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Obstructions to Lagrangian cobordisms between
Legendrians via generating families

JOSHUA M SABLOFF

LISA TRAYNOR

The technique of generating families produces obstructions to the existence of em-
bedded Lagrangian cobordisms between Legendrian submanifolds in the symplec-
tizations of 1–jet bundles. In fact, generating families may be used to construct a
TQFT-like theory that, in addition to giving the aforementioned obstructions, yields
structural information about invariants of Legendrian submanifolds. For example, the
obstructions devised in this paper show that there is no generating family compatible
Lagrangian cobordism between the Chekanov–Eliashberg Legendrian m.52/ knots.
Further, the generating family cohomology groups of a Legendrian submanifold
restrict the topology of a Lagrangian filling. Structurally, the generating family
cohomology of a Legendrian submanifold satisfies a type of Alexander duality
that, when the Legendrian is null-cobordant, can be seen as Poincaré duality of
the associated Lagrangian filling. This duality implies the Arnold Conjecture for
Legendrian submanifolds with linear-at-infinity generating families. These results are
obtained by developing a generating family version of wrapped Floer cohomology
and establishing long exact sequences that arise from viewing the spaces underlying
these cohomology groups as mapping cones.

53D12, 57R17; 57Q60

1 Introduction

1.1 Motivation and questions

While the notions of cobordism and concordance of submanifolds have been influential
in topology since the 1950s, their introduction into contact and symplectic geometry
is more recent. Arnold made the first steps in his study of geometric optics [3; 4] by
introducing immersed Lagrangian cobordisms between Lagrangian submanifolds. Over
the last two decades, a greater understanding of Legendrian submanifolds — and even
their underlying smooth submanifolds — has been obtained by studying Lagrangian
submanifolds of a symplectic manifold with a contact boundary. Rudolph [38], for
example, employed the gauge-theoretic techniques of Kronheimer and Mrowka [32]
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to show that the Thurston–Bennequin invariant of a Legendrian knot gives a bound
on the 4–ball genus of a knot. More recently, the advent of Eliashberg, Givental and
Hofer’s symplectic field theory framework [20] has shifted attention to the use of
Lagrangian cobordisms in the symplectization of a contact manifold X to study, via
pseudo-holomorphic curves, the geometry and geography of Legendrian submanifolds
of X and eventually the underlying smooth submanifolds.

The questions of interest in this paper fall into two families:

Existence of obstructions What are the obstructions to one Legendrian
submanifold being Lagrangian cobordant to another? In particular, what are
the obstructions to a Legendrian submanifold having a Lagrangian filling, ie,
being null-cobordant?

These questions were first approached by Chantraine [8]: employing an adjunction
inequality obtained through gauge theory, he showed that classical invariants of Leg-
endrian submanifolds can provide obstructions to the existence of cobordisms. One
goal of this paper is to strengthen Chantraine’s results, as well as Golovko’s higher-
dimensional version of Chantraine’s work [27], using non-classical invariants derived
from generating families.

Reversing the flow of information from cobordism to invariant, we may also ask:

Structure of invariants What can a Lagrangian cobordism tell us about the
meaning of Legendrian invariants? How can Lagrangian cobordism be used to
explain deeper structure in the invariants?

As described more precisely below, the existence of a certain type of Lagrangian filling
will, for example, impose conditions on the generating family invariants of a Legendrian
submanifold; furthermore, a duality present in these invariants comes from Poincaré
duality of the Lagrangian filling.

In this paper, we study embedded Lagrangian cobordisms between Legendrian sub-
manifolds in the symplectizations of 1–jet bundles, which are classical examples of
contact manifolds; throughout, we assume that the Legendrians and the Lagrangian have
compatible generating families, as defined below in Section 4. Generating families
have previously been used to define non-classical invariants of certain Legendrian
submanifolds of 1–jet bundles and Lagrangian submanifolds of cotangent bundles; see
Fuchs and Rutherford [25], Jordan and Traynor [31], Traynor [47] and Sections 3 and 4,
below. Not every Legendrian submanifold has a generating family, though in J 1R, at
least, the existence of a generating family is equivalent to the existence of an augmen-
tation of the Chekanov–Eliashberg DGA (Fuchs [23], Fuchs and Ishkhanov [24], and
Sabloff [39]). The condition of a Lagrangian cobordism having a compatible generating
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family is not yet well understood. There do exist several methods for constructing
generating-family-compatible Lagrangian cobordisms, however: Legendrian isotopy,
spinning and, most importantly, attaching Lagrangian handles; see Bourgeois, Sabloff
and Traynor [7]. In addition, any Legendrian submanifold with a generating family has
a (potentially immersed) generating-family-compatible Lagrangian filling [7]. At this
time, it would not be unreasonable to conjecture that the study of generating-family-
compatible Lagrangian cobordisms between Legendrian submanifolds is tantamount to
the study of zero-Maslov Lagrangian cobordisms between Legendrian submanifolds
with DGAs admitting augmentations.

There are several reasons to study Lagrangian cobordisms through the technique of
generating families. The generating family technique, which employs classic analy-
sis and Morse-theoretic techniques, is analytically simpler than holomorphic curve
techniques. Further, as mentioned above, results of [7] show that generating-family-
compatible Lagrangian cobordisms are plentiful and easily constructed. Given the
potential complexity of the theory of Lagrangian cobordisms, it seems reasonable to
begin its study in this more tractable setting.

It is also interesting to compare results obtained though generating families and holo-
morphic curves. For a number of results in this paper, there is a parallel story to be
told for invariants defined through the theory of holomorphic curves, due to Ekholm,
Honda and Kálmán [19], Ekholm [13; 14; 15], Golovko [27], the first author [40], and
Ekholm, Etnyre and the first author [16]. The holomorphic projects of [15] and [19]
were initiated before we began this paper and deeply inspired us; the work of Golovko
[27], which is based on these projects, appeared as we were putting this finishing
touches on this paper. Holomorphic techniques have the advantage that they apply in
more general settings and to more Legendrian and Lagrangian submanifolds. At the
time of this writing, however, a number of the holomorphic-curve-based results are
at the stage in which the shape of the theory is known in detail, and there is a fairly
complete sketch of the difficult analysis required; see especially [13].1 Generating
family techniques can be seen as a way to more easily establish some results in standard
settings and potentially provide intuition for phenomena that may occur in a more
general setting.

1.2 Main results

Let M be a compact manifold (or Rn ), and denote by J 1M its 1–jet space. Let
L be an embedded Lagrangian submanifold in the symplectization R�J 1M that is
cylindrical over Legendrian submanifolds ƒ˙ of J 1M outside a compact interval

1Rizell has recently provided a full proof for some of these results [36].
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of R; we denote such a cobordism by ƒ� �L ƒC . We assume that, in a sense to
be described precisely in Section 4, the cobordism L2 has a generic slicewise-linear-
at-infinity generating family F that is compatible with the generic linear-at-infinity
generating families f˙ for ƒ˙ at the ends; we refer to such a cobordism as a gf-
compatible Lagrangian cobordism and denote it by .ƒ�; f�/�.L;F / .ƒC; fC/. The
order is important: as we shall see below, Lagrangian cobordism is not a symmetric
relation.

The relative (resp. total) generating family cohomology groups GH�.f / (resp.
eGH�.f /) for a linear-at-infinity generating family f of a Legendrian submanifold
ƒ� J 1M are defined to be the relative cohomology groups of pairs of sublevel sets
of a difference function associated to f . This idea has been explored in [25; 31; 47];
see Section 3 for details. While the generating family cohomology may depend on the
specific generating family f , the set of all cohomology groups for all linear-at-infinity
generating families for a Legendrian submanifold ƒ is an invariant of the isotopy
class of ƒ. The set of generating families of a fixed Legendrian submanifold may be
simplified using a notion of equivalence to be defined in Section 2: the generating
family cohomologies all descend to equivalence classes.

The key idea in this paper is that introducing Lagrangian cobordisms into the theory of
generating family cohomology gives rise to a TQFT-like structure. In the following
theorem, we let L denote the compact portion of L, noting that the boundary of L is
ƒ�[ƒC .

Theorem 1.1 If .ƒ�; f�/�.L;F / .ƒC; fC/ and L is orientable, then there exists
a homomorphism ‰F W GHk.f�/! GHk.fC/ that fits into the following long exact
sequence:

(1-1) � � � �! GHk.f�/
‰F
�! GHk.fC/ �!H kC1.L; ƒC/ �! � � � :

In this and all theorems below, the hypothesis of orientability may be dropped if Z2

coefficients are used. The cobordism map ‰F satisfies some of the typical properties
of a TQFT such as non-triviality, naturality, and functoriality; see Section 9. The
existence of a cobordism map in the holomorphic-curve-based theory of Legendrian
contact homology setting is explored in [13; 19], and the existence of a long exact
sequence involving the cobordism map is examined in [27].

2More precisely, the image of the cobordism �.L/D L� T �.RC �M / .
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Taking Euler characteristics of the long exact sequence (1-1) yields a generalization
of Chantraine’s 3–dimensional result about the relationships between the Thurston–
Bennequin invariants of the Legendrian knots at the ends of a Lagrangian cobordism
[8]; see also Golovko [27].

Corollary 1.2 If .ƒ�; f�/�.L;F / .ƒC; fC/, L is orientable, and the n–dimensional
Legendrians ƒ˙ � J 1Rn are generic, then

tb.ƒC/� tb.ƒ�/D .�1/
1
2
.n2�3n/�.L; ƒC/:

The asymmetry of the Lagrangian cobordism relation is evident from this corollary. If
we only consider cobordisms that are actually concordances, then we get:

Corollary 1.3 If .ƒ�; f�/�.L;F / .ƒC; fC/, and L is orientable and diffeomorphic
to R�ƒ, then ‰F is an isomorphism.

Figure 1: Front projections of the Chekanov–Eliashberg examples K1 and K2

Example 1.4 There is no gf-compatible Lagrangian cobordism between the Chekanov–
Eliashberg Legendrian m.52/ knots K1 and K2 pictured in Figure 1 in either order.
To see this, first notice that by using the established connection between the existence
of a ruling and the existence of a generating family (Pushkar 0 and Chekanov [35] and
Fuchs and Rutherford [25]), it is easy to see that K1 and K2 have linear-at-infinity
generating families. Moreover, using Fuchs and Rutherford’s connection between
generating family homology and linearized Legendrian contact homology [25], it is
straightforward to compute that, for any linear-at-infinity generating families fi of Ki ,
the Poincaré polynomials of the generating family cohomologies with coefficients in
Z2 are given by:

(1-2) Pf1
.t/D 2C t and Pf2

.t/D t�1
C t C t2:

Thus, K1 and K2 are not Legendrian isotopic. Since their Thurston–Bennequin
invariants agree, Corollary 1.2 implies that a gf-compatible cobordism between them
would necessarily be a concordance, but Corollary 1.3 forbids this.
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Additional examples are given in Theorem 1.7.

If we restrict to the case where ƒ�D∅, ie, to when ƒC has a Lagrangian filling, then
Theorem 1.1 yields a strong restriction on the topology of the filling. In fact, we show
that both the relative and total generating family cohomology detect the topology of
the filling:

Theorem 1.5 If .∅; f�/�.L;F / .ƒC; fC/, then

GHk.fC/'H kC1.L; ƒC/ and eGH k.fC/'H kC1.L/:

The geometric framework for a parallel result involving the holomorphic-curve-based
Legendrian contact homology appears in [15], with a proof appearing in [36].

Example 1.6 Returning to the m.52/ knots of Example 1.4, we see that for any
generating family, the knot K2 cannot have a compatible Lagrangian filling. Further,
any gf-compatible Lagrangian filling for K1 must be homeomorphic to a punctured
torus. In [7], it is shown that such a punctured torus filling for K1 indeed exists.

Theorems 1.1 and 1.5 arise from a study of an adaptation of wrapped Floer homology —
as introduced by Abbondandolo and Schwarz [1] and developed further by Fukaya,
Seidel and Smith [26] and by Abouzaid and Seidel [2] — to the generating family
setting. The relative (resp. total) wrapped generating family cohomology WGH�.F /
(resp. AWGH�.F /) of a Lagrangian cobordism .ƒ�; f�/�.L;F / .ƒC; fC/ is defined
as the relative cohomology of a pair of sublevel sets of a “sheared” difference function
associated to F . This cohomology has a cochain complex with generators that can be
identified with the self-intersections of L and the Reeb chords of the Legendrians at the
ends; see Section 4. The proofs of the aforementioned theorems have similar outlines:
the spaces underlying the relative and total wrapped generating family cohomology
can be viewed as mapping cones and thus give rise to long exact sequences. In fact,
the total wrapped generating family cohomology vanishes, and thus the corresponding
long exact sequence gives rise to the isomorphism in Theorem 1.5. These proofs have
parallels to the work of Ekholm [15] for Legendrian contact homology, and Bourgeois
and Oancea [6] for closed contact homology.

The theorems above can be applied to analyze the following examples: Legendrian
negative twist knots in R3 , which have recently been classified by Etnyre, Ng, and
Vertesi [21], the higher-dimensional non-isotopic Legendrians studied by Ekholm,
Etnyre and Sullivan in [17] and the Legendrian knot studied by Melvin and Shrestha
[33], which has augmentations that lead to different linearized contact homologies.
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Theorem 1.7 (1) For all n� 1, each of the n Legendrian representatives of the odd,
negative twist knot K�2n�1 with maximal Thurston–Bennequin invariant, as
described in Figure 8, has a linear-at-infinity generating family, but none have a gf-
compatible Lagrangian filling. Moreover, there is no gf-compatible Lagrangian
cobordism between any two maximal Legendrian versions of K�2n�1 .

(2) The smoothly equivalent but non-Legendrian-isotopic surfaces ƒ0 and ƒ1 pic-
tured in Figure 2 have linear-at-infinity generating families and the same classical
invariants but are not gf-compatibly Lagrangian cobordant. Furthermore, ƒ1

does not have a gf-compatible Lagrangian filling.

(3) The Legendrian m.821/ knot shown in Figure 9 has two linear-at-infinity gener-
ating families f0 and f1 that do not have a gf-compatible Lagrangian cobordism
compatible with the pair ff0; f1g at the ends.

Similar arguments produce examples of topologically equivalent Legendrian negative,
even twist knots that are not gf-compatibly Lagrangian cobordant and examples of
higher-dimensional Legendrians with the same classical invariants that are not gf-
compatibly Lagrangian cobordant; see Section 10.

Figure 2: ƒ0 is the Legendrian with the “flying saucer” front projection
shown in the upper left portion of this diagram; ƒ1 is constructed by squeez-
ing the front of ƒ0 into a dumbbell shape and then doing a helical rotation of
the connecting tube so that dumbbell ends are overlapping.

1.3 Interactions with duality

Given the isomorphisms in Theorem 1.5 and the fact that the Lagrangian fillings will
satisfy Poincaré duality, one sees that, for Legendrians that are null-cobordant, there
is a duality in the generating family cohomology groups. It is natural to ask whether
there is an intrinsic notion of generating family duality for more general Legendrians
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and whether this duality for Legendrians that are null-cobordant can be geometrically
interpreted as Poincaré duality.

There is a well-developed theory of duality for the holomorphic-curved-based lin-
earized contact homology of a “horizontally displaceable” Legendrian submanifold in
dimensions three [40] and higher [16]; here, horizontally displaceable means that the
Lagrangian projection of the Legendrian submanifold is Hamiltonian displaceable. In
dimension three, the duality says that there is an isomorphism between the linearized
contact homology groups in degrees ˙k when k ¤ 1; when k D 1, the isomorphism
is offset by the presence of a fundamental class in degree 1. In higher dimensions, the
duality statement takes the form of a long exact sequence showing that up to a fixed
“error term”, which depends only on the topology of the n–dimensional Legendrian
submanifold, there is an isomorphism between k –dimensional homology classes and
.�kC .n� 1//–dimensional cohomology classes. Fuchs and Rutherford [25] showed
that in the isomorphism between generating family and linearized contact homology
groups, the three-dimensional duality for the linearized contact homology corresponds
to a version of Alexander duality for the generating family homology. The following
theorem refines their statement of duality and generalizes it to higher dimensions in
parallel to the results of [16].

