.11.
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Subclaim 1c For i D 3; 4, let Ci be the corner on vertex i cobounded by the edges
e7 and e8 of f6 that is disjoint from A. Then e3 must be incident to C3 and e4 must
be incident to C4 . Consequently e3 is not parallel to either e2 or e6 and e4 is not
parallel to either e1 or e5 .

Proof By labelings, e3 is incident to C3 if and only if e4 is incident to C4 . Thus
assume neither is incident to C3 or C4 . Then we may perturb A34 to be disjoint from
A23 and A41 . Again, this contradicts Lemma 8.11.

Since the edges e7 and e8 separate both e3 from e2 and e6 at vertex 3 and e4 from
e1 and e5 at vertex 4, no pairs of these edges may be parallel.

As a consequence of these subclaims, the subgraph of GF induced by the edges
e1; : : : ; e8 appear as in Figure 77 with possibly e7 and e8 swapped.
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Note that P D N.A[ e3 [ e4/ � @HB is a 4–punctured sphere whose complement
in @HB is two annuli A1 and A2 . Moreover @A23 is isotopic to the core of one of
these annuli and @A41 is isotopic to the core of the other; they cannot be isotopic to
the same core since together they would form a Klein bottle. However, since e8 (or
e7 ) lies outside of P , it lies in, say, A1 . But then A1 connects @A23 to @A41 .

This finishes the proof of Claim 17.2.

Claim 17.3 @A34 transversely intersects each component of @A12;34 just once.

Proof Assume otherwise. Then the subgraph of GF induced by the edges of f1 , f4

and f6 appears as in Figure 78 (disregard ı and D for now).
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Note that @A34 may be perturbed to be disjoint from A12;34 . Since A12;34 is a Black
annulus and A34 is a Black Möbius band, there is a nonseparating compressing disk
D for HB that is disjoint from both. Cutting HB along D we obtain a solid torus T
in which A12;34 must be the boundary of a neighborhood around A34 . Thus some
component of @A12;34 must be isotopic on @HB to @A34 . As in Figure 78, let ı be
the region of @HB giving this parallelism.

Note that if either e3 or e4 lies in ı then it is parallel to an edge of @A12;34 . Then
either A23 or A41 in union with A12;34 forms a long Möbius band. Assuming ı is
as shown in Figure 78, then e3 could lie in ı and A23[A12;34 would form the long
Möbius band. By Proposition 16.5, @A23 must then be primitive in HB . Yet since
A12;34 is the boundary of a neighborhood around A34 in T , neither component of
@A12;34 may be primitive in HB .

Thus we may assume neither e3 nor e4 may lie in ı , and that ı is as pictured in
Figure 78. Therefore the two ends of e3 are incident to the same side of e2[ e6 , and
thus @A23 can be perturbed off @A12;34 . Then A23 , A34 and A41 are disjoint Möbius
bands contrary to Lemma 8.11.

Without loss of generality, the subgraph of GF induced by the edges of f1 , f4 and
f6 appears as in Figure 79.

Let N DN..12/[ .34/[f1[f4[f5/DN.A12;34[A34/. Thus B D @N �@HB is
an annulus and AD @HB � @N is an annulus. Also B [AD @T , where T is a solid
torus in which A is longitudinal (since a bridge disk for .12/, say, can be taken to be
disjoint from f1 [ f4 [ f6 ). Thus there is a compressing disk for HB transversely

Algebraic & Geometric Topology, Volume 13 (2013)



Obtaining genus 2 Heegaard splittings from Dehn surgery 2621

4

2

3

1

e1e6

x0

x

z

e5

x0

x

y

z

e2

b aa be8e7

y

Figure 79

intersecting A12;34 once and each component of @A12;34 is primitive in HB . Finally,
note that N is a twisted I –bundle over a once-punctured Klein bottle.

Claim 17.4 The edge e4 is incident to opposite sides of the closed curve e1[ e5 .

Proof Assume both ends of e4 are incident to the same side of e1[ e5 . Then both
endpoints of e4 lie on the same component of @A. Since @A41 is not trivial in @HB ,
either

(1) e4 is parallel to e1 ,

(2) @A41 is isotopic to the core of A, or

(3) @A41 is isotopic to the 23–component of @A12;34 .

