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Preorientations of the derived motivic multiplicative group

JENS HORNBOSTEL

We establish several new model structures and Quillen adjunctions both in the classical
and in the motivic case for algebras over operads and for modules over strictly
commutative ring spectra. As an application, we provide a proof in the language
of model categories and symmetric spectra of Lurie’s Theorem that topological
complex K–theory represents orientations of the derived multiplicative group. Then
we generalize this result to the motivic situation.

55P42; 18D50, 19D99, 14F42

1 Introduction

In this article, we establish several new model structures and Quillen adjunctions in the
motivic setting and study their basic properties. In particular, we establish stable positive
model structures for algebras over operads in motivic symmetric spectra. Moreover, we
show that both the flat and the projective stable positive model structures on motivic
symmetric spectra satisfy the Goerss–Hopkins axioms, and that the flat variant lifts to a
model structure on strictly commutative ring spectra which satisfies the Toën–Vezzosi
axioms. In short, we make a first step towards a motivic version of derived algebraic
geometry.

After the invention of several strict monoidal model categories underlying the stable
homotopy category (see Elmendorf, Kriz, Mandell and May [19], Hovey, Shipley and
Smith [35]), the subsequent study of commutative algebra of strictly commutative ring
spectra has drawn a lot of attention in recent years. Gluing these “derived” commutative
ring objects together leads to one of the possible frameworks for derived algebraic
geometry, with classical algebraic geometry embedded via the Eilenberg–Mac Lane
functor. Derived algebraic geometry through commutative ring spectra has become
even more popular when Jacob Lurie gave a conceptual definition of tmf (that is
topological modular forms) as the solution of a moduli problem in derived algebraic
geometry, as opposed to the handicraft construction of Goerss–Hopkins–Miller; see
Behrens [6]. More precisely, Lurie constructs tmf as the global sections of a sheaf
of E1–ring spectra classifying oriented derived elliptic curves. He has sketched the
proof of this theorem in [42], and has lectured about various parts of it at various places.
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2668 Jens Hornbostel

According to him, the best language to state and prove the theorem is the one of infinity
categories rather than the one of model categories. Here infinity categories really mean
quasicategories, also known as weak Kan complexes, as first invented by Boardman and
Vogt [13] and recently studied in great detail by Lurie, Joyal and others. The interested
reader should consult [41; 43], as well as Bergner [9] for a comparison with other
approaches to infinity categories. We expect that Lurie will publish a detailed proof
of his theorem in this language in the near future, the books [41] and [43] containing
already most of the necessary language and machinery.

The above description of tmf (corresponding to height two and the second chromatic
layer) has an analog in height 1 which is much easier to state and to prove, and is
also due to Lurie [42, Section 3]. Namely, real topological K–theory KO classifies
oriented derived multiplicative groups. The key step for proving this is to show that the
suspension spectrum of CP1 classifies preorientations of the derived multiplicative
group. Here the derived multiplicative group is by definition Gm WD Spec.†1ZC/,
the name being justified by classical algebraic geometry over a base field k , where the
multiplicative group is Spec.kŒZ�/. As usual, the object RmapAbMon.Sp†/.†

1ZC;�//
it represents via the derived version of the Yoneda embedding will still be called the
multiplicative group. (In the present article, all arguments take place in the affine
derived setting, so there is no need to write Spec and to reverse the order of the
arrows everywhere.) We will provide a proof of this result in the language of model
categories and symmetric spectra. For this we tacitly assume CP1 (compare [42])
that the topological monoid CP1 has been replaced by a homotopy equivalent model
that is actually a topological resp. simplicial group. Then the result reads as follows in
general, the special case N D CP1 being the one discussed above.

Theorem 1.1 (Lurie) For any abelian monoid A in symmetric spectra Sp† (based
on simplicial sets) and any simplicial abelian group N , we have a natural isomorphism
of abelian groups

HomHo.AbMon.Sp†//.†
1NC;A/

' HomHo.AbMon.�opSets//.N;RmapAbMon.Sp†/.†
1ZC;A//

D HomHo.AbMon.�opSets//.N;Gm.A//:

Here Ho.�/ denotes the homotopy category, Rmap means the derived mapping space
and the weak equivalences between abelian monoids are always the underlying ones,
forgetting the abelian monoid structure. The model structures involved in this statement
are discussed in detail in Section 3. Beware that in general the category of abelian
monoids in a homotopy category of a monoidal model category is different from the
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homotopy category of abelian monoids in the monoidal model category, the monoidal
model category .�opSets;�/ and the abelian monoid QS0 in Ho.�opSets/ being the
most prominent example.

We will prove Theorem 1.1 in Section 4, and indeed a much more general version
(see below). Using a theorem of Snaith [64], Lurie’s definition of an orientation and
his above theorem then imply that complex K–theory represents orientations of the
standard derived multiplicative group, and then further that real K–theory represents
oriented derived multiplicative groups in general. We refer the reader to Section 5 for
further details.

The above theorem can be generalized to motivic symmetric spectra Sp†;T .M/ on the
smooth Nisnevich site MD .Sm=S/Nis with S an arbitrary Noetherian base scheme
as follows, everything equipped with appropriate motivic (that is A1–local) model
structures as discussed in Section 3, and the motivic derived multiplicative group Gmot

m

defined using the suspension spectrum with respect to a given motivic circle T , that
is represented by †1

T
ZC . (As the notation suggests, we are mainly interested in the

circle provided by A1=.A�0/ resp. the weakly equivalent T D P1 pointed at infinity.)

Theorem 1.2 Let M D .Sm=S/Nis and T D S1 or T D P1 . Then for any abelian
monoid A in motivic symmetric T –spectra Sp†;T .M/ and any abelian group N

in the category �opPrShv.M/ of simplicial presheaves on M, we have a natural
isomorphism of abelian groups

HomHo.AbMon.Sp†;T .M///.†
1
T NC;A/

' HomHo.AbMon.�opPrShv.M///.N;RmapAbMon.Sp†;T .M//.†
1
T ZC;A//

D HomHo.AbMon.�opPrShv.M///.N;Gm.A//:

This is a rather straightforward application of the main technical results of this article.
Applying it to T D P1 pointed at 1 and to N D P1 , which is not a variety but still
a simplicial presheaf, and using the recently established motivic version of Snaith’s
Theorem (see Gepner and Snaith [22] and Spitzweck and Østvær [66], it will imply that
algebraic K–theory represents motivic orientations of the derived motivic multiplicative
group, provided one works with the correct motivic generalizations of the concept of
derived algebraic groups and of orientations. Again, we refer to Section 5 for details,
as well as for possible connections to hermitian K–theory which in many ways is the
motivic analog of topological real K–theory.

One of the many motivations of this articleis that the generalizations of the language of
derived algebraic geometry from classical to motivic spectra should ultimately lead to
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a definition of a motivic version of tmf, generalizing the above Theorem 1.1 of Lurie
about height 2 to the motivic setup as well. We will not pursue this in the present
article. (Note that the recent article by Naumann, Spitzweck and Østvær [49] allows to
define motivic elliptic cohomology theories and motivic elliptic ring spectra via motivic
Landweber exactness.) However, concerning motivic derived algebraic geometry, we
wish to point out three interesting applications of the results of this article. First, motivic
symmetric P1–spectra equipped with a suitable positive model structure satisfy the
axioms of a HA–context of Toën and Vezzosi [67], so their machinery applies to this
example. See Section 3.4 for a detailed discussion. Second, we have suitable model
structures on algebras over stable motivic operads (see Theorems 3.6 and 3.10).

Theorem 1.3 Let T D S1 or T D P1 , and let O be any operad in Sp†;T .M/,
and consider Sp†;T .M/ with the positive flat stable model structure established in
Theorem 3.4. Then the forgetful functor from O–alg to Sp†;T .M/ creates a model
structure on O–alg in the sense of Schwede and Shipley [61, Lemma 2.3]. Moreover,
any Quillen equivalence of operads leads to Quillen equivalent categories of algebras.

Third, the motivic analogue of the axioms of Goerss and Hopkins [23] is also satisfied
(see Theorem 3.15). I understand that this third application was established simultane-
ously and independently by Paul Arne Østvær, who wants to use it for doing motivic
obstruction theory. Both applications are presented in Section 3.

We pause to make some comments concerning the proof of Theorem 1.2, which is
given in Section 4 and uses the results established in Section 3. First, one should
notice that the theorem is about T –spectra, but even for T D P1 the proof involves
motivic S1–spectra as well. This is mainly due to the fact that at some point one needs
a motivic version of the recognition principle which relates E1–spaces to connective
S1–spectra. The classical recognition principle is a statement about S1–deloopings,
and our generalization of it to motivic S1–spectra is sufficient for our purposes. Finding
a recognition principle for motivic P1–spectra, that is a motivic operad encoding Gm –
or P1–deloopings, remains one of the main open problems in motivic homotopy theory,
as already pointed out by Voevodsky in [69, introduction]. To show that a motivic
version of the recognition principle with respect to S1 holds, a previous version of this
articleinvoked the beautiful A1–connectivity theorem of Fabien Morel [47], which is
known only over a field. (It seems to be an open question if Morel’s Theorem also
holds for 1–dimensional base schemes. For 2–dimensional base schemes, there is a
counterexample due to Ayoub.) However, we later realized that the proof does not
really require this result and hence holds for more general base schemes.

At first glance, it might also be surprising that we need E1–structures to prove a
theorem about strictly commutative monoids in strictly monoidal model categories.
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This is essentially a consequence of the Lewis paradoxon, as explained at the end of
Section 2. If one is only interested in strict adjunctions and willing to ignore all derived
information, and in particular to sacrifice homotopy invariance of the statement, then
there is a much easier proof not using operads, which we present in Section 2. At the
beginning of Section 2, we fix some notation which will be used throughout this article.

Several results of this article may be generalized to other left Bousfield localizations
of simplicial presheaves on a site (or even on other diagram categories satisfying
some cardinality conditions), and similarly for the stable case. See the Remark after
Theorem 3.6 for a more precise statement in this direction.

The referee points out that it should be possible to prove not only Theorem 1.1, but
also Theorem 1.2 using infinity-category techniques. This would require eg to work
with the infinity category of A1–local sheaves in some appropriate infinity-category
sense. As I am not an expert in that field, and as the focus of this article is on the
relevant model structures for motivic model rather than infinity categories, I will not
try to speculate on the details of this presumably much simpler proof here. The recent
preprint [55] provides many of the relevant results concerning the infinity theoretic
description of the motivic categories.

This work started as a joint project with Niko Naumann, and was presented as such on
a conference in Münster in July 2009. I am indebted to him for the many discussions
we had on the topics of this article. Some parts of the work presented here have been
obtained in joint work or are at least influenced by these discussions, and I thank him
for allowing me to include these parts here. Moreover, I wish to thank Stefan Schwede,
John Harper and Benoit Fresse for discussions and explanations about certain points in
their works concerning model structures for classical symmetric spectra, operads over
them and E1–operads, respectively, as well as Jacob Lurie for some explanations
about [42] and Pablo Pelaez for discussions related to [52; 47].

2 The nonderived situation: preorientations which are not
homotopy invariant

The main goal of this section is to establish the following theorem, which is a nonderived
analogue of Theorems 1.1 and 1.2. All the objects involved are defined below, and the
proof of the theorem is given by suitably combining the lemmata in this section.

Theorem 2.1 Let C be an essentially small a category, let M be an abelian group
object in �opPrShv.C/ and A an abelian monoid object in Sp†;T .C/. Then we have a
natural adjunction isomorphism of simplicial sets

mapAbMonSp†;T .C/.S ŒM �;A/ŠmapAbMon�opPrShv.C/.M;G0m.A//:
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2672 Jens Hornbostel

We now introduce some notation. For any monoidal category DD .D;˝/, we denote
the category of monoid objects in D by MonD , and the one of abelian monoids
by AbMonD . When talking about abelian monoids, we assume moreover that the
monoidal categories and functors involved are symmetric. In our applications, ˝ will
be either the cartesian product � or some smash product ^. All monoids are assumed
to be associative, but not necessarily unital. We refer the reader to Mac Lane [44] for
precise definitions of monoidal categories, (strong) monoidal functors etc.

We fix a category C from now on. In applications C will be a site, more specifically
either the trivial site or the site .Sm=k/Nis of smooth k –schemes, k a field, with
the Nisnevich topology. We denote the category of simplicial presheaves on C by
�opPrShv.C/. For a given simplicial presheaf T , we denote the category of presheaves
of symmetric T –spectra on C by Sp†;T .C/. Model structures on these categories are
discussed in Morel and Voevodsky [48], Jardine [37], Hovey [34] and elsewhere, but
we will not need them in this subsection. One might wish to call commutative monoids
in Sp†;T .C/ “commutative motivic symmetric ring spectra” in case C D .Sm=k/Nis ,
resp. “commutative symmetric ring spectra” in case C D pt .