Theorem 1.8 If ƒ is an Legendrian submanifold of J 1M with a linear-at-infinity
generating family f , then there is a long exact sequence:

� � � �! GHk�1.f /
�
�! GHn�k.f / �!H k.ƒ/ �! � � � :

Remark 1.9 Having a linear-at-infinity generating family and being horizontally
displaceable are not equivalent conditions on a Legendrian submanifold. For example,
it is straightforward to construct a linear-at-infinity generating family for the Legendrian
knot K in J 1S1 pictured in Figure 3, however, this knot is not horizontally displaceable.
To see why, suppose for the sake of contradiction that K were, indeed, horizontally
displaceable. Then there exists a Hamiltonian displaceable neighborhood U of the
Lagrangian projection of K in T �S1 . It easy to draw a section of T �S1 inside U , so
our assumption would imply that a section of T �S1 is Hamiltonian displaceable, which
is impossible. Thus, Theorem 1.8 above and Corollary 1.10 below capture different
Legendrian submanifolds than does the theory of [16].

The Arnold conjecture for Legendrian submanifolds, which states that the number
of Reeb chords of a generic Legendrian submanifold ƒ� J 1Rn with respect to the
standard contact form is bounded from below by half the sum of the Betti numbers of
ƒ, was proven for horizontally displaceable Legendrian submanifolds with linearizable
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Figure 3: The Legendrian submanifold of J 1S1 represented by this front
diagram has a linear-at-infinity generating family, but is not horizontally
displaceable.

contact homology in Ekholm, Etnyre and Sullivan [18] and refined by Ekholm, Etnyre
and the first author in [16]. Analogously, Theorem 1.8 easily leads to a refined version
of the Arnold Conjecture for Legendrian submanifolds with linear-at-infinity generating
families:

Corollary 1.10 Let ri.ƒ/ denote the number of Reeb chords of ƒ of Conley–Zehnder
index i . If ƒ is a generic, n–dimensional Legendrian submanifold of J 1M with linear-
at-infinity generating family f , then:

ri.ƒ/C rn�i.ƒ/� bi.ƒIF/

for 0� i � n, where bi.ƒIF/ is the ith Betti number of K over a field F .

Results from Theorems 1.5 and 1.8 can be combined to obtain a relationship between
the “Alexander duality” map � in Theorem 1.8 and the Poincaré duality map for a
Lagrangian filling L.

Theorem 1.11 Suppose .∅; f�/ �.L;F / .ƒC; fC/, and L is orientable. Then the
following diagram commutes, where the bottom sequence comes from Theorem 1.8, the
top sequence comes from the long exact sequence of the pair .L; ƒC/ and Poincaré–
Lefschetz duality, and the vertical maps arise from Theorem 1.5:

H k.L; ƒC/
e //

'

��

HnC1�k.L; ƒC/

++
'

��
� � � // H k�1.ƒC/

44

**
H k.ƒC/

// � � �

GHk�1.fC/
� // GHn�k.fC/

44

Ekholm discusses a parallel statement for Legendrian contact homology in [15]; see
also Rizell [36].
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1.4 Open questions

The results above open a number of questions for future research. In the following ques-
tions, a “tame” generating family means linear-at-inifinity as defined in Definition 3.7
or slicewise-linear-at-infinity as defined in Definition 4.3.

(1) Every Lagrangian cobordism of R � J 1M with a generating family will be
an exact Lagrangian with Maslov index 0. When does an exact, Maslov 0,
Lagrangian cobordism of R�J 1M have a generating family?

(2) More specifically, through augmentations and rulings, we have algebraic and
combinatorial ways to detect the existence of a tame generating family for a
Legendrian knot in R3 . Are there algebraic and/or combinatorial ways to detect
the existence of a tame generating family for a higher-dimensional Legendrian
or for a Lagrangian cobordism in R�J 1M ?

(3) It can be easily shown that a Legendrian with a tame generating family always
has an immersed Lagrangian filling with a tame, compatible generating family.
What are obstructions to removing double points of a given index?

(4) It is known that a Lagrangian filling will minimize the smooth 4–ball genus.
Does an exact, Maslov 0, Lagrangian cobordism between two Legendrian knots
minimize the smooth 4–genus of such a cobordism?

1.5 Plan of the paper

In the next section, we will briefly review some background on the theory of generating
families. In Sections 3 and 4, we give precise definitions and prove basic properties for
various flavors of generating family (co)homology groups for Legendrian submanifolds
of 1–jet bundles and Lagrangian cobordisms in the symplectization. Section 5 lays
out the technical tools necessary to prove our main theorems. These theorems are
then proved in the next four sections: we examine the special case of Lagrangian
fillings in Section 6, discuss duality in Section 7, prove the main theorems about the
cobordism map and its associated long exact sequence in Section 8, and finally study
the TQFT-like properties of the cobordism map in Section 9. In Section 10, we give
additional examples of Legendrian submanifolds that are not Lagrangian cobordant,
and pose some open questions.
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2 Generating family background

In this section, we discuss the background necessary for working with generating
families for Lagrangian and Legendrian submanifolds. The germ of the idea comes
from the following simple observation: given a function f W B!R, the graph of df in
T �B is a Lagrangian submanifold and the 1–jet of f is a Legendrian submanifold of
J 1B . Generating families extend this construction to “non-graphical” Lagrangians and
Legendrians by expanding the domain to, for example, the trivial vector bundle B�RN

for some potentially large N . We will denote the fiber coordinates by �D .�1; : : : ; �N /.
In this paper, B will either be Rn , a compact manifold, or a product of either one with
RC . What follows are bare-bones definitions so as to set notation; see Théret [45],
Traynor [47] and Viterbo [48] for more details.

Suppose that we have a smooth function f W Bb �RN ! R such that 0 is a regular
value of the map @�f W B �RN !RN . We define the fiber critical set of f to be the
b–dimensional submanifold †f D .@�f /�1.0/. Define immersions @f W †f ! T �B

and jf W †f ! J 1B in local coordinates by:

@f .x; �/D .x; @xf .x; �//;

jf .x; �/D .x; @xf .x; �/; f .x; �//:

The image L of @f is an immersed Lagrangian submanifold, while the image ƒ of jf
is an immersed Legendrian submanifold. We say that f generates L and ƒ, or that
f is a generating family (of functions) for L and ƒ.
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Two functions fi W B �RNi !R, i D 0; 1, are equivalent (denoted f0 � f1 ) if they
can be made equal by applying fiber-preserving diffeomorphisms and stabilizations to
each; these operations are defined as follows:

(1) Given a function f W B � RN ! R, let Q W RK ! R be a non-degenerate
quadratic function. If we define f˚QW B�RN�RK!R by f˚Q.x; �; �0/D

f .x; �/CQ.�0/, then f ˚Q is a (dimension K ) stabilization of f .

(2) Given a function f W B �RN !R, suppose ˆW B �RN ! B �RN is a fiber-
preserving diffeomorphism, ie, ˆ.x; �/ D .x; �x.�// for a smooth family of
diffeomorphisms �x . Then f ıˆ is said to be obtained from f by a fiber-
preserving diffeomorphism.

Given a function f , denote by Œf � its equivalence class with respect to these two
operations.

It is easy to see that if f W B �RN ! R is a generating family for a Lagrangian L

(Legendrian ƒ), then any f 0 2 Œf � will also be a generating family for L (ƒ). While
a Lagrangian or Legendrian submanifold with a generating family will always have
an infinite number of generating families, the set of equivalence classes may be more
tractable.

Remark 2.1 When dealing with generating families for Lagrangians, it is also common
to include the addition of a constant in the notion of equivalence. Our definition of
equivalence comes from the fact that the Lagrangians we consider will be “cylindrical”
over Legendrians.

In the next two sections, we will define invariants of Legendrian and Lagrangian
submanifolds by applying Morse-theoretic constructions to “difference functions” as-
sociated to generating families. The following three Morse-theoretic lemmas will be
essential in defining and working with the invariants. In order to apply these three
lemmas, we will often work in the setting where our generating families are tame,
meaning “linear-at-infinity” as defined in Definition 3.7 or “slicewise-linear-at-infinity”
as defined in Definition 4.3. Equivalence and tameness of generating families will
imply equivalence and tameness of the associated difference functions.

The first Morse-theoretic lemma tells us that the relative cohomology and homology of
sublevel sets of a function remain unchanged under equivalence, perhaps up to a shift
in degree.

Lemma 2.2 If g0 � g1 , then there exists q 2 Z so that for all a < b , the relative
(co)homologies of the pairs of sublevel sets .gb

0
;ga

0
/ and .gb

1
;ga

1
/ are isomorphic up

to a shift in degree by q .
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A proof of this statement can be found in Sabloff and Traynor [41, Lemma 4.7]. In
fact, if the gi differ only by a fiber-preserving diffeomorphism, then there is no shift
in degree. If g0 differs from g1 by a stabilization, however, the shift is precisely the
index of the quadratic Q.

The second Morse-theoretic lemma is an extension of the key deformation lemma in
Morse theory to some functions with non-closed domains.

Lemma 2.3 If there is an integrable, gradient-like vector field X for gW B�RN !R
such that X.g/ is bounded away from 0 on the set g�1Œa; b�, then the sublevel set ga

is a deformation retract of the sublevel set gb .

The proof of this lemma is a straightforward extension of the usual key lemma where
the domain of g is closed; see, for example, Milnor [34]. The main idea is that since
the vector field is integrable and bounded away from 0, the flow of a normalization of
the vector field is defined and will give a deformation of one sublevel set to another.
The final Morse-theoretic lemma will be useful in proving invariance and independence
properties in subsequent sections.

Critical non-crossing lemma 2.4 (cf [47]) Suppose a continuous 1–parameter fam-
ily of functions gsW B�RN !R, s 2 Œ0; 1� agree outside a compact set, and continuous
paths ˛; ˇW Œ0; 1�!R, with ˛.s/� ˇ.s/, satisfy:

There exists � > 0 so that, for all s , there exists an integrable, gradient-like
vector field Xs for gs such that Xs.gs/ is bounded away from 0 on

(2-1) g�1
s .Œ˛.s/� �; ˛.s/C ��[ Œˇ.s/� �; ˇ.s/C ��/:

Then
H�
�
g
ˇ.0/
0

;g
˛.0/
0

�
'H�

�
g
ˇ.1/
1

;g
˛.1/
1

�
:

The proof of this lemma is a straightforward generalization of the proof of [47,
Lemma 3.10].

3 Generating family cohomology groups for Legendrian sub-
manifolds

In this section, we use sublevel sets of a “difference function” associated to a gener-
ating family to define the generating family (co)homology invariants of Legendrian
submanifolds; see also [25; 31; 47].
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3.1 Basic definitions and properties

Suppose that f W M �RN ! R is a generating family for a Legendrian ƒ� J 1M .
The difference function, ıW M �RN �RN !R, is defined to be:

(3-1) ı.x; �; z�/D f .x; z�/�f .x; �/:

The reason to work with the difference function is that its critical points capture
information about the Reeb chords of ƒ (with respect to the standard contact form),
which in this context are vertical segments  W Œa; b�! J 1M whose endpoints lie on
ƒ. Note that Reeb chords are in one-to-one correspondence with double points of
the projection of ƒ to an immersed Lagrangian submanifold of T �M . Let `. / > 0

be the length of the Reeb chord  , and let ` (resp. `) denote the maximum (resp.
minimum) length of all Reeb chords of ƒ.

Proposition 3.1 [25; 41] The critical points of the difference function ı are of two
types:

(1) For each Reeb chord  of ƒ, there are two critical points .x; �; z�/ and .x; z�; �/
of ı with nonzero critical values ˙`. /.

(2) The set
f.x; �; �/ W .x; �/ 2†f g

is a critical submanifold of ı with critical value 0.

For generic f , these critical points and submanifolds are non-degenerate, and the
critical submanifold has index N .

To ease future calculations, we now note that in J 1Rn , we may calculate the Morse
index of the non-degenerate critical points using the Conley–Zehnder index of the
associated Reeb chord, as defined in [17]. Given a Reeb chord  , let c be a “capping
path” in ƒ from the top of the Reeb chord to the bottom. The Lagrangian projections
of the tangents to ƒ along the capping path induce a path of Lagrangian subspaces
C .t/. We create a path from C .1/ to C .0/ as in [17]: choose a complex structure
I on R2n such that IC .1/D C .0/ and let � .t/D etI C .1/ for t 2 Œ0; �=2�. The
loop C �� will be denoted by xC , and the Conley–Zehnder index CZ. / is defined
to be the Maslov index �. xC /.

Proposition 3.2 Given a generating family f for a Legendrian in J 1Rn , a non-
degenerate critical point .x0; �0; z�0/ of ı , and its corresponding Reeb chord  , we
have:

Ind.x0;�0;z�0/ d2ı D CZ. /CN:
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Proof On one hand, after a fiber-preserving diffeomorphism, we may assume that in
neighborhoods of .x0; �0/ and .x0; z�0/, the generating family f has the form

f .x; �/D a.x/C b.�/ and f .x; z�/D za.x/C zb.z�/:

It follows that:

(3-2) Ind.x0;�0;z�0/ d2ı D Indx0
.d2
za� d2a/C Indz�0

d2zb� Ind�0
d2bCN:

On the other hand, we may use the Conley–Zehnder index of the path xC relative to
the vertical Lagrangian V D f0g �Rn , as defined in Robbin and Salamon [37], to
compute CZ. /. We compute using the definitions above and [17, Lemma 3.4]:

(3-3) CZ. /D �. xC /D �.C ;V /C�.� ;V /

D �.C ;V /C Indx0
.d2
za� d2a/:

To compute �.C ;V / in terms of the generating family f , we let H DRn � f0g and
appeal to Théret [46, Theorem B.5] (after an overall sign correction):

(3-4) �.C ;H /D Ind.x0;z�0/ d2f � Ind.x0;�0/ d2f

D Indx0
d2
za� Indx0

d2aC Indz�0
d2zb� Ind�0

d2b:

It remains to understand the difference �.C ;V /��.C ;H /. By [37, Theorem 3.5],
this difference is independent of the path C (with fixed endpoints) and is, in fact,
equal to the difference

(3-5) �.L;C .0//��.L;C .1//;

where L is a clockwise rotation from H to V . By a similar argument to that in [17,
Lemma 3.4], the difference in (3-5) is equal to Indx0

d2za� Indx0
d2a.

Thus, combining Equations (3-2), (3-3), (3-4), and the correction between V and H

calculated above, we obtain the desired index computation.

Given the geometric importance of the critical points of ı and the philosophy of Morse
theory, it is natural to study sublevel sets of ı . Choose � and ! so that

(3-6) 0< � < `� ` < !:

Definition 3.3 The total (resp. relative) generating family cohomology eGH�.f / (resp.
GH�.f /) of the generating family f is defined to be:

eGH k.f /DH kCNC1.ı! ; ı��/ and GHk.f /DH kCNC1.ı! ; ı�/:
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Remark 3.4 (1) There are also analogous definitions of the total generating family
homology, eGH k.f /, and relative generating family homology, GHk.f /, using
the same degree shift as above.

(2) Caveat lector: the generating family homology in [25] (and hence all comparisons
to Legendrian contact homology) coincides with the relative generating family
homology in this paper.

(3) We may think of the relative generating family cohomology as the total generating
family cohomology taken relative to an expanded set. This, along with the
statement of Theorem 1.5, explains our naming convention.

There is a simple relationship between the total and relative generating family coho-
mologies:

Proposition 3.5 Let ƒn be an orientable, Legendrian submanifold of J 1M with
linear-at-infinity generating family f . Then there is a long exact sequence:

� � � �!H k.ƒ/ �! GHk.f / �!eGH
k
.f / �!H kC1.ƒ/ �! � � � :

If the groups are calculated with Z2 coefficients, the result holds without the orientabil-
ity condition on the Legendrian.

Proof Fix � and ! satisfying (3-6). From the triple .ı! ; ı�; ı��/, we obtain the long
exact sequence:

� � � �!H kCN .ı�; ı��/ �!H kCNC1.ı! ; ı�/ �!H kCNC1.ı! ; ı��/ �! � � � :

When ƒ is orientable or when Z2 coefficients are used, standard constructions in
Morse–Bott theory and the Thom isomorphism imply that H kCN .ı�; ı��/'H k.ƒ/.
The proposition now follows from the definitions of total and relative generating family
cohomology.