In (1), @A41 is isotopic to the 41–component of @A12;34 . Thus A41[A12;34 forms a
long Möbius band containing the arc .3412/. Since there is a disk in HB transversely
intersecting A12;34 just once, we may form the handlebody H 0

B
DHB [@A41

N.A41/

in which the arc .3412/ is bridge. Since the White arc .23/ has a bridge disk disjoint
from A41 , removing N.A41/ from HW forms the handlebody H 0

W
DHW �N.A41/

in which .23/ is bridge. Thus together H 0
B

and H 0
W

form a genus 2 Heegaard splitting
of M in which K is 1–bridge. This contradicts the minimality of t .

In situation (2) we may form an embedded Dyck’s surface by taking the 0–section of
the twisted I –bundle N in union with A41 . Its existence is contrary to assumption.

Thus we are in situation (3) and we have the subgraph of GF shown in Figure 80. This
implies that the endpoints of the edge e3 must lie on the same side of e2[ e6 . Hence
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the same argument applied to e4 applies to e3 allowing us to conclude that @A23 must
be isotopic to the 41–component of @A12;34 . Then together A23[A12;34[A41 form
a Klein bottle in M .
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Claim 17.5 The edge e3 is incident to opposite sides of the closed curve e2[ e6 .

Proof The argument for Claim 17.4 applies analogously.

Claim 17.6 Neither f0 nor f5 is a bigon.

Proof We will show that f0 cannot be a bigon. The argument for f5 is the same.

Assume f0 is a bigon. Then it must be a 41–SC as shown in Figure 81. Let A0
41

be
the White Möbius band arising from f0 . We divide the argument into cases according
to the relationships among the 41–edges of f0 and f3 .
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Case I No two edges of f0 and f3 are parallel in @HB .
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Then A41 and A041 intersect transversely and a neighborhood in @HB of the union of
the edges of f0 and f3 is a 4–punctured sphere. (Otherwise A41 and A041 could be
isotoped to be disjoint from one another and from A23 ; two or three of these together
then would form an embedded nonorientable surface in the handlebody HW .) Yet
by Claim 17.5, these edges lie in a 1–punctured torus on @HB . Hence one of the
components of the 4–punctured sphere must bound a disk in @HB . This however
implies that two edges of f0 and f3 are parallel.

Case II Two edges of f0 and f3 are parallel in @HB .

By Lemma 8.15, it must be that either e0 is parallel to e5 or e1 is parallel to e4 on
@HB . Then either @A041 or @A41 respectively is isotopic to the 41–component of
@A12;34 . Hence we have a long Möbius band and may apply the argument of situation
(1) in the proof of Claim 17.4 to obtain a thinning of K .

This completes the proof of Lemma 17.1

18 SITUATION SCC for t D 4

Throughout this section we assume we are in SITUATION SCC for t D 4. Theorem 18.11
will then show that t ¤ 4.

We may assume there is a meridian disk D of yF disjoint from K and Q. Let F� be
yF surgered along D .

Lemma 18.1 The graph GF lies in a single component bT of F� .

Proof Otherwise F� is two tori. Say D �HW so that D cuts HW into two solid
tori T23 and T41 , each containing one arc of K , say .23/ and .41/ respectively. Then
every White face of ƒ is a SC and every Black face is not. Moreover every Black
face is either a mixed bigon or has at least four sides. Finally, we may surger any disk
face of GQ so that its interior is disjoint from F� (by Corollary 3.2 and the strong
irreducibility of the Heegaard splitting, an innermost curve of intersection is either a
copy of D or bounds a meridian disk of T23 or T41 that is disjoint from K . In the
former case we can surger the intersection away. The latter combines with Corollary 5.4
to give the contradiction that M contains a lens space summand.)

The edges of any two White Scharlemann cycles of ƒ of length at most three and
on the same label pair, lie in exactly two parallelism classes in the graphs on @T23

or @T41 . Thus Lemma 12.15 prevents there from being three or more bigon, trigon
Scharlemann cycles at the .23/–corners of a vertex of ƒ or at the .41/–corners of a
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vertex of GQ . In the language of special vertices (see below), this means there must
be at least one true gap at a .23/–corner and at a .41/–corner of any special vertex.