Adding a disjoint base point is denoted by . � /C and yields a left adjoint to the func-
tor F forgetting the base point in various situations. For a simplicial presheaf X ,
we set S ŒX � WD†1

T
.XC/ 2 Sp†;T .C/ which is defined objectwise as in [35, Defini-

tion 2.2.5] or Schwede [60, Example 1.2.6]. If X is a monoid in the monoidal category
.�opPrShv.C/;�/, then XC is a monoid in the monoidal category .�opPrShv.C/�;^/
of pointed simplicial presheaves and S ŒX � is a monoid in the monoidal category
.Sp†;T .C/;^/ of presheaves of symmetric T –spectra; see Lemma 2.3 below. We
denote the functor sending a presheaf of symmetric T –spectra to the simplicial presheaf
sitting in degree 0 by Ev0 .

For simplicial presheaves F and G we have a simplicial set map�opPrShv.C/.F ;G/ given
by map�opPrShv.C/.F ;G/n WD Hom�opPrShv.C/.F ��n;G/. We define the simplicial
presheaf map�opPrShv.C/.F ;G/ by map�opPrShv.C/.F ;G/.c/D map�op.C=c/.F jc;Gjc/
where F jc denotes the restriction of the (simplicial) presheaf F to the category C=c
of objects in C lying over c . For presheaves of symmetric T –spectra, we define the
simplicial sets mapSp†;T .C/ and simplicial presheaves mapSp†;T .C/ in a similar way.
Forgetting about simplicial enrichments, we write Hom for the presheaf version of
Hom.

Finally, we define the (nonderived) multiplicative group as follows, the derived version
of the introduction being the one using the derived mapping space Rmap instead.

Definition 2.2 The nonderived multiplicative group is the functor

G0mW AbMonSp†;T .C/! AbMon�opPrShv.C/
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given by
G0m.A/ WDmapAbMonSp†;T .C/.S ŒZ�;A/;

where mapAbMonSp†;T .C/DmapMonSp†;T .C/ is introduced in Definition 2.5 below. The
monoid structure on G0m.A/ is induced by the comonoid structure on S ŒZ�, the latter
lifting the one on ZŒZ� corresponding to the multiplicative group in algebraic geometry
over Spec.Z/.

We define monoidal and strict monoidal functors between monoidal categories and
monoidal transformations between (strong) monoidal functors as in [44, Chapter XI].
An adjunction between monoidal categories is called a monoidal adjunction if the unit
and the counit are monoidal transformations. One easily checks that a monoidal functor
sends monoids to monoids. The following lemma is well known.

Lemma 2.3 (i) We have a monoidal adjunction

. � /CW �
opPrShv.C/��opPrShv.C/� WF;

where . � /C is strong monoidal and the forgetful functor F is monoidal. Conse-
quently, we have isomorphisms

HomMon�opPrShv.C/.M;F.N //' HomMon�opPrShv.C/�.MC;N /

for any unpointed monoid M 2 Mon�opPrShv.C/ and any pointed monoid
N 2Mon�opPrShv.C/� .

(ii) We have a monoidal adjunction

†1T W �
opPrShv.C/�� Sp†;T .C/ WEv0;

where both functors are strong monoidal. Consequently, we have isomorphisms

HomMon�opPrShv.C/�.A;Ev0.B//' HomMonSp†;T .C/.†
1
T A;B/

for any monoid A in �opPrShv.C/� and any monoid B in Sp†;T .C/.
(iii) We have a monoidal adjunction

S Œ � �W �opPrShv.C/� Sp†;T .C/ WF ıEv0;

where S Œ � � is strong monoidal and F ıEv0 is monoidal. Consequently, we have
isomorphisms

HomMon�opPrShv.C/.M;F ıEv0.B//' HomMonSp†;T .C/.S ŒM �;B/

for any monoid M in �opPrShv.C/ and any monoid B in Sp†;T .C/.
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Proof Part (i) is straightforward. The morphisms of [44, XI.2.(1), (2)] for the monoidal
functor F are given by the quotient map X �Y !X ^Y and by pt! .pt/C D S0 .
The final statement follows from the obvious remark that a monoidal adjunction induces
an adjunction between categories of monoids.

Part (ii) is checked objectwise, using [35, Definition 2.2.5, Proposition 2.2.6.1 and
Definition 2.1.3] or the corresponding results in [60] and then proceeding similar to
part (i).

Part (iii) is obtained by composing (i) and (ii).

Definition 2.4 Let .D;˝/ be a monoidal category such that the underlying category
is enriched over simplicial sets. We say that .D;˝/ satisfies (MS) if there is a natural
transformation of simplicial sets �x;y;z;wW map.x;y/�map.z; w/!map.x˝z;y˝w/

which on map. ; /0DHom coincides with the transformation sending .f;g/ to f ˝g ,
and we say that .D;˝; �/ is a simplicial monoidal category.

The property (MS) may be rephrased by saying that ˝ is enriched in simplicial sets.

Definition 2.5 Let .D;˝; �/ be a simplicial monoidal category. Then for any monoids
.x;mx/ and .y;my/ in D , we define mapMon.x;y/ � map.x;y/ to be the equal-
izer of map.mx;y/W map.x;y/! map.x ˝ x;y/ and map.x ˝ x;my/ ı �x;y;x;y ı

�W map.x;y/! map.x˝ x;y/, where �x;y;x;y is as in Definition 2.4. If we have
DD�opPrShv.C/, DD�opPrShv.C/� or DDSp†;T .C/, then we denote the presheaf
version of mapMon by mapMon , and the one of HomMon by HomMon .

Lemma 2.6 Lemma 2.3 above remains true when replacing Hom by Hom or by map
everywhere.

Proof The isomorphisms for HomMon formally imply those for HomMon . The claim
about mapMon follows from Lemma 2.8 below.

Definition 2.7 Let .C;˝C ; �/ and .D;˝D; �/ be simplicial monoidal categories
as in Definition 2.4. Let F W C ! D be a functor of simplicial categories such
that the underlying functor of categories is a monoidal functor with structure maps
F2W F.x/˝D F.y/!F.x˝C y/ and F0W 1D!F.1C/. We say that F is a simplicial
monoidal functor if for any objects x;y of C the diagram

map.Fx;Fy/�map.Fx;Fy/

�D
��

F�C // map.F.x˝x/;F.y˝y//

F�
2��

map.Fx˝Fx;Fy˝Fy/
F2�

// map.Fx˝Fx;F.y˝y//

commutes.
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Lemma 2.8 (i) Assume that .Di ;˝i ; �i/, i D 1; 2 are simplicial monoidal cate-
gories and that

˛W D1 � D2 Wˇ

is a simplicial monoidal adjunction, ie ˛ and ˇ are simplicial monoidal functors
and there is a monoidal adjunction between the underlying monoidal functors.
Then for .xi ;mi/ monoids in Di , i D 1; 2, we have an isomorphism

mapMonD1
.x1; ˇx2/'mapMonD2

.˛x1;x2/

of simplicial sets, and similarly for map.

(ii) The monoidal categories .�opPrShv.C/;�/;.�opPrShv.C/�;^/ and .Sp†;T.C/;^/
are enriched over simplicial sets as categories and satisfy (MS) with respect to
the obvious choices of � , hence are simplicial monoidal categories.

(iii) The monoidal adjunctions of Lemma 2.3 are simplicial.

Proof The proof of (i) is a little long but straightforward. In part (ii), for constructing
the transformations � required in (MS) one uses the diagonal �n

C!�n
C ^�

n
C , the

twist and that for any simplicial presheaf K (in particular for K D �n ) and any
X 2 Sp†;T .C/ one has K ^X D .†1

T
K/^X which can be shown objectwise using

the results of [60, Chapter I]. For part (iii), use that all mapping spaces involved are
defined using the standard cosimplicial object, and the composition is defined using
the diagonal on it.

Observe that for any monoidal category C , HomMonC.A;B/D HomAbMonC.A;B/ for
any abelian monoid objects A and B in C , and similar for Hom, map and map, eg,
both Lemma 2.3 and Lemma 2.9 below restrict to abelian monoids. We now restrict
our discussion to unital monoids. For M 2Mon�opPrShv.C/, we denote by M� the
group object in �opPrShv.C/ defined by .M�/k D .Mk/

� , that is taking objectwise
the invertible elements in each simplicial degree. These units satisfy the following.

Lemma 2.9 (i) For any N 2 Mon�opPrShv.C/ a simplicially constant group
object and M 2Mon�opPrShv.C/, one has an isomorphism

mapMon�opPrShv.C/.N;M /'mapGroups�opPrShv.C/.N;M
�/

and similar for map. In particular, if N D Z one has

mapMon�opPrShv.C/.Z;M /'M�:
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(ii) More generally, if N is a group object in �opPrShv.C/, then one has an isomor-
phism

mapMon�opPrShv.C/.N;M /'mapGroups�opPrShv.C/.N;M
�/

and similarly for map.

Proof For simplicially constant N , one has isomorphisms

mapMon�opPrShv.C/.N;M /n ' HomMon�opPrShv.C/.N;map�opPrShv.C/.�
n;M //

' HomMon�opPrShv.C/.N;map�opPrShv.C/.�
n;M /0/

' HomMon�opPrShv.C/.N;Mn/;

where the first isomorphism holds because . � /n commutes with limits. The monoid
structure on map�opPrShv.C/.�

n;M / is defined by composing � , the diagonal
�n!�n ��n and the monoid structure of M . Using these isomorphisms, part (i)
about map reduces to the corresponding well-known result for usual monoids, and
the result about map follows formally from this by definition. For the claim about Z
use that mapMon�opPrShv.C/.Z;M /n 'HomMon.Z;map�opPrShv.C/.�

n;M // and that
HomMon.Z;M /DM� for usual monoids M . For (ii), first check

map�opPrShv.C/.�
n
��k ;mapMon�opPrShv.C/.Z;M //

'mapMon�opPrShv.C/.Z;map�opPrShv.C/.�
n
��k ;M //;

as both are subsets of map�opPrShv.C/.�
n��k �Z;M / defined by the same diagrams.

As k varies, this implies an isomorphism of simplicial groups

map�opPrShv.C/.�
n;M�/'map�opPrShv.C/.�

n;M /�;

where the monoid structure on the right is given by the one on M . Applying
HomMon�opPrShv.C/.N; / and using part (i), one deduces that

HomMon�opPrShv.C/.N;map�opPrShv.C/.�
n;M�//

' HomMon�opPrShv.C/.N;map�opPrShv.C/.�
n;M /�/

' HomMon�opPrShv.C/.N;map�opPrShv.C/.�
n;M //;

and the claim now follows by varying n, using the adjunction between map and �.
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Using the above results, Theorem 2.1 now follows from the following chain of isomor-
phisms using the amplification of the indicated results provided by Lemma 2.6:

mapMonSp†;T .C/.S ŒM �;A/

2:3.iii/
' mapMon�opPrShv.C/.M;F ıEv0.A//

2:9.ii/
' mapGroups�opPrShv.C/.M; .F ıEv0.A//

�/

2:9.i/
' mapMon�opPrShv.C/.M;mapMon�opPrShv.C/.Z;F ıEv0.A//

2:3.iii/
' mapMon�opPrShv.C/.M;mapMonSp†;T .C/.S ŒZ�;A//

DmapMon�opPrShv.C/.M;G0m.A//:

Recall that we may replace Mon by AbMon everywhere.

Now, what happens if we try to give Theorem 2.1 a homotopy theoretic meaning,
equipping everything with suitable model structures? One problem that may arise is
the definition of the multiplicative group in Theorems 1.1 and 1.2 using the derived
mapping spaces with respect to the chosen model structures. It is not clear if there is a
cofibrant replacement of S ŒZ� which is also a comonoid, that is an affine derived group
scheme. One may try to show that the functor represented by G0m is weakly equivalent
to one factoring through simplicial abelian groups. Independently (in fact maybe not
completely independently) of this, the main problem seems to be the following. Making
our proof homotopy invariant means that all adjunctions involved have to be Quillen,
and that will be impossible to achieve. The problem that appears does so already for
the trivial category C with a single object and no nontrivial automorphisms, that is for
classical homotopy theory. Consider the adjunction of Lemma 2.3(iii), restricted to
abelian monoids. We want the model structure on AbMon.�opSets/ to be the usual
one. For Sp† , we have essentially two families of model structures, namely the usual
ones and the positive ones. If we choose a usual nonpositive stable model structure,
then this will not lift to a model structure on AbMon.Sp†/ with weak equivalences and
fibrations defined using the forgetful functor to Sp† because of the Lewis paradoxon;
see eg Mandell, May, Schwede and Shipley [45, Section 14] or [61, Remark 4.5]. The
fact that this adjunction is not Quillen for any reasonable model structure on abelian
monoids is why we have to work so much more in the next two sections, using motivic
versions of E1–spectra, of the recognition principle, of a theorem of Schwede and
Shipley [62] establishing a zigzag of Quillen equivalences between HZ–modules in
symmetric spectra and unbounded complexes of abelian groups, etc. This should not be
considered as a technical problem about model category theory or symmetric spectra,
but as an honest mathematical problem related to the stable homotopy type of the
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sphere spectrum and the content of our main theorem. Therefore it will appear in some
way or another in any language one might choose to deal with these questions.

