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Induced quasicocycles on groups
with hyperbolically embedded subgroups

MICHAEL HULL

DENIS OSIN

Let G be a group, H a hyperbolically embedded subgroup of G , V a normed
G –module, U an H –invariant submodule of V . We propose a general construction
which allows to extend 1–quasicocycles on H with values in U to 1–quasicocycles
on G with values in V . As an application, we show that every group G with a
nondegenerate hyperbolically embedded subgroup has dim H 2

b
.G; `p.G//D1 for

p � 1 . This covers many previously known results in a uniform way. Applying our
extension to quasimorphisms and using Bavard duality, we also show that hyperbol-
ically embedded subgroups are undistorted with respect to the stable commutator
length.

20F65, 20F67, 20J06, 43A15, 57M07

1 Introduction

Let F be a subfield of C . All modules in this paper are left, all vector spaces are over
F . For a discrete group G , by a normed G –module we mean a normed vector space V

endowed with a (left) action of the group G by isometries. Given a subgroup H �G ,
by an H –submodule of a G–module V we mean any H –invariant subspace of V

with the induced action of H .

Let V be a normed G –module. Recall that a map qW G!V is called a 1–quasicocycle
if there exists a constant " > 0 such that for every f;g 2G we have

kq.fg/� q.f /�f q.g/k � ":

The F –vector space of all 1–quasicocycles on G with values in V is denoted by
QZ1.G;V /.

The study of 1–quasicocycles is partially motivated by the fact that the kernel of the
comparison map H 2

b
.G;V /!H 2.G;V / from the second bounded cohomology to

the ordinary second cohomology with coefficients in V can be identified with the
quotient QZ1.G;V /=.`1.G;V /CZ1.G;V //, where `1.G;V / and Z1.G;V / are
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the subspaces of uniformly bounded maps and cocycles, respectively. In the last
decade, techniques based on 1–quasicocycles and bounded cohomology have led to
new breakthroughs in the study of rigidity of group von Neumann algebras, measure
equivalence and orbit equivalence of groups, and low dimensional topology (see Calegari
[7], Chifan and Sinclair [9], Monod [19], Popa [24] and references therein).

The main goal of this paper is to address the following “extension problem”: Under
what conditions can a 1–quasicocycle on a subgroup H �G be extended to the whole
group G ?

Below we describe few known results in this direction.

Example 1.1 (Counting quasimorphisms) If V D R with the trivial action of G ,
1–quasicocycles on G with values in V are called quasimorphisms. The classical
examples are counting quasimorphisms of free groups introduced by Brooks [6]. Let
F be a free group with a basis S and let w be a reduced word in S [S�1 . Given an
element f 2 F , denote by cw.g/ the number of disjoint copies of w in the reduced
representative of g . Then hw D cw � cw�1 defines a quasimorphism F !R (Brooks
[6]). Observe that hw.g/ extends the obvious cocycle (ie, homomorphism) H !R of
the cyclic subgroup H D hwi � F that sends wn to n for all n 2 Z.

This construction was further developed by Epstein and Fujiwara [11] and later by
Bestvina and Fujiwara [4], who generalized it to the cases of hyperbolic groups and
groups acting weakly properly discontinuous on hyperbolic spaces, respectively.

Recall that a 1–quasicocycle q 2QZ1.G;V / is called antisymmetric if

q.g�1/D�g�1q.g/

for every g 2G . The next example is essentially due to Thom (cf [26, Lemma 5.1]).

Example 1.2 (Extending antisymmetric 1–quasicocycles to free products) Let G D

H1 �H2 , let V be a normed G–module, and let Ui be an Hi –submodule of G ,
i D 1; 2. Then any antisymmetric 1–quasicocycles qi 2QZ1.Hi ;Ui/, i D 1; 2, can
be naturally extended to a 1–quasicocycle G! V using the normal form of elements
of free products. That is, suppose that g 2G has the normal form

g D h1k1 � � � hnkn;

where hi 2H1 , ki 2H2 for i D 1; : : : ; n, and k1; h2; : : : ; kn�1; hn are nontrivial. Let

q.g/D q1.h1/C h1q2.k1/C h1k1q1.h2/C � � �C h1k1 � � � hnq2.kn/:

Checking that q 2QZ1.G;V / is easy. It is essential here that q1 and q2 are antisym-
metric (see Remark 4.8).
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Example 1.3 (No general extension construction exists) It is well-known and easy
to prove that every quasimorphism on an amenable group decomposes as a sum of
a homomorphism and a bounded map (Calegari [7]). This easily implies that if G

is amenable and H D hhi � ŒG;G� is an infinite cyclic subgroup, then the natural
homomorphism H !R defined by hn 7! n does not extend to any quasimorphism of
G .

In this paper we prove an extension theorem which can be thought of as a generalization
of Examples 1.1 and 1.2. In fact, our construction is similar to Example 1.2, but the
proof is much more involved. We state here a simplified version of our main result and
refer to Theorem 4.2 for the full generality. For a group G and a normed G –module
V , let QZ1

as.G;V / denote the subspace of all antisymmetric 1–quasicocycles on G

with coefficients in V .

Theorem 1.4 Let G be a group, H a hyperbolically embedded subgroup of G , V a
normed G –module, U an H –submodule of V . Then there exists a linear map

�W QZ1
as.H;U /!QZ1

as.G;V /

such that for any q 2QZ1
as.H;U /, we have �.q/jH � q .

It is well-known and easy to prove that every 1–quasicocycle is antisymmetric up to a
bounded perturbation (see Lemma 2.5). In the notation of Theorem 1.4, this gives the
following.

Corollary 1.5 There exists a linear map ~W QZ1.H;U /!QZ1.G;V / such that for
any q 2QZ1.H;U /, ~.q/jH 2QZ1.H;U / and

sup
h2H

k~.q/.h/� q.h/k<1:

The notion of a hyperbolically embedded subgroup of a group was introduced in
Dahmani, Guirardel and Osin [10] and encompasses many examples of algebraic and
geometric nature. We discuss some of them here and refer to the next section and the
same work for the definition and details.

(a) Let G be any group and let H � G be a finite subgroup or H D G . Then
H is hyperbolically embedded in G . In what follows these cases are referred to as
degenerate.

(b) Let G be a group hyperbolic relative to a collection of peripheral subgroups
fH�g�2ƒ . Then every peripheral subgroup is hyperbolically embedded in G . In
particular, if G DH1 �H2 , then H1 and H2 are hyperbolically embedded in G .

Algebraic & Geometric Topology, Volume 13 (2013)
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(c) Let G be a relatively hyperbolic group and let g be a loxodromic element. Then
g is contained in the unique maximal virtually cyclic subgroup E.g/ of G and E.g/

is hyperbolically embedded in G (Osin [22]). In particular, this holds for every infinite
order element g of a hyperbolic group G .

(d) More generally, let G be a group acting on a hyperbolic space and containing a
loxodromic element g that satisfies the Bestvina–Fujiwara WPD condition (see Bestvina
and Fujiwara [4] or Dahmani et al [10] for the definition). Then g is contained in
the unique maximal virtually cyclic subgroup E.g/ of G and E.g/ is hyperbolically
embedded in G (Dahmani et al [10, Theorem 6.8]). This general result applies in the
following cases: (d1 ) G is the mapping class group of a punctured closed orientable
surface and g is a pseudo-Anosov element (Bestvina and Fujiwara [4]); (d2 ) G D

Out.Fn/ and g is a fully irreducible automorphism (Bestvina and Feighn [3]).

(e) Similarly to the previous example, let G be a group acting properly on a proper
CAT.0/ space and let g be a rank 1 element. Then g is contained in the unique
maximal virtually cyclic subgroup E.g/ of G and E.g/ is hyperbolically embedded
in G (Sisto [25]).