Recall that two bigon faces of GQ are said to be parallel if each edge of one is parallel
to an edge of the other.

Claim 18.2 In ƒ if a Black bigon is adjacent to a White bigon or trigon Scharlemann
cycle, then all Black bigons are parallel. Moreover, at a vertex of ƒ, at most two Black
corners have bigons and these would have opposite labels.

Proof To the contrary, assume ƒ has two nonparallel mixed Black bigons f and g

such that f shares an edge with a White bigon or trigon Scharlemann cycle. Note that
neither edge of f is parallel on F� to an edge of g , else the two Black faces can be
combined to give a disk that contradicts Lemma 3.3 and the strong irreducibility of the
Heegaard splitting. Then N DN.f [.12/[.34/[T23[T41/ is a genus 2 handlebody
in which K is isotopic to an arc on @N and a bridge arc (using the bigon/trigon
Scharlemann cycle that can be surgered to lie entirely in T23 or T41 ). Attaching N.g/
to N forms a Seifert fiber space over the disk with two exceptional fibers. (Otherwise
K would be contained in the solid torus, N.g/[N . As K is hyperbolic and M is not
a lens space, K would have to be a core of this solid torus. But then K is 0–bridge
with respect to HW [HB ). Then as usual M n .N [N.g// is a solid torus T . So now
N and T [N.g/ form a genus 2 Heegaard splitting of M in which K is 1–bridge.

Given that all Black bigons are parallel, a vertex of ƒ may have at most one Black
bigon at a .12/–corner and one at a .34/–corner.

Remark 18.3 To make the proof of Claim 18.2 consistent with that of Theorem 2.6 we
need to sharpen the argument to show that either Claim 18.2 holds (without changing
the splitting) or M is a Seifert fiber space with an exceptional fiber of order 2 and
furthermore that K is 1–bridge with respect to a vertical splitting of M . The argument
given in Claim 18.2 applied to an ESC shows this. So we must show there is an ESC.
We have shown that any black interval either belongs to a mixed bigon or corresponds
to a true gap. We have also shown that there is a true gap at a .41/–corner and a
.23/–corner. If there is no ESC then Lemma 5.12 shows that � has a special vertex
of weight N D 4. The fact that there are at least two true gaps at this special vertex
implies that there are at most three true gaps and one more corner which is has a trigon.
Between these four corners every other corner belongs to a bigon of � . First, note
that if there is no ESC, then there is no triple of bigons. Otherwise on either side of
this triple must be black gaps, hence true gaps, but then there are four true gaps (two
black and two white). There is only one way that there is no triple of bigons, and that
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is that �D 3 and there are exactly two bigons between each of these four corners. But
this implies that two of these four corners are black, which along with the white gaps
makes four true gaps. Thus there must be an ESC.

To finish the proof of Lemma 18.1, Claim 18.2 and Lemma 8.15 imply that there cannot
be 9 mutually parallel edges in ƒ. By Lemma 5.12, ƒ must have a special vertex of
length N D 4. Recall from the beginning of Section 13, that a “true gap” is a corner of
a special vertex that is not known to be a bigon or trigon. By Lemma 5.14, the special
vertex of ƒ has at most three true gaps. If around a vertex of ƒ there is a Black bigon
adjacent to a White bigon or trigon (which are Scharlemann cycles), then Claim 18.2
and Lemma 8.15 imply at least 4 Black corners at the special vertex have true gaps
(any Black face is a true gap or a bigon). Thus a special vertex of ƒ must have any
White bigon or trigon flanked by true gaps. But then, since there are at least two true
gaps at White corners, this vertex must have at least 4 true gaps.

Let bT be as in Lemma 18.1 and T be the solid torus it bounds (gotten by surgering
the Heegaard handlebody along D ). By possibly rechoosing D , we may assume that
any disk face of GQ may be surgered so that its interior is disjoint from bT (as argued
in the proof of Lemma 18.1).

Lemma 18.4 There cannot be two SCs of the same color but with different labels.