The generating family (co)homology descends to equivalence classes of generating
families:

Lemma 3.6 If f0 � f1 , then GH�.f0/' GH�.f1/ and eGH�.f0/'eGH�.f1/.

Proof It is easy to verify that if f0 � f1 , then their associated difference functions
ı0 and ı1 will also be equivalent. Moreover, if f0 and f1 differ by a dimension K

stabilization, then ı0 and ı1 will differ by an index K stabilization. The lemma now
follows immediately from Lemma 2.2.
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This lemma partially justifies the shift in index in the definition of generating family
(co)homology; choosing to shift by N C 1 rather than N produces an isomorphism
with linearized contact homology [25].

We next show that, under some “tameness” conditions on the generating family, the
generating family (co)homology does not depend on the choices of � and ! . Since f
is defined on the non-compact space M �RN , its behavior outside a compact set must
be sufficiently well-behaved in order to apply the Morse-theoretic lemmas enumerated
in the previous section. An important class of such generating families satisfies the
following condition:

Definition 3.7 A function gW M �RN !R is linear-at-infinity if g can be written as

g.x; �/D gc.x; �/CA.�/;

where gc has compact support and A is a non-zero linear function.

This convention is particularly convenient for producing compact Legendrians when
M D Rn , as seen in [25; 31]. There are two issues with the definition of linear-
at-infinity: first, it is not preserved under stabilization. Second, it is easy to check
that if f is linear-at-infinity, then the associated difference function ı is no longer
linear-at-infinity. All is not lost, however, as the following lemmas show:

Lemma 3.8 If f is the stabilization of a linear-at-infinity generating family, then f
is equivalent to a linear-at-infinity generating family.

Proof It suffices to consider a one-dimensional stabilization f W M �RN �R!R of a
linear-at-infinity generating family. We prove that f is equivalent to a linear-at-infinity
generating family in two steps: first, we prove that f is equivalent to a linear-quadratic-
at-infinity generating family and, second, we prove that any linear-quadratic-at-infinity
generating family is equivalent to a linear-at-infinity generating family.

For the first step, we use a Moser-style argument along the lines found in [25, Section 6].
After a fiber-preserving diffeomorphism, we may assume that f has the form

(3-7) f .x; `; �/D f0.x; `/C `1˙ �
2;

where f0 has compact support in M �RN .

Our goal is to find a fiber-preserving diffeomorphism ‰ so that f ı‰�1 agrees with
`1˙�

2 outside a compact set in M �RN �R. Moser’s method tells us to find this ‰
by first constructing a 1–parameter family of functions gs with g0D f and g1 having
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the required property and then hoping to find a 1–parameter family of vector fields Xs

that integrate to a 1–parameter family of diffeomorphisms ‰s with the property that

(3-8) gs ı‰s D g0:

Differentiating the equation above with respect to s , we see that we need Xs to satisfy

(3-9) dgs.Xs/C @sgs D 0:

To construct gs , let ˇW Œ0;1/! Œ0; 1� be a smooth, monotone function so that ˇ.t/� 0

near 0 and ˇ.t/ D 1, for t � 0; assume ˇ.t/ increases sufficiently slowly so that
kˇ0.t/k1 < 1=kf0k1 . Define the family gs as follows:

(3-10) gs.x; `; �/D f .x; `; �/� sˇ.j�j2/f0.x; `/

D .1� sˇ.j�j2//f0.x; `/C `1˙ �
2:

Outside a compact subset, g1.x; `; �/D `1˙ �
2 , as required.

Define the family of vector fields Xs by:

(3-11) Xs.x; `; �/D
ˇ.j�j2/f0.x; `/

�sˇ0.j�j2/2�f0.x; `/˙ 2�
@�:

It is straightforward to verify that (3-9) holds, that Xs is tangent to the fibers, and that
Xs is a bounded — and hence integrable — vector field. The first step now follows by
integrating Xs to ‰s starting with ‰0 D id.

For the second step, it suffices to show that the linear-quadratic function h.`; �/ D

`1˙ �
2 is equivalent to the linear function A.`/D `1 . We will construct a diffeomor-

phism ˆ of RN �R so that A ıˆ.`; �/D h.`; �/. Notice that there are no critical
points of h, and with respect to the standard metric on RN �R, each gradient trajectory
of h will intersect the hyperplane f`1D0g transversally at precisely one point. Suppose
that .`1; `2; : : : ; `N ; �/ and .0; `2; : : : ; `N ; �

0/ are on the same gradient trajectory of
h, and h.`1; `2; : : : ; `N ; �/ D t . Consider the diffeomorphism ˆ of RN �R given
by ˆ.`1; `2; : : : ; `N ; �/D .t; `2; : : : ; `N ; �

0/; this diffeomorphism is constructed by
appropriate time flows along the gradient trajectories of h and A. By construction,
A ıˆ.`; �/D h.`; �/, as desired.

Lemma 3.9 [25] If f is linear-at-infinity, then the associated difference function ı
is equivalent to a linear-at-infinity function.

Corollary 3.10 If f W M �RN !R is a linear-at-infinity generating family for the
Legendrian ƒ, then the isomorphism classes of GH�.f / and eGH�.f / are independent
of the choice of � and ! .
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Proof If f is linear-at-infinity, then by Lemma 3.9, we may assume that the associated
difference function is linear-at-infinity as well. Independence from the choice of � and
! now follows from Proposition 3.1 and Lemma 2.3.

Remark 3.11 In fact, we can say something stronger: not only are H�.ı!0 ; ı�0/

and H�.ı!1 ; ı�1/ isomorphic for different choices of !i and �i , but because the
isomorphisms come from following the negative gradient flow of ı , we can even
identify the underlying chain complexes.

The results of Proposition 3.1 led us to consider the levels ˙� and ! in the definition
of generating family cohomology. Other combinations of levels are also natural to
examine, but these do not lead to new invariants.

Lemma 3.12 For sufficiently large ! , the pair .ı! ; ı�!/ is acyclic.

Proof By Lemma 3.9, we may assume that ı is linear-at-infinity, ie, that we may write
ı.x; �; z�/D ıc.x; �; z�/CA.�; z�/ for a compactly supported function ıc and non-zero
linear function A. Define a 1–parameter family of functions ıs by ıs.x; �; z�/ D

sıc.x; �; z�/CA.�; z�/. Denoting the support of ıc by U , take ! greater than kıjU k1 .
For this choice of ! , we see that the pair .ı! ; ı�!/ is equal to .A! ;A�!/, which is
obviously acyclic.

Corollary 3.13 If f W M �RN !R is a linear-at-infinity generating family for the
Legendrian submanifold ƒ� J 1.M /, then for �; ! satisfying Inequalities (3-6), we
have:

HkCN .ı
�; ı�!/' GHk.f / and HkCN .ı

��; ı�!/'eGH k.f /

for all degrees k .

Proof The corollary follows from Lemma 3.12 and the long exact sequences of the
triples .ı! ; ı�; ı�!/ and .ı! ; ı��; ı�!/.

3.2 Invariance

Given a Legendrian submanifold ƒ� J 1M , let:

F lin.ƒ/D ff W f is a linear-at-infinity generating family for ƒg :

On the level of equivalence, we will be interested in equivalence classes of generating
families that contain linear-at-infinity representatives.
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When ƒ is a Legendrian unknot in the standard contact R3 with maximal Thurston–
Bennequin invariant, all elements of F lin.ƒ/ are equivalent; see [31].3 In general, the
set F lin.ƒ/ is not well understood, though see Pushkar 0 and Chekanov [35], Fuchs
and Rutherford [25] and Henry [29] for some recent progress.

To form an invariant of a Legendrian submanifold ƒ with a generating family, it is
important to know that the existence of a linear-at-infinity generating family persists
under Legendrian isotopy. A proof of the following proposition can be given using
Chekanov’s “composition formula” [9]; see, for example, [31] and Section 9.

Proposition 3.14 (Persistence of Legendrian generating families) Suppose M is
compact. For t 2 Œ0; 1�, let ƒt � J 1M be an isotopy of Legendrian submanifolds.
If ƒ0 has a linear-at-infinity generating family f , then there exists a smooth path of
generating families ft W M �RN ! R for ƒt so that f0 is a stabilization of f and
ft D f0 outside a compact set.

Remark 3.15 We will often be considering generating families for compact Legendri-
ans in J 1.Rn/. The above persistence will still apply since these Legendrians can be
thought of as living in J 1Sn , and the linear-at-infinity condition allows the generating
families to be defined on Sn �RN .

Corollary 3.16 If ƒ� J 1M is a Legendrian submanifold and �t is a contact isotopy
of J 1M , then for every f 2F lin.K/ there exists ft 2F lin.�t .K// and an isomorphism
�#

t W GH�.Œft �/! GH�.Œf �/.

The isomorphisms .�s
˙
/# are constructed by applying the Critical non-crossing lemma

2.4 to the difference functions ıs
˙

.

In general, since it may not be the case that all elements in F lin.ƒ/ are equivalent, the
generating family homology of a linear-at-infinity generating family f is not itself an
invariant of the generated Legendrian ƒ. By Corollary 3.16, however, we do have:

Proposition 3.17 [31; 47] For a compact Legendrian submanifold ƒ� J 1M , the
set of all generating family cohomology groups,

GHk.ƒ/D fGHk.Œf �/ W f 2 F lin.ƒ/g;

is invariant under Legendrian isotopy.

3In [31], the focus was on generating families that are linear-quadratic-at-infinity. Lemma 3.8, however,
can be used to show that linear-quadratic-at-infinity functions are equivalent to linear-at-infinity ones.
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3.3 Additivity

Generating family cohomology not only produces an invariant of Legendrian subman-
ifolds, but also behaves well under disjoint union; see Eiseman, Lima, Sabloff and
Traynor [12] for a similar phenomenon. The technical conditions involve the “support”
of a linear-at-infinity generating function. We say that two linear-at-infinity generating
families f1; f2 have disjoint supports if, possibly after stabilizing to match the domains,
the functions f c

1
; f c

2
W M �RN ! R have disjoint supports (see Definition 3.7). If

two linear-at-infinity generating families have disjoint supports, we may assume that,
up to equivalence, they agree with the same linear function A outside a compact set.

Definition 3.18 The sum of two linear-at-infinity generating families with disjoint
supports is the linear-at-infinity function:

f1Cf2 D

8<:
f1 on the support of f1,
f2 on the support of f2,
A otherwise:

We may extend the ideas of disjoint supports and sums to pairs of equivalence classes
if there are (linear-at-infinity) representatives of each equivalence class with disjoint
supports. Using these notions, we may specify the behavior of generating family
cohomology for a disjoint union of Legendrians:

Proposition 3.19 Suppose ƒ1; ƒ2 are Legendrian submanifolds of J 1M so that
�M .ƒ1/ \ �M .ƒ2/ D ∅, where �M W J

1M ! M is the projection. Then for
every fi 2 F lin.ƒi/, i D 1; 2, Œf1� and Œf2� have disjoint supports and f1Cf2 2

F lin.ƒ1[ƒ2/ satisfies

GHk.Œf1Cf2�/' GHk.Œf1�/˚GHk.Œf2�/:

Proof By the hypothesis on the projections of ƒ1 and ƒ2 , f1 and f2 can be made
to have disjoint supports. The result now follows from choosing linear-at-infinity
representatives with disjoint support and applying a Mayer–Vietoris argument; see [12]
for a similar argument.

Remark 3.20 The usual axiom for a TQFT is multiplicativity rather than additivity;
that is, the vector spaces associated to the components of disjoint union should be
combined using a tensor product rather than a direct sum. The fact that we obtain a
direct sum is not completely surprising, however, if we think of the generating family
homology as the linear term in a differential graded algebra, a structure that is well-
known in the pseudo-holomorphic world of linearized contact homology; see Civan,
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Koprowski, Etnyre, Sabloff and Walker [11], Eliashberg, Givental and Hofer [20], and
Henry and Rutherford [30]. What we are detecting is that the linear part of the tensor
product of two tensor algebras is a direct sum of the respective linear parts.

4 Generating families for Lagrangian cobordisms

We now shift our attention from individual Legendrian submanifolds to Lagrangian
cobordisms between Legendrian submanifolds. We will extend the technique of gener-
ating families to this new setting, eventually using them to define a TQFT-like structure
on the generating family cohomology.

4.1 Lagrangian cobordisms and compatible generating families

A Legendrian submanifold ƒ� J 1M gives rise to a Lagrangian cylinder ZƒDR�ƒ
in the symplectization R�J 1M .

Definition 4.1 A Lagrangian cobordism of R�J 1M between two Legendrian sub-
manifolds ƒ�; ƒC � J 1M is an embedded Lagrangian submanifold L�R�J 1M

so that, for some s� < sC , L agrees with the cylinder Zƒ� for s � s� and L agrees
with the cylinder ZƒC for s � sC ; such a cobordism will be denoted by ƒ� �L ƒC .

To study Lagrangian cobordisms using generating families, we identify R�J 1M with
T �.RC �M / using the symplectomorphism

(4-1)
� W R�J 1M ! T �.RC �M /;

.s;x;y; z/ 7! .es;x; z; esy/:

Given a Lagrangian cobordism of R� J 1M , we refer to its image L D �.L/ as a
Lagrangian cobordism in T �.RC �M /. We relabel the values es˙ by t˙ .

For a Lagrangian cobordism ƒ� �L ƒC , we will be interested in the situation where
�.L/D L� T �.RC �M / and ƒ˙ � J 1M have “compatible” generating families.

Definition 4.2 Let f˙W M �RN !R and F W .RC �M /�RN !R be functions.
The triple of functions .F; f�; fC/ is compatible if for some t� < tC , we have

F.t;x; �/D

�
tf�.x; �/ t � t�;

tfC.x; �/ t � tC:

Moreover, a gf-compatible Lagrangian cobordism consists of a Lagrangian cobordism
ƒ� �L ƒC together with compatible triple of generating families .F; f�; fC/ for,
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respectively, �.L/DL�T �.RC�M /, ƒ�; ƒC�J 1M . A gf-compatible Lagrangian
cobordism will be denoted by:

.ƒ�; f�/�.L;F / .ƒC; fC/:

The notion of compatibility descends to the level of equivalence classes of functions, so
long as we require the fiber-preserving diffeomorphisms to be independent of t outside
of Œt�; tC�.

As described in Section 3, it is useful to impose some “nice” behavior on the generating
families f˙ outside a compact set. The behavior of F outside of Œt�; tC� prevents
F from being linear outside a compact set. Instead, we will impose the following
condition:

Definition 4.3 A function F W .RC �M /�RN ! R is slicewise-linear-at-infinity
if for each t 2 RC , there exists a non-zero linear function At W RN ! R so that
F.t;x; �/DAt .�/ outside a compact set of M �RN . A triple of compatible functions
.F; f�; fC/ is tame if F is slicewise-linear-at-infinity and f˙ are linear-at-infinity.

4.2 Wrapped generating family cohomology

The Lagrangian Floer cohomology groups of a pair of closed Lagrangian submanifolds
L0 and L1 in a symplectic manifold .W; !/ has a cochain complex generated by
elements of L0\L1 ; see Floer [22]. To generalize to Lagrangians Li �RC �J 1M ,
i D 0; 1, that are compact and have Legendrian boundaries ƒi

˙
� fs˙g �J 1M , we

use the notion of wrapped Floer homology as formulated in [1; 2; 26]. Wrapped Floer
homology uses a chain complex generated by the intersections between compact pieces
of two Lagrangian submanifolds and the Reeb chords between the Legendrian ends
ƒi
˙

. When the compact Lagrangians are extended to Lagrangians Li with cylindrical
ends, then the Reeb chords of interest correspond to intersections between L0 and the
image of L1 under an appropriately defined Hamiltonian diffeomorphism.

In the following, we will define wrapped cohomology using the theory of generating
families for Lagrangians L0 D L1 � T �.RC �M /; the definitions may easily be
extended to the case where L0 ¤ L1 .

We begin by specifying the Hamiltonian functions that will be used to convert Reeb
chords of Legendrian submanifolds at the boundary to intersections of Lagrangians.