Example 1.6 (cf Bestvina and Fujiwara [4], Calegari and Fujiwara [8]) Let us
illustrate our theorem by extending quasimorphisms in the case when G and g are
as in examples (c), (d) or (e) above. It is well known and easy to prove that every
infinite virtually cyclic group is either finite-by-(infinite cyclic) or finite-by-(infinite
dihedral). If E.g/ is of the former type, there exists a homomorphism qW E.g/!R
that extends the natural map gn!n. By our theorem, q extends to a quasimorphism of
G , which can be thought of as a generalization of the Brooks’ counting quasimorphism.
In particular, such quasimorphisms can always be constructed if G has no involutions.

On the other hand, if E.g/ is finite-by-(infinite dihedral), then it is easy to show that
there exists a 2G and n 2N such that

a�1gnaD g�n:

This equality implies that every quasimorphism E.g/ ! R is bounded. Thus no
analogue of the counting quasimorphism exists in this case.

In Section 3, we develop the main idea in the construction of our extension, which is
the notion of separating cosets of a subgroup H which is hyperbolically embedded in
G . This allows use to associate a canonical, finite set of H –cosets to each g 2G , and
to each such coset a finite collection of h 2H . This is essentially what is given by the
normal forms of elements in Example 1.2, and we are then able to extend quasicocycles
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in a similar manner. The main technical tool in proving that our extension actually gives
a quasicocycle is the decomposition of the separating cosets of a triangle in Lemma 3.9.

In Section 5, we obtain some other corollaries of our main result. Recall that the class
Creg of Monod–Shalom is the class of groups for which H 2

b
.G; `2.G// ¤ 0. This

definition was proposed as cohomological characterization of the notion of “negative
curvature” in group theory (Monod and Shalom [20]). Monod and Shalom [21] develop
a rich rigidity theory with respect to measure equivalence and orbit equivalence of
actions of groups in Creg . These results have a variety of applications to measurable
group theory, ergodic theory and von Neumann algebras.

Another similar class of groups is the class Dreg introduced by Thom [26]. G 2Dreg

if G is nonamenable and there exists some q 2QZ1.G; `2.G// which is unbounded.
Thom proved rigidity results about the subgroup structure of groups in Dreg and showed
that this class is closely related to Creg . However neither inclusion is known to hold
between these two classes.

Let X denote the class of groups with nondegenerate hyperbolically embedded sub-
groups. Using Corollary 1.5 and the fact that every group G 2 X contains a virtually
free (but not virtually cyclic) hyperbolically embedded subgroup (Dahmani et al [10]),
we prove the following.

Corollary 1.7 For any G 2 X , the dimension of the kernel of the comparison map
H 2

b
.G; `p.G//!H 2.G; `p.G// is infinite. In particular, X � Creg\Dreg .

This corollary recovers several previously known results in a uniform way. For exam-
ple, this was known for hyperbolic groups (Mineyev, Monod and Shalom [17]) and
more generally groups acting nonelementary and acylindrically on hyperbolic spaces
(Hamenstädt [14]), groups acting properly on proper CAT.0/ spaces and containing a
rank 1 isometry (Hamenstädt [15]), and Out.Fn/ for n� 2 (Hamenstädt [13]). All of
these groups belong to X (Dahmani et al [10]).

At the final stage of our work we learned that Bestvina, Bromberg and Fujiwara
[2] independently and simultaneously proved that the dimension of the kernel of the
comparison map H 2

b
.G;E/!H 2.G;E/ is infinite for any group acting nonelementary

on a hyperbolic space and containing a WPD loxodromic isometry and any uniformly
convex Banach G–module E . In fact, the class of groups acting nonelementary on
a hyperbolic space and containing a WPD loxodromic isometry coincides with our
class X (see Dahmani et al [10, Theorem 6.8 and Corollary 6.10]). Thus the result of
Bestvina, Bromberg and Fujiwara [2] is stronger than Corollary 1.7.

As another application, we show that hyperbolically embedded subgroups are undis-
torted with respect to the stable commutator length, scl. For the definition of scl we
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refer to Section 5. Given a group G and a subgroup H � G it is straightforward to
see that sclG.h/ � sclH .h/ for any h 2 ŒH;H �, where sclG and sclH are the stable
commutator lengths on ŒG;G� and ŒH;H �, respectively.

On the other hand, recall that every torsion free group H can be embedded in a group
G where every element is a commutator (see Lyndon and Schupp [16, Theorem 8.1]
or Osin [23] for a finitely generated version of such an embedding). In particular, sclG
vanishes on G , while sclH can be unbounded on ŒH;H �. Thus, in general, there is no
upper bound on sclH in terms of sclG . In what follows, we say that H is undistorted
in G with respect to the stable commutator length if there exists a constant B such that
for every h 2 ŒH;H �, we have sclH .h/� BsclG.h/.

Using Theorem 1.4 and the Bavard duality, we obtain the following.

Corollary 1.8 Let G be a group, H a hyperbolically embedded subgroup of G . Then
H is undistorted in G with respect to the stable commutator length.

Even the following particular cases seem new. Recall that a subgroup H �G is almost
malnormal if jH g \H j<1 for every g 2G nH .

Corollary 1.9 Every almost malnormal quasiconvex subgroup of a hyperbolic group
is undistorted with respect to the stable commutator length. In particular, so is every
finitely generated malnormal subgroup of a free group.

In Section 5 we show that the almost malnormality condition can not be omitted even
for free groups (see Remark 5.8).

2 Preliminaries

Notation and conventions In this paper we allow length functions and metrics to take
infinite values. In particular, the word length j � jS on a group G corresponding to a (not
necessary generating) set S is defined by letting jgjS be the length of a shortest word
in S [S�1 representing g if g 2 hSi and jgjS D1 otherwise. The corresponding
metric on G is denoted by dS ; thus dS .f;g/D jf

�1gjS .

By a path p in a (Cayley) graph we always mean a combinatorial path; we denote the
label of p by Lab.p/ and we denote the origin and terminus of p by p� and pC
respectively.

For the rest of the paper, we will refer to 1–quasicocycles simply as quasicocycles.
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Hyperbolically embedded subgroups Let G be a group, fH�g�2ƒ a collection of
subgroups of G . Let

(1) HD
G
�2ƒ

H�:

Given a subset X �G such that G is generated by X together with the union of all
H� ’s, we denote by �.G;X tH/ the Cayley graph of G whose edges are labeled
by letters from the alphabet X tH . That is, two vertices g; h 2G are connected by
an edge going from g to h and labeled by a 2 X tH if and only if a represents
the element g�1h in G . Note that some letters from X tH may represent the same
element in G , in which case �.G;X tH/ has multiple edges corresponding to these
letters.

We think of the Cayley graphs �.H�;H�/ as (complete) subgraphs of �.G;X tH/.
For every � 2ƒ, we introduce a relative metric bd�W H� �H�! Œ0;C1� as follows.
Given h; k 2H� , let bd�.h; k/ be the length of a shortest path in �.G;X tH/ that
connects h to k and has no edges in �.H�;H�/. If no such a path exists, we setbd�.h; k/ D 1. Clearly bd� satisfies the triangle inequality. In case the collection
consists of a single subgroup H �G , we denote the corresponding relative metric on
H simply by bd .

Definition 2.1 Let G be a group, X a (not necessary finite) subset of G . We say
that a collection of subgroups fH�g�2ƒ of G is hyperbolically embedded in G with
respect to X (we write fH�g�2ƒ ,!h .G;X /) if the following conditions hold.

(a) The group G is generated by X together with the union of all H� and the
Cayley graph �.G;X tH/ is hyperbolic.