Proof Otherwise the Möbius bands to which they give rise are disjoint and have
parallel boundaries on bT . From this we may construct an embedded Klein bottle.

Proposition 18.5 There is no ESC.

Proof Assume we do have an ESC as in Figure 66. Let A23 be the associated White
Möbius band and A12;34 be the Black annulus. We may take both to be properly
embedded in T or its exterior.

Claim 18.6 D �HB

Proof If D �HW , then A23 is contained in T .

Set N D T [N.A12;34/. Observe that N is a Seifert fiber space over the annulus
with one exceptional fiber and that K � N . Then @N is two tori and one of these
components must compress outside of N . Such a compression produces a 2–sphere
which must bound a 3–ball B . Since K 6� B , N 6� B . Therefore this torus bounds a
solid torus T 0 with interior disjoint from N .
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Assume N [T 0 is a solid torus. Since K is hyperbolic and M does not contain a lens
space summand, K �N [ T 0 must be isotopic to its core. That is, K is isotopic to a
core curve of HW . But then K is 0–bridge.

Thus N [ T 0 must form a Seifert fiber space over the disk with two exceptional fibers.
Hence M n .N [ T 0/ is a solid torus T 00 . Now we may form a genus 2 Heegaard
splitting of M by taking H 0

B
D T 0[N.f1/[ T 00 and H 0

W
DM nH 0

B
D T [N.f3/.

Then K � H 0
W

and K may be isotoped so that it is 1–bridge with respect to this
Heegaard splitting.

Since D �HB by Claim 18.6, A12;34 is contained in T of HB nD .

Claim 18.7 @A23 is a longitude of T .

Proof If it is not, then we may form a Seifert fiber space over the disk with two
exceptional fibers N D T [N.A23/. Now apply Lemma 8.3 to produce a genus 2

Heegaard splitting of M in which K is 0–bridge.

There can be no White mixed bigon. Otherwise K could be isotoped into T [N.A23/,
which is a solid torus by Claim 18.7. As K is hyperbolic and M contains no lens
space summand, K is isotopic to a core of T [N.A23/. But then the core, L, of the
solid torus T is a .2; 1/–cable of K . As L is a core of HB , Claim 8.7 contradicts
that t D 4.

There cannot be a White .41/–SC by Lemma 18.4. Consequently, there can be no
bigon of ƒ at a .41/–corner of a vertex in ƒ. This prohibits there being 4 parallel
edges at a vertex of ƒ. Hence by Lemmas 5.12 and 5.14 there must be a special vertex
v in ƒ. Such a special vertex has at most 5 gaps (counting both trigons and true gaps).

Furthermore, around v there may only be two .23/–corners that have SCs. Otherwise,
since @A12;34 bounds an annulus on bT , there would be two edges of GF that meet a
vertex at the same label and are parallel on bT . Lemma 12.15 prevents this.

Since D �HB there can be no Black SCs. Otherwise one would give a Möbius band
intersecting the separating annulus A12;34 transversely in a single arc in T .

Thus in total, v must have at least � gaps at all the .41/–corners and �� 2 gaps
among the .23/–corners. Since v has at most 5 gaps, it must be the case that �D 3.
Hence with three gaps at the .41/–corners and one gap at a .23/–corner, either all
three .12/–corners have a mixed bigon or all three .34/–corners have a mixed bigon.
Yet since their edges must be parallel to the edges of @A12;34 on T , there will have to
be two edges parallel on T that meet a vertex at the same label, in contradiction with
Lemma 12.15.
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Lemma 18.8 There cannot be three consecutive bigons in ƒ.

Proof By Proposition 18.5, a triplet of bigons must be two SCs flanking a mixed
bigon. But then these two SCs will have the same color and different labels, contrary
to Lemma 18.4.

Lemma 18.9 Assume ƒ contains an FESC and let h be its SC. Then any bigon in ƒ
of the same color as h (Black or White) is a SC on the same label pair.

Proof WLOG assume there is an FESC as in Figure 41(a). The graph induced by the
edges of the FESC is shown abstractly in Figure 41(b). As mentioned above, any face
of ƒ can be taken to have interior disjoint from bT .