Definition 4.4 Given ƒ� �L ƒC , for L D �.L/, the set H.L/ of Hamiltonian
shearing functions consists of decreasing, smooth functions H W RC!R that depend
on a choice of t˙ from Definition 4.1 and additional parameters r˙ and u˙ , where
u� < t� � tC < uC . The parameters must satisfy the following technical conditions:
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(1) rC is chosen to be sufficiently large so that rC > `C=tC ,

(2) r� is chosen to be sufficiently large so that

r�t2
�

2
>max

�
2t�`�; t�`C�

`2
C

2r�
; 3tC`CC

`2
C

2rC

�
;

(3) u˙ are chosen sufficiently close to t˙ so that ju˙� t˙j< `˙=2r˙ .

Given these parameters, the functions H must satisfy H
00

.t/ � 0 on .0; t�� and
H
00

.t/� 0 on ŒtC;1/ with

H.t/D

8<:
r�
2
.t � t�/

2 t � u�;

0 t 2 Œt�; tC�;

�
rC
2
.t � tC/

2 t � uCI

see Figure 4.

As a consequence of these choices, we have the following inequalities:

(4-2)
`˙

t˙
< r˙ <

`˙

2ju˙� t˙j
:

For H 2H.L/, let XH denote the associated Hamiltonian vector field.4 If �1
H

denotes

H.t/

u� t�

tC uC

u� t� tC uC

H 0.t/

�`�

�`�

�`C

�`C

Figure 4: A schematic picture of H and H 0.t/ for H 2H.L/

the time-1 flow of this vector field and F generates L, then it is easy to verify that
F.t;x; �/CH.t/ generates �1

H
.L/. It is also straightforward to check that H.L/ is

path connected.

4We use the convention �XH
! D�dH .
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In parallel to the definition of the difference function ı in the previous section, a
shearing function H 2H

�
L
�

may be used to define the sheared difference function
�W RC �M �RN �RN !R:

(4-3) �.t;x; �; z�/D F.t;x; z�/CH.t/�F.t;x; �/:

Notice that when t � t� , the sheared difference function satisfies the identity

�.t;x; �; z�/D tı�.x; �; z�/CH.t/;

where ı� is the difference function of f� . A similar statement holds when t � tC .

In parallel to Proposition 3.1, the critical points of � detect information about the
intersection points of L and �1

H
.L/:

Proposition 4.5 Given a gf-compatible Lagrangian cobordism, there is a one-to-one
correspondence between intersection points in L\ �1

H
.L/ and critical points of �.

Moreover, there is a one-to-one correspondence between Reeb chords ˙ of ƒ˙
and points in L\ �1

H
.L/\ ft 2 .0;u�/[ .uC;1/g; the critical value of the point

corresponding to the Reeb chord ˙ is:

t˙`.˙/˙
1

2r˙
.`.˙//

2 > 0:

All other critical points lie in the critical submanifold

C D f.t;x; �; �/ W .t;x; �/ 2†F with t 2 Œt�; tC�g:

The critical submanifold is diffeomorphic to LD L\ ft 2 Œt�; tC�g and has value 0;
for generic F , the submanifold C is non-degenerate of index N .

Note that while the critical submanifold C has boundary, and hence cannot be easily
analyzed using standard Morse–Bott theory, the fact that C is properly embedded
allows for the use of a straightforward modification to the usual Morse–Bott theory;
see Section 6.

Proof A straightforward calculation shows that critical points of � correspond to
points in L\ �1

H

�
L
�
. By construction of H , we see that critical points of � with

t 2 Œt�; tC� correspond to self-intersection points of L \ ft 2 Œt�; tC�g. Since L is
embedded, every critical point with t 2 Œt�; tC� has critical value 0.

For t < t� , we have:

LD
˚
.t;x0; z0; ty0/ W .x0;y0; z0/ 2ƒ�

	
;

�1
H .L/D

˚
.t;x1; z1CH 0.t/; ty1/ W .x1;y1; z1/ 2ƒ�

	
:
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On this region, H 0.t/� 0 and so the intersection points of these two Lagrangians occur
when there is a Reeb chord � of ƒ� with `.�/D�H 0.t/. The special form of F

and H when t < u� then implies that critical points occur when t D t�� .`.�/=r�/,
and requirement (3) of Definition 4.4 implies that t < u� . The Inequalities (4-2) imply
that such t values are positive, and hence the critical points of � capture all of the
Reeb chords of ƒ� . The critical value is then a simple calculation, with its positivity
following once again from Inequalities (4-2).

The arguments for t > tC are similar (and, in fact, slightly easier).

The following lemma is essentially a 1–parameter version Lemma 3.9.

Lemma 4.6 If .ƒ�; f�/ �.L;F / .ƒC; fC/, then for any H 2 H.L/, the associated
compatible triple .�; ı�; ıC/ is equivalent to a tame triple of functions.

We are now ready to define wrapped generating family cohomology groups for La-
grangian cobordisms.

Definition 4.7 Let .ƒ�; f�/�.L;F / .ƒC; fC/. For H 2H.L/, choose � and � so
that:

(4-4)

r�t2
�

2
>�>max

�
t˙`C˙

`2
C

2r˙
; 2t�`�; 3tC`CC

`2
C

2rC

�
;

0< � <min
�

t˙`C˙
`2
C

2r˙
;
r˙

2
ju2
˙� t2

˙j; t�`�;
uC`C

2
;
rC

2
.uC� tC/

2

�
:

Then the total (resp. relative) wrapped generating family cohomology of F , AWGH k.F /

(resp. WGHk.F /), is defined to be:

AWGH k.F /DH kCN .��; ���/ .resp. WGHk.F /DH kCN .��; ��//:

As shown in Proposition 4.5, all critical values of � lie in Œ��;��, and all critical values
of � arising from the Reeb chords of the ends lie in Œ�;��; the other restrictions on
� and � will be useful later in this section and when examining the pairs .��; �˙�/
in Section 5 and beyond.

We have not included H , � or � in the notation for the total and relative wrapped
generating families cohomologies since, as we will show below, the cohomologies
are independent of these choices. The Critical non-crossing lemma 2.4 will play a
key role in these proofs, so it will be necessary to work with the sheared difference
function over the compact base Œv�; vC� �M rather than RC �M . We begin by
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introducing some convenient notation and two lemmas that will allow us to apply the
Critical non-crossing lemma 2.4.

For J D Œt0; t1��RC , we use the shorthand

�jJ D�jf.t;x;�;z�/Wt2J g;

�a
J D�

a
\ft 2 J g D f.t;x; �; z�/ W t 2 J; �.t;x; �; z�/� ag:

Notice that if J � ŒtC;1/, then we have

(4-5) �a
J D

n
.t;x; �; z�/ W t 2 J; ıC.x; �; z�/�

1

t
.a�H.t//

o
I

a similar fact holds for J � .0; t��. The function 1
t
.a�H.t// is sufficiently important

that we assign to it the name �a.t/.

Lemma 4.8 For constants � < � < r�t2
�=2, there exist v˙ 2RC so that:

(4-6) H�.�� ; �� /'H�
�
��Œv�;vC�; �

�
Œv�;vC�

�
:

Proof The points v˙ will be constructed in the region where �D tı˙CH.t/. First
notice that if a< r�t2

�=2, then the following limits hold:

(4-7) lim
t!0

�a.t/D�1 and lim
t!1

�a.t/D1:

Let c� denote the minimum critical value of ı� , and let cC denote the maximum
critical value of ıC . Choose v� < t� so that �� .t/ < c� for all t � v� , and choose
vC > tC so that �� .t/ > cC for all t � vC . Note that there are no critical values of ı�
in Œ�� .t/; �� .t/� for all t 2 .0; v��, and similarly at the positive end. Equation (4-6)
now follows from a Mayer–Vietoris argument: for a sufficiently small � , split the
domain into

U D .v���; vCC�/�M �R2N and V D
�
.0; v�C�/[.vC��;1/

�
�M �R2N :

The pair .��
.0;v�C�/

; ��
.0;v�C�/

/ is acyclic since we may follow the slicewise negative
gradient flow of ı� on each ftg �M �R2N to retract ��

.0;v�C�/
down to ��

.0;v�C�/
.

A similar argument applies at the positive end and on the overlaps, so the desired
isomorphism follows.

Lemma 4.9 For the values v˙ in the previous lemma, if � 0 < � < r�t2
�=2 and there

are no critical values of �jŒv�;vC� in Œ� 0; � �, then ��
0

Œv�;vC�
is a deformation retract

of ��
Œv�;vC�

.
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Proof The claimed deformation retract will follow from Lemma 2.3 if we can construct
an integrable, gradient-like vector field X on Œv�; vC��M �RN for �jŒv�;vC� so
that X.�/ is bounded away from 0 on .�jŒv�;vC�/

�1.Œ� 0; � �/.

Fix a metric on Œv�; vC��M �RN , and let X be the vector field

X.t;x; �; z�/D

8<:
grad�.t;x; �; z�/ t 2 Œt�; tC�;

�.t/.ı�CH 0.t//@t C t grad ı� t � t�;

�.t/.ıCCH 0.t//@t C t grad ıC t � tC;

where �.t/W Œv�; t�� [ ŒtC; vC� ! Œ0; 1� is a smooth function with �.t˙/ D 1 and
��1f0g D fv˙g. It is clear that X is a gradient-like vector field for �jŒv�;vC� when
t 2 Œt�; tC�. When t � t� ,

hX; grad�i D �.t/.ı�CH 0.t//2C t2
kgrad ı�k2 � 0:

The quantity hX; grad�i vanishes only when either .t;x; �; z�/ is a critical point of �
or when t D v� , and grad ı�.x; �; z�/D 0. Neither of these two cases can occur on
.�jfv�g/

�1Œ� 0; � � by construction of v� . A similar argument works for t � tC .

By construction, X is parallel to the boundary of Œv�; vC��M �RN , and hence the
tameness of .�; ı�; ıC/ (see Lemma 4.6) implies that X is integrable. Furthermore,
if � 0 < � < r�t2

�=2 and there are no critical values of �Œv�;vC� in Œ� 0; � �, then X.�/

is bounded away from 0 on .�jŒv�;vC�/
�1.Œ� 0; � �/. Thus, by Lemma 2.3, ��

0

Œv�;vC�
is

a deformation retract of ��
Œv�;vC�

.

We will be particularly interested in Lemma 4.8 where � D� and � D˙�, where �
and � satisfy Inequalities (4-4). In this case, we want to choose v� < t� and vC > tC
so that

(4-8) ��.t/ < �`�; 8t � v� and �˙�.t/ > `C; 8t � vC:

Corollary 4.10 Given .ƒ�; f�/�.L;F / .ƒC; fC/, choose H 2H.L/. For � and �
satisfying Inequalities (4-4) and v˙ satisfying Inequalities (4-8), we have

WGHk.F /'H kCN
�
��Œv�;vC�; �

�

Œv�;vC�

�
;

AWGHk.F /'H kCN
�
��Œv�;vC�; �

��

Œv�;vC�

�
:

With these preliminary constructions established, we are ready to prove the inde-
pendence of the wrapped generating family cohomology from the choices of �, �
and H .
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Proposition 4.11 Given .ƒ�; f�/ �.L;F / .ƒC; fC/, the isomorphism types of
AWGHk.F / and WGHk.F / do not depend on the choice of H , � or �.

Proof Since H.L/ is path connected, we may choose continuous paths Hs in H.L/,
�s and �s with s 2 Œ0; 1� joining any two triples of choices of H , � and � that all
satisfy the appropriate inequalities. Let �s be the path of associated sheared difference
functions. Choose v˙ that satisfy the Inequalities (4-8) for all s 2 Œ0; 1�. After applying
a fiber-preserving diffeomorphism, we can assume that when t 2 Œv�; vC�, the sheared
difference functions may be written as

(4-9) �s.t;x; �; z�/D�
c
s .t;x; �; z�/CAt .�; z�/CHs.t/;

where �c
s .t;x; �; z�/ is compactly supported and, for each t , At .�; z�/ is a non-zero

linear function.

We finish the proof by applying the Critical non-crossing lemma 2.4. Since we can
assume that .�s; ı�; ıC/ is tame and that �.s/ and ˙�.s/ are always regular values
of �s , to apply Critical non-crossing lemma 2.4 it suffices to construct an appropriate
gradient-like vector field Xs on Œv�; vC��M �RN for �sjŒv�;vC� ; this vector field
may be constructed exactly as in Lemma 4.9.

Though it was simple enough to simultaneously prove that both the relative and total
wrapped generating family cohomologies do not depend on the choices involved in
their definitions, it only matters for the relative case, as we have:

Proposition 4.12 The total wrapped generating family cohomology vanishes.

Proof Using notation as in Equation (4-9), consider

�s.t;x; �; z�/D .1� s/�c.t;x; �; z�/CAt .�; z�/CHs.t/

for t in some compact interval J and for Hs.t/ chosen to be compatible with the
Lagrangian generated by .1� s/F.t;x; �/. Choose paths �s and �s so that �0 D�,
�0 D � and all critical values of �s lie in Œ��s; �s �. Notice that �1.t;x; �; z�/ D

At .�; z�/CH1.t/, and hence has no critical values. If we can show that there exists
J D Œv�; vC� with v˙ satisfying Inequalities (4-8), and an integrable, gradient-like
vector field Xs for �s on Œv�; vC��M �RN , then Corollary 4.10 and the Critical non-
crossing lemma 2.4 imply:

AWGHk.F /'H kCN
�
.�0/

�0

Œv�;vC�
; .�0/

��0

Œv�;vC�

�
'H kCN

�
.�1/

�1

Œv�;vC�
; .�1/

��1

Œv�;vC�

�
D 0:
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To construct appropriate v˙ , notice that when t � t� or t � tC , we have:

�.t;x; �; z�/D tıc
˙.x; �; z�/C tD˙.�; z�/CH.t/:

Consider
.ı˙/s D .1� s/ıc

˙.x; �; z�/CD˙.�; z�/:

Let .cC/s be greater than all critical values of .ıC/s , and let .c�/s be less than all
critical values of .ı�/s . Then choose v˙ so that for all s 2 Œ0; 1�,

��s
.v�/ < .c�/s and ���s

.vC/ > .cC/s:

It follows that if �.v˙;x; �; z�/ 2 Œ��s; �s �, then .x; �; z�/ is not a critical point of
.ı˙/s . The construction of the integrable, gradient-like vector field Xs for �s on
Œv�; vC��M �RN is as in the proof of Lemma 4.9.

Although the total wrapped generating family cohomology vanishes, the relative version
can be non-trivial. In fact, we will show in Proposition 8.2 that WGHkC1.F / '

H k.L; @LC/.

5 Relative mapping cones

In Sections 6 and 8, we will show that the pair of spaces used to define the total
and relative wrapped generating family cohomology can be viewed as objects akin to
mapping cones. In this section, we develop the theory of relative mapping cones.

5.1 Long exact sequences from mapping cones

The key idea in this section is the use of a relative version of the well-known mapping
cone construction. Let I denote the unit interval Œ0; 1�. Recall that the cone of a space
X , C.X /, is defined to be X � I=X � f1g. Given a map f W X ! Y , the mapping
cone C.f / is defined to be C.X /[f Y , where [f indicates an identification of .x; 0/
with f .x/.

Definition 5.1 Given a pair .X;A/, define the relative cone C.X;A/ to be the pair
.X � I;A� I [X � f1g/. For a map gW .X;A/! .Y;B/, let the relative mapping
cone C.g/ be the pair C.X;A/[g .Y;B/.

We may similarly define the relative suspension †.X;A/ to be the pair .X � I;

A� I [X � f0; 1g/.
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The following lemma, whose proof is an easy exercise, shows that the (co)homology
of relative suspensions behaves in the same way as it does for the non-relative case:

Lemma 5.2 H k.†.X;A//'H k�1.X;A/.

It is well-known that the classical mapping cone on f WX ! Y induces a long exact
sequence:

� � � �!H k.Y /
f �

�!H k.X / �!H kC1.C.f // �!H kC1.Y /
f �

�! � � � :

A similar sequence exists for a relative mapping cone:

Lemma 5.3 Given a map gW .X;A/ ! .Y;B/, there is a long exact sequence in
cohomology:

� � � �!H k.Y;B/
g�

�!H k.X;A/ �!H kC1.C.g// �!H kC1.Y;B/
g�

�! � � � :

Proof The desired result follows by examining the long exact sequence of the triple�
X � I [g Y; .A� I [X � f1g/[g Y; .A� I [X � f1g/[g B

�
:

By excision, the cohomology groups of the last pair in the triple agree with those of
.Y;B/, the coholomogy groups of the pair made from the first and last terms are the
cohomology groups of C.g/, and the first pair is a suspension of .X;A/ and thus
Lemma 5.2 applies.