3 Model structures for algebras over operads in symmetric
spectra and applications

The goal of this section is to show that the category of motivic symmetric spectra as
considered by Jardine [37] and Hovey [34] equipped with suitable model structures
satisfies all properties necessary for a motivic version of derived algebraic geometry.
More precisely, we show (see Section 3.4) that motivic symmetric spectra together
with suitable model structures enable us to construct model structures for algebras in
motivic symmetric spectra under a given operad, motivic symmetric spectra satisfy the
assumptions of [67, Section 1.1] when choosing suitable additional data (except that we
do not discuss possible choices of C0 and A as introduced in [67, 1.1.06, 1.1.0.11] here).
They also satisfy a motivic variant of the axioms of [23, 1.1 and 1.4] (see Section 3.3).
In particular, we construct model structures on E1 and strictly commutative algebras
over motivic symmetric spectra.

At the end of the first subsection, we study model structures for algebras over motivic
operads. This has not been considered so far. There is also one new (nonpositive!) model
structure for E1–operads in classical symmetric spectra, although the existence of
such a model structure will not be too surprising to the expert. Namely, Proposition 3.9
also applies to the trivial site C , that is simplicial-set valued symmetric S1–spectra.

Later in this section, some further model structures and results related to simplicial
presheaves and HZ–modules are considered as well.

3.1 Stable model structures

Let CD .Sm=S/Nis and fix a cellular left proper model structure on �opPrShv.C/ which
yields the Morel–Voevodsky [48] unstable homotopy category H.S/, and similarly
for the pointed variant �opPrShv.C/� . Throughout this section, we will work with the
motivic injective model structure of [48] — or rather with its extension to simplicial
presheaves as in [37] — which Hirschhorn ([29], see also [31, Corollary 1.6]) has shown
to be cellular. We denote the generating cofibrations (resp. trivial cofibrations) by I

(resp. J ). Besides being simplicial, cellular and proper, this model structure has two
additional features which will be important in the sequel. First, the cofibrations are
precisely the monomorphisms, in particular all objects are cofibrant. Second, it is a
monoidal model category, that is it satisfies Hovey [33, Definition 4.2.6]. This follows
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because smashing with any object preserves weak equivalences, compare Morel and
Voevodsky [48, Lemma 3.2.13], the author [31, Theorem 1.9] or Dundas, Röndigs and
Østvær [17, Lemma 2.20]. Note that the second condition of [33] for being a monoidal
model category is automatically satisfied because all objects are cofibrant.

We now fix an object T of �opPrShv.C/� . For many arguments below we may take an
arbitrary T , but sometimes (eg in Theorems 3.6 and 3.15) we will need that T 'S1^T 0

for a suitable T 0 , which holds in particular for T DS1 and for T DP1 . So we assume
that T ' S1 ^T 0 for a suitable T 0 from now on, although many results do hold in
greater generality.

We may apply [34, Theorem A.9, Definition 8.7] and Hirschhorn [30, Theorem 4.1.1]
to get a stable model structure on the category of motivic symmetric spectra Sp†;T .C/
from the above unstable one on �opPrShv.C/� . This model structure coincides with
the one of [37, Theorem 4.15]. In particular, the motivic stable equivalences are those
defined on [37, page 509], that is defined with respect to injective stably fibrant objects.

Theorem 3.1 (Hovey, Jardine) The above stable model structure on Sp†;T .C/ is
simplicial, proper, cellular and monoidal.

Proof By [37, Theorem 4.15] we have a proper closed simplicial model structure.
It remains to check the first condition of [33, Definition 4.2.6] for a monoidal model
category, that is the pushout product axiom. For this we may apply [34, Theorem 8.11]
as we have chosen a model structure on �opPrShv.C/ for which all objects are cofibrant,
or directly quote [37, Proposition 4.19].

This stable model structure on spectra will be referred to as the projective stable model
structure. The term “projective” refers to the way we obtained the stable structure from
the unstable one, as the unstable model structure we started with really is an “injective”
one. With respect to our fixed choice of the model structure on �opPrShv.C/, this is
a motivic generalization of the model structure considered in [35, Theorem 3.4.4]. It
will turn out that this model structure will not meet all our requirements, which is why
we need to introduce a motivic version of the (positive) S–modelDflat model structure
of [35] and Shipley [63]. The reasons for considering flat and positive model structures
will become clear below. In the approach of Toën–Vezzosi, the reason for considering
the flat model structure is that a motivic generalization of [63, Corollary 4.3] provides
a tool to reduce [67, Assumption 1.1.0.4(2)] to [67, Assumption 1.1.0.3].

We will also need an injective stable model structure on motivic symmetric spectra,
that is a model structure obtained by starting with the levelwise cofibrations and weak
equivalences and then localize to obtain the stable model structure. This is necessary
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because some arguments below will use that the monomorphisms are cofibrations in a
certain model structure, which means that for showing that a monomorphism X ! Y

is a weak equivalence it is sufficient to show that the quotient Y=X is contractible,
that is weakly equivalent to a point. This model structure has been first considered by
Jardine [38].

Theorem 3.2 (Jardine) There is a model structure on Sp†;T .C/ with weak equiv-
alences being the motivic stable equivalences and cofibrations being the levelwise
monomorphisms. This model structure is simplicial and proper. It is called the injective
stable model structure.

Proof See [38, Theorem 10.5] except for right proper, which follows from the right
properness of the stable projective model structure which has more fibrations and the
same weak equivalences.

Next, we establish a flat stable and a positive flat stable model structure. The identity
morphisms between these four stable model structures, that is injective, flat, positive
flat and projective, are all Quillen equivalences of simplicial model categories. Of
course, it is also possible to establish projective and injective positive stable model
structures, but we will not need these.

As in the classical case, there is a functor from symmetric sequences in �opPrShv.C/�
to Sp†;T .C/ which is left adjoint to the forgetful functor. We denote it by T ˝�, and
it enjoys the same formal properties as the functor S ˝� in [35]. For the definition of
I � cof for a set of maps I in a category, see eg [33, Definition 2.1.7].

Definition 3.3 A map is a motivic flat cofibration if it is in T ˝M � cof, where M

is the class of levelwise monomorphisms in symmetric sequences.

As we said above, we will also define “positive” variants of the model structures (at
least for the flat one below), following [45, Definition 6.1, Definition 9.1 and page 484],
which will be necessary to define a model structure on strictly commutative symmetric
ring spectra further below. This variant has fewer cofibrations than the nonpositive
(sometimes also called “absolute”) model structure. In particular, the motivic symmetric
sphere spectrum †1

T
S0 is no longer cofibrant, so the usual contradiction related to the

“Lewis paradoxon” does not appear (see eg [45, page 484]). Indeed, if one does not
work with the positive model structure, then in the notation of Theorem 3.17 below
the condition (2) of [30, Theorem 11.3.2] or equivalently [61, Lemma 2.3.(1)] that U

takes relative LJ –cell complexes to stable weak equivalences will fail. Looking at the
proofs for this condition (see in particular [63, Proposition 3.3] and [45, Lemma 15.5])
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one sees how the positive model structure arises. The key point is that the argument in
the proof of [45, Lemma 15.5] starting with “Since †i acts on O.q/ as a subgroup of
O.ni/” (read “on †q as a subgroup of †ni ”) does not work if nD 0.

Theorem 3.4 The category Sp†;T .C/ admits a model structure with the weak equiv-
alences being the stable motivic equivalences and cofibrations being the motivic flat
cofibrations. This model structure is simplicial, monoidal and proper, and we call it the
flat stable model structure. There is also a positive flat stable model structure having
the same stable weak equivalences and which enjoys the same properties (including
the pushout product axiom), except that the motivic sphere spectrum is not flat positive
cofibrant.

Proof To establish the flat and the flat positive model structure, there are various
possible proofs. We proceed roughly by generalizing the corresponding results of [63];
see however the remark in parenthesis at the end of the proof. When adapting Shipley’s
definition of I 0 and J 0 to the motivic case, one must work with our above sets I and J ,
of course. An alternative reference for [63, Proposition 1.2] which generalizes to the
motivic case is Dwyer and Kan [18]; see also Rezk [54, Proposition 3.1.9]. The proof
of [63, Proposition 1.3] goes through in the motivic case as well. Note that the model
category on equivariant simplicial presheaves one obtains is left proper. Alternatively,
one may deduce the motivic version of [63, Proposition 1.3] from [63, Proposition 1.2]
using Hirschorn’s [30] or Smith’s [5] generalization of Bousfield localization.

[63, Proposition 2.1] is just the product model structure. When establishing the motivic
generalizations of [63, Proposition 2.2 and Lemma 2.3], the arguments go through and
yield a cofibrantly generated level model structure, which again is even cellular. To see
this, observe that (both classical and) motivic symmetric spectra are cellular because
simplicial presheaves are cellular, and so are products of cellular model categories. To
check the three conditions of [30, Definition 12.1.1] for (motivic) symmetric spectra,
first observe that the third condition is [34, Proposition A.4]. We then use the adjunction
.T ˝�;U D Forget/ between symmetric sequences and symmetric spectra, where
U commutes with colims. The proof of the second condition is then similar to [34,
Lemma A.2]. Finally, for establishing the first property one proceeds as in the proof
of [34, Proposition A.8]. The argument there in fact slightly simplifies as we only
have to consider one functor T ˝� rather than Fn for fixed n with intermediate
considerations concerning Fm for other values of m. The level flat model structure on
motivic symmetric spectra is left proper because the injective stable model structure
which has more cofibrations and the same weak equivalences is left proper. To obtain the
motivic version of [63, Theorem 2.4], that is passing from the level to the stable model
structure, one may apply Hirschhorn localization as done in [34, Definition 8.7] rather
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than checking the details corresponding to the ones in the proof of [63, Theorem 2.4],
as we have shown that the flat level model structure is cellular and left proper. Hence
the flat stable model structure is also left proper. Note that it is right proper because
the stable projective model structure is right proper.

The proof that the positive model structure also exists again goes through in the motivic
case. In more detail, the proof for the positive model structure is exactly the same, the
only modification being that the motivic model structure generalizing the one found
in [63, Proposition 2.1] is defined as taking on †0 –spaces the cofibrantly generated
model structure with fibrations and weak equivalences being all morphisms. Then take
the product model structure on motivic †n –spaces for all n� 0 as before and proceed
as in the nonpositive case. As the positive model structure has fewer cofibrations, it
is also left proper. To show that the positive structure is right proper, note that the
stronger statement of [35, Lemma 5.5.3 (2)] generalizes to the motivic case. To see this,
one uses that the final argument of [35] carries over as the A1–local model structure
on �opPrShv.C/ is right proper by [37, Theorem A.5], and that the proofs of [35,
Theorem 3.1.14 and Lemma 3.4.15] do carry over.

To check that these model structures are monoidal, we must check the two condi-
tions of [33, Definition 4.2.6]. The second condition in the nonpositive case is easy
as the sphere spectrum is stably cofibrant because � ! Spec.S/C is cofibrant in
�opPrShv.C/� and T ˝� is left Quillen. Hence it remains to check the first condition,
that is the pushout product axiom. The proof of [35, Theorem 5.3.7] goes through, and
may even be simplified a bit, see Lemma 3.5 below, which also applies to the positive
variant.

(It is possible to use the powerful machinery of Bousfield localization more systemati-
cally to obtain a different proof. For example, one may quote Heller [28, Theorem II.4.5]
to obtain the global model structure for †n –simplicial presheaves which correspond
to [63, Proposition 1.3] and then impose cardinality bounds to see that this model struc-
ture is cofibrantly generated and even cellular. This is also done in [29, Theorem 4.9]
who attributes this result to Smith, and in [5, Theorem 2.16]. Hirschhorn or Smith
localization then yields the A1–local model structure on †n –simplicial presheaves,
with generating sets of (trivial) cofibrations different from the ones the approach of [63]
yields. To see that the flat level model structure on Sp†;T .C/ is cellular, one may use the
theorem of Jeff Smith on the existence of left Bousfield localizations for combinatorial
model categories, which has been written up recently by Barwick [5, Theorem 4.7].
Still another variant would be to apply a more recent localization theorem of Bousfield
as done in the appendix of [60], and this is certainly not the end of the list of variants
of proofs.)
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Lemma 3.5 Both the flat stable and the positive flat stable model structure on Sp†;T .C/
satisfy the pushout product axiom.