(b) For every � 2ƒ, .H�;bd�/ is a locally finite metric space; that is, any ball of
finite radius in H� contains finitely many elements.

Further we say that fH�g�2ƒ is hyperbolically embedded in G and write

fH�g�2ƒ ,!h G

if fH�g�2ƒ ,!h .G;X / for some X �G .

Example 2.2 (a) Let G be any group. Then G ,!h G . Indeed take X D∅. Then
the Cayley graph �.G;X tH / has diameter 1 and d.h1; h2/D1 whenever h1¤ h2 .
Further, if H is a finite subgroup of a group G , then H ,!h G . Indeed H ,!h .G;X /

for X D G . These cases are referred to as degenerate. In what follows we are only
interested in nondegenerate examples.
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(b) Let G DH �Z, X D fxg, where x is a generator of Z. Then �.G;X tH / is
quasiisometric to a line and hence it is hyperbolic. However bd.h1; h2/� 3 for every
h1; h2 2H . Indeed let �H denote the Cayley graph �.H;H n f1g/. In the shift x�H

of �H there is an edge (labeled by h�1
1

h2 2H ) connecting h1x to h2x , so there is
a path of length 3 connecting h1 to h2 and having no edges in �H (see Figure 1).
Thus if H is infinite, then H 6,!h .G;X /. Moreover, a similar argument shows that
H 6,!h G .

(c) Let GDH �Z, X Dfxg, where x is a generator of Z. In this case �.G;X tH /

is quasiisometric to a tree (see Figure 1) and bd.h1; h2/D1 unless h1 D h2 . Thus
H ,!h .G;X /.

�H

x�1�H

x�H

x x x

xxx

h1 h2

. . . . . .

. . .. . .

. . .. . .

. . . . . .

. . . . . .

. . . . . .

. . .. . .. . .

. . .

. . .

. . .. . .. . .

. . .

. . .

�H

x�H

x�1�H

x

xxx

xx

1

xh1 xh2

Figure 1: Cayley graphs �.G;X tH / for G DH �Z and G DH �Z

It turns out that the relative metric bd� can be realized as a word metric with respect to
some finite set.

Lemma 2.3 (Dahmani et al [10, Lemma 4.10]) Let fH�g�2ƒ ,!h G . Then for each
� 2ƒ, there exists a finite subset Y� �H� such that bd� is bi-Lipschitz equivalent to
the word metric with respect to Y� . That is, for h1; h2 2 H� , bd�.h1; h2/ is finite if
and only if dY�.h1; h2/ is, and the ratio bd�=dY� is uniformly bounded on H� �H�

minus the diagonal.
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Components Let
fH�g�2ƒ ,!h .G;X /:

Let q be a path in the Cayley graph �.G;X tH/. A (nontrivial) subpath p of q

is called an H�–subpath, if the label of p is a word in the alphabet H� n f1g. An
H�–subpath p of q is an H�–component if p is not contained in a longer H�–subpath
of q ; if q is a loop, we require in addition that p is not contained in any longer H�–
subpath of a cyclic shift of q . Further by a component of q we mean an H�–component
of q for some � 2ƒ.

Two H�–components p1;p2 of a path q in �.G;X tH/ are called connected if there
exists a path c in �.G;X tH/ that connects some vertex of p1 to some vertex of p2 ,
and Lab.c/ is a word consisting only of letters from H� n f1g. In algebraic terms this
means that all vertices of p1 and p2 belong to the same left coset of H� . Note also
that we can always assume that c has length at most 1 as every nontrivial element of
H� is included in the set of generators.

It is convenient to extend the metric bd� defined above to the whole group G by
assuming bd�.f;g/ WDbd�.f �1g; 1/ if f �1g 2H� and bd�.f;g/D1 otherwise. One
important technical tool is the following corollary of (a particular case of) Dahmani et
al [10, Proposition 4.13].

Lemma 2.4 There exists a constant C > 0 such that for any geodesic n–gon p in
�.G;X tH/ and any isolated component a of p , we have bd�.a�; aC/� C n.

Proof Let p D p1 � � �pn , where p1; : : : ;pn are geodesic. For definiteness, suppose
that a is a component of p1 , ie p1 D qar . By Dahmani et al [10, Proposition 4.13]
applied to the .nC 2/–gon qarp2 � � �pn , we have bd�.a�; aC/ � D.nC 2/ � 2Dn,
where D is a constant independent of n (D DD.1; 0/ in the notation of Dahmani et
al [10, Proposition 4.13]). It remains to take any positive C � 2D .

Quasicocycles For a quasicocycle q 2QZ1.G;V / we define its defect D.q/ by

(2) D.q/D sup
f;g2G

kq.fg/� q.f /�f q.g/k:

Note that

(3) kq.1/k D kq.1 � 1/� q.1/� 1q.1/k �D.q/:

We will use the following elementary fact.
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Lemma 2.5 Let G be a group, V a G –module. Then there exists a linear map

˛W QZ1.G;V /!QZ1
as.G;V /

such that for every q 2QZ1.G;V / we have

sup
g2G

k˛.q/.g/� q.g/k<D.q/:

Proof Take ˛.q/.g/D 1
2
.q.g/�gq.g�1//. Verifying all properties is straightforward.

Indeed for every g 2G , we have

k˛.q/.g/� q.g/k D 1
2
k� q.g/�gq.g�1/k

�
1
2
kq.1/� q.g/�gq.g�1/kC 1

2
kq.1/k

�D.q/;

where the last inequality uses (3). Further,

˛.q/.g�1/D 1
2
.q.g�1/�g�1q.g//D 1

2
g�1.gq.g�1

� q.g//D�g�1˛.q/.g/:

Bounded cohomology Recall the definition of the bounded cohomology of a (discrete)
group G with coefficients in an arbitrary normed G–module V . Let C n.G;V / be
the vector space of n–cochains with coefficients in V , ie functions Gn ! V . The
coboundary maps dnW C n.G;V /! C nC1.G;V / are defined by the formula

dnf .g1; : : : ;gnC1/D g1f .g2; : : : ;gnC1/

C

nX
iD1

.�1/if .g1; : : : ;gi�1;gigiC1;giC2; : : : ;gnC1/

C .�1/nC1f .g1; : : : ;gn/:

Let Zn.G;V / and Bn.G;V / denote the cocycles and coboundaries of this complex
respectively; that is, Zn.G;V / D Ker dn and Bn.G;V / D Im dn�1 for n > 0 and
B0.G;V /D 0. Recall that the ordinary cohomology groups are defined by

H n.G;V / WDZn.G;V /=Bn.G;V /:

Restricting to the subspaces C n
b
.G;V / of C n.G;V / consisting of functions whose

image is bounded with respect to the norm on V , we get the complex of bounded
cochains. Similarly let Zn

b
.G;V / and Bn

b
.G;V / denote its cocycles and coboundaries.

Then the group
H n

b .G;V / WDZn
b .G;V /=B

n
b .G;V /

is called the nth –bounded cohomology group of G with coefficients in V .
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Note that there is a natural map cW H n
b
.G;V /!H n.G;V / which is induced by the

inclusion map of the cochain complexes. This map is called the comparison map, and
the kernel of c is denoted EH n

b
.G;V /. The following lemma is proved in Monod [18]

(see also Thom [26]) in the case when V is a Banach space. The same proof works in
the general case. We briefly sketch the argument for convenience of the reader.

Lemma 2.6 Let G be a discrete countable group, V a normed G –module. Then there
exists an exact sequence

0! `1.G;V /CZ1.G;V /!QZ1.G;V /
ı
!H 2

b .G;V /
c
!H 2.G;V /;

where `1.G;V / is the vector space of all uniformly bounded functions G! V .