5.2 Morse-theoretic lemmas to realize relative mapping cones

In Sections 6 and 8, we prove that pairs of sublevel sets of � may be identified with
relative mapping cones. The lemmas developed in this section will play a critical role
in this identification.

We begin by setting notation. Let J D Œt0; t1� be a closed interval and let ıW X !R
be a continuous function on a manifold. Given continuous functions a; bW J !R, we
define the following subsets of J �X :

(5-1)

At D ftg � ı
a.t/; AJ D

[
t2J

At ;

Bt D ftg � ı
b.t/; BJ D

[
t2J

Bt :

We will be interested in finding homotopy equivalences of the pair .BJ ;AJ / under
different conditions on the functions a and b . The reason for considering such a setup
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is that the pairs .�� ; �� / have this form at the ends of RC for the difference functions
ı˙ and the levels b.t/D �� .t/ and a.t/D �� .t/.

First, we analyze the pair .BJ ;AJ / in terms of the sublevel sets on the right side of J .

Lemma 5.4 Let ıW X !R be a continuous function, and let a; bW J !R be contin-
uous functions satisfying:

(1) a.t/� b.t/ for all t 2 J .

(2) a and b are strictly increasing.

Then .BJ ;AJ / deformation retracts to .AJ [Bt1
;AJ /.

Proof We define a retraction �CW BJ !AJ [Bt1
as follows:

�C.t;x/D

8<:
.t;x/ ı.x/� a.t/;

.a�1.ı.x//;x/ a.t/� ı.x/� a.t1/;

.t1;x/ ı.x/� a.t1/:

See the left side of Figure 5. To see this map as the end map of a deformation retraction,
simply follow the flow of the horizontal vector field @t for ever shorter time intervals;
this flow lies inside BJ since b.t/ is increasing.

Corollary 5.5 Under the hypotheses of Lemma 5.4, .BJ ;AJ / deformation retracts
to .Bt1

;At1
/

Proof Consider the retraction �CW AJ [Bt1
! .Bt1

;At1
/ given by �C.t;x/D .t1;x/.

Since a is increasing, �C can be seen as the end map of a deformation retraction.
Composing �C and �C gives the desired deformation retraction.

Next, we seek to understand .BJ ;AJ / in terms of the sublevel sets of ı at the left
side of J :

Lemma 5.6 Let ıW X !R be a smooth function whose negative gradient flow exists
for all time, and let a; bW J !R be continuous functions satisfying:

(1) b.t/D b.t0/ for all t .

(2) a.t/ is strictly increasing, and a.t1/D b.t0/.

(3) a.t0/ has a neighborhood of regular values of ı .

Then .BJ ;AJ / deformation retracts to the relative cone C.ıb.t0/; ıa.t0//.
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X X

J J

a.t/
a.t/

b.t/ b.t/

˛.t/

Figure 5: Schematic diagrams for the maps in the proofs of Lemmas 5.4 and 5.6

Proof Choose �>0 so that a.t0/C�<b.t0/ and so that there are no critical values of ı
in Œa.t0/; a.t0/C��. Let ˛.t/ be a function that strictly increases from a.t0/ to a.t0/C�

over J , and satisfies ˛.t/< a.t/ for all t > t0 . Define a map � W BJ !BJ that is equal
to the map �C.x; t/ from the proof of Lemma 5.4 on AJ (with a taking the place
of b and ˛ taking the place of a), is equal to the identity when ı.x/� a.t/C � , and
interpolates between these two extremes in the t direction for a.t/ < ı.x/� a.t/C � ;
see the right side of Figure 5. As in the proof of Lemma 5.4, this map is homotopic
to the identity. To finish the proof, the negative gradient flow of ı defines a map that
takes .�.BJ /; �.AJ // to .J � ıb.t0/;J � ıa.t0/[ft1g� ı

b.t1//D C.ıb.t0/; ıa.t0//, as
desired.

In practice, we will often need to expand and/or retract .BJ ;AJ / by deforming
.Bt ;At / for t 2J before we can apply Lemmas 5.4 and 5.6. We capture this maneuver
in the following definition:

Definition 5.7 Pairs .BJ ;AJ / and . zBJ ; zAJ / are fiberwise homotopy equivalent if
there exists a homotopy equivalence H W .BJ ;AJ /! . zBJ ; zAJ / that, for all t 2 J ,
restricts to a homotopy equivalence Ht W .Bt ;At /! . zBt ; zAt /.

Lemma 5.8 Assume ıW X !R is a function whose gradient flow exists for all time.
Given continuous functions a; za; b; zbW J !R with a.t/� b.t/ and za.t/� zb.t/ for all
t , let AJ ; zAJ ;BJ ; zBJ be as defined in Equation (5-1). If for all t 2 J there exist no
critical values of ı between a.t/ and za.t/ and between b.t/ and zb.t/, then .BJ ;AJ /

and . zBJ ; zAJ / are fiberwise homotopy equivalent.

Proof The desired homotopy equivalence arises from following the positive or negative
gradient flow of ı in each t –slice.
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5.3 Analysis of functions corresponding to particular sublevel sets

A crucial part of our analysis of sublevel sets of the sheared difference function in
Sections 6 and 8 will occur over intervals that lie outside of Œt�; tC� and at levels � and
˙�. We will want to show that, after a fiberwise homotopy equivalence, the hypotheses
of Lemma 5.4 and 5.6 can be applied to sublevel sets of ı with level functions of the
form �� .t/D

1
t
.� �H.t//. To this end, we analyze the behavior of �� and �˙� in

this section. We suggest that the reader bypass this section on first reading, looking
only at Figures 6 and 7.

For the remainder of this section, suppose that .ƒ�; f�/�.L;F / .ƒC; fC/ is a gf-
compatible Lagrangian cobordism of T �.RC �M /, and that H 2H.L/.

The first lemma examines the levels �� and explains some of the lower bounds on �
in Inequalities (4-4).

Lemma 5.9 For � meeting the requirements of (4-4), the function �� satisfies the
following:

(1) For all t � tC , ��.t/ > `C .

(2) There exists tc
� < t� so that ��.t/ has a unique maximum on .0; t�� at tc

� , and
although ��.t/ is decreasing on Œtc

�; t��, ��.t/ > `� on that interval.

(3) If v� satisfies Inequality (4-8), then �0
�
.v�/ > 0.

See Figure 6.

We will use the following sublemma implicitly throughout the proofs in this subsection;
the proof comes from direct calculations and the defining conditions of H 2H.L/:

Sublemma 5.10 The sign of �0� .t/ is governed by the sign of l� .t/D�tH 0.t/�� C

H.t/. Since l 0� .t/D�tH 00.t/, l� is increasing when t � tC ; similarly, l� is decreasing
when t � t� .

Proof of Lemma 5.9 To prove (1), we will show that at the unique minimum tc
C of

�� on ŒtC;1/, with ��.tc
C/ > `C . Let tC denote the unique point in .tC; 2tC/ we

have �H 0.tC/D `C . As shown in Proposition 4.5,

H.tC/D tC`CC
`2
C

2rC
:

Since tC < 2tC and �> 3tC`CC `
2
C=.2rC/ from Inequality (4-4), we may compute

that l�.tC/ < 0. On the other hand, l�.t/ > 0 for sufficiently large t . Thus we see

Algebraic & Geometric Topology, Volume 13 (2013)



Obstructions to Lagrangian cobordisms between Legendrians via generating families 2767

��.t/

��.t/

0

u� t� tC uC

`˙

`˙

Figure 6: A schematic picture of ��.t/ D 1
t
.� � H.t// and ��.t/ D

1
t
.��H.t// for H 2H.L/ and � and � satisfying Inequalities (4-4)

that the unique minimum of �� occurs at some tc
C > tC . Since l�.t

c
C/D 0, we obtain

the relation �H.tc
C/D�tc

CH 0.tc
C/��, and thus

��.t
c
C/D�H 0.tc

C/ > �H 0.tC/D `C;

as desired.

A similar argument when t � t� that uses the inequality 2t�`� <� from (4-4) proves
(2). Furthermore, if v� satisfies Inequality (4-8), then ��.t/ < `� for all t � v� . It
follows that v� < tc

� , and hence v� must be contained in the region where �� is
increasing; this proves (3).

The next lemma explains some of the upper bounds imposed on � in Inequality (4-4).

Lemma 5.11 For � meeting the requirements of (4-4), the function ��.t/ satisfies
the following:

(1) There exists a unique minimum tc
C 2 .tC;uC/ for �� on ŒtC;1/ so that 0 <

��.t/ < `C for all t 2 ŒtC;uC�.

(2) There exists a unique maximum tc
� 2 .u�; t�/ for �� on .0; t�� so that 0 <

��.t/ < `� for all t 2 Œtc
�; t��.
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See Figure 6.

Proof We begin with the case of t � tC . To show that there exists a minimum
(Sublemma 5.10 guarantees that such a minimum would be unique), we compute that
l�.tC/ D �� < 0 on one hand, and that l�.uC/ D .rC=2/.u

2
C � t2

C/�� > 0, since
�< .rC=2/.u

2
C� t2

C/ by Inequality (4-4). Thus, at some point tc
C 2 .tC;uC/, �� has

a minimum.

Since l�.t
c
C/ D 0, we see that �H.tc

C/ D �tc
CH 0.tc

C/ � �, and hence ��.tc
C/ D

�H 0.tc
C/ > 0. Since � < tC`C by Inequality (4-4), we have ��.tC/ < `C , and so,

for t 2 ŒtC; t
c
C�, ��.t/ 2 .0; `C/. In addition, the inequalities � < .uC=2/`C < tC`C

from Inequality (4-4), rC < `C=.uC� tC/ from Inequality (4-2), and uC < 2tC imply
that ��.uC/ < `C . This finishes the proof of (1).

A similar argument when t < t� using the inequalities � < .r�=2/.t
2
� � u2

�/ and
� < t�`� from (4-4) yields (2).

Remark 5.12 For later purposes, it will be useful to point out that the proof of
Lemma 5.11 shows that when 0 < � < .uC=2/`C , we have ��.t/ 2 .0; `C/ for all
t 2 ŒtC;uC�.

Lemma 5.13 For � meeting the requirements of (4-4), the function ��� satisfies the
following:

(1) ��� is increasing on .�1; t�/[ .tC;1/.

(2) �`˙ < ���.t˙/ < 0.

(3) 0< ���.uC/ < `C .

See Figure 7.

Proof Since l��.t˙/ D � > 0, Sublemma 5.10 implies that ���.t/ is increasing
when t 2 .�1; t�/[ .tC;1/. Parts (2) and (3) follow from direct calculations using
Inequalities (4-4) and a calculation similar to the one in the proof of Lemma 5.11.

6 Filling isomorphisms

In this section, we will prove Theorem 1.5. Namely, we will show that if .∅; f�/�.L;F /
.ƒC; fC/, then

(6-1) GHk.ŒfC�/'H kC1.L; ƒC/ and eGH k.ŒfC�/'H kC1.L/:

This will follow easily from Proposition 4.12 and the following theorem.
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���.t/

0
u� t� tC uC

`C

�`�

Figure 7: A schematic picture of ��� , for H 2H.L/ and � satisfying Inequalities (4-4)

Theorem 6.1 If .∅; f�/ �.L;F / .ƒC; fC/, and L is orientable, then, for L D
L\ft 2 .0; tC�g, there are long exact sequences

� � � // AWGHkC1.F / // H kC1.L; @L/
��

F // GHk.ŒfC�/
// � � � ;

� � � // AWGHkC1.F / // H kC1.L/
z��

F //eGHk.ŒfC�/
// � � � :

The idea of the proof of Theorem 6.1 is that each long exact sequence comes from
realizing the pair .��

Œv�;vC�
; �
��

Œv�;vC�
/ as a relative mapping cone. To do this, we will

prove:

(1) Over ŒtC; vC� (resp. ŒuC; vC�), the pair may be associated with the relative cone
on .ı!C; ı

��
C / (resp. .ı!C; ı

�
C//.

(2) Over Œv�; tC�, the pair may be associated with a disk bundle over the Morse–
Bott submanifold C , which is diffeomorphic to the manifold-with-boundary
L, relative to the boundary sphere bundle; over Œv�;uC�, we obtain the same
disk bundle, but now taken relative to the boundary sphere bundle and the disk
bundle over @C .

In Section 6.1, we state a number of lemmas (which are proved in Section 6.2) that
make the above outline more precise; we then prove Theorem 6.1. In Section 6.3, we
show that there are natural vertical maps between the two long exact sequences in
Theorem 6.1 that produce a commuting diagram that will be useful the discussion of
duality in Section 7.
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6.1 Realizing pairs as relative mapping cones

Our first goal is to show that .��
Œv�;vC�

; �
��

Œv�;vC�
/ can be realized as a mapping cone

in two different ways.

The following Lemmas 6.2, 6.3 and 6.5 will easily lead to the proof of Theorem 6.1. The
proofs of these lemmas appear in Section 6.2. Throughout this section, we will assume
that .∅; f�/�.L;F / .ƒC; fC/ is an orientable, gf-compatible Lagrangian cobordism
of T �.RC�M /. Further, we will fix a Hamiltonian shearing function H 2H.L/ and
�;� > 0 satisfying Inequalities (4-4).

Lemma 6.2 There are diffeomorphisms of pairs

.��
fuCg

; �
��

fuCg
/' .ı!C; ı

�
C/ and .��

ftCg
; �
��

ftCg
/' .ı!C; ı

��
C /;

where !; � satisfy Inequalities (3-6). Moreover, for any vC > uC satisfying Inequal-
ity (4-8), after applying a fiberwise homotopy equivalence, there are deformation
retractions:

�CW .�
�
ŒuC;vC�

; �
��

ŒuC;vC�
/! C.ı!C; ı

�
C/;

z�CW .�
�
ŒtC;vC�

; �
��

ŒtC;vC�
/! C.ı!C; ı

��
C /;

with �Cj��
fuCg
D id and z�Cj��

ftCg
D id.

For the next lemmas, select � > 0 so that

(6-2) rCuC.uC� tC/ < � <
uC

2
`C:

Note that such a � always exists by condition (3) of Definition 4.4.

Lemma 6.3 Suppose that v�< t� satisfies Inequality (4-8). After applying a fiberwise
homotopy equivalence, there exist deformation retractions:

��W .�
�
Œv�;uC�

; �
��

Œv�;uC�
/! .��Œv�;uC�; �

��

Œv�;uC�
/;

z��W .�
�
Œv�;tC�

; �
��

Œv�;tC�
/! .��Œv�;tC�; �

��

Œv�;tC�
/:

From Lemmas 6.2 and 6.3, we get:

Corollary 6.4 The pair .��
Œv�;vC�

; �
��

Œv�;vC�
/ can be viewed as two different mapping

cones: C.�F /, where

�F W .�
�
fuCg

; �
��

fuCg
/! .��Œv�;uC�; �

��

Œv�;uC�
/
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is given by the restriction of the map �� in Lemma 6.3 to ��
fuCg

, and C.z�F /, where

z�F W .�
�
ftCg

; �
��

ftCg
/! .��Œv�;tC�; �

��

Œv�;tC�
/

is given by the restriction of the map z�� in Lemma 6.3 to ��
ftCg

.

The following lemma will be useful in identifying terms that arise in the long exact
sequences of the mapping cones of Corollary 6.4:

Lemma 6.5 There exist isomorphisms

H kCN .��Œv�;uC�; �
��

Œv�;uC�
/'H k.L; @L/;

H kCN .��Œv�;tC�; �
��

Œv�;tC�
/'H k.L/:

Proof of Theorem 6.1 We prove the statement for the relative generating function
cohomology GH�.fC/; the proof for the total generating family cohomology is almost
verbatim. By Corollary 6.4, Lemma 5.3 gives a long exact sequence:

(6-3) � � � �!H�.��Œv�;vC�; �
��

Œv�;vC�
/ �!H�.��Œv�;uC�; �

��

Œv�;uC�
/

��
F
�!H�.��

fuCg
; �
��

fuCg
/ �! � � � :

We now identify terms. Corollary 4.10 and Definition 4.7 allow us to identify the first
term:

H kCNC1.��Œv�;vC�; �
��

Œv�;vC�
/'H kCNC1.��; ���/D AWGH kC1.L/:

Lemma 6.5 identifies the second term as H kC1.L; @L/. The identification of the last
term as GHk.ŒfC�/ follows immediately from Lemma 6.2.