Proof We only do the nonpositive case. In the positive case, the condition on cofi-
brations follows similarly, and the one for stable equivalences then follows from the
corresponding property for the nonpositive model structure.

We start by observing that for any finite group G , the above model structure on
G–objects in �opPrShv.C/� is monoidal because �opPrShv.C/� is monoidal and
we have defined cofibrations and weak equivalences using the forgetful functor. It
follows that the category of symmetric sequences in �opPrShv.C/� is monoidal (see
eg Harper [27, Theorem 12.2]). The stable flat model structure on Sp†;T .C/ has
the same cofibrations as the level structure, so it remains to show that if given two
cofibrations f W A ! B and gW X ! Y then if f (or g ) is a stable equivalence
then so is f ^ gW A ^ Y qA^X B ^ X ! B ^ Y . This can be shown exactly as
in [35, Theorem 5.3.7(5)]. The argument goes through replacing as usual simplicial
sets by simplicial presheaves and S1 by T . In particular [35, Lemma 3.1.6] remains
valid in this situation.

Note that similar to [35], the proof of this lemma provides a variant of the above proof
that the stable projective model structure on Sp†;T .C/ satisfies the pushout product
axiom.

Next, we wish to study operads O over motivic symmetric spectra. There are two
approaches we are interested in: Simplicial operads, that is operads in simplicial sets
for simplicial monoidal model categories, and internal operads in monoidal model
categories. We sometimes apply one and sometimes the other point of view. Every
operad in simplicial sets yields an internal operad in Sp†;T .C/ via the monoidal
functor †1

T
, and a similar argument applies to the unstable case of simplicial presheaves.

The converse is not true, but all operads we are interested in are simplicial ones. We
will establish a theorem on the existence of model structures for arbitrary internal
operads and stable positive model structures (see Theorem 3.6), and weaker results in
the nonpositive case (see Proposition 3.9). The latter will be used when considering
adjunctions of type .†1

T
;Ev0/ for E1–objects.

In general, one of the standard ways to construct a model structure on a category D
is to lift a cofibrantly generated model structure on a category C along a right adjoint
in a free/forgetful-style adjunction C � D , defining fibrations and weak equivalences
in D by applying the forgetful functor. If this does yield a model structure, then the
adjunction is Quillen and we say that C creates a model structure on D . The main
problem when checking the model axioms for D is that in one of the factorizations
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obtained by the small object argument it is not clear that certain relative cell complexes
are weak equivalences. See eg [61, Lemma 2.3], [30, Theorem 11.3.2], Berger and
Moerdijk [8, 2.5] and certain proofs below. One strategy for proving this is to establish
a fibrant replacement functor; see eg the discussion in the remark after Proposition 3.11
below. Another strategy is to check the required property “by hand”. If one is unable to
successfully apply one of these two strategies, one may — as first done by Hovey [32] —
try to proceed by weakening the axioms of a model category in a suitable way, which
leads to the notion of a semimodel category. See for example [32], Spitzweck [65] and
Fresse [21, 12.1]; we will not pursue this approach.

The following theorem is a generalization of a result of Harper [26]. Compare also the
article of Elmendorff and Mandell [20] which establishes a similar result for simplicial
operads.

Theorem 3.6 Let O be any operad in Sp†;T .C/, and consider Sp†;T .C/ with the
positive flat stable model structure. Assume that T ' S1 ^ T 0 for some pointed
object T 0 . Then the forgetful functor from O–alg to Sp†;T .C/ creates a model
structure on O–alg in the sense of [61, Lemma 2.3].

Proof The proof is along the lines of [26, Theorem 1.1]. We will indicate the nontrivial
modifications to be made in the motivic setting. One proceeds by showing that the first
condition of [61, Lemma 2.3] is satisfied. Using that transfinite compositions of acyclic
monomorphisms are acyclic monomorphisms because they are the acyclic cofibrations
for the model structure of Theorem 3.2, this boils down to show the motivic analog
of [26, Proposition 4.4] about a certain morphism j . (Note that in the end we only
care about symmetric sequences of symmetric spectra which are concentrated in degree
zero, as discussed in [26, Section 7]) To prove the latter, using a filtration argument it is
sufficient (notation taken from [26]) to show that jt is a weak equivalence for all t . For
this we proceed as in [26, Proposition 4.29], using that there is a stable model structure
on motivic spectra in which all levelwise monomorphisms are cofibrations, which exists
thanks to Theorem 3.2. Hence we need motivic versions of [26, Propositions 4.28
and 4.29]. The proof of [26, Propositions 4.29] uses a five lemma argument which
requires that smashing with S1 detects stable weak equivalences, which is fine as
T ' T 0 ^ S1 . Everything else now carries over to the motivic case. (Note that the
positive model structure is used in [26, proof of Proposition 4.28], and looking at [26,
Calculation 6.15] one sees exactly what fails for mD 0.)

Remark The proof of Theorem 3.6 applies to other categories of symmetric spectra,
that is starting with other model structures on �opPrShv.C/ than the motivic one.
More precisely, let us consider the category �opPrShv.M/ of simplicial presheaves
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on an arbitrary small category M. This category may be equipped with Heller’s
global injective model structure, which Hirschhorn has shown to be cellular and left
proper [31, Theorem 1.4]. Thus we may consider the left (Hirschhorn–)Bousfield
localization LS�

opPrShv.M/ with respect to an arbitrary set of morphisms S in M.
The proof (see Theorem 3.12 below) that this model structure lifts to a model structure
on algebras over an operad in �opPrShv.M/ goes through in this general setting
provided we can show that the fibrant replacement functor in �opPrShv.M/ commutes
with cartesian products. Now to generalize Theorem 3.6 to symmetric T –spectra build
from �opPrShv.M/, we need to check that there is an induced stable injective model
structure on symmetric spectra similar to the one of Jardine (see Theorem 3.2), that is
one with all levelwise monomorphisms being cofibrations. This together with the fact
that inverting T ^� inverts S1 ^� is all we really need to make the other proofs in
this section work, in particular Theorem 3.6 and also Theorem 3.10 below, applying
the techniques of [35; 30; 26] in precisely the same way as in the case of motivic local
model structures above.

Observe that the above forgetful functor admits the “free algebra” functor as a (Quillen)
left adjoint, and also that both categories admit internal mapping spaces compatible
under this adjunction. This will be generalized in Theorem 3.10 below.

We now shift our attention to nonpositive model structures. The next conjecture
is inspired by results of Harper and Schwede. It applies in particular to simplicial
E1–operads.

Conjecture 3.7 Let O be any simplicial operad such that the action of †n on O.n/ is
free (by which we always mean objectwise and levelwise free away from the basepoint),
and consider Sp†;T .C/ with the absolute flat or projective model structure. Then the
forgetful functor from O–alg.Sp†;T .C// to Sp†;T .C/ creates a model structure on
O–alg.Sp†;T .C// in the sense of [61, Lemma 2.3].

There is the following strategy of proof, which is an attempt of a motivic generalization
of a variant of a proof for classical symmetric spectra as sketched in [60, Section III.4],
notation are again as in [26]. In principle, it might be applicable to internal operads as
well and not only to those with values in simplicial sets. As before, we are reduced to
consider the pushout square of [26, Proposition 4.4]. It is shown in [27, Proposition 7.19]
that the †t –equivariant map Qt

t�1
! Y ^t is an acyclic cofibration of symmetric

spectra if X ! Y is an acyclic cofibration. Using again the motivic generalization
of [35, Theorem 5.3.7], this implies that the map OAŒt �^Qt

t�1
!OAŒt �^Y ^t is a

monomorphism and a weak equivalence for any O–algebra A. Next, we show that
the action of †t on the motivic symmetric spectra OAŒt � is free. By definition, the
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action of †t on Ot .A/ WD
W

k�0 O.kC t/^†k
A^k as defined after [60, Remark 4.3]

is free. Also by definition, OAŒt � is an explicit coequalizer of Ot .A/ with respect to
two †t –equivariant maps coming from another spectrum with free †t –action. Now
one has to check that the action of †t on this quotient is also free. There are easy
examples showing that this will not be true for arbitrary operads, so here one has to use
the assumptions on the operad. Fresse even provided me with an example where the
†n –action on O.n/ is free, but the action on On.A/ is not. This is the gap one has to
fill when using this strategy of proof. Hence the diagonal action of †t on OAŒt �^Y ^t

is also free, and so are the ones on OAŒt �^Qt
t�1

and on OAŒt �^ .Y
^t=Qt

t�1
/. That

is, we have a cofiber sequence of †t –free spaces

OAŒt �^Qt
t�1!OAŒt �^Y ^t

!OAŒt �^ .Y
^t=Qt

t�1/

for the injective model structure, which remains true after dividing out the free †t –
action on all three objects. Indeed, taking coinvariants commutes with taking the cofiber
as colims commute among each other, and as we have a model structure in which the
monomorphisms are the cofibration, the cofiber of OAŒt �^Qt

t�1
! OAŒt �^ Y ^t is

also the homotopy cofiber. The fact that OAŒt �^ .Y
^t=Qt

t�1
/ is weakly equivalent

to a point remains true after dividing out the action of †t as the argument of [60,
Proposition III.4.12] applies to general simplicial monoidal model categories, including
motivic symmetric spectra. Besides the gap above, this seems to be the only place
where it might be an advantage to restrict to operads defined in simplicial sets rather
than in motivic symmetric T –spectra). Hence OAŒt �^†t

Qt
t�1
!OAŒt �^†t

Y ^t is
an acyclic cofibration for the stable injective model structure, and now the proof can
be finished as the one of Theorem 3.6.

Note that the recent preprint by Gorchinskiy and Guletski [25] contains a detailed
discussion of techniques related to the problems above.

We can prove the above Conjecture 3.7 at least for the Barratt–Eccles operad, which
will be sufficient for our purposes.

Definition 3.8 Let W be the Barratt–Eccles operad with values in the monoidal model
category .�opSets;�; pt/; see eg Berger and Fresse [7, 1.1.5] and of course Barratt
and Eccles [4]. It extends to an internal operad in Sp†;T .C/ via the functor .�/C to
pointed simplicial sets, the constant functor to �opPrShv.C/� and †1

T
to Sp†;T .C/

as all of these functors are monoidal. If we denote the internal operad in Sp†;T .C/
by W as well, the two notions of a W –algebra in Sp†;T .C/ thus obtained coincide
by definition and the above adjunctions.
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Observe that in simplicial degree zero, W is just the associative operad Ass, and a
product of those in higher simplicial degrees.

We now prove the above conjecture for the operad W . We do not know of a reference
for this result even for classical symmetric spectra. The following proof also applies to
other simplicial operads for which a decomposition pattern similar to the one below
for W may be established.

Proposition 3.9 Conjecture 3.7 is true for ODW .

Proof According to the above strategy of proof, we must show that the coequalizer
WAŒn� has a free action of †n for all n� 0. By definition [60, Construction III.4.8],
[26, Proposition 4.6], the motivic symmetric spectrum with †n –action WAŒn� is the
coequalizer of

.m;Wn.˛//W Wn.W.A//� Wn.A/;

where we have that Wn.A/ WD p̀�0 W.nCp/�†p
Ap and W.A/ WDW0.A/. The

map ˛W W.A/ D p̀�0 W.p/ �†p
Ap ! A is given by the W –algebra structure

of A. The map m is given by the operad structure of W and will be described
below, following [60, Section III.4]. By definition, the freeness of the †n –action for a
symmetric spectrum has to be checked objectwise (if the site is nontrivial, that is in
the motivic case), and then for every symmetric spectrum levelwise, and in each level
degreewise for the simplicial set. Also note that colimits in motivic symmetric spectra
are constructed the same way (objectwise, levelwise, simplicially degreewise), and so
are products in simplicial sets and more generally in simplicial presheaves, and similarly
for the smash product in the pointed case. Finally, the smash product of a pointed
simplicial set with a symmetric spectrum is given levelwise by the smash product of
the pointed simplicial sets. All of this together implies that the whole argument really
reduces to one of (pointed and even unpointed) simplicial sets, so we simplify our
notation accordingly.