First assume D �HW . Since the graph of Figure 41(b) lies in bT , one of ˛ , ˇ , ˛ˇ
bounds a disk in bT . It cannot be ˛ since ˛ bounds a Möbius band A23 . If it were ˇ
then as in Lemma 14.9 we could form bridge disks that guided isotopies of the arcs.12/

and .34/ onto bT so that K would be contained in T . But then K is isotopic to a core
of T , and K is 0–bridge in the given Heegaard splitting. Thus ˛ˇ bounds a disk E

in bT .

Let N D N..12/[ .34/[ f [ g/. As shown in Claim 14.2, N [N.E/ is a trefoil
complement (and the meridian of this trefoil complement is @A23 ). Then N 0 D
N [N.E/[N.A23/ has incompressible boundary T 0 . Therefore, by Lemma 8.1,
T 0 DM nN 0 is a solid torus. K intersects T 0 in only the arc .41/. By Lemma 8.2
(and that K is not locally knotted), T 0 � N.K/ compresses in T 0 � N.K/ to show
that .41/ is @–parallel in T 0 . (T 0� N.K/ cannot compress into N 0 since that would
imply the arc K \N 0 and hence K is isotopic into T 0 . But then T 0 would be an
essential torus in the exterior of K , a contradiction.)

Since ˛ is a primitive curve on N by Claim 14.2, N[N.A23/ is a genus 2 handlebody,
H 0

B
. On the other hand, the complement of H 0

B
is a genus two handlebody, H 0

W
(the

union of T 0 and a 1–handle dual to E ). As in the proof of Claim 14.8, K can be
written as the union of two arcs: .34123/, � . Here � is K \H 0

B
and is properly

isotopic in H 0
B

to a cocore of the annulus N.@A23/\@N . As @A23 primitive in N , �
is a bridge arc in H 0

B
. On the other hand, the arc .34123/ is K\H 0

W
and is properly

isotopic in H 0
W

to .41/. As .41/ is bridge in T 0 , it is bridge in H 0
W

. Thus K is
1–bridge with respect to a genus 2 splitting of M .

Remark 18.10 This is one of the special cases of the proof of Theorem 2.6. Here
M is n=2–surgery on the trefoil (and hence a Seifert fiber space over the 2–sphere
with an exceptional fiber of order 2 and one of order 3). The argument presents K as
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1–bridge with respect to the splitting of M gotten from a genus 2 Heegaard splitting
of the trefoil exterior: ie remove a neighborhood of the unknotting tunnel from the
exterior of the trefoil for one handlebody of the splitting, then the filling solid torus in
union with a neighborhood of the unknotting tunnel is the other.

If D � HB , then the first part of the argument of Claim 14.8 shows that @A23 is
longitudinal in T . Thus N 0 D T [N.A23/ is a solid torus. Let l be a bigon of ƒ of
the same color as h, that is a White bigon. If l is a mixed bigon, then l guides an
isotopy of K into the solid torus N 0 . As K is hyperbolic and M contains no lens
space summand, K can be isotoped to be a core of N 0 . But the core, L, of T is a
.2; 1/–cable of K (in N 0 ). As L is a core of HB , Claim 8.7 contradicts that t D 4.
Thus l cannot be a mixed bigon. By Lemma 18.4, l must be a SC on the same label
pair as h.

Theorem 18.11 In SITUATION SCC, t ¤ 4.

Proof By Lemma 18.8, ƒ cannot have a triple of bigons. Hence by Lemma 5.12
there must be a special vertex v in ƒ. By Lemma 5.14, such a special vertex has at
most 5 gaps (counting both trigons and true gaps). That is, there are at most 5 corners
at v that do not belong to bigons of ƒ. Furthermore v must be of type Œ8; 1� with
�D 3 or type Œ7; 4� with �D 3, else it must have a triple of bigons.