Proof We can identify QZ1.G;V / with the subspace of 1–cochains q for which
d1q is uniformly bounded, that is d1q 2Cb

2.G;V /. Since d2 ıd1� 0, d1q is in fact
a bounded 2–cocycle. Let ıW QZ1.G;V /!Hb

2.G;V / denote the composition of d1

and the natural quotient map Zb
2.G;V /!Hb

2.G;V /. Then ıq represents a trivial
element of Hb

2.G;V / if and only if d1q D d1p for some bounded cochain p , which
means p 2 `1.G;V / and q �p 2 Z1.G;V /. Further if q is a bounded 2–cocycle
and Œq�b WD qCBb

2.G;V / 2Hb
2.G;V / is in the kernel of c , then qD d1f for some

1–cochain f , which means f 2QZ1.G;V / and ıf D Œq�b .

3 Separating cosets

Throughout this section, we denote by G a group with hyperbolically embedded
collection of subgroups fH�g�2ƒ ,!h G . Let X denote a subset of G such that
fH�g�2ƒ ,!h .G;X /. We also keep the notation H and �.G;X tH/ introduced in
the previous section. By dX[H we denote the word metric on G with respect to the
subset X tH . By a coset of a subgroup we always mean a left coset.

We begin by introducing the notion of a separating coset for a pair of elements f;g 2G ,
which plays a crucial role in our construction.

Definition 3.1 We say that a path p in �.G;X tH/ penetrates a coset xH� for some
� 2ƒ if p decomposes as p1ap2 , where p1;p2 are possibly trivial, .p1/C 2 xH� ,
and a is an H�–component of p . If, in addition, bd�.a�; aC/ > 3C , where C is the
constant from Lemma 2.4, we say that p essentially penetrates xH� . Note that if p

is geodesic, it penetrates every coset of H� at most once; in this case the vertices a�
and aC are called the entrance and the exit points of p in xH� and are denoted by
pin.xH�/ and pout.xH�/, respectively.
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Given two elements f;g 2 G , we denote by G.f;g/ the set of all geodesics in
�.G;XtH/ going from f to g . Further we say that a coset xH� is .f;g/–separating
if there exists a geodesic p 2 G.f;g/ that essentially penetrates xH� . For technical
reasons we will also say xH� is .f;g/–separating whenever f and g are both elements
of xH� and f ¤ g ; in this case we say xH� is trivially .f;g/–separating. The set of
all .f;g/–separating cosets of H� is denoted by S�.f;g/.

The following lemma immediately follows from the definition and the facts that if
f;g; h 2G and p 2 G.f;g/, then p�1 2 G.g; f / and hp 2 G.hf; hg/.

Lemma 3.2 For any f;g; h 2G and any � 2ƒ, the following holds:
(a) S�.f;g/D S�.g; f /.

(b) S�.hf; hg/D fhxH� j xH� 2 S�.f;g/g.

The terminology in Definition 3.1 is justified by the first claim of following.

Lemma 3.3 For any � 2 ƒ, any f;g 2 G such that f �1g 62 H� , and any .f;g/–
separating coset xH� , the following hold:

(a) Every path in �.G;X tH/ connecting f to g and composed of at most 2

geodesics penetrates xH� .

(b) For any p; q 2 G.f;g/, we havebd��pin.xH�/; qin.xH�/
�
� 3C;bd��pout.xH�/; qout.xH�/
�
� 3C:

Proof Let xH� 2 S�.f;g/ be .f;g/–separating coset. Since f �1g 62 H� , xH�

is nontrivially separating. Thus there exists a geodesic p 2 G.f;g/ that essentially
penetrates xH� ; let a denote the corresponding H�–component of p . Let r be any
other path in �.G;X tH/ connecting f to g and composed of at most 2 geodesics.
If a is isolated in the loop pr�1 , we obtain bd�.a�; aC/ � 3C by Lemma 2.4. This
contradicts the assumption that p essentially penetrates xH� . Hence a is not isolated
in pr�1 . Since p is geodesic, a cannot be connected to a component of p . Therefore
a is connected to a component of r , ie r penetrates xH� .

Further let p; q 2 G.a; b/ and xH� 2 S�.f;g/. By part (a) we have p D p1ap2 and
q D q1bq2 , where .p1/C 2 xH� , .q1/C 2 xH� and a, b are H�–components of
p and q , respectively (see Figure 2). (Of course, pi or qi , i D 1; 2, can be trivial).
Then a and b are connected. Let e be an edge or the trivial path connecting a� to b�
and labeled by a letter from H� n f1g. Applying Lemma 2.4 to the geodesic triangle
p1eq�1

1
, we obtain bd�.e�; eC/� 3C , which gives us the first inequality in (b). The

proof of the second inequality is symmetric.
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Corollary 3.4 For any f;g 2 G and any � 2ƒ, we have jS�.f;g/j � dX[H.f;g/.
In particular, S�.f;g/ is finite.

e

a

b

q2

p2

qin.xH�/

pin.xH�/

pout.xH�/

qout.xH�/

p1

q1

xH�

Figure 2

In this section we will use the following elementary observation several times.

Lemma 3.5 Let p be a geodesic in �.G;X tH/. Suppose that p penetrates a
coset xH� . Let p0 be the initial subpath of p ending at pin.xH�/. Then `.p0/ D

dX[H.p�;xH�/.

Proof Clearly dX[H.p�;xH�/ � `.p0/. Suppose that dX[H.p�;xH�/ < `.p0/.
Since xH� has diameter 1 with respect to the metric dX[H , we obtain

dX[H.p�;pout.xH�//� dX[H.p�;xH�/C 1< `.p0/C 1:

However we obviously have `.p0/C 1D dX[H.p�;pout.xH�//. A contradiction.

Definition 3.6 Given any f;g 2 G , we define a relation � on the set S�.f;g/ as
follows:

xH� � yH� iff dX[H.f;xH�/� dX[H.f;yH�/:

The next lemma is an immediate consequence of Lemma 3.3 and Lemma 3.5.

Lemma 3.7 For any f;g 2 G and any � 2ƒ with f �1g 62H� , � is a linear order
on S�.f;g/ and every geodesic p 2 G.f;g/ penetrates all .f;g/–separating cosets
according to the order �. That is, S�.f;g/Dfx1H� � x2H� � � � � � xnH�g for some
n 2N and p decomposes as

p D p1a1 � � �pnanpnC1;

where ai is an H�–component of p and .pi/C 2 xiH� for i D 1; : : : ; n (see Figure 3).
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p1
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p2 a2
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Figure 3

Given f;g 2G and xH� 2 S�.f;g/, we denote by E.f;gIxH�/ the set of ordered
pairs of entrance-exit points of geodesics from G.f;g/ in the coset xH� . That is,

E.f;gIxH�/D f.pin.xH�/;pout.xH�// j p 2 G.f;g/g:

Lemma 3.8 For any � 2ƒ and any f;g; h;x 2G , the following hold:

(a) E.g; f IxH�/D f.v;u/ j .u; v/ 2E.f;gIxH�/g.

(b) E.hf; hgIxH�/D f.hu; hv/ j .u; v/ 2E.f;gIxH�/g.

(c) jE.f;gIxH�/j<1.

Proof Parts (a) and (b) follow immediately from Lemma 3.2. To prove (c), note that
if xH� trivially separates f and g , then E.f;gIxH�/D f.f;g/g. Further if xH�

separates f and g nontrivially, fix any .u; v/ 2 E.f;gIxH�/. Then for any other
.u0; v0/ 2E.f;gIxH�/, we have bd�.u;u0/ < 3C and bd�.v; v0/ < 3C by part (b) of
Lemma 3.3. Recall that .H�;bd�/ is a locally finite metric space by the definition of a
hyperbolically embedded collection of subgroups. Hence jE.f;gIxH�/j<1.