We now fix n� 0, and choose orbit decompositions of the sets †nCk DW.nC k/0
with †n –action by left multiplication for all m � 0. These decompositions yield
decompositions of the simplicial sets W.n C k/ for all k � 0, as W .n C k/ in
simplicial degree r is simply the r C 1–fold product of †nCk with diagonal †n –
action, and all simplicial structure maps are †nCk –equivariant. So we only spell out
the decompositions in simplicial degree zero.
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Recall that as a †n –set with action given by left multiplication the set †nC1 decom-
poses as a coproduct of nC 1 copies of †n , and inductively †nCk decomposes as a
coproduct of .nC k/ � � � .nC 1/ copies of †n for all k � 0. We now fix particular
choices for these decompositions of all †nCk for a fixed given n and all k � 0 once
and for all, and consequently fix decompositions for all W.nC k/.

In every simplicial degree W.nCk/ is a finite set. The decompositions we choose may
be written as products †nCk D†n�Mk;n where †n acts by left multiplication on the
left factor and trivially on the right factor. Our decomposition is then determined by
the following. For any positive integer r , any element � 2†r is uniquely determined
by �.1; : : : ; r/. For r D nC k , we write � D � � � with � 2 †n being the element
obtained by deleting all entries in �.1; : : : ; r/ which are larger than n, and � 2Mk;n

being determined by where we insert these remaining elements nC1; nC2; : : : ; nCk

between the given permutation of �.1; : : : ; n/.

It is obvious that Wn.˛/ maps copies of †n with respect to the above decomposition
identically (that is not permuting the elements inside each copy of the †n –set †n ) to
copies of †n . We will show that the same is true for the map m. Consequently, the
coequalizer WAŒn� consists of free †n –orbits as well, which finishes the proof.

According to [60], mW
`

s�0 W.nC s/ �†s
.W.A//�s !

`
r�0 W.nC r/ �†r

Ar

is defined on the summand for a fixed s � 0 by the following composition of †n –
equivariant maps:

W.nC s/�†s
W.A/�s

Š
!

a
W.nC s/�†s

.W.i1/� � � � �W.is/�†i1
�����†is

A�i1C���Cis /

Š
!

a
W.nC s/�†s

W.1/� � � � �W.1/�W.i1/� � � � �W.is/�†i1
�����†is

A�i1C���Cis

!

a
W.nC i1C � � �C is/�†i1

�����†is
A�i1C���Cis /

!

a
W.nC r/�†r

A�r ;

where the last map is given by reindexing and the universal property of coproducts, and
the second last map is given by the structure maps of the Barratt–Eccles operad W .
Now all four morphisms map free †n –orbits identically to free †n –orbits with respect
to the †n –decompositions introduced above. For the first, second and last morphism
this is obvious. For the third map this can be checked using the equivariance condition
of the operadic structure maps. To see this, again one first looks at the simplicial degree
zero for which W.nCs/0D†nCs , that is the associative operad Ass. Then generalize
to higher degrees as explained above, which involves cartesian products of Ass, and
argue componentwise.
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Once these results are established, one may deduce the motivic variant of [26, Theo-
rem 1.4]. Namely, we have the following.

Theorem 3.10 Let f W O ! O0 be a morphism of operads and consider the lifts
of the flat positive stable model structure on Sp†;T .C/ to O–alg.Sp†;T .C// and
O0–alg.Sp†;T .C//. Then f induces an Quillen adjunction (enriched over �opSets)

f�W O–alg.Sp†;T .C//� O0–alg.Sp†;T .C// Wf �

which is a Quillen equivalence if f is a stable weak equivalence in every operadic
degree.

Proof By construction of our motivic model structures, the proof of [26, Theorem 1.4]
carries over. Enrichments are not mentioned in [26], but the arguments given there
immediately show they behave as well as expected.

In particular, the model categories of E1–algebras and strictly commutative monoids
in Sp†;T .C/ are Quillen equivalent.

We continue to study the absolute (nonpositive) situation. If one can not prove
Conjecture 3.7 for a given operad O using the strategy discussed above, a different
approach might be to first look at the level model structure as in the following result.

Proposition 3.11 There is a projective level model structure on Sp†;T .C/ with fi-
brations and weak equivalences defined levelwise. This model structure lifts to O–
alg.Sp†;T .C// for any operad O .

Proof In the classical case (ie for the trivial site), the projective level model structure
on Sp†;T .C/ is introduced in [35] and the positive variant in [60; 63; 45]. These level
model structures are cofibrantly generated with respect to acyclic cofibrations I and J

(resp. IC and JC ). To show that it lifts to O–alg.Sp†;T .C//, as before the only thing
that one has to check is that any map in OJ –cell is a weak equivalence. For this one
may proceed similarly to [19, Lemma VII.5.6]. Namely, the geometric realizations
of the maps in J are (†1 of) inclusions of deformation retracts. Furthermore, these
are stable under the free functor O , under pushouts in O–alg.Sp†;T .C// (by refining
an argument of [33, Proposition 2.4.9], as Mandell kindly explained to me) and under
sequential colimits. Note that geometric realization does preserve colimits, and a map
in Sp†;T .C/ is a level equivalence if and only if its geometric realization is.

In the motivic case (that is for the nontrivial site), the argument has to be refined a
bit. Looking at diagram categories, one obtains global level (absolute and positive)
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model structures on Sp†;T .C/ with J consisting of inclusions of deformation retracts
(objectwise, in the classical sense) and consequently on O–alg.Sp†;T .C//. To obtain
the A1–local level model structures, one applies Bousfield–Hirschhorn localization
to Sp†;T .C/ and to O–alg.Sp†;T .C// to a suitable set S , which yields exactly the
cofibrantly generated motivic level model structure of [34, Theorem 8.2] on Sp†;T .C/.
For O–alg.Sp†;T .C// one applies Bousfield–Hirschhorn localization with respect to
the set obtained by applying the free functor O to S .

Note that if we could apply Bousfield–Hirschhorn or Bousfield–Smith localization with
respect to a suitable set of stable weak equivalences, this would yield an alternative
proof of Conjecture 3.7. The problem both with Hirschhorn’s and Smith’s approach is
that O–alg.Sp†;T .C// with respect to the level model structure is not left proper in
general, as one sees looking eg at O D Comm. We will not pursue this approach in
our article.

Remark There is a model structure on the category of operads in simplicial sets
given by [8, Theorem 3.2 and Example 3.3.1], in particular weak equivalences and
fibrations are defined on the underlying simplicial sets. Note that this model structure is
different from the one of [54]. Looking at [8, 4.6.4] for classical symmetric spectra, the
argument in the proof of [8, Theorem 3.5(a)] applies to simplicial model categories in
general, defining Ef in the category of simplicial sets and applying SM7. In particular,
we may apply this theorem to a fibrant replacement map f W X ! Xfib in Sp†;T .C/
and a cofibrant model P for the E1–operad with respect to the model structure
of [8, Example 3.3.1]. Consequently, if we can show (which we can not) the hypothesis
in [8, Theorem 3.5(a)] holds, namely that f ^n is a trivial cofibration for all n > 0,
then we have constructed a fibrant replacement for any object in O–alg.Sp†;T .C//.
Note however that this construction is not functorial. Hence it is not clear if we
may apply a variant of an argument of Quillen [53], see eg [54, Proposition 3.1.5]
or Schwede [59, B.2 and B.3], to lift the model structure of Sp†;T .C/ to a model
structure on O–alg.Sp†;T .C//. In general, in a monoidal model category in which
all objects are cofibrant, the hypothesis holds as can be shown by an easy induction.
More generally, to check the hypothesis in a monoidal model category (a similar
argument then presumably applies to simplicial model categories and simplicial instead
of internal operads), [8, Remark 3.6] claims it is enough to have a set of generating
trivial cofibrations having cofibrant domains. Classical symmetric spectra with the
(absoluteDnonpositive) flat or projective model structure satisfy this property and are
monoidal model categories. But it is not clear why this helps as Harper gave an easy
example of a cofibrantly generated monoidal model category whose generating acyclic
cofibrations have cofibrant domains, but where the above property for f ^n fails already
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for n D 2. In short, the techniques of [8] do not provide an absolute stable model
structure for O–algebras in symmetric spectra with O a simplicial or internal cofibrant
operad.

3.2 Unstable model structures

We will now establish a variant of Theorem 3.6 for spaces rather than spectra, that is
an “unstable model structure”, as well as Quillen adjunctions between unstable and
stable model categories. We also show that a motivic generalization of the axioms of
Goerss–Hopkins holds. For the sake of completeness, we recall that there is also an
unstable projective model structure on simplicial presheaves, starting with fibrations and
weak equivalences defined objectwise and then localizing with respect to the Nisnevich
topology and the affine line as in the unstable injective case above. The identity functor
obviously induces Quillen equivalences between the global (and hence between the
local) unstable projective and injective model structure. Note that the unstable local
projective model structure is also simplicial, cellular and monoidal; see Blander [12]
and [31]. We will only use the unstable injective model structure in the sequel.

Theorem 3.12 For any operad O , the injective motivic model structures on simplicial
presheaves lifts via the forgetful functor to the category O–alg.�opPrShv.C/�/ of
O–algebras in this model category.

Proof We have a motivic fibrant replacement functor in O–alg.�opPrShv.C/�/ as
the usual fibrant replacement functor commutes with products, so the argument of
Quillen discussed above applies; see also [54, Proposition 3.2.5]. The existence of
the motivic (that is A1–local) fibrant replacement functor on O–alg.�opPrShv.C/�/
follows from the existence of a fibrant replacement functor on �opPrShv.C/� which
commutes with �. More precisely, we have that both motivic fibrant replacement
functors constructed in [48, Lemma 2.3.20, Lemma 3.2.6] commute with finite limits
by [48, Theorem 2.1.66, page 97]. (Note that for the special case ODW , we may of
course alternatively adapt the above proof for Sp†;T .C/.)

Theorem 3.13 There is a Quillen adjunction

†1T W �
opPrShv.C/�� Sp†;T .C/ WEv0;

where both functors are strong monoidal. Here �opPrShv.C/� is equipped with the
above injective local model structure, and Sp†;T .C/ is equipped with the projective,
flat or injective stable model structure built from it as discussed above.
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Proof The adjunction was already established in Section 1. By [34, Proposition 8.5],
the functor Ev0 is right Quillen with respect to the projective level structure on
Sp†;T .C/, and consequently with respect to all stable model structures mentioned
in the Theorem.

The following result shows why we it was important to establish absolute rather than
only positive model structure on O–alg.Sp†;T .C//.

Corollary 3.14 Let O be an operad such that the forgetful functor to the category
O–alg.�opPrShv.C/�/ creates an absolute stable projective resp. flat model structure
on the latter, eg O D W . Then the Quillen adjunction of Theorem 3.13 induces a
Quillen adjunction

†1T W O–alg.�opPrShv.C/�/� O–alg.Sp†;T .C// WEv0

for the stable projective resp. flat model structures on O–alg.�opPrShv.C/�/.

Proof This follows immediately from Theorem 3.13 and the definition of the model
structures on O–algebras via forgetful functors.

3.3 The axioms of Goerss–Hopkins

We now show that some of the above model structures feed into the motivic version of
the obstruction theory machine for E1–ring spectra of Goerss and Hopkins [23]. The
machinery of Toën and Vezzosi [67] will be discussed further below. As we already
said in the introduction, this result has been obtained independently by Østvær.

Theorem 3.15 Both the flat and the projective stable positive model structures on
Sp†;T .C/ satisfy the motivic analog of the five axioms in [23, 1.1 and 1.4].

Proof Everything has been shown above already except that the generating cofibra-
tions and the generating acyclic cofibrations can be chosen to have cofibrant source
and condition (5). As every object in �opPrShv.C/� is cofibrant, the sources of the
generating cofibrations and of the generating acyclic cofibrations for the stable flat
model structure on Sp†;T .C/ are cofibrant because T ˝ � is left Quillen, hence
this holds in particular for the stable flat positive model structure. Consequently,
the same is true for the model structure of operads as the proof of Theorem 3.6
shows that the forgetful functor O–alg! Sp†;T .C/ is right Quillen. To show the
claim for the generating acyclic cofibrations, note that essentially the same argument
goes through for those, since the domains of the motivic variant of the class K
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of [35, Definition 4.3.9] also have cofibrant sources because Evn is right Quillen for the
flat level model structure, hence Fn preserves cofibrations, and the model structures
satisfy the pushout product axiom. Alternatively, we may quote [30, Proposition 4.5.1].
Condition (5) follows again from the motivic variants of Harper’s results discussed
above. Namely, one first uses [26, Proposition 4.28(a)] applied to the cofibration
� D Spec.k/!X to see that X^t is then also cofibrant, and then applies the motivic
variant of [26, Proposition 4.29(b)] for equivariant symmetric sequences concentrated
in degree zero, that is equivariant symmetric spectra, equipped with the model structure
of [26, Section 4] for which the weak equivalences are defined by forgetting the †t –
action.