Proof of Theorem 1.5 The stated isomorphism follows from Theorem 6.1, the fact
that .L; @L/ is diffeomorphic to .L; ƒC/, and Proposition 4.12, which guarantees the
vanishing of the total wrapped generating family cohomology of F .

6.2 Proofs of Lemmas 6.2, 6.3 and 6.5

Proof of Lemma 6.2 Fix H 2H.L/ and �;�> 0 satisfying Inequalities (4-4). The
proof relies on two applications of Lemma 5.6. With Equation (4-5) in mind, we take
a.t/D ���.t/ and b.t/D ��.t/. By Lemma 5.13, a.t/ is strictly increasing when
t � tC . For vC satisfying Inequality (4-8), a.vC/ is greater than all critical values
of ıC . By Lemma 5.9, we can assume that b.t/ is greater than all critical values of
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ıC for all t 2 ŒtC; vC�. After applying Lemma 5.8, we can assume b.t/D a.vC/ on
ŒtC; vC�.

Lemma 5.13 then tells us that:

�`C < a.tC/ < 0< a.uC/ < `C:

Hence, by Lemma 5.6, we have:

(1) .��
ŒuC;vC�

; �
��

ŒuC;vC�
/ deformation retracts to the relative cone

C.ı
b.uC/
C ; ı

a.uC/
C /D C.ı!C; ı

�
C/;

(2) .��
ŒtC;vC�

; �
��

ŒtC;vC�
/ deformation retracts to the relative cone

C.ı
b.tC/
C ; ı

a.tC/
C /D C.ı!C; ı

��
C /;

for !; � satisfying Inequalities (3-6).

Proof of Lemma 6.3 Fix H 2H.L/, �;� > 0 satisfying Inequalities (4-4) and v�
satisfying Inequality (4-8). We will construct the deformation retractions �� and z��
by flowing along the negative gradient vector field of � (here, we implicitly fix a
metric) on the manifolds-with-boundary Œv�;uC��M �R2N and Œv�; tC��M �R2N ,
stopping when the value of � reaches � . The embeddedness of L implies that 0 is
the only critical value of � on these manifolds, and hence it suffices to show that the
negative gradient vector field is inward-pointing at the boundaries. In particular, we
will show:

(1) @t�< 0 on .fv�g�M �R2N /\f� <���g, for all � > 0, by the choice of
v� ,

(2) @t�> 0 on .ŒtC;uC��M �R2N /\f� <���g, when � is chosen to satisfy
the lower bound in Inequalities (6-2). This fact is stronger than what we need
for the lemma, but will prove useful in the next section.

When t � t� , recall that �.t;x; �; z�/ D tı�.x; �; z�/CH.t/ and hence that @t� D

ı�.x; �; z�/CH 0.t/. Using the notation of Section 5.3, since �<�, we have ı���� ,
and hence that @t�� ��.t/CH 0.t/. Rewriting this inequality yields:

t@t�.t;x; �; z�/� l�.t/;

so Lemma 5.9 implies that t@t�jtDv� < 0, and hence @t�jtDv� < 0, as desired.
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For t 2 ŒtC;uC�, recall that �.t;x; �; z�/D t ıC.x; �; z�/CH.t/. Since H 00.t/ < 0, we
have:

(6-4) @t�D ıC.x; �; z�/CH 0.t/ > ıC.x; �; z�/� rC.uC� tC/:

The inequality �.t;x; �; z�/ > � implies tıC.x; �; z�/CH.t/ > � and hence, since
H.t/� 0, that

ıC.x; �; z�/ >
�

t
>

�

uC
:

Applying this inequality and the lower bound on � from Inequality (6-2) to Equa-
tion (6-4) yields the desired positivity of the derivative @t� when t 2 ŒtC;uC�.

Proof of Lemma 6.5 We will first show that the cohomology groups of the pair
.��

Œv�;uC�
; �
��

Œv�;uC�
/ agree with those of

(6-5) .��Œt�;tC�; �
��

Œt�;tC�
[��

ftCg
/;

and the cohomology groups of .��
Œv�;tC�

; �
��

Œv�;tC�
/ agree with those of

(6-6) .��Œt�;tC�; �
��

Œt�;tC�
/:

We will then apply a Morse–Bott argument to identify the cohomology groups of the
pair in (6-5) with those .L; @L/ and the cohomology groups of the pair in (6-6) with
those of L.

First, we consider the pair .��
Œv�;t��

; �
��

Œv�;t��
/. Since ƒ� D ∅, after a fiberwise

homotopy equivalence, Corollary 5.5, Lemma 5.11 and Lemma 5.13 show this pair
retracts to .��

ft�g
; �
��

ft�g
/. Thus, the cohomology groups of .��

Œv�;tC�
; �
��

Œv�;tC�
/ agree

with those of the pair in (6-6), as desired.

To get the desired identification between .��
Œv�;uC�

; �
��

Œv�;uC�
/ and the pair in (6-5),

we will first employ Lemma 5.6 to analyze

.��ŒtC;uC�; �
��

ŒtC;uC�
/:

Restrict attention to t in the interval ŒtC;uC�. Consider a.t/D���.t/ and b.t/D�� .t/.
As noted in Remark 5.12, we can assume 0< b.t/ < `C . By Lemma 5.13, a.uC/ > 0.
After applying a fiberwise homotopy equivalence, we can assume b.t/D a.uC/ for all
t 2 ŒtC;uC�. By Lemma 5.6, we find that .��

ŒtC;uC�
; �
��

ŒtC;uC�
/ deformation retracts to

.��
ftCg
� ŒtC;uC�; .�

��

ftCg
� ŒtC;uC�/[�

�
fuCg

/:

Thus we see that the cohomology groups of .��
Œv�;uC�

; �
��

Œv�;uC�
/ agree with those of

.��Œt�;tC�[ .�
�
ftCg
� ŒtC;uC�/; �

��

Œt�;tC�
[ .�

��

ftCg
� ŒtC;uC�/[�

�
fuCg

/;
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which, after applying a diffeomorphism, agree with those of the pair in (6-5), as desired.

To determine the cohomology groups of the pairs in (6-5) and (6-6), we will analyze
the change in topology as we pass through the critical level 0 on the way up from
���Œt�;tC� to ��Œt�;tC� . To analyze the change, we will employ a simple modification of
the standard constructions of Morse–Bott theory to allow for critical submanifolds with
boundary. By Proposition 4.5, there is a properly embedded, non-degenerate critical
submanifold .C; @C / � .ft 2 Œt�; tC�g; ft D tCg/ of index N having critical value
0. A careful examination of the proof of the Morse–Bott lemma (as in Banyaga and
Hurtubise [5], say) shows that since the critical submanifold C is properly embedded
in Œt�; tC��M �R2N , there is a choice of metric that allows us to assume that the
negative gradient flow of � is tangent to the boundary ft D tCg in a neighborhood of
the boundary of C . Thus, the effect of passing through the critical level is to attach an
N –disk bundle over C to ���Œt�;tC� along its unit sphere bundle. By Proposition 4.5,
we know that C is diffeomorphic to L. Denote the N –disk bundle by DL and its
sphere bundle by SL. We obtain a homotopy equivalence between the pairs

.��Œt�;tC�; �
��

Œt�;tC�
[��

ftCg
/ and .DL;SL[D.@L//

and between the pairs .��
Œt�;tC�

; �
��

Œt�;tC�
/ and .DL;SL/. The claimed isomorphism

between

H kCN .��Œv�;tC�; �
��

Œv�;tC�
/ and H k.L/

now follows from the Thom isomorphism theorem. To complete the proof in the other
case, consider the long exact sequences of the triple .DL;SL[D.@L/;SL/ and the
pair .L; @L/, related by the Thom maps �L and �@L , along with an induced map � :

(6-7)

� � � // H k.DL;SL[D.@L// //

�
��

H k.DL;SL/ //

�L
��

H k.D.@L/;S.@L// //

�@L
��

� � �

� � � // H k�N .L; @L/ // H k�N .L/ // H k�N .@L/ // � � �

The Thom isomorphism theorem and the 5–Lemma imply that the map � is an isomor-
phism, thus giving

H kCN .��Œv�;uC�; �
��

Œv�;uC�
/'H kCN .DL;SL[D@L/'H k.L; @L/;

as desired.
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6.3 Commutativity of filling isomorphisms

The following lemma shows that the isomorphisms ��
F

and z��
F

constructed in the
proof of Theorem 6.1 commute with natural inclusion maps. In Section 7, this lemma
will be employed to prove Theorem 1.11.

Lemma 6.6 Assume .ƒ�; f�/�.L;F / .ƒC; fC/, where L is orientable. Let H 2

H.L/ and �; �; � > 0 be chosen to satisfy the Inequalities (4-4) and (6-2). The maps
�F and z�F defined in the proof of Theorem 6.1 fit into the following commutative
diagram:

H kCNC1.��
Œv�;uC�

; �
��

Œv�;uC�
/

��
F //

I�

��

H kCNC1.ı!C; ı
�
C/

i�

��
H kCNC1.��

Œv�;tC�
; �
��

Œv�;tC�
/
z��

F // H kCNC1.ı!C; ı
��
C /

where i and I are the obvious inclusion maps.

Proof The main idea is to show that the following diagram commutes up to homotopy,
where we shall define the maps r and �F below.

(6-8)

.��
fuCg

; �
��

fuCg
/;

�F

uu
j

��
.��

Œv�;uC�
; �
��

Œv�;uC�
/ .��

ŒtC;uC�
; �
��

ŒtC;uC�
/

r

OO

�Foo

.��
Œv�;uC�

; �
��

Œv�;uC�
/

I

OO

.��
ftCg

; �
��

ftCg
/

i

OO

z�Foo

We define �F in the same way as we defined �F and z�F : simply follow the negative
gradient flow of � until the value of � reaches � or less. The commutativity of the
bottom square in the diagram (6-8) is then clear, as is the relation

(6-9) �F D �F ı j:

The map r is a deformation retract constructed using Lemma 5.13 and then applying
Corollary 5.5. By pre-applying r to each side of Equation (6-9), we obtain:

� ı r D �F ı j ı r � �F ;

and hence the diagram (6-8) commutes up to homotopy.
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Finally, we observe that, up to the identifications in Lemma 6.2 and possibly some
deformations near ! and � , r ı i is the natural inclusion of .ı!C; ı

��
C / into .ı!C; ı

�
C/.

7 Duality

In this section, we will prove Theorems 1.8 and 1.11. Namely, in Section 7.1, we
show that if f generates ƒn , there is a “duality map” �W GHj .f /! GHk.f / when
j C k D n� 1. In Section 7.2, we show that up to the isomorphism between GH�.f /
and H�.L; @L/ in Theorem 1.5, the duality map is essentially the same as the Poincaré–
Lefschetz duality map.

7.1 Duality for generating family homology

We will prove Theorem 1.8 by extending a version of Alexander duality used by
Fuchs and Rutherford in [25]. First, we isolate the application of Poincaré–Alexander–
Lefschetz duality to our situation in the following lemma:

Lemma 7.1 Assume f W M n �RN !R is linear-at-infinity; let ıW M n �R2N !R
be its associated difference function. For ! satisfying Inequality (3-6) and for all a2R,
there is an isomorphism

H j .ı! ; ı�a/'H2NCn�j .ı
a; ı�!/:

Proof Since f is linear-at-infinity, Lemma 3.9 allows us to assume that ı is also
linear-at-infinity. As in the last section of [25], we compactify the super- and sublevel
sets of ı inside M �S2N so that we can apply standard duality theorems; by abuse of
notation, however, we will still refer to the original sublevel sets below. We examine the
compact embedded pair .ı��! ; ı�a/ inside M �S2N ; since the super- and sublevel
sets are absolute neighborhood retracts, the pair is tautly embedded and hence that we
may use ordinary (co)homology theories throughout. Poincaré–Alexander–Lefschetz
duality (as formulated in [44, Section 6.2], for example) then yields:

(7-1) H j .ı��! ; ı�a/'H2NCn�j .ı
a; ı�!/:

The map that exchanges � and z� induces a homeomorphism between ıa and ı��a ,
and hence Equation (7-1) becomes:

(7-2) H j .ı! ; ı�a/'H2NCn�j .ı
a; ı�!/;

as desired.
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This lemma is the key to the proof of the duality theorem for generating family
cohomology.

Proof of Theorem 1.8 The desired long exact sequence follows from the long exact
sequence of Proposition 3.5, the isomorphism eGH k.Œf �/' GHn�1�k.Œf �/ given by
Lemma 7.1 with a D � and j D k CN C 1, Corollary 3.13, and the definitions of
(relative) generating family (co)homology.

The proof of Corollary 1.10 is completely analogous to that in [16]; we repeat it here
for the reader’s convenience.

Proof of Corollary 1.10 We label the maps in the long exact sequence of Theorem 1.1
as follows:

� � � �! GHn�k.Œf �/
�k
�!H k.ƒ/

�k
�! GHk.Œf �/ �! � � � :

Let mk denote the number of critical points of index kCNC1 of the difference function
ı for f . We work over a field and denote the k th Betti number by bk D dim H k.ƒ/.
Finally, we compute:

bk D dim ker �k C dim im �k

D dim im �k C dim im �k

� dim GHn�k.f /C dim GHk.f /

�mn�k Cmk ; by Proposition 3.1,

D rn�k C rk ; by Proposition 3.2.

7.2 Duality and Lagrangian spanning surfaces

We will now prove Theorem 1.11, which shows that the duality map � of Theorem 1.8
for the Legendrian ƒC corresponds to a well-known duality for the Lagrangian filling
.L; ƒC/. We first work with a long exact sequence that will serve as an intermediary
between the top and bottom sequences in the theorem.

Lemma 7.2 Assume .ƒ�; f�/�.L;F / .ƒC; fC/. Consider � constructed with H 2

H.L/, and let �; �; � and v� satisfy Inequalities (3-6), (4-4), (4-8) and (6-2). Then
there exists a long exact sequence:

� � � !H k�1.ı�C; ı
��
C /!H k.��Œv�;uC�; �

��

Œv�;uC�
/!H k.��Œv�;tC�; �

��

Œv�;tC�
/! � � � :
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Proof The long exact sequence in the lemma is simply that of the triple

.��Œv�;uC�; �
�
Œv�;tC�

[�
��

ŒtC;uC�
; �
��

Œv�;uC�
/

with the first and last terms identified as follows: the first term is isomorphic to

H k.��ŒtC;uC�; �
�
ftCg
[�

��

ŒtC;uC�
/

by excision, which in turn is isomorphic to H k.†.ı�C; ı
��
C // by Lemma 5.6, Re-

mark 5.12 and Lemma 5.13. Finally, Lemma 5.2 gives us H k�1.ı�C; ı
��
C /, as desired.

The last term may be identified using excision.

We are now ready to prove the theorem.

Proof of Theorem 1.11 Fix H 2H.L/, �; !; �; �> 0 according to Inequalities (3-6),
(6-2), (4-4) and v�< t� so it satisfies Inequality (4-8). Consider the following diagram
of long exact sequences, where the top row is given by the long exact sequence of the
triple .ı!C; ı

�
C; ı
��
C /, the middle row is given by the long exact sequence of Lemma 7.2,

and the third row is the long exact sequence of the pair .L; @L/, which is diffeomorphic
to .L; ƒC/. To make the diagram more readable, we define the notation T D Œv�; tC�

and U D Œv�;uC�.

� � � // H kCN .ı�C; ı
��
C /

// H kCNC1.ı!C; ı
�
C/

// H kCNC1.ı!C; ı
��
C /

// � � �

� � � // H kCN .ı�C; ı
��
C /

// H kCNC1.��
U
; �
��
U
/ //

��
F

OO

H kCNC1.��
T
; �
��
T
/ //

z��
F

OO

� � �

� � � // H k.ƒC/
//

'

OO

H kC1.L; ƒC/

'

OO

// H kC1.L/

'

OO

// � � �

The vertical maps from the third to the second row are given by the Thom isomorphism;
see Proposition 3.1 and the proof of Lemma 6.5. The only place where commutativity
is not obvious is in the upper right square, where we may apply Lemma 6.6.