If the special vertex v has type Œ7; 4�, then there are five gaps. Having no triple of
bigons implies there must be at least two instances of adjacent bigons flanked by gaps.
First assume there is no sequence TBBT at v (notation as described at the beginning
of Section 13). Then there must be a TBBGBBT. Lemmas 18.4 and 18.9 force this to
be TSMGMST. Again applying Lemmas 18.4 and 18.9, we must have TTSMGMSTT. But
then there is a triple of bigons at v , contradicting Lemma 18.8. So assume there is a
sequence TBBT at v . By Lemmas 18.4 and 18.9, we may assume we have TMSTg, where
the MST is an FESC. There must be at least two more bigon pairs, BB. In particular
there must be a sequence gBBgBBg, possibly including part of the above sequence.
As argued above, the existence of the FESC forces ggSMgMSgg and hence a triple of
bigons, a contradiction.

If the special vertex has type Œ8; 1�, then there are four gaps. Having no triple of bigons
implies that the gaps occur at every third corner separating four pairs of adjacent bigons.
There is now no way to label these bigons without violating Lemma 18.4.
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Appendix A: Small Seifert fiber spaces containing a Dyck’s
surface

This appendix proves Theorem A.2, which restricts the small Seifert fiber spaces
containing a Dyck’s surface.

In what follows a surface will always be connected.

Definition A.1 M DS2.s1=t1; s2=t2; s3=t3/ is defined as follows. Let zM DS1�F ,
where F is a pair of pants. An orientation on each of the factors induces coordinates
.s; t/, where s is the number of times around the S1 factor. To each component of @ zM
attach a solid torus Ti so that the meridian of Ti is identified with the curve .si ; ti/.
The resulting manifold is M . zM is a circle bundle, pW zM ! F . M is a Seifert fiber
space over S2 , where each Ti is a neighborhood of an exceptional fiber of order ti .

Theorem A.2 Let M be a SFS over the 2–sphere with three exceptional fibers. If M

contains an incompressible Dyck’s surface, then either

(A) M D S2.2=p1; 2=p2; 2=p3/, where each pi is an odd integer; or

(B) one of the exceptional fibers of M has order 2 and a second has order which is
a multiple of 4; or

(C) M has exceptional fibers of order 2 and 3. In fact, M is .2=n/–surgery on a
trefoil knot; or

(D) M has two exceptional fibers of order 2. In this case M contains a Klein bottle;
or

(E) M has two exceptional fibers of order 3.

Remark A.3 The Teragaito examples are in S2.�1=2; 1=6; 2=7/, which by the above
does not contain a Dyck’s surface.

Proof Let K be an incompressible Dyck’s surface in M . [12, Theorem 2.5] shows
that K can be isotoped to be either pseudovertical or pseudohorizontal. K is said
to be pseudovertical if zK D K \ zM is a vertical annulus whose boundary lies in
distinct components of @ zM , @Ti ; @Tj ; furthermore, K\Ti and K\Tj are one-sided
incompressible surfaces in Ti and Tj . K is said to be pseudohorizontal if K \ zM

is horizontal under the circle fibration and K intersects each of T1;T2;T3 in either a
family of meridian disks or in a one-sided incompressible surface. Note that by [12,
Corollary 2.2], a one-sided incompressible surface in a solid torus has a single boundary
component.
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Claim A.4 If K is pseudohorizontal then one of the conclusions to Theorem A.2
holds.

Proof Assume K is pseudohorizontal. Then pW zK! F is a cover of index � � 1.
Note that � is the intersection number of zK with any circle fiber of zM .

Assume � D 1. Then a component c of @ zK would intersect the Seifert fiber in the
neighborhood of the corresponding exceptional fiber once. This immediately implies
that c does not bound a meridian of that solid torus neighorhood. Thus K intersects the
neighborhood of an exceptional fiber in a single one-sided incompressible surface. As
the Euler characteristic of K is �1, it must be that K intersects the neighborhood of
each of the exceptional fibers of M in a Möbius band. As zK is a section for the circle
bundle we can use it to define the product structure on zM . This gives coordinates on
the boundary of each exceptional fiber so that zK \ @Ti is .0; 1/ and the circle fiber
(which is the Seifert fiber of M ) is .1; 0/. As K\Ti is a Möbius band, its boundary
must intersect the meridian of the solid torus twice. Thus in these coordinates, the
meridian is .2;pi/ were jpi j is the order of the exceptional fiber (and odd). Thus
M D S2.2=p1; 2=p2; 2=p3/ and we have conclusion (A) above.