The main result of this section is the following.

Lemma 3.9 For any f;g; h2G and any �2ƒ, the set of all .f;g/–separating cosets
of H� can be decomposed as

S�.f;g/D S 0 tS 00 tF;

where:

(a) S 0 � S�.f; h/ n S�.h;g/ and for every xH� 2 S 0 we have E.f;gIxH�/ D

E.f; hIxH�/.

(b) S 00 � S�.h;g/ n S�.f; h/ and for every xH� 2 S 00 we have E.f;gIxH�/ D

E.h;gIxH�/.

(c) jF j � 2.
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Proof First, if jS�.f;g/j� 2 the statement is trivial, so we can assume jS�.f;g/j> 2.
Let

S�.f;g/D fx1H� � x2H� � � � � � xnH�g:

We fix any geodesics q 2 G.h;g/ and r 2 G.f; h/. By the first claim of Lemma 3.3,
every coset from S�.f;g/ is penetrated by at least one of q , r . Without loss of
generality we may assume that at least one of the cosets from S�.f;g/ is penetrated
by r . Let xiH be the largest coset (with respect to the order �) that is penetrated by
r . Thus if i < n, then xiC1H is penetrated by q . Let

S 0 D fxj H� j 1� j < ig;

S 00 D fxj H� j i C 1< j � ng;

F D S�.f;g/ n .S
0
[S 00/:

Obviously jF j � 2. It remains to prove (a) and (b). We will prove (a) only, the proof
of (b) is symmetric.

Fix any 1� j < i . Let p be any geodesic from G.f;g/. By Lemma 3.7, p decomposes
as

p D p1a1p2a2p3;

where a1 , a2 are H�–components of p , .p1/C 2xj H� , and .p2/C 2xiH� . Similarly
by the choice of i , r decomposes as

r D r1br2;

where b is an H�–component of r and .r2/� 2 xiH� (see Figure 4).

Since .r2/� and .p2/C belong to the same coset of H� , there exists a path e in
�.G;XtH/ of length at most 1 such that e�D .p2/C and eCD .r2/� . By Lemma 3.5,
we have `.p1a1p2/D `.r1/. Hence the path t D p1a1p2er2 has the same length as
r , ie t 2 G.f; h/. Also,

pin.xj H�/D tin.xj H�/;(4)

pout.xj H�/D tout.xj H�/:(5)

So far all our arguments were valid for any p 2 G.f;g/. Since xj H� 2S�.f;g/, there
exists p 2 G.f;g/ that essentially penetrates xj H� , ie bd�..a1/�; .a1/C/ > 3C in the
above notation. In this case t also essentially penetrates xj H� . Thus xj H 2 S�.f; h/.
Moreover since we have (4) and (5) for every p 2G.f;g/, we obtain E.f;gIxj H�/D

E.f; hIxj H�/.
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To complete the proof of (a) it remains to show that xj H� 62S�.h;g/. Clearly g 62xj H� ,
or p would not be geodesic, so xj H� does not trivially separate g and h. Thus, if
xj H� 2 S�.h;g/ there must be a geodesic from h to g which essentially penetrates
xj H� . Hence by Lemma 3.3, every geodesic from h to g penetrates xj H� , which
means q penetrates xj H� . Then using Lemma 3.5, the fact that every coset of H� has
diameter 1 with respect to the metric dX[H , and the triangle inequality, we obtain

`.q/D dX[H.h;xj H�/C 1C dX[H.g;xj H�/

> dX[H.h;xiH�/C 1C dX[H.g;xiH�/

� `.r2/C dX[H
�
.r2/�; .p3/�

�
C `.p3/

� dX[H.h;g/:

Since one of the inequalities is strict, this contradicts the assumption that q is geodesic.

4 Extending quasicocycles

We keep all assumptions and notation from the previous section. For each � 2ƒ, let

F� D fh 2H� j h 2H� for some �¤ �g:

In particular, if fH�g�2ƒ consists of a single subgroup H , the corresponding subset
F D∅.

It follows from Lemma 2.4 that every h 2 F� satisfies bd�.1; h/� 2C , where C is the
constant from Lemma 2.4. Indeed for every such h there is a loop e1e2 in �.G;XtH/,
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where e1 is an edge labeled by h 2H� and e2 is an edge labeled by the copy of h in
H� for some � 2ƒ. Since the metric space .H�;bd�/ is locally finite by the definition
of a hyperbolically embedded collection of subgroups, we obtain the following.

Lemma 4.1 jF�j<1 for all � 2ƒ.

Also, for q� 2QZ1.H�;U�/, let

(6) K� Dmaxfkq�.g/k W bd�.1;g/ < 15C g:

Observe that the constant K� is well-defined by local finiteness of .H�;bd�/.
We can now state our main extension theorem in its full generality. Recall that for a
quasicocycle q , D.q/ denotes its defect defined by (2).

Theorem 4.2 Let G be a group, fH�g�2ƒ a hyperbolically embedded collection of
subgroups of G , V a normed G –module. For each �2ƒ, let U� be an H�–submodule
of G . Then there exists a linear map

�W
M
�2ƒ

QZ1
as.H�;U�/!QZ1

as.G;V /

such that for any q D .q�/�2ƒ 2
L
�2ƒ

QZ1
as.H�;U�/ the following hold:

(a) For any � 2ƒ and any h 2H� nF� , we have �.q/.h/D q�.h/. In particular,

sup
h2H�

k�.q/.h/� q�.h/k<1:

(b) D.�.q//�
X
�

.54K�C 66D.q�//.

Notice that the sum in part (b) is finite because q� � 0 for all but finitely many �, and
thus K�DD.q�/D 0 for all but finitely many �. If G contains a singe hyperbolically
embedded subgroup, Theorem 4.2 obviously reduces to Theorem 1.4 mentioned in the
introduction. Using Lemma 2.5, one can also obtain a general version of Corollary 1.7.
We leave this to the reader.

Throughout the rest of the section, we use the notation of Theorem 4.2. Although our
proof can be entirely written in the language of quasicocycles, the following concept
helps making some arguments more symmetric and easier to comprehend. In the
definition below, we write s.a/D t.a/ for two partial maps s; t W A! B if the value
s.a/ is defined if and only if t.a/ is, and these values are equal whenever defined.
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Definition 4.3 A partial bicombing of G with coefficients in V is a partial map
r W G �G! V . We say that

(a) r is G –equivariant if hr.f;g/D r.hf; hg/ for any f;g; h 2G .

(b) r is antisymmetric if r.f;g/D�r.g; f / for any f;g 2G .

(c) r has bounded area if there exists a constant A such that for any f;g; h 2 G

for which r.f;g/, r.g; h/, and r.h; f / are defined, we have

(7) kr.f;g/C r.g; h/C r.h; f /k �A:

The infimum of all A satisfying (7) is called the area of r and is denoted by
A.r/.

Let us fix � 2ƒ. Given q� 2QZ1
as.H�;U�/, we define a partial map r�W G�G! V

by
r�.f;g/D f q�.f

�1g/:

Thus r�.f;g/ is defined if and only if f and g belong to the same coset xH� .

Lemma 4.4 The partial map r�W G �G! V is an antisymmetric equivariant partial
bicombing of G of area

(8) A.r�/�D.q�/:

Proof Equivariance of r� is obvious and antisymmetry follows immediately from
antisymmetry of q� . By equivariance it suffices to verify the bounded area condition
for the a triple 1;g; h 2G . We have

kr�.1;g/C r�.g; h/C r�.h; 1/k D kq�.g/Cgq�.g
�1h/� q�.h/k �D.q�/:

Corollary 4.5 For any n 2N , any x 2G , and any g0; : : : ;gn 2 xH� , we haver�.g0;gn/�

nX
iD1

r�.gi�1;gi/

� .n� 1/D.q�/:

Proof The claim follows from antisymmetry, the definition of area, and (8) by induc-
tion.