To complete the proof, we identify the rightmost terms. Along the top, the proof of
Theorem 1.8 yields the desired sequence. Along the bottom, Poincaré–Lefschetz duality
implies that H kC1.L/'Hn�k.L; ƒC/.

8 The long exact sequence of a cobordism

In the previous two sections, we considered cobordisms with ƒ�D∅. We now consider
the more general situation, culminating in the proof of Theorem 1.1 and Corollary 1.2.
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As always, after the identification of R � J 1M and T �.RC �M /, we will prove
Theorem 1.1 with the cobordism L of T �.RC �M / in place of L�R�J 1M .

We use the following assumptions and notation throughout this section:

.ƒ�; f�/�.L;F / .ƒC; fC/;

L is orientable, L D L \ ft 2 Œt�; tC�g, @L˙ D @L \ ft D t˙g, �;� > 0 satisfy
Inequalities (4-4) and v˙ satisfies Inequalities (4-8).

The long exact sequence in Theorem 1.1 will be constructed in two steps. We first
realize the pair

.��Œv�;vC�; �
�

Œv�;vC�
/

as a relative mapping cone by examining the regions of RC �M �R2N over Œv�; tC�
and ŒtC; vC�. This results in the following “horizontal” long exact sequence:

Proposition 8.1 There exists a long exact sequence:

: : : // GHk.Œf��/
‰�

F // GHk.ŒfC�/
// WGHkC2.F / // : : : :

Second, the term WGHkC2.F / can be identified using the following “vertical” long
exact sequence, which arises from examining the long exact sequence of the triple
.��

Œv�;vC�
; �

�

Œv�;vC�
; �
��

Œv�;vC�
/:

Proposition 8.2 There exists a long exact sequence:

: : : // AWGHkC1.F / // H kC1.L; @LC/
d� // WGHkC2.F / // : : : :

From these two propositions, which we will prove below, we can easily obtain:

Proof of Theorem 1.1 By Proposition 4.12, AWGH�.F / vanishes, and thus Proposi-
tion 8.2 yields:

H kC1.L; @LC/'WGHkC2.F /:

Substituting this into the long exact sequence of Proposition 8.1 yields Theorem 1.1.

Proof of Corollary 1.2 The only mysterious element in the statement is the sign. This
comes from two sources: first, [17, Section 3] and Proposition 3.2 show that up to
the sign .�1/

1
2
.n�1/.n�2/ , one may calculate the Thurston–Bennequin invariant to be

the Euler characteristic of the generating family homology. Second, Poincaré duality
immediately implies that �.L; ƒC/D .�1/n�.L/.
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8.1 The “horizontal” long exact sequence

In parallel to Section 6.1, the following lemmas analyze the pair .��
Œv�;vC�

; �
�

Œv�;vC�
/.

In parallel to Lemma 6.2, on ft � tCg, we find:

Lemma 8.3 The pair .��
ftCg

; �
�

ftCg
/ is diffeomorphic to .ı!C; ı

�
C/, where �; ! satisfy

Inequalities (3-6). Moreover, for any vC> tC satisfying Inequality (4-8), after applying
a fiberwise homotopy equivalence, there is a deformation retraction

�CW .�
�
ŒtC;vC�

; �
�

ŒtC;vC�
/! C.ı!C; ı

�
C/; with �Cj��

ftCg
D id :

The proof of this lemma is entirely similar to that of Lemma 6.2 with Lemma 5.11 in
place of Lemma 5.13.

In parallel to Lemma 6.3, on ft � tCg, we make essential use of the embeddedness of
L to find:

Lemma 8.4 The pair .��
ft�g

; �
�

ft�g
/ is diffeomorphic to .ı!�; ı

�
�/, where �; ! satisfy

Inequalities (3-6). Moreover, for all v� satisfying Inequality (4-8), after applying a
fiberwise homotopy equivalence, there exists a deformation retraction

��W .�
�
Œv�;tC�

; �
�

Œv�;tC�
/! .��

ft�g
[�

�

Œt�;tC�
; �

�

Œt�;tC�
/:

Proof We will prove this in two steps. First, we show that there exists a retraction
from ��Œt�;tC� to ��ft�g[�

�
Œt�;tC�

constructed by flowing along the negative gradient
vector field of �. This part of the proof is essentially the same as in the proof of
Lemma 6.3.

Second, we apply Corollary 5.5 to show that there exists a retraction from the pair
.��

Œv�;t��
; �

�

Œv�;t��
/ to .��

ft�g
; �

�

ft�g
/. Consider a.t/D ��.t/ and b.t/D ��.t/ for

t 2 Œv�; t��. By Lemmas 5.11 and 5.8, we may assume that a.t/ is strictly increasing
and a.t�/ 2 .0; `�/. By Lemmas 5.9 and 5.8, we may assume that b.t/ is strictly
increasing and b.t�/ > `� . Thus, our desired retraction follows from Corollary 5.5.

In parallel to Corollary 6.4, we obtain:

Corollary 8.5 The pair .��
Œv�;vC�

; �
�

Œv�;vC�
/ is the mapping cone C. F /, where

 F W .�
�
ftCg

; �
�

ftCg
/! .��

ft�g
[�

�

Œt�;tC�
; �

�

Œt�;tC�
/

is the restriction of the map �� in Lemma 8.4 to ��
ftCg

.
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We now arrive at the horizontal long exact sequence:

Proof of Proposition 8.1 By Corollary 8.5 and Lemma 5.3, there is a long exact
sequence:

(8-1) � � � �!H kCNC1.��
ft�g
[�

�

Œt�;tC�
; �

�

Œt�;tC�
/
 �

F
�!H kCNC1.��

ftCg
; �

�

ftCg
/

�!H kCNC2.��Œv�;vC�; �
�

Œv�;vC�
/ �! � � � :

We finish the proof of the proposition with the following identification of terms:

(1) For the first term, we have:

H kCNC1.��
ft�g
[�

�

Œt�;tC�
; �

�

Œt�;tC�
/'H kCNC1.��

ft�g
; �

�

ft�g
/ by excision

'H kCNC1.ı!�; ı
�
�/ by Lemma 8.4

D GHk.Œf��/:

(2) For the second term, we have:

H kCNC1.��
ftCg

; �
�

ftCg
/'H kCNC1.ı!C; ı

�
C/ by Lemma 8.3

D GHk.ŒfC�/:

(3) By Lemma 4.8, we have:

H kCNC2.��Œv�;vC�; �
�

Œv�;vC�
/DWGHkC2.F /:

At this point, we can officially define the cobordism map ‰F W GHk.f�/!GHk.fC/

via the following diagram, where  F is defined by following the negative gradient
flow of � until the first point at which the flowline intersects �� or ft�g�M �R2N .
The map ex is excision.

(8-2)

GH�.f�/OO

'

��

‰F //_________ GH�.fC/OO

'

��

H�.��
ft�g

; �
�

ft�g
/

OO

ex
��

H�.��
ftCg

; �
�

ftCg
/

H�.��
ft�g
[�

�

Œt�;tC�
; �

�

Œt�;tC�
/

 �
F

44

The proof of the following lemma is a straightforward exercise in relating long exact
sequences of mapping cones.

Algebraic & Geometric Topology, Volume 13 (2013)



2782 Joshua M Sabloff and Lisa Traynor

Lemma 8.6 Up to the isomorphisms in Lemma 3.6, the cobordism map descends to
equivalence classes of the generating family F .

More interestingly, we have:

Lemma 8.7 The cobordism map is independent of H 2H.L/.

Proof Since the cobordism map depends only on � in the region where t 2 Œt�; tC�

and any H 2H.L/ is zero on this region, the only dependence on H that the cobordism
map could have is on the choice of t˙ . We restrict attention to the case where t0

C < t1
C

but t0
� D t1

� ; the proof at the negative end is entirely similar.

For notational clarity, let us rename the map  F with

 Œt�;tC�W .�
�
ftCg

; �
�

ftCg
/! .��

ft�g
[�

�

Œt�;tC�
; �

�

Œt�;tC�
/:

If we let z Œt�;t0
C
� be the map  Œt�;t0

C
� whose domain has been expanded to be the pair

.��
ft0
C
g
[�

�

Œt0
C
;t1
C
�
; �

�

Œt0
C
;t1
C
�
/;

then the description of the  Œt�;tC� maps above easily implies that

(8-3)  Œt�;t1
C
� D
z Œt�;t0

C
� ı Œt0

C
;t1
C
�:

Combining the diagram (8-2) with Equation (8-3) yields the following commutative
diagram, where for clarity, we suppress degrees and use the notation Œi � to represent
the interval Œt�; t i

C� and Œ01� to represent Œt0
C; t

1
C�.

GH�.f�/OO

'

��

‰Œ0�

//_________

‰Œ1�

++e c b b a a ` ` _ _ _ ^ ^ ] ] \ \ [ Y

GH�.fC/OO

'
��

‰Œ01�

//________ GH�.fC/OO

'
��

H�.��
ft�g

; �
�

ft�g
/

OO

ex

��

H�.��
ft0
C
g
; �

�

ft0
C
g
/

OO

ex

��

H�.��
ft1
C
g
; �

�

ft1
C
g
/

H�.��
ft�g
[�

�

Œ0�
; �

�

Œ0�
/

OO

ex

��

 �
Œ0�

55

H�.��
ft1
C
g
[�

�

Œ01�
; �

�

Œ01�
/

 �
Œ01�

55

H�.��
ft�g
[�

�

Œ1�
; �

�

Œ1�
/

z �
Œ0�

55

 �
Œ1�

@@
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A direct computation of the gradient of � over the interval Œt0
C; t

1
C� (where �D tfC )

shows that the M �R2N component of  Œ01� simply follows the negative gradient
flow of ı , and hence we may identify the two relative generating family cohomologies
of fC as in Remark 3.11. This completes the proof.

8.2 The “vertical” long exact sequence

We now prove Proposition 8.2, which boils down to the following lemma, whose proof
is similar to that of Lemma 6.5.

Lemma 8.8 There exists an isomorphism between H kCN .�
�

Œv�;vC�
; �
��

Œv�;vC�
/ and

H k.L; @LC/.

Proof We will show that the cohomology groups of .��
Œv�;vC�

; �
��

Œv�;vC�
/ agree with

those of
.�

�

Œt�;tC�
; �
��

Œt�;tC�
[�

�

ftCg
/:

The Morse–Bott argument in the proof of Lemma 6.5 then implies that the cohomology
groups of this pair can be identified with those of .L; @LC/.

First, we consider the pair .��
J
; �
��
J
/, where J D Œv�; t�� and J D ŒtC; vC�. Consider

a.t/ D ���.t/ and b.t/ D ��.t/. When t 2 Œv�; t��, Lemmas 5.11, 5.13, 5.8 and
Corollary 5.5 imply that .��

Œt�;v��
; �
��

Œt�;v��
/ retracts to .��

ft�g
; �
��

ft�g
/.

When J D ŒtC; vC�, we will apply a Mayer–Vietoris argument. First observe that
Lemma 5.11 implies 0 < b.t/ < `C for all t 2 ŒtC;uC�. By Lemma 5.13, we can
assume a.uC/ > 0. Thus, after applying a fiberwise homotopy equivalence, we can
assume, for a sufficiently small � > 0, that the pair .��uC��;uCC�; �

��
uC��;uCC�

/ is
acyclic. A Mayer–Vietoris argument then shows that:

H�.�
�

ŒtC;vC�
; �
��

ŒtC;vC�
/

'H�.�
�

ŒtC;uCC��
; �
��

ŒtC;uCC��
/˚H�.�

�

ŒuC��;vC�
; �
��

ŒuC��;vC�
/:

By Lemma 5.11, Lemma 5.13 and Corollary 5.5, and the choice of vC , we find
H�.�

�

ŒuC��;vC�
; �
��

ŒuC��;vC�
/D 0. Lemma 5.6 implies that .��

ŒtC;uCC��
; �
��

ŒtC;uCC��
/

deformation retracts to

.�
�

ftCg
� ŒtC;uC�; .�

��

ftCg
� ŒtC;uC�/[�

�

fuCg
/:

The rest of the proof proceeds as in that of Lemma 6.5.
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Proof of Proposition 8.2 The triple .��
Œv�;vC�

; �
�

Œv�;vC�
; �
��

Œv�;vC�
/ leads to the long

exact sequence:

� � � �!H kCN .��Œv�;vC�; �
�

Œv�;vC�
/ �!H kCN .��Œv�;vC�; �

��

Œv�;vC�
/

�!H kCN .�
�

Œv�;vC�
; �
��

Œv�;vC�
/ �! � � � :

Applying Definition 4.7, Corollary 4.10 and Lemma 8.8, we obtain the following
identifications in the terms of the long exact sequence above:

H kCN .��Œv�;vC�; �
�

Œv�;vC�
/'WGHk.F /;

H kCN .��Œv�;vC�; �
��

Œv�;vC�
/'AWGHk.F /;

H kCN .�
�

Œv�;vC�
; �
��

Œv�;vC�
/'H k.L; @LC/:

9 Generating family cohomology as a TQFT

In this section, we establish several fundamental properties of the cobordism map
defined in Section 8. First, it is important to check that this cobordism map is not
always trivial; in the axioms of TQFT, this is often referred to as a “normalization”
condition. In addition, if a symplectic isotopy (of a special form at the ends) is applied
to the Lagrangian, we would naturally hope that we get a cobordism map that only
differs by pre- and post-compositions of isomorphisms. Lastly, we will show that if
two Lagrangians (with matching end behavior) are glued, we get a cobordism map
that is a composition of the cobordism maps of the pieces; this is often referred to as a
“functoriality” axiom in TQFT.

We begin with the non-triviality of the cobordism map. Denote the Lagrangian cylinder
R�ƒ by Zƒ .

Proposition 9.1 (Non-triviality) Given a Lagrangian cobordism of R�J 1M of the
form .ƒ; f /�.�.Zƒ/;F / .ƒ; f /, the cobordism map  ŒF � is the identity.

The proof of this proposition rests on two lemmas. First, we show that if the generating
family F has the particularly simple form F.t;x; �/ D tf .x; �/, then ‰ŒF � is the
identity. Second, we show that any generating family F of Zƒ is equivalent to tf .

Lemma 9.2 Given a Lagrangian cobordism of the form .ƒ; f / �.L;tf / .ƒ; f /, the
cobordism map ‰Œtf � is the identity.
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Proof By Lemma 8.7, ‰F does not depend on the choice of H 2 H.L/. Since
F.t;x; �/D tf .x; �/ for all t , we can take t�D tC in the choice of H 2H.L/. Then,
by construction,  F in Corollary 8.5 will be the identity, and hence ‰F will be the
identity.

Lemma 9.3 Given a Lagrangian cobordism of the form .ƒ; f / �.L;F / .ƒ; f /, if
��1.L/DZƒ �R�J 1M , then F is equivalent to tf .

Proof Suppose that F generates

LD �.Zƒ/D f.t;x; z; ty/ W .x;y; z/ 2ƒg;

and that outside of a compact interval of RC , F D tf . The key points of the proof
will be to find a path of generating families Fs for L that interpolate between F and
tf , and then to apply an argument of Théret to Fs to produce the desired equivalence.

We first show that after applying a fiber-preserving diffeomorphism, we may assume
that the fiber-critical sets of F and tf agree, ie, †F DRC�†f , and that F j†D tf j† .
We use the notation F.t;x; �/D tft .x; �/, and hence we may write

†F D f.t;x; �/ W @�ft .x; �/D 0g D
[

t

.ftg �†ft
/:

Since, for each t , †ft
is isotopic to †ft�

D†f , the isotopy extension theorem provides
a compactly supported fiber-preserving diffeomorphism that yields †ft

D†f for all t .
A continuity argument shows that the embedding jft

is also independent of t .