3.4 HA–contexts

We now establish model structures for commutative ring spectra and algebras over those
and establish the properties required in the axioms of [67]. For this, we consider the
category Comm.Sp†;T .C// of commutative unital monoids in Sp†;T .C/. The notation
Comm is taken from [67], further below we write AbMon instead which is more consis-
tent with unstable notation. The forgetful functor U W Comm.Sp†;T .C//! Sp†;T .C/
has a left adjoint L, namely the obvious motivic variant of [63, Section 3]. For
R 2 Comm.Sp†;T .C//, we define the monoidal category R–mod in the usual way.

Theorem 3.16 Consider the stable flat absolute or positive model structure on
Sp†;T .C/, and let R be an arbitrary object in Comm.Sp†;T .C//. Then there is a
model structure on R–mod .Sp†;T .C// where the weak equivalences and fibrations are
defined using the forgetful functor R–mod .Sp†;T .C//! Sp†;T .C/ where the latter
is equipped with the (absolute or positive) flat model structure. These model structures
are monoidal, proper and combinatorial. Moreover, we have Quillen adjunctions

R^�W .Sp†;T .C//� R–mod .Sp†;T .C// WU;

U W R–mod .Sp†;T .C//� Sp†;T .C/ WMap.R;�/;

with respect to the flat model structure, where we assume that R is cofibrant for the
second Quillen adjunction.

Proof The existence of the model structures follow from the model structures of
Theorem 3.4 by applying either Kan’s lifting theorem [30, Theorem 11.3.2] using
R^� as left adjoint, or the essentially equivalent [61, Theorem 4.1(2)]. We do not
know if the monoid axiom holds (compare [34, Page 107]), but it is sufficient to check
the second condition of [30, Theorem 11.3.2] (or equivalently the first condition of [61,
Lemma 2.3]), the first one is obvious. If R is cofibrant, then as the stable flat model
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structure is monoidal, the claim follows as explained in [61, Remark 4.2]. In fact, the
monoid axiom probably holds in our case by some variant of this argument, but we
will not need this.

For arbitrary R one must use the motivic generalization of [35, Theorem 5.3.7 (5)],
compare the classical proof of [60, Theorem IV.1.4]. Note that [67, Assumption 1.1.0.2]
requires the model structure also for noncofibrant R. Both left and right properness
in R–mod follow from left and right properness of Sp†;T .C/. Right properness is
immediate as the weak equivalences and fibrations in R–mod are defined by the
forgetful functor the left proper model category Sp†;T .C/. To show left properness,
one uses that the generating cofibrations are level monomorphisms, hence so are all
relative cell complexes built from them. Now use [34, Corollary 2.1.15].

That the two adjunctions exists follows in the standard way. That the first adjunction is
Quillen follows from the definition of the model structures involved. To prove that the
second adjunction is Quillen, one must simply show that for cofibrant R the functor
Map.R;�/ preserves fibrations and trivial fibrations, which immediately follows from
the fact that Sp†;T .C/ is a monoidal model category.

It seems possible to prove the above result for the projective variant as well, but we will
not need this. Compare also [17, Section 4] for similar results about motivic functors.

Remark One must show that the above model structure is combinatorial as desired
by Toën and Vezzosi. For this, observe that simplicial sets are small [33, Lemma 3.1.1],
hence so are diagram categories over it (see also [61, Remark 2.4]). For how to use this
to show that symmetric spectra are also small and so are motivic symmetric spectra
using a similar argument; see [35, Proposition 3.2.13]. This shows that the category of
symmetric spectra is locally presentable, and as all model structures we consider are
cofibrantly generated, they are therefore all combinatorial. (Note that this also shows
that instead of choosing quite explicit sets of generating (trivial) cofibrations for the
above model structures, one might instead take instead all cofibrations resp. trivial
cofibrations with codomains bounded by ˛ (a cardinal that in a suitable sense is large
enough with respect to Sp†;T .C/) as the set of generating (trivial) cofibrations. Then
it remains to check that the (trivial) fibrations are indeed those of the model structure,
that is it is enough to check the lifting property of a (trivial) on these sets. In most
examples this is not hard to see.)

For R 2 Comm.Sp†;T .C//, we denote the category of commutative R–algebras by
R�Comm.Sp†;T .C//. We have a forgetful functor U W Comm.Sp†;T .C//!Sp†;T .C/.
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Theorem 3.17 The stable flat positive model structure on Sp†;T .C/ creates a proper
combinatorial model structure on Comm.Sp†;T .C// where f is a weak equivalence
(resp. fibration) if and only Uf is. If R 2 Comm.Sp†;T .C//, then the same is true for
R�Comm.Sp†;T .C//.

Proof The existence of the cofibrantly generated model structure on Comm.Sp†;T .C//
follows from Theorem 3.6 applied to the operad Comm.

(In particular, this provides an alternative to the proof of Shipley [63] which relies
on [30, Theorem 11.3.2]; see also Schwede [60, Theorem A.1.4], Hovey, Shipley and
Smith [35, Lemma 2.3] and Mandell, May, Schwede and Shipley [45, Proposition 5.13].
Note also that [60] assumes that U commutes with filtered colims which implies that
all small colims exist, which is an assumption in [30]. As all objects are small, the only
nontrivial thing of the assumptions that is left for Shipley to check is that LJ –cell
complexes — recall that J are the generating trivial cofibrations — are stable weak
equivalences, which is not so easy and relies on her [63, Propositions 3.3 and 3.4].)

As discussed above, it is easy to see that the underlying category is locally presentable,
and thus the model category is combinatorial.

By the same formal argument as the one in the proof of [63, Theorem 3.2], the model
structure on R� Comm.Sp†;T .C// follows from the one of Comm.Sp†;T .C//. It
remains to show properness. The model structures on Comm.Sp†;T .C// and more
generally on R � Comm.Sp†;T .C// are right proper by the argument of the proof
of Proposition 4.7 in [63] as we can prove the motivic generalization of the variant
of [35, Lemma 5.5.3(2)] for positive level fibrations. To show that the proof of right
properness of [35, Lemma 5.5.3(2)] generalizes to the motivic case, one uses that
the final argument carries over as the A1–local model structure on �opPrShv.C/ is
right proper [37, Theorem A.5], and that the proofs of [35, Theorem 3.1.14 and
Lemma 3.4.15] do carry over. To check that the model structure is also left proper, one
uses the motivic analogue of [35, Corollary 5.3.10] — which follows from the motivic
generalization of [35, Theorem 5.3.7] and Ken Brown’s Lemma — and then proceeds
as in the proof of [63, Proposition 4.7].

Moreover, we have the following, which yields the Axioms 1.1.0.3 and 1.1.0.4(2) in
the definition of a HA–context as considered by Toën and Vezzosi [67]. Observe that
Axiom 1.1.0.3 is not a formal consequence of the property “monoidal” established in
Theorem 3.16.
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Proposition 3.18 Consider the stable flat positive model structure on Sp†;T .C/, which
we already have shown to be monoidal.

(i) The monoidal model structure on Sp†;T .C/ is symmetric monoidal.

(ii) Let R 2 Comm.Sp†;T .C//. Then for any cofibrant object M 2 R–mod,
the functor � ^R M preserves weak equivalences. For any cofibrant object
B 2R�Comm.Sp†;T .C//, the functor B^R �W R–mod !B –mod preserves
weak equivalences.

Proof Part (i) is clear. Part (ii) follows from a motivic generalization of the ideas
of [63, Section 4] which can be carried out thanks to the results we already established.
More precisely, observe that using the motivic generalization of [63, Corollary 4.3]
(which holds since [63, Proposition 4.1] generalizes to the motivic situation), we
have that Assumption 1.1.0.4(2) reduces to Assumption 1.1.0.3, which is a motivic
generalization of [35, Lemma 5.4.4]. This motivic generalization holds as we have
already observed that [35, Theorem 5.3.7, Corollary 5.3.10] generalize to the motivic
case.

The above results establish [67, Assumptions 1.1.0.1–1.1.0.4] for motivic symmetric
spectra Sp†;T .C/. The nonunital variant (take away the index 0 in the definition of the
free functor L) mentioned in [67, 1.1.0.4.(1)] (compare also Remark 1.1.0.5 of loc. cit.)
follows again from Theorem 3.6 applied to the reduced commutative operad Commnu

with .Commnu/0 D†
1
T
.pt/ when considered as an internal operad in Sp†;T .C/. For

classical symmetric spectra, this was already stated in [67, Example (4) following
Remark 1.1.0.7].

Remark In [67, page 20, Example (4)], it is stated that Assumptions 1.1.0.1–1.1.0.4
hold for symmetric spectra (that is C being the trivial category in our setting) by
the results of [63], although some of the relevant points are not explained in full
detail. Most of this is carried out in the arguments above. It remains to show that
all categories involved are locally presentable. The standard references for locally
presentable categories are Adámek and Rosický [1] and Borceux [14]. I do not know
a reference for a detailed proof why symmetric spectra are locally presentable, but
this easily follows from the smallness property as explained above. The reason for
this condition is that [67] quote unpublished work from Smith — the relevant parts are
now available thanks to [5] — in order to ensure that certain localized model structures
exist; see eg [67, Section 1.3.1]. Our localization arguments in the first half rely on
the published work of [30] on cellular model categories instead, but the arguments of
Smith do apply just as well. So it is rather a matter of personal taste if one works with
Smith’s or with Hirschhorn’s version of Bousfield localization.
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Note that Assumption 1.1.0.4(2) (which is part of Proposition 3.18(ii)) is probably
not true for the positive projective model structure but only for the positive flat model
structure (compare also [45, Theorem 14.5]). Here is why [63, Proposition 4.1] (which
is an ingredient of the proof of [63, Corollary 4.3]) fails for the projective model
structure already for R D S . In the notation of [63], the proof uses that the maps
of PS .S

CI/ are S –cofs, which is deduced from the fact that the maps in P.I lC/

are coproducts of monomorphisms of symmetric sequences. It is not clear that the
corresponding maps PS .S

CI/ are stable cofibrations for the projective model structure.

3.5 H Z–modules

Theorem 3.16 will be an ingredient in the proof of Theorems 1.1 and 1.2, but will only
be used in the case where T D S1 and R D HZ is the usual simplicial Eilenberg
Mac Lane spectrum considered as objectwise constant simplicial presheaf. Such an
object R is called flat resp. projective if it is cofibrant in Sp†;T .C/ with respect to
the flat resp. projective stable model structure. So if you do not care about [67], the
following lemma allows you to take a shortcut.

Lemma 3.19 Both the classical and the objectwise constant motivic S1–spectrum HZ
are flat.

Proof It suffices to show that HZ is flat as a classical symmetric spectrum. Using
the adjunction between constant presheaves and presheaves, it follows that the presheaf
of S1–spectra HZ is cofibrant for the global flat stable model structure as well, and
further (motivic left) localizations do not change the cofibrations. But as a classical
symmetric spectrum, HZ is flat cofibrant; see [60].

It remains to lift the model structures on “naive” HZ–modules and Ch.Ab/ to motivic
(=Nisnevich-A1–local) model structures on presheaves of those as well, using similar
techniques as before. For this we first recall the relevant classical model structures.

Theorem 3.20 The category Ch.Ab/ has a model structure with weak equivalences
being the quasi-isomorphisms and fibrations the epimorphisms. The full subcategory
Ch.Ab/�0 has a model structure with weak equivalences being the quasi-isomorphisms
and fibrations the epimorphisms in degree greater than or equal to 1. The inclusion incl
and the good truncation ��0 form a Quillen adjunction between these model categories.
The category �opAb has a model structure with weak equivalences and fibrations being
the weak equivalences and fibrations of the underlying simplicial sets. The Dold–Kan
correspondence between �opAb and Ch.Ab/�0 is an isomorphism of model categories.
All three model categories are cofibrantly generated and left proper.
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Proof For the cofibrantly generated model structures, see [53] for Ch.Ab/�0 ,
see [33, Theorem 2.3.11] for Ch.Ab/ and [33, Theorem III.2.8 and Theorem III.2.12]
for �opAb (or use the lifting argument from [61, Lemma 2.3.(2)] as before for the
latter, recalling that there is a fibrant replacement functor in �opSets which preserves
products). The claims about the Quillen adjunction resp. equivalence are now straight-
forward. Left properness for Ch.Ab/, and hence for the other two model categories as
well, follows from [33, Proposition 3.2.9].

Theorem 3.21 Theorem 3.20 generalizes to the corresponding motivic model cate-
gories.

Proof Use the same techniques as before. First, pass to diagram categories, that is
presheaves with values in the above model categories, and then Bousfield–Hirschhorn–
Smith localize with respect to the Nisnevich topology and to the affine line. Note that
Ch.Ab/ is cellular by [33, Lemma 2.3.2].