Our next goal is to construct a globally defined antisymmetric bounded area G–
equivariant bicombing er �W G�G! V that extends r� . To this end, for each f;g 2G

and each coset xH� , we define the average

Rav.f;gIxH�/D
1

jE.f;gIxH�/j

X
.u;v/2

E.f;gIxH�/

r�.u; v/:
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If xH� 62 S�.f;g/, we assume Rav.f;gIxH�/ D 0. Note that Rav.f;gIxH�/ is
well-defined since E.f;gIxH�/ <1 by part (c) of Lemma 3.8.

Lemma 4.6 For any f;g; h;x 2G , the following hold:

(a) Rav.f;gIxH�/D�Rav.g; f IxH�/.

(b) Rav.hf; hgI hxH�/DRav.f;gIxH�/.

(c) For any .u; v/ 2E.f;gIxH�/, we have

(9) kr�.u; v/�Rav.f;gIxH�/k � 2D.q�/C 2K�:

Proof The first claim follows from parts (a) of Lemma 3.8 and antisymmetry of r� .
The second claim follows from parts (b) of Lemma 3.8 and the equivariance of r� .

To prove (c), note that for any .u0; v0/ 2E.f;gIxH�/, we have

maxfbd�.u;u0/;bd�.v; v0/g � 3C

by Lemma 3.3. Thus, using the triangle inequality and applying Corollary 4.5 to
elements u;u0; v0; v 2 xH� , we obtain

kr�.u; v/� r�.u
0; v0/k � kr�.u; v/� r�.u;u

0/� r�.u
0; v0/� r�.v

0; v/k

Ckr�.u;u
0/kCkr�.v

0; v/k

� 2D.q�/C 2K�:

This obviously implies (9).

Let er �.f;g/D X
xH�2S�.f;g/

Rav.f;gIxH�/:

Note that er � is well-defined as S�.f;g/ is finite for any f;g 2G by Corollary 3.4.

Lemma 4.7 The map er �W G�G! V is an antisymmetric G –equivariant bicombing
of area

(10) A.er �/� 66D.q�/C 54K�:

Proof Equivariance and antisymmetry of er � follow immediately from Lemma 3.2
and Lemma 4.6. In order to show that er � satisfies the bounded area condition, we need
to estimate the norm of er �.f;g/Cer �.g; h/Cer �.h; f / uniformly on f;g; h 2 G .
Since Rav.f;gIxH�/D 0 if xH� 62 S�.f;g/, we have

er �.f;g/Cer �.g; h/Cer �.h; f /D X
xH�2G=H�

�.f;g; hIxH�/;
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where

�.f;g; hIxH�/W DRav.f;gIxH�/CRav.g; hIxH�/CRav.h; f IxH�/:

Of course, �.f;g; hIxH�/ is nontrivial only if xH� 2S�.f;g/[S�.g; h/[S�.h; f /.

Fix f;g; h 2G . We start by estimating �.f;g; hIxH�/ for cosets from S�.f;g/. Let
S�.f;g/D S 0 tS 00 tF be the decomposition provided by Lemma 3.9. Suppose first
that xH� 2S 0 . Then xH� 2S�.f; h/DS�.h; f / and E.f;gIxH�/DE.f; hIxH�/

by Lemma 3.9. Hence

(11) Rav.f;gIxH�/DRav.f; hIxH�/D�Rav.h; f IxH�/:

by Lemma 4.6 (a). On the other hand, Lemma 3.9 also states that xH� 62 S�.h;g/D

S�.g; h/. Hence

(12) Rav.g; hIxH�/D 0:

Summing up (11) and (12), we obtain �.f;g; hIxH�/D 0. Similarly,

�.f;g; hIxH�/D 0

for any xH� 2 S 00 . Thus

(13)
X

xH�2

S�.f;g/

�.f;g; hIxH�/D
X

xH�2F

�.f;g; hIxH�/:

Fix a coset xH� 2 F and any p 2 G.f;g/, q 2 G.h;g/, r 2 G.f; h/. There are three
cases to consider.

Case 1 xH� 2 S�.g; h/\S�.h; f /. In this case we have p D p1ap2 , q D q1cq2 ,
r D r1br2 , where a, c and b are H�–components of p , q and r , respectively,
corresponding to the coset xH� (ie a˙; b˙; c˙ 2 xH� ). Let e1 , e2 , e3 be paths of
lengths at most 1 labeled by elements of H� and connecting a� to b� , bC to c� , and
cC to aC (see Figure 5).

Since a geodesic in �.G;X tH/ can penetrate a coset of H� at most once, e1 is
either trivial or is an isolated component of a geodesic triangle (namely p1e1r�1

1
). The

same holds true for e1 and e2 . Hence by Lemma 2.4, we obtain

(14) bd�..ei/�; .ei/C/� 3C; i D 1; 2; 3:

In particular,

(15) kr�..ei/�; .ei/C/k �K�; i D 1; 2; 3:

Algebraic & Geometric Topology, Volume 13 (2013)



Induced quasicocycles on groups with hyperbolically embedded subgroups 2655

xH�

f g

h

p1

r1

r2

p2

e1

a

b c

e2

e3

q2

q1

Figure 5

by the definition of K� (see (6)). Using the triangle inequality, applying Corollary 4.5
to the vertices of the hexagon e1be2ce3a�1 , and using (15), we obtain

kr�.a�; aC/C r�.bC; b�/C r�.cC; c�/k

�

r�.a�; aC/� r�.b�; bC/� r�.c�; cC/�

3X
iD1

r�
�
.ei/�; .ei/C

�
C

 3X
iD1

r�
�
.ei/�; .ei/C

�
� 5D.q�/C 3K�:

Now Lemma 4.6 (c) implies

(16) k�.f;g; hIxH�/k

D kRav.f;gIxH�/CRav.g; hIxH�/CRav.h; f IxH�/k

� kr�.a�; aC/C r�.cC; c�/C r�.bC; b�/kC 6.D.q�/CK�/

� 11D.q�/C 9K�:

Case 2 xH� 2 S�.h; f / nS�.g; h/ or xH� 2 S�.g; h/ nS�.h; f /. Since the proof
in these cases is the same, we will only consider the case xH� 2 S�.h; f / nS�.g; h/.
Let p D p1ap2 , r D r1br2 , and e1 be as in Case 1 and let e be the path of length
at most 1 in �.G;X tH/ connecting bC to aC and labeled by an element of H� .
There are two possibilities to consider.
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(2a) First assume that e is isolated in the quadrilateral ep2q�1r�1
2

(see Figure 6).
Then we have bd�.e�; eC/� 4C by Lemma 2.4 and hence

kr�.e�; eC/k �K�:

Note that (15) remains valid for i D 1. Applying Corollary 4.5 to the vertices of the
quadrilateral e1bea�1 as in Case 1 we obtain

kr�.a�; aC/C r�.bC; b�/k

� kr�.a�; aC/� r�
�
.e1/�; .e1/C

�
� r�.b�; bC/� r�.e�; eC/k

Ckr�
�
.e1/�; .e1/C

�
kCkr�.e�; eC/k

� 3D.q�/C 2K�:

Since xH� 62 S�.g; h/, we have Rav.g; hIxH�/D 0. Finally Lemma 4.6 (c) implies

(17) k�.f;g; hIxH�/k D kRav.f;gIxH�/CRav.h; f IxH�/k

� kr�.a�; aC/C r�.bC; b�/kC 4.D.q�/CK�/

� 7D.q�/C 6K�:

(2b) Suppose now that e is not isolated in the quadrilateral ep2q�1r�1
2

. Then e is
connected to a component c of q . Let qD q1cq2 and let e1 and e2 be as in Case 1 (see
Figure 5). Then (15) remains valid. In addition, we have bd�.c�; cC/� 3C as xH� 62

S�.g; h/ and hence q can not essentially penetrate xH� . Hence kr�.c�; cC/k �K� .
The reader can easily verify that arguing as in Case 1 and then as in (17), we can obtain

kr�.a�; aC/C r�.bC; b�/k � 5A�C 4K�

and consequently

(18) k�.f;g; hIxH�/k � 9D.q�/C 8K�:

Case 3 xH� 62 S�.h; f /[S�.g; h/. Let p D p1ap2 be as in Cases 1 and 2. There
are three possibilities to consider.