Assume � > 1. As K is 1–sided it cannot intersect all of the Ti in disks. On the other
hand, since zK is a �–fold cover of the pair of pants F , it must have Euler characteristic
��. Thus K must intersect some Ti in disks.

Assume first that K intersects only T1 in disks. Let r � 0 be the sum of the Euler char-
acteristics of the one-sided surfaces K\T2;K\T3 . Then �1D�.K/D��C�=pCr ,
where p is the order of the singular fiber at T1 . This implies that rD0 and �.p�1/Dp .
As � is a multiple of p , this implies that �D p D 2. But then we conclude that zK
has exactly three boundary components and Euler characteristic �2. This implies that
zK is nonorientable. But zK covers the orientable F .

So assume K intersects T1;T2 in disks and T3 in a 1–sided surface with Euler
characteristic r � 0. Let p1;p2 be the orders of the singular fibers of T1;T2 . Then
we have the following equality .�/: �1D �.K/D��C�=p1C�=p2C r .

Claim A.5 One of the following must hold:

(1) r D�1 and p1 D p2 D 2; or

(2) r D 0, p1 D 2;p2 D 3 and �D 6; or

(3) r D 0, p1 D 2;p2 D 4 and �D 4; or

(4) r D 0, p1 D 3D p2 and �D 3.
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Proof Noting that � is a multiple of both p1 and p2 , define the natural numbers
e1 D �=p1; e2 D �=p2 .

Assume that r � �1. Then .�/ implies that p1p2 � p1C p2 , hence p1 D p2 D 2

and r D�1, giving conclusion (1).

We hereafter take r D 0. WLOG assume p2 � p1 and hence e1 � e2 .

First assume p1 > 2. Then 2e1 <�D e1Ce2C1 from .�/; hence, e1 < e2C1. Thus
e1 D e2 , p1 D p2 . Then .�/ becomes �..p1 � 2/=p1/ D 1 or that e1.p1 � 2/ D 1.
This gives conclusion .4/ above.

So assume p1 D 2. Then we get that e2.p2� 2/D 2. This means that either e2 D 2,
p2 D 3, �D 6 or e2 D 1;p2 D 4; �D 4. These are conclusions .2/ and .3/.

Claim A.4 now follows from Claim A.5: Conclusion .1/; .2/; .3/; .4/ of Claim A.5
imply conclusions (D), (C), (B), (E), respectively. Note that in conclusion (D), M

contains a pseudovertical Klein bottle between the exceptional fibers of order 2. In the
context of conclusion .2/ of the claim (which is the context of (C) in the Theorem)
X DM � Int.T3/ is the exterior of a trefoil knot and K\X is a 1–punctured torus,
hence a Seifert surface for X . As T3 intersects K in a Möbius band, the meridian of
T3 intersects the boundary of this Seifert surface twice. Hence M is an .2=n/–filling
of X as claimed.

Claim A.6 If K is pseudovertical then conclusion (B) of Theorem A.2 holds.

Proof Assume K is pseudovertical. As �.K/ D �1, K is the union of a vertical
annulus zK and a Möbius band K1 in T1 (say) along with a punctured Klein bottle
K2 in T2 (say).

Now @K1 will intersect the meridian of T1 twice. As @K1 is a Seifert fiber of M this
says that the order of the exceptional fiber at T1 is 2.

By [12, Corollary 2.2], a one-sided incompressible surface in a solid torus has boundary
a single .2k; l/–curve in longitude, meridian coordinates of the solid torus where
k; l are integers and k > 0. In [6], a recursive formula is developed for N.2k; l/,
which, as pointed out in [12], is equal to the cross-cap number of the (unique) 1–sided
incompressible surface whose boundary is the .2k; l/–curve. By picking the right
longitude, we may assume that k > l > 0 in the computation of N.2k; l/. Then [6,
(6.4)] shows that N.2k; l/D 2 iff k is even. So let @K2 be such a .2k; l/ curve in
T2 . Then 2DN.2k; l/ and k is even. As @K2 is a Seifert fiber for M , this implies
that the exceptional fiber for T2 has order 2k with k even.

Thus M is as in Theorem A.2(B).
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