We will need one more auxiliary model category, namely “naive” HZ–modules,
taken from another article of Schwede and Shipley [62, Definition B.1.1]. Again, we
first explain the classical case. Once more using the above techniques, everything
generalizes to the motivic case using [30, Proposition 12.1.5 and Theorem 13.1.14]
and Bousfield–Hirschhorn localization. We omit the details.

Definition 3.22 A naive HZ–module is a collection of pointed simplicial sets
fMngn�0 and associative and unital action maps .HZ/p^Mq!MpCq . A morphism
of naive HZ–modules is a map of graded pointed simplicial sets which is strictly
compatible with the action of HZ.

As shown in [62, Theorem B.1.3], the category NvHZ–mod of naive HZ–modules
has a model structure in which the fibrations and the weak equivalences are created
by the forgetful functor U W NvHZ–mod ! Sp from naive HZ–modules to classical
Bousfield–Friedlander spectra with the standard stable model structure of Bousfield and
Friedlander [16, Theorem 2.3]. The model structure on NvHZ–mod is cellular and left
proper, the latter by the same argument as in the proof of Theorem 3.16. One may also
consider adjoints to U as in the case of symmetric spectra (compare Theorem 3.16),
but we will not need this in the sequel.

Theorem 3.23 (Schwede–Shipley) There is a zigzag of Quillen equivalences

HZ–mod � NvHZ–mod � Ch.Ab/:

Proof See [62, Appendix B].
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4 Proof of Theorems 1.1 and 1.2

Having established all necessary model structures and Quillen adjunctions in the
previous section, we are now ready to prove Theorems 1.1 and 1.2. We will provide
all details in the parts of the proof concerning classical spectra. When passing to
diagram categories and motivic Bousfield localizations of those, we will provide details
in the first couple of proofs, but allow ourselves to skip some of the by then familiar
arguments in some of the later proofs. The reader interested in the classical case should
simply think of the trivial site and ignore all localization functors with respect to the
Nisnevich topology or to the affine line A1 . The proof then becomes considerably
shorter. In particular, most (but not all, see Proposition 3.9) model structures discussed
in Section 3 are known in that case.

Let M be a simplicial monoidal model category and T be a suitable pointed object
in M. We are mostly interested in two cases. Theorem 1.1 is about M D �opSets
and T D S1 . Theorem 1.2 is about M being simplicial presheaves on Sm=S with the
A1–local model structure recalled at the beginning of Section 3, and T D P1 , although
throughout the proof for motivic symmetric spectra over T D S1 will be considered as
well. Note that the statements of the theorems are independent of the model structure
one chooses, and by the previous section there is at least one for all the categories
involved. Furthermore, we wish to emphasize once more that much of the proofs here,
and in fact those of Section 3 as well, generalizes to other (simplicial) monoidal model
categories. On the other hand, there are some key results which do not generalize.
In particular, the theorems of [62] quoted below, and also Theorems 4.2 and 4.4 are
really fundamental results specifically about classical Eilenberg Mac Lance spectra
and delooping along the classical circle S1 , respectively. Results without M made
explicit hold in the very general situation described above. We fix N 2 AbMon.M/

and A 2 AbMonSp†;T .M/, and assume that N is group-like, as defined below.

Putting everything together, we obtain the following diagram of categories and ad-
junctions, with the left adjoint displayed on top as usual. For simplicity, we only
exhibit this diagram in the classical version, that is for MD�opSets. It generalizes to
diagram categories, in particular with the site C D .Sm=S/Nis as index category, and to
various motivic localizations of those, as explained above and below. All categories
are simplicial model categories, and all adjunctions are Quillen (one is even an actual
equivalence of categories preserving the model structure). The global picture is that
there are compatible forgetful functors U from the left to the right column. The
functor V in the right column is defined in [35, 4.3] and extends to a functor L in the
left column by [62, B.1]. The functor U in the top row is studied in Theorem 3.16. The
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upper right adjunction is a Quillen equivalence [35, Theorem 4.2.5] for MD�opSets
(here Sp denotes Bousfield–Friedlander spectra [16]), and by [37, Theorem 4.40] for
motivic symmetric S1–spectra. The left column is explained at the end of the previous
section. The dotted adjunction between E1–alg.�opSets/ and Sp is standard in other
models for the stable homotopy category; see Lemma 4.1 below. The other dotted
arrow to which it restricts is an equivalence of homotopy categories enriched over
Ho.�opSets/ which was proved by Ando, Blumberg, Gepner, Hopkins and Rezk in
their [3, Theorem 3.45]; compare our Theorem 4.2 below. This is a variant of the
famous recognition principle due to May [46] and Boardman–Vogt [13]. We write E1
for the Barratt–Eccles operad W introduced in Definition 3.8. The precise meaning of
the dotted arrows in our setting will be explained further below.

HZ–mod
U //

U '

��

Sp†

U '

��
NvHZ–mod

U //

L

OO

H
��

Sp

V

OO

^^

��=
=

=
=

=
=

=
=

=
=

=
=

=
=

=

��0

��
Ch.Z–mod/

'

OO

��0

��

Sp�0

OO

OO

recogn:pr'

���
�
�
�
�
�
�

Ch.Z–mod/�0

incl

OO

Š

��
�opAb

U // E1–alg.�opSets/grl

incl //
E1–alg.�opSets/

GL1

oo

Lemma 4.1 In the world of Lewis–May–Steinberger spectra Sp [40], we have a
Quillen adjunction of topological model categories

†f W E1–alg.�opSets/� Sp W�f

enriched over topological spaces.

Proof See [3, Lemma 3.43].

The construction of the functor �f uses the linear isometries operad which is built in
the definition of Lewis–May–Steinberger spectra, and thus is a key ingredient when
proving the following theorem in their setting.
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Theorem 4.2 There is an equivalence of homotopy categories

Ho.E1–alg.�opSets/grl/' Ho.Sp�0/;

enriched over Ho.�opSets/.

We will prove this theorem in our situation, that is for Bousfield–Friedlander spectra
in simplicial sets Sp and its motivic generalizations. For this we will use a variant of
Lemma 4.1 which we learned from Schwede, and the symmetric spectra variant of
which will presumably be included in the final version of [60]. Namely, we consider
the following zigzag diagram of Quillen adjunctions

Sp � Sp.E1–alg.�opSets//� E1–alg.�opSets/;

with left adjunctions displayed on top and Sp.E1–alg.�opSets// being the category
of spectra with spaces and spectral structure maps all being E1 . The left free/forgetful
adjunction creates a model structure on Sp.E1–alg.�opSets// as usual, that is using the
same arguments as for the existence of the stable model structure on Sp from �opSets.
(This also can be done in the motivic case below, starting with the model structure on
.E1–alg.�opPrShv.C// established in Theorem 3.12.) In the right Quillen adjunction,
the functor Ev0W Sp.E1–alg.�opSets//!E1–alg.�opSets/ is the usual evaluation at
the 0th space which is a right Quillen functor. However its left adjoint is not the naive
†1 , but defined using the simplicial model structure on E1–alg.�opSets/ (which is
induced by the Quillen adjunction with �opSets) when defining the smash products
with Sn to define the level n–space of an object in Sp.E1–alg.�opSets//.

Now by the recognition principle, the left Quillen adjunction induces an equiva-
lence of (enriched) homotopy categories, and hence (see eg [33, Proposition 1.3.13])
is an (enriched) Quillen equivalence. Moreover, the right Quillen adjunction in-
duces an equivalence of (enriched) homotopy categories Ho.E1–alg.�opSets/grl/'

Ho.Sp.E1–alg.�opSets//�0/. The latter equivalence can also be formulated as a
Quillen equivalence, using suitable localizations of the above model structures on
E1–alg.�opSets/ and Sp.E1–alg.�opSets/ as we now explain. (We do explain the
localized model structure on Sp only, for Sp.E1–alg.�opSets//, the arguments are
exactly the same.) In modern language, see for example Hirschhorn [30, Section 5] or
Smith [5, Section 5], these are examples of right Bousfield localizations, that is increas-
ing the class of weak equivalences while keeping the same fibrations. I do not know
of any published reference for the following proposition for sequential or symmetric
spectra, but I learned that there is work in progress by Sagave and Schlichtkrull —
now available; see [57] — who apply similar techniques to study similar questions for
I –spaces. One should also compare [52, Section 3.2] for a detailed discussion of how
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to lift the motivic Postnikov decomposition to the level of model structures using right
Bousfield localizations, which contains precisely the arguments needed in our slightly
easier case. Of course, the set C 0

eff of [52] simply becomes the set of S1–suspension
spectra of the simplicial spheres.

Proposition 4.3 (i) The category Sp has a simplicial model structure with the
same fibrations as the ones in [16, Theorem 2.3] and weak equivalences the
�n –isomorphisms for n� 0.

(ii) The category E1–alg.�opSets/ has a simplicial model structure with the same
fibrations as above, that is fibrations on underlying simplicial sets, and a map
being a weak equivalence if it is one after restricting to the invertible components.

Proof We apply the dual of Bousfield’s Theorem [15, Theorems 9.3 and 9.7] to the
Postnikov truncation Q D ��0 on Sp resp. to Q D .�/� D unital components on
E1–alg.�opSets/ and the corresponding transformations ˛ . For (ii) the construction
of Q and ˛ is obvious, and for (i) the reader may eg consult [60, Section III.5]. The
category Sp is proper by [16, Theorem 2.3], and [15, 9.2, Properties (A1) and (A2)]
are obviously satisfied. The dual of axiom (A3) follows as the hypothesis of [15] yield
a homotopy pushout square and hence isomorphisms 0DQcone.h/'Qcone.k/ as
required. This finishes part (i). For part (ii), the category E1–alg.�opSets/ is right
proper because the forgetful functor to the proper model category �opSets preserves
limits, fibrations and weak equivalences. Showing that it is also left proper is a bit more
subtle; see [65, Theorem 4] (or [21, Theorem 12.4.B]). The definition of left proper
in loc. cit. coincides with the usual definition as all objects in �opSets are cofibrant.
In order to apply the theorem of loc. cit. concerning left properness, we need to now
that the operad in question is cofibrant for the model structure of loc. cit., which is
created by the one of symmetric sequences. That one is equipped with the product
model structure of equivariant simplicial sets which in turn is created by the one of
�opSets forgetting the group action. This implies that the Barratt–Eccles operad W
is †–cofibrant, which by definition means that its underlying symmetric sequence is
cofibrant, as all †n act freely. Now we choose a cofibrant replacement Wcof of W
(which itself is not cofibrant as Fresse kindly explained to me), which then in particular
is also †–cofibrant (see eg [8, Proposition 4.3]). Finally, the model categories W–alg
and Wcof–alg are Quillen equivalent by [21, Theorem 12.5.A], so we do not distinguish
between them in our notation in the sequel. The dual statements of the conditions (A1),
(A2) and (A3) of [15] are again easy to check.

Putting everything together and again suppressing the Quillen equivalence between Sp
and Sp.E1–alg.�opSets// in our notation, we obtain the following square of Quillen
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adjunctions (model structures omitted from the notation). It corresponds to the lower
right triangle in the large diagram of Quillen adjunctions above before Lemma 4.1.

E1–alg.�opSets/
Id //

H'

��

E1–alg.�opSets/

H
��

Id
oo

Sp
Id //

Ev0

OO

Sp

Ev0

OO

Id
oo

We claim that the left vertical pair is a Quillen equivalence. The horizontal equivalences
are the right Bousfield localizations we just described. In more detail, the cofibrant
objects in the left hand side model categories are the cofibrant objects with respect to
the model structures on the right hand side which are moreover group-like E1–spaces
resp. .�1/–connected spectra. Hence the Quillen adjunction on the right hand side
induces one on the left hand side. This is an example of [30, Theorem 3.3.20(2)(a)]:
note that [30, Definition 8.5.11 (2)(a)] applied to right localization with respect to ��0

does not produce additional weak equivalences in E1–algebras and therefore induces
a Quillen adjunction between the lower left and the upper right corner in the above
diagram. Composing this Quillen adjunction with the one on top leads to the one of
the left hand side we are looking for. As we already pointed out above, this Quillen
adjunction then induces an equivalence of homotopy categories by the recognition
principle, hence it is a Quillen equivalence (see eg [33, Proposition 1.3.13]).

Recall that when writing E1–alg.�opSets/grl resp. Sp�0 in the large diagram above
and further below, we really mean the model categories E1–alg.�opSets/ resp. Sp
with the right localized model structures established in Proposition 4.3. The total
right derived functors of the right adjoint identity functors in the above square are
precisely GL1 resp. the Postnikov functor ��0 , thus justifying the labels on the arrows in
the big diagram further above. This finishes our discussion of the proof of Theorem 4.2
and its refined formulation in the language of model categories.