(3a) a is an isolated component of pq�1r�1 . In this case bd�.a�; aC/� 3C .

(3b) a is connected to a component of exactly one of q , r . For definiteness, assume
that a is connected to a component b of r . Then, in the notation of Case 2 (see
Figure 6), e is isolated in ep2q�1r�1

2
and we have bd�.e�; eC/� 4C by Lemma 2.4.

As in Case 1, we have (14) for i D 1. Since xH� 62 S�.h; f /, r can not essentially
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xH�

f g

h

p1

a

p2

q

r1

b

r2

e1

e

Figure 6

penetrate xH� . Thus bd�.b�; bC/ � 3C . Applying the triangle inequality to the
quadrilateral e1bea�1 , we obtainbd�.a�; aC/� 10C:

(3c) a is connected to a component b of r and a component c of q . Then in
the notation of Case 1 and Figure 5, inequalities (14) remain valid and we also havebd�.b�; bC/�3C and bd�.c�; cC/�3C as in Case 3b. Applying the triangle inequality
to the hexagon e1be2ce3a�1 , we obtainbd�.a�; aC/� 15C:

Thus, in all Cases 3a)–3c) we have kr�.a�; aC/k � K� . Since Rav.g; hIxH�/ D

Rav.h; f IxH�/D 0 in this case, using Lemma 4.6 (c) we obtain

(19) k�.f;g; hIxH�/k D kRav.f;gIxH�/k � 2A.r�/C 3K�:

in Case 3.

Summarizing (13), (16), (17), (18), (19), and taking into account that jF j � 2, we
obtain X

xH�2S�.f;g/

�.f;g; hIxH�/

D  X
xH�2F

�.f;g; hIxH�/

� 22D.q�/C 18K�:

Repeating the same arguments for S�.h; f / and S�.g; f / and summing up, we obtain

ker �.f;g/Cer �.g; h/Cer �.h; f /k � 66D.q�/C 54K�:
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We are now ready to prove the main extension theorem.

Proof of Theorem 4.2 Let q D .q�/�2ƒ 2
L
�2ƒQZ1

as.H�;U�/. For each � 2ƒ,
let er � be the bicombing constructed above and let eq�.g/ D er �.1;g/. Then eq� 2
QZ1

as.G;V /. Indeed we have

(20) keq�.fg/�eq�.f /�feq�.g/k D ker�.1; fg/�er�.1; f /�fer�.1;g/k
D ker�.1; fg/Cer�.f; 1/Cer�.fg; f /k

�A.er�/:
antisymmetry of eq� follows from that of er � .

Further we define
�.q/D

X
�2ƒ

eq�:
Since q is supported on only finitely many �, �.q/ is equal to a finite linear com-
bination of quasicocycles, so �.q/ 2 QZ1

as.G;V /. It is easy to see that the maps
QZ1

as.H�;U�/!QZ1
as.G;V / defined by q� 7! eq� are linear. Hence so is �.

If h 2H� nF� , then S�.1; h/D fH�g and S�.1; h/D∅ for any �¤ �. Obviously
E.1; hIH�/Df.1; h/g. Thus er �.1; h/D r�.1; h/D q�.h/ and er �.1; h/D 0 whenever
�¤ �. Thus

�.q/.h/D
X
�2ƒ

eq�.h/DX
�2ƒ

er �.1; h/D q�.h/:

This finishes the proof of (a). Part (b) follows from (20) and (10).

Remark 4.8 Our proof essentially uses the fact that the quasicocycles q� are anti-
symmetric. In fact, our approach provably fails for nonantisymmetric ones. This can
be illustrated in the case when G D F.x;y/, the free group of rank 2, and H D hxi.
Indeed take q 2QZ1.H;R/ defined by

q.xn/D

�
1 if n� 0;

0 if n< 0:

Let eq be the extension obtained as above using the subset X D fx;yg of G . Take
any n 2N such that bd .1;xn/ > 3C (in fact, C D 0 in this case, but we will not use
this). Then it is straightforward to verify that eq ..yxn/k/D k while eq ..yxn/�k/Deq ..x�ny�1/k/ D 0 for every k 2 N . This contradicts the quasicocycle identity as
k!1. A similar argument shows that the antisymmetry condition can not be dropped
in Example 1.2.
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5 Applications

Bounded cohomology Our goal here is to prove Corollary 1.7. We begin with an
auxiliary result.

Proposition 5.1 Let G be a group, H a hyperbolically embedded subgroup of G , V

a G–module, and U an H –submodule of V . Suppose that there exists a continuous
projection � W V ! U . Then there is a linear map �W QZ1.H;U /! EH 2

b
.G;V /

such that Ker� � `1.H;U /CZ1.H;U /. In particular,

dim H 2
b .G;V /� dim EH 2

b .G;V /� dim EH 2
b .H;U /:

Proof We define � to be the composition ı ı ~ , where ~ is given by Corollary 1.5
and ı is the natural map QZ1.G;V /!EH 2

b
.G;V / (see Lemma 2.6). Note that if

�.q/D 0 for some q 2QZ1.H;U /, then

(21) ~.q/D hC b;

where b 2 `1.G;V / and h2Z1.G;V /. Since ~.q/.x/2U for all x 2H , composing
both sides of this equality with � and restricting to H we obtain

~.q/jH D � ı hjH C� ı bjH :

Obviously � ı hjH 2Z1.H;U / and � ı bjH 2 `
1.H;U / since � is continuous. By

Corollary 1.5, .q� ~.q/jH / 2 `1.H;U /, thus q 2 `1.H;U /CZ1.H;U /.

The next lemma is a simplification of Dahmani et al [10, Theorem 2.23].

Lemma 5.2 Let G 2 X . Then for every n 2 N , there exists a subgroup Hn ,!h G

such that Hn Š Fn �K , where Fn is the free group of rank n and K is finite.

We are now ready to prove Corollary 1.7.

Proof of Corollary 1.7 It is easy to see that the assumptions of Proposition 5.1 hold
in the case V D `p.G/ and U D `p.H /. It is well known that dim EH 2

b
.H /D1

for every virtually free group which is not virtually cyclic (see. e.g., Hamenstädt [14]).
To complete the proof it remains to note that every group G 2 X contains a virtually
free but not virtually cyclic hyperbolically embedded subgroup by Lemma 5.2.
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Stable commutator length Let G be a group, and let g 2 ŒG;G�. The commutator
length of g , denoted clG.g/, is defined as the minimal number of commutators whose
product is equal to g in G . The stable commutator length is defined by

sclG.g/D lim
n!1

clG.gn/

n
:

It is customary to extend sclG to all elements g for which have some positive power
gn 2 ŒG;G� by letting sclG.g/ D scl.gn/=n. Basic facts and theorems about stable
commutator length can be found in Calegari [7].

Following Calegari [7], we will denote space of quasimorphisms on G by bQ.G/.
Recall that this is the same as QZ1.G;R/, where R is considered as a G–module
with the trivial action. Note that in this setting Theorem 1.4 says that any antisymmetric
quasimorphism on H can be extended to a quasimorphism on G .

A quasimorphism ' on G is called homogeneous if for all g 2 G and all n 2 Z,
'.gn/D n'.g/. In particular, all homogeneous quasimorphisms are antisymmetric.
We denote the subspace of homogeneous quasimorphisms by Q.G/. The connection
between quasimorphisms and stable commutator length is provided by the Bavard
Duality Theorem [1].

Theorem 5.3 (Bavard Duality Theorem) For any g 2 ŒG;G�, there is an equality

(22) sclG.g/D sup
'2Q.G/

'.g/

2D.'/
;

where the supremum is taken over all homogeneous quasimorphisms of nonzero defect.

In fact, it is not hard to see that this supremum is always realized by some quasimor-
phism.

Given any quasimorphism ' , there is a standard way to obtain a homogeneous quasi-
morphism  , called the homogenization of ' . This is done by defining

 .g/D lim
n!1

'.gn/

n
:

Lemma 5.4 (Calegari [7, Corollary 2.59]) Let ' 2 bQ.G/ with homogenization  .
Then D. /� 2D.'/.

Our plan for proving Corollary 1.8 will be to take an element h 2H and apply Bavard
Duality to find a homogeneous quasimorphism which realizes (22) with respect to
sclH . Then we can use Theorem 1.4 to extend this to a quasimorphism on all of G ,
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then apply Bavard Duality again to find a lower bound on sclG.h/. In order to do this
we will need to understand the defect of the extended quasimorphism.

Let H be a group, and let �W H ! H=ŒH;H �˝Q be the natural map. A subset
Y �H will be called nice if Y can be decomposed as Y D Y1[Y2 such that �.Y1/

is linearly independent and �jY2
� 0.

Lemma 5.5 Every finitely generated subgroup of H has a nice finite generating set.

Proof Let H 0 be a finitely generated subgroup of H , and let X be a finite generating
set of H 0 . Then �.H 0/ is a finitely generated subgroup of a torsion-free Abelian group,
and hence �.H 0/ is a finitely generated free Abelian group. Let fv1; : : : ; vng be a basis
for �.H 0/ as a free Abelian group and let yi 2H 0 be such that �.yi/D vi . Then for
each x 2 X , there exist integers ax;1; : : : ; ax;n such that �.x/ D

Pn
iD1 ax;ivi . Let

OxDxy
�ax;1

1
; : : : ;y

�ax;n

n . Now let Y1Dfy1; : : : ;yng, and let Y2Df Ox jx 2X g. Then
clearly Y D Y1[Y2 is nice, and hY i D hX i DH 0 .

Lemma 5.6 (Fuchs [12, Theorem 16.1]) Let B be a subgroup of an Abelian group
A, and let D be a divisible Abelian group. Then every homomorphism from B!D

can be extended to a homomorphism from A!D .

The reason we are interested in nice subsets is the following lemma.

Lemma 5.7 For any group H , any nice finite subset Y � H , and any ' 2 Q.H /,
there exists '0 2 Q.H / such that '0jŒH ;H � � 'jŒH ;H � , D.'0/ D D.'/, and for all
y 2 Y ,

j'0.y/j � 2D.'0/ sclH .y/:

Proof Let Y D Y1[Y2 be the decomposition given by the definition of a nice subset.
If y 2 Y2 , then there exists some n such that yn 2 ŒH;H �. Then for any ' 2Q.H /,
Bavard Duality gives

(23) j'.y/j � 2D.'/ sclH .y/:

Now, let ADH=ŒH;H �, and let B be the image of hY i inside A. Let � be the quotient
map � W H !A. Then by definition of nice subsets we can define a homomorphism
˛W B!R such that ˛.�.y//D '.y/ for all y 2 Y1 . Since R is divisible, Lemma 5.6
allows us to extend ˛ to all of A. Composing ˛ with � gives a homomorphism
ˇW H ! R which satisfies ˇ.y/ D '.y/ for all y 2 Y1 . Now we set '0 D ' � ˇ .
Since ˇ vanishes on ŒH;H �, '0jŒH ;H � � 'jŒH ;H � . Since '0 is a shift of ' by a
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homomorphism, D.'0/DD.'/. Furthermore, combining the fact that '0.y/D 0 for
all y 2 Y1 with (23), we get that for all y 2 Y ,

j'.y/j � 2D.'0/ sclH .y/:

We are now ready to prove Corollary 1.8.

Proof of Corollary 1.8 Let H ,!h .G;X /, and by Lemma 2.3 there exists Y 0 a
finite subset of H such that the relative metric bd on H is bi-Lipschitz equivalent
to the word metric with respect to Y 0 . By Lemma 5.5 the subgroup hY 0i has a nice
finite generating set Y . Let dY be the word metric with respect to Y . Then dY is
bi-Lipschitz equivalent to the relative metric bd on H , so there exists a constant L

such that for all f;g 2H ,

(24) dY .f;g/�Lbd .f;g/:
Fix some h2 ŒH;H �, and let '2Q.H / be the quasimorphism which realizes the Bavard
Duality; that is, sclH .h/ D '.h/=.2D.'//. Let '0 be the modified quasimorphism
provided by Lemma 5.7.

Let �W Q.H / ! bQ.G/ be map provided by Theorem 4.2. Then by part .b/ of
Theorem 4.2 we have

D.�.'0//� 54KC 66D.'0/;

where K is defined by K D maxfj'0.k/j W bd .1; k/ < 15C g. However, by (24) we
get K � maxfj'0.k/j W dY .1; k/ < 15CLg. Inductively applying the definition of a
quasimorphism along with Lemma 5.7, for any such k we get

j'0.k/j � 15CL.D.'0/C 2D.'0/max
y2Y
fsclH .y/g/:

That is, we have bound K as a constant multiple of D.'0/. Thus there exists a constant
M (which is independent of '0 ) such that

(25) D.�.'0//� 54KC 66D.'0/�MD.'0/:

Now, �.'0/ is a quasimorphism on G , and in order to apply Bavard Duality we
homogenize �.'0/ to get a quasimorphism  , satisfying D. / � 2D.�.'0//. Then
applying the definition of  , along with the homogeneity of '0 and the conditions of
Theorem 1.4 gives

 .h/D lim
n!1

�.'0/.hn/

n
D '0.h/D '.h/:
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Also, (25) and Lemma 5.4 show that D. / � 2D.�.'0// � 2MD.'0/ D 2MD.'/.
Applying Bavard Duality again gives

sclG.h/�
 .h/

2D. /
�

'.h/

4MD.'/
D

1

2M
sclH .h/:

Proof of Corollary 1.9 If H is an almost malnormal quasiconvex subgroup of a
hyperbolic group, then G is hyperbolic relative to H (Bowditch [5]). Hence H is
hyperbolically embedded in G by Dahmani et al [10, Proposition 2.4] and the claim
follows from Corollary 1.8.

Remark 5.8 Note that the malnormality condition can not be dropped in Corollary 1.9
even for free groups. For example, let F D F.x;y; t/ be the free group of rank 3 with
basis fx;y; tg. In what follows we write ab for b�1ab and Œa; b� for a�1b�1ab . Let
H D hx;y;xt ;yt i and let

hk D Œx;y�
�k Œxt ;yt �k :

Since the subset fx;y;xt ;ytg �G is Nielsen reduced, the subgroup H is freely gener-
ated by x;y;xt ;yt . Therefore sclH .hk/D kC1=2 (see Calegari [7, Example 2.100]).
On the other hand, we have

sclG.hk/D sclG.Œx;y��k.Œx;y�k/t /D sclG.ŒŒx;y�k ; t �/� 1:

Thus sclH .hk/=sclG.hk/!1 as k!1.
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