Again, all above Quillen adjunctions and equivalences in the above diagram generalize
to the motivic situation using always the same kind of arguments involving left Bousfield
localizations of diagram categories.

Theorem 4.4 The above Quillen adjunctions induce Quillen adjunctions for the corre-
sponding motivic categories, which then induce an equivalence of homotopy categories

Ho.E1–alg.�opPrShv.C//grl/' Ho.SpS1

.C/�0/

enriched over Ho.�opSets/ and even over Ho.�opPrShv.C//.
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Proof The above Quillen adjunction between E1–spaces and spectra generalizes
to one between global model structures on diagram categories (see for example
Hirschhorn [30, Theorems 11.6.1 and 11.6.5]). We claim that this one then in-
duces a Quillen adjunction after left Bousfield localization on both sides with respect
to the Nisnevich topology and to A1 D A1

S
! S by standard arguments, that is

by [30, Theorem 3.3.20(1)(a)]. On .E1–alg.�opPrShv.C///, this is precisely the
model structure established in Theorem 3.12. Indeed, looking at the fibrant replacement
functors discussed there, we see that we obtain the correct LFC in the notation of
[30]. As before, we then wish to apply a suitable right Bousfield localization to these
left localized motivic model structures, thus obtaining the homotopy categories of
connected motivic S1–spectra and grouplike motivic E1–spaces using the (diagram
versions of) the right Bousfield localizations considered in Proposition 4.3. To see that
the right localization of the A1–local structures on motivic E1–spaces exists, we may
apply the dual of [15] as before. The arguments above imply that motivic E1–spaces
are cellular and left proper. To see that they are right proper, recall that motivic spaces
are right proper and the A1–local model structure on E1–spaces is created by the
forgetful functor which preserves pullbacks. Then one checks the dual of the remaining
hypotheses of [15] with respect to Q D .�/� . Concerning the right localization of
motivic S1–spectra, it is more convenient to apply [30, Theorem 5.1.1] rather than [15].
That is, we proceed as Pelaez does in [52, Section 3.2]. Recall that motivic S1–spectra
are cellular and proper by Hovey and Jardine, that is (the sequential spectra version of)
Theorem 3.1. From the (sequential spectra version of) [52, Proposition 3.2.4] it easily
follows that the right Quillen functor Ev0 with respect to the motivic model structures
remains right Quillen when applied to the right localizations we just described. Since
it induces an equivalence of homotopy categories, then it is a Quillen equivalence as
claimed.

As Pelaez explained to me, Morel’s connectivity result (which is valid only for
S D Spec.k/) really is stronger than what we have used here. It can of course not be
recovered using only the above techniques.

Now we are ready for the proof of the main theorems. We write down a chain of natural
weak equivalences of simplicial sets, so applying �0 yields Theorems 1.1 and 1.2. To
simplify notation, we drop all base points in the sequel.

Let M be one of the two monoidal model categories we are interested in; see the
beginning of this section. We have

RmapAbMon.Sp†;T .M///.†
1
T N;A/' RmapE1.Sp†;T .M///.†

1
T N;A/;

using Theorem 3.10 and flat positive stable model structures. Now the identity is a
Quillen equivalence between the positive and the nonpositive (see Theorem 3.6 and
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Proposition 3.9) model structure, so we may switch to the latter on E1.Sp†;T .M///.
Then using Corollary 3.14, we have

' RmapE1.M/.N;Ev0.A//:

As N is an abelian group by assumption, hence grouplike, we have

' RmapE1.M/grl
.N;GL1.Ev0.A///;

by Proposition 4.3 above. Recall the meaning of the heuristic notation E1.M/grl and
GL1 as introduced immediately after loc. cit., it would be more accurate to say that
“N is cofibrant in the right localized model structure of Proposition 4.3”. The chain of
weak equivalences continues with

' RmapSp�0
.HN; gl1.A//;

using Theorem 4.2 resp. Theorem 4.4 and its proof, which defines HN and gl1.A/.
Observe that GL1 ı Ev0 D Ev0 ı gl1 , and moreover gl1 allows a model-theoretic
description as right Quillen adjoint similar to GL1 . As before, we have suppressed
the left hand side Quillen equivalence in the zigzag of the Quillen adjunctions after
Theorem 4.2 from our notation. Recall also that we are dealing with S1–spectra and
the usual Eilenberg–Mac Lane spaces here. The next weak equivalence

' RmapNvH Z�Mod.Sp�0.M//.HN;RmapSp�0.M/.HZ; gl1.A///

is just a formal adjunction; see Theorem 3.16 which allows a variant for “naive” HZ–
modules. Note in particular that HN is a module over HZ. Then

' RmapAb.M/.N;RmapE1.M/grl
.Z;GL1.Ev0.A////;

using [62, Theorem 3.23] of Schwede–Shipley resp. its motivic generalization and
Theorems 3.20 and 3.21. Note that this is compatible with Theorem 4.2 by the large
commutative diagram above. In particular, RmapE1.M/grl

.Z;GL1.Ev0.A/// no longer
denotes a (presheaf of) HZ–module(s), but the corresponding (presheaf of) simplicial
abelian group(s). Observe that the model structures on Ab.M/ and AbMon.M/ are
compatible since both are created via the forgetful functor to M. Then

' RmapAbMon.M/.N;RmapE1.M/.Z;GL1.Ev0.A////

' RmapAbMon.M/.N;RmapE1.M/.Z;Ev0.A///;

as Z is grouplike again by Proposition 4.3 above. Then

' RmapAbMon.M/.N;RmapE1.Sp†;T .M//.†
1
T Z;A//;
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and finally proceeding as above,

' RmapAbMon.M/.N;RmapAbMon.Sp†;T .M//.†
1
T Z;A//:

Note that the above chain of weak equivalences really arises from “zigzags”, as various
of the enriched Quillen equivalences in the above argument go in the “wrong” direction.
To start with, the identity is a left Quillen adjoint from the positive to the absolute model
structure on symmetric spectra and algebras over those. When considering derived
mapping spaces, we must choose a cofibrant and a fibrant replacement functor for both
model structures. In this situation, we may simply choose the cofibrant replacement
functor with respect to positive model structure (which then also is one for the absolute
model structure) and the fibrant replacement functor with respect to the absolute model
structure (which then is also one for the positive model structure). These choices show
that the chain of weak equivalences leading to the Main Theorems really can be chosen
to be one with is natural both in N and A. Another such zigzag is hidden in the
recognition principle, and still another one in the motivic generalization of [62].

Putting everything together, we therefore have a natural weak equivalence of derived
simplicial mapping spaces

RmapAbMon.Sp†;T .M///.†
1
T N;A/

' RmapAbMon.M/.N;RmapAbMon.Sp†;T .M//.†
1
T Z;A//;

which after applying �0 finishes the proof of Theorems 1.1 and 1.2.

5 Motivic preorientations and orientations of the derived
multiplicative group

In this section, we explain how the Theorems 1.1 and 1.2 lead to the results about
orientations and K–theory stated in the introduction.

Theorem 1.2 applies to N D SW .GL1/'P1 2�opPrShv.C/. Here, SW . � / is a specific
model for the classifying space of a simplicial group; see for example Goerss and Jar-
dine [24, Chapter V, 4]. It is easy to see that SW . � / sends commutative simplicial abelian
groups to commutative monoids in �opPrShv.C/. The equivalence SW .GL1/' P1

is a special case of [48, Proposition 3.7]. Beware of the difference between GL1 and
the Gm above. In Theorem 1.1, the same argument applies to the topological group
S1 D U.1/ with classifying space CP1 .

We do not give a definition of the notion of a derived group scheme in AbMonSp†;T .C/
here. Compare [42, Section 3] for a motivation of the following definition, at least for
the trivial site.
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Definition 5.1 A preorientation on a derived group scheme G over a motivic symmet-
ric spectrum A is an element in HomAbMon�opPrShv.C/. SW .GL1/;G.A//.

Note that this definition is related, but not equivalent to more classical notions of
orientations as eg in Adams’ book [2]. (Namely, in contrast to [2], we consider strict
monoid homomorphisms to the infinite dimensional projective space, and also we do
consider such maps only up to homotopy.) However, by [42] it is the “correct” definition
in order to obtain the right definition of tmf, and in the height 1 case to obtain KO.

One easily checks that for any simplicial abelian monoid, the associated suspension
spectrum is a commutative motivic ring spectrum (compare [60, Example I.2.32] and
Lemma 2.3). Theorem 1.2 may thus be rephrased as follows in the special case of P1 ,
where we write S Œ�� for †1

T
.�/ following Lurie’s notation (as introduced in the

beginning of Section 2 already).

Theorem 5.2 There is a bijection between preorientations of Gm over A and
HomHo.AbMonSp†;T .C//.S Œ

SW .GL1/�;A/. In other words, S Œ SW .GL1/� classifies pre-
orientations of the derived multiplicative group.

Lurie also gives a definition of an orientation; see [42]. We do not suggest a motivic
generalization of this definition in general, either. However, any reasonable gener-
alization of the notion of an orientation from the classical to the motivic case will
certainly imply a bijection between the set of orientations on Gm over A and the
set HomHo.AbMonSp†;T .C//.S Œ

SW .GL1/� Œˇ
�1�;A/ for a certain lift of the motivic Bott

element ˇ (see below). In other words, S Œ SW .GL1/� Œˇ
�1� will classify orientations of

the derived multiplicative group.

By recent work of Spitzweck–Østvær [66] and independently of Gepner–Snaith [22],
we have the following algebraic version of Snaith’s theorem.

Theorem 5.3 (Spitzweck–Østvær and Gepner–Snaith) There is an isomorphism
of commutative monoids in SH.S/ between the underlying motivic spectrum of
S Œ SW .GL1/� Œˇ

�1� and Voevodsky’s motivic spectrum representing algebraic K–theory
(see [68, Section 6.2]) where ˇ 2 �2;1.BGL1/ is a lift of the motivic Bott element.

In light of this result, our Theorem 5.2 above may be rephrased by saying that algebraic
K–theory classifies orientations of the derived multiplicative group. More precisely,
one must either assume S regular here or work with Weibel’s homotopy invariant
algebraic K–theory [70] for nonregular base schemes.

The classical Snaith theorem [64] together with some considerations about suspension
spectra and suitable localizations of those being semistable symmetric ring spectra
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leads to a description of topological K–theory as a strictly commutative ring spectrum,
that is an abelian monoid in symmetric spectra. More precisely, suspension spectra are
“semistable” in the sense of [60, Theorem I.4.42] by [60, Example I.4.46]. It follows
that S Œ SW .GL1/� Œˇ

�1� is again a symmetric spectrum by [60, Corollary I.4.67], hence
complex topological K–theory is represented by a strictly commutative ring spectrum
in Sp† . This argument generalizes to the motivic situation.

Proposition 5.4 (Röndigs, Spitzweck, Østvær) The object S Œ SW .GL1/� Œˇ
�1� is a

commutative monoid in Sp†;T .C/.

Proof See Röndigs, Spitzweck and Østvær [56].

Returning again to the classical case, the fact that K
hZ=2
top ' KOtop implies that KO

classifies all oriented derived multiplicative groups; see [42, Remark 3.12] for details.
A similar statement for algebraic and hermitian K–theory, namely K

hZ=2
alg ' KOalg

was conjectured to hold for arbitrary rings with 2 invertible at least after a suitable
completion; see Williams [71, 3.4.2]. This conjecture has been proved in many cases;
see Kobal [39], Berrick, Karoubi and Østvær [10] and more recently Hu, Kriz and
Ormsby [36], Berrick, Karoubi, Schlichting and Østvær [11], but in general it is wrong
as shown in [10].

Finally, let us mention that there are of course many examples of abelian monoids in
symmetric T –spectra. Suspension spectra of abelian monoids, eg of algebraic groups
or abelian varieties, are obvious examples. Another example is Voevodsky’s algebraic
cobordism spectrum MGL, as explained by Panin and Yagunov in [51, Section 6.5]
and Panin, Pimenov and Röndigs [50, Section 2.1]. The techniques of Schlichtkrull [58]
then yield many more examples, as the proof of Theorem 1.1 of loc. cit. carries over
to the motivic Thom spectrum, and hence applies to IU=BGL with U being the
category of motivic spaces, that is simplicial presheaves. Moreover, one may try to use
the isomorphism An� 0' Sn�1 ^Gn

m to extend the picture to a motivic version of
generalized Thom spectra with respect to a motivic version of BF , that is with self
maps on T n . We might pursue this topic in some other article.
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