Since tft .x; �/ generates

f.t;x; ft .x; �/C t@tft .x; �/; t@xft .x; �// W .x; �/ 2†f g;

we have ft .x; �/C t@tft .x; �/D z , where for fixed x and �, we think of z as a fixed
constant. This equation is an ODE for ft .x; �/ as a function of t with initial values
ft�.x; �/D f .x; �/. Since the constant solution ft .x; �/D f .x; �/ solves the ODE,
the uniqueness of the solution yields the equation @tft .x; �/D 0.

Next, we show that there exists a 1–parameter family of generating families Fs.t;x; �/

between F and tf so that Fs generates L for all s . Consider the path

Fs.t;x; �/D
t

.1�s/tCst�
F..1� s/t C st�;x; �/:

It is easy to verify that F0DF , F1D tf , †Fs
DRC�†f , and that Fs is a generating

family for each s . Then, since F.t;x; �/D tf .x; �/ on †Fs
, we see that Fs generates

L for each s .
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It now follows from an argument of Théret [45, Theorem 5.1] that F1 and F0 are
equivalent by a fiber-preserving diffeomorphism ˆ1 . For the reader’s convenience,
we sketch Théret’s argument. The goal is to show that there exists a fiber-preserving
isotopy ˆs so that Fs ıˆs D F0 , for all s 2 Œ0; 1�. By differentiating this equation
with respect to s , we get an equation for a vector field Xs that generates this isotopy. It
is easy to find the solution for this Xs outside the fiber critical set †Fs

D† of Fs . We
then apply Hadamard’s Lemma to find a solution Xs near †. These two solutions are
then glued together to produce a globally defined Xs by the choice of an appropriate
bump function. The taming conditions on F guarantee that the vector field Xs will be
integrable.

Next, we consider the naturality of the cobordism map. As usual, we begin with a
gf-compatible Lagrangian cobordism .ƒ�; f�/�.L;F / .ƒC; fC/ in the symplectiza-
tion R� J 1M . First suppose that �s

˙
are compactly supported contact isotopies of

J 1M . These isotopies may be extended to symplectic isotopies on the symplectization
R�J 1M by the formula

S�s
˙.t;x/D .a

s
˙.x/t; �

s
˙.x//;

where as
˙

are the scaling functions given by .�s
˙
/�˛ D as

˙
˛ .

Next, let �s , s 2 Œ0; 1�, be a symplectic isotopy of R�J 1M so that, for compact sets
I �R and X � J 1M , we have:

� �s D id on the complement of R�X and

� �s D S�s
˙

for (compactly supported) contact isotopies �s
˙

of J 1M on the
complement of I �J 1M .

Proposition 9.4 (Naturality) Given the conditions above, there exists a smooth, 1–
parameter family of cobordisms .�s.ƒ�/; f

s
�/�.�s.�.L/;F s/ .�

s.ƒC/; f
s
C/ so that:

(1) .F0; f 0
� ; f

0
C/� .F; f�; fC/.

(2) The following diagram commutes for all s :

(9-1)

GHk.Œf 0
� �/

‰
ŒF 0� // GH�.Œf 0

C�/

GHk.Œf s
��/

‰ŒF s � //

.�s
�/

# '

OO

GH�.Œf s
C�/

.�s
C
/# '

OO
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Proof of existence of .F s; f s
�; f s

C
/ The construction of the triple of generating fam-

ilies .F s; f s
�; f

s
C/ essentially follows from a construction of Chekanov [9, Section 5];

we will discuss the necessary modifications. As Chekanov proves, we may assume
that M DRk . We denote the symplectic isotopy � ı�s ı��1 of T �.RC�Rk/ by ˆ.
Since �s is well-behaved outside of a compact set, we may write it as a composition
of C 2 –small symplectomorphisms, and hence may simply assume that �s — and
hence ˆ— is C 2 –close to the identity. The key idea underlying Chekanov’s proof
of persistence is to repeatedly apply the fact that a generating family F for L and
a generating family for a sufficiently small ˆ (meaning a generating family for the
image of the graph of ˆ) can be “composed” to obtain a generating family for ˆ.L/.

We now outline Chekanov’s composition formula, partly for the reader’s convenience,
and partly to note the changes necessary to adjust his proof — in which the generating
family F.t;x; �/ was assumed to be of the form tf .x; �/— to our more general
situation. Let

�ˆ � T �.RC �Rk/�T �.RC �Rk/

denote the graph of ˆ, and let z�ˆ D �.�ˆ/, where � is the symplectic embedding
given by:

� W T �.RC �Rk/�T �.RC �Rk/! T �.RkC1
�RC �Rk/;

.t; q;u;p;T;Q;U;P / 7! .u;p;T;Q; t; q;U;P /:

If ˆ is sufficiently close to the identity, then z�ˆ is the graph of the exact 1–form dG

for a function GW RkC1 �RC �Rk !R.

We can now combine F and G to obtain a generating family

KW RC �Rk
� .RC �Rk

�R�Rk
�RN /!R;

.s;yI r;x; t; q; �/ 7! F.t; q; �/CG.r;x; s;y/� r t �xq;

for ˆ.L/. We emphasize that the fiber variables are now r , x , t , q and �. It is
straightforward to check that K does, indeed, generate ˆ.L/. In order to prove that
K is part of a compatible triple, however, we need to make some adjustments in the
spirit of [9, Lemma 5.6].

The first adjustment begins by defining constants a and b such that

(9-2) a<
@r G

s
< bI

the proof of existence of such a and b is entirely similar to that in [9, Lemma 5.7].
We now define a function � W R!R to be a smooth, non-decreasing function with the
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property that:

�.x/D

8<:
a=2 x < a=2;

x a� x � b;

2b x > 2b;

which then can be used to define

K0.s;yI r;x; t; q; �/D F.s�.t=s/; q; �/CG.r;x; s;y/� r t �xq:

To see that K0 generates the same Lagrangian as K , notice that on the fiber critical set
of K0 , we have @r G D t . Thus, in a neighborhood of the fiber critical set, we have
a< t=s < b , so s�.t=s/D t , and hence K DK0 .

The second adjustment uses the fiber-preserving diffeomorphism

ˇ.s;yI r;x; t; q; �/D .s;yI r; sx; st; q; �=�.t//;

with K00 DK0 ıˇ . The function K00 clearly still generates L. Outside of a compact
interval in the RC coordinate s where F.t; q; �/ D tf˙.q; �/ and, as noted in [9,
Proposition 5.5], G.r; sx; s;y/ is of the form sg˙.r;x;y/, we see that

K00.s;yI r;x; t; q; �/D s
�
�.t/f˙.q; �=�.t//Cg˙.r;x;y/� r t �xq

�
:

Letting k˙ be the functions in the parentheses, we see that .K00; k�; kC/ is a compatible
triple of generating families of ˆ.L/. Note that outside of a compact set, the linear
term in � of k˙ agrees with that of f˙ .

It remains to show that the triple .K00; k�; kC/ is tame, ie, that K00 is slicewise linear-
at-infinity. Suppose that for each s 2RC , F is equal to the linear function As.�/. If
we can show that the quantity

(9-3) B.s/D
K00�

1

�.t/
As�.t/.�/C r t Cxq


1

�

F.s�.t/; q; �=�.t//�
1

�.t/
As�.t/.�/


1
CkG.r; sx; s;y/k1

is bounded above for each fixed s , then a slicewise application of Fuchs and Rutherford’s
proof of Lemma 3.9, together with Lemma 3.8, shows that K00 is equivalent to a
slicewise linear-at-infinity generating family.

To show that the quantity B.s/ in (9-3) is bounded for each fixed s , we begin by
noting that since G generates a slicewise compactly supported symplectomorphism, it
must be constant outside of a compact set in each slice and hence the second term in
(9-3) is bounded. For each fixed t , the fact that F is slicewise linear-at-infinity shows
that if q or � grow large, then F.s�.t/; q; �=�.t// agrees with .1=�.t//As�.t/.�/.
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Finally, if t lies outside a compact set in RC , then �.t/ becomes constant, and hence
kF.s�.t/; q; �=�.t//� .1=�.t//As�.t/.�/k1 is uniformly bounded for all t .

Proof of the commutativity of (9-1) Let Ls denote the image of �s.L/ in
T �.RC�M /. We may assume that there is a 1–parameter family of tame, compatible
generating families .F s; f s

�; f
s
C/ for .Ls; �s

�.ƒ�/; �
s
C.ƒC//. Construct �s from F s

and a 1–parameter family of shearing functions H s in H.Ls/ so that the values t˙
are fixed for all s . Finally, choose 1–parameter families �.s/ and �.s/ satisfying
Inequalities (4-4). As in Inequalities (4-8), choose v˙ so that

��.s/.t/ < �`
s
� for all t � v�;

��.s/.t/ > `
s
C for all t � vC:

As noted after Corollary 3.16, the isomorphisms .�s
˙
/# are constructed by applying

the Critical non-crossing lemma 2.4 to the difference functions ıs
˙

. In particular, the
maps ks

˙
underlying .�s

˙
/# are simply compositions of positive and negative gradient

flows of finitely many ıs
˙

functions. In this proof, we think of the gradients rıs
˙

as
projections of the gradients r�s restricted to t D t˙ . This allows us to extend ks

� to
a map zks

� on .�s/�t� [ .�
s/
�

Œt�;tC�
by looking at flows of the projections of r�s to

each constant t slice. We can therefore form the map

.zks
�/
�1
ı F s ı ks

C;

which is clearly homotopic to  F . The commutativity of the diagram (9-1) follows.

The final TQFT-like property that we will explore is functoriality, ie, the behavior of
the cobordism map under the gluing of cobordisms. In order to state the functoriality
property, we begin by specifying what it means to glue together two generating families
with matching end behavior.

Definition 9.5 Two compatible triples of generating families .F1; f 1
� ; f

1
C/ and

.F2; f 2
� ; f

2
� / are composable if f 1

C � f
2
� .

Given two composable triples, after applying stabilizations and fiber-preserving dif-
feomorphisms to F1 and F2 , we can assume that f 1

C D f
2
� . Let t1

˙
and t2

˙
be as in

Definition 4.4, and choose any � > 0 so that t2
�C � � t1

C . Then define:

F1#�F2.t;x; �/D

�
F1.t;x; �/ t � t2

�C �;

F2.t � �;x; �/ t � t2
�C �:

It is not hard to see that if, for i D 1; 2, we have Lagrangian cobordisms

.ƒi
�; f

i
�/�.Li ;F i / .ƒ

i
C; f

i
C/;
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and if .F1; f 1
� ; f

1
C/ and .F2; f 2

� ; f
2
C/ are composable, then .F1#�F2; f 1

� ; f
2
C/ is

a tame, compatible triple of generating families for the cobordism ƒ1
� �L1#�L2 ƒ2

C ,
where L1#�L2 denotes the glued Lagrangian that agrees with the image of ƒ1

� when
t � t1

� and with the image of ƒ2
C when t � tC

2
C � . For H 2H.F1#�F2/, let x� be

the associated sheared difference function.

Proposition 9.6 (Functoriality) If .F1; f 1
� ; v

1
C/ and .F2; f 2

� ; f
2
C/ are composable,

tame generating families, then:

‰ŒF 1#�F 2� D‰ŒF 2� ı‰ŒF 1�W GHk.Œf 1
� �/! GHk.Œf 2

C�/:

In particular, the cobordism map for the glued Lagrangian does not depend on � .

Proof As usual, choose � and � that satisfy (4-4), v˙ that satisfy (4-8) and, for
simplicity, � so that t2

�C �D t1
C . As in the proof of Lemma 8.7, we concentrate on

the interval Œt1
�; t

2
CC ��. Recall that the map

 F W .�
�
ftCg

; �
�

ftCg
/! .��

ft�g
[�

�

Œt�;tC�
; �

�

Œt�;tC�
/

is defined by following the negative gradient flow of � until the first point at which
the flowline intersects �� or ft�g�M �R2N . If we let z F 1 be the map  F 1 whose
domain has been expanded to be the pair

.��
ft1
C
g
[�

�

Œt1
C
;t2
C
C��
; �

�

Œt1
C
;t2
C
C��
/;

then the description of the  F maps above easily implies that

(9-4)  F 1#F 2 D z F 1 ı F 2 :

The rest of the proof is completely analogous to that of Lemma 8.7.

10 Examples and open questions

In this section, we give a number of applications of some of the main theorems of this
paper. Some of these results are stated in Theorem 1.7. The following applications fall
in the general categories of negative twist knots, higher-dimensional Legendrians and
Legendrians with non-equivalent generating families.

Throughout this section, we use Z2 coefficients both for ease of computation and
so as to be able to use Fuchs and Rutherford’s aforementioned connection between
generating family homology and linearized contact homology in R3 .
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10.1 Negative twist knots

Etnyre, Ng and Vertesi classified Legendrian negative twist knots in R3 up to Legendrian
isotopy in [21]. They showed that any negative twist knot with maximal Thurston–
Bennequin number is isotopic to one of the forms pictured in Figure 8. For a fixed
twist knot, let z˙ denote the number of crossings of the form Z˙ .

k

ZC Z�

SC S�

Figure 8: Any Legendrian knot that is topologically a negative twist knot Km

with m� 2 , and with maximal Thurston–Bennequin invariant, is isotopic to
one of the pictured knots, where the rectangle contains k D jmC 2j negative
half twists, each of which is of type Z˙ or S˙ .

Etnyre, Ng and Vertesi show that a Legendrian knot that is topologically an odd,
negative twist knot K�2n�1 is isotopic to one in the form of Figure 8 with zCD n and
that the Legendrian isotopy class of the knot is determined by z� , where 0� z� < n.

All of these knots possess graded rulings, and hence generating families. A straight-
forward computation of the linearized Legendrian contact homology, followed by
an application of Fuchs and Rutherford’s theorem [25], shows that there is a unique
generating family cohomology whose Poincaré polynomial is t�2z��1C t C t2z��1 .
Thus Corollary 1.3 shows that no two topologically equivalent odd, negative twist
knots are gf-compatibly Lagrangian cobordant; further, Theorem 1.5 shows that none
of them possess a gf-compatible Lagrangian filling. Note that only the latter result can
be derived from classical invariants via Corollary 1.2.

For a Legendrian knot of maximal Thurston–Bennequin invariant that is topologically
K�2n , the classification of [21] is somewhat different. These knots are determined by
the pair .zC; z�/, subject to the unique relation that K.zC;z�/ 'K.n�1�zC;n�1�z�/ .
In this case, arguments as above yield a unique generating family cohomology whose
Poincaré polynomial is

t�2.zCCz�C1�n/
C t C t2.zCCz�C1�n/:
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Thus, Corollary 1.3 shows that if zC
0
C z�

0
¤ zC

1
C z�

1
, then there is no gf-compatible

Lagrangian cobordism between K
.z
C

0
;z�

0
/

and K
.z
C

1
;z�

1
/
. Further, Theorem 1.5 (but

not the classical information in Corollary 1.2) implies that a negative even twist knot
can only have a gf-compatible Lagrangian filling if zCC z� D n� 1.

This argument does leave an open question, however:

Open question If zC
0
C z�

0
D zC

1
C z�

1
, is there a gf-compatible Lagrangian concor-

dance from one of these knots to the other? In particular, there are two non-equivalent
Legendrian representatives of K�6Dm.72/ with maximal Thurston–Bennequin invari-
ant that both have generating family polynomial 2Ct ; see, for example, Chongchitmate
and Ng [10]. Are they Lagrangian cobordant?

We suspect that the answer is “no” since Etnyre, Ng and Vertesi distinguished these
knots using the contact element in Heegaard Floer knot homology, which itself should
be an invariant of Lagrangian cobordism. See also Sivek [43]. The open question above
may be generalized to:

Open question Do there exist Legendrian twist knots that are Lagrangian concordant
but not Legendrian isotopic? That is, is the relation of Lagrangian concordance among
twist knots completely determined by Legendrian isotopy? Even smooth concordances
between twist knots are a topic of current research; see, for example, Grigsby, Ruberman
and Strle [28].

10.2 Higher-dimensional Legendrians

Next, we move to higher dimensions. We revisit [17, Examples 3.1 and 4.9] from a
generating family perspective in J 1R2 (though the techniques here apply to n > 2

as well). Let ƒ0 be Legendrian sphere whose front diagram is the “flying saucer”
of Figure 2(a). One may construct a linear-at-infinity generating family for ƒ0 by
carefully spinning a generating family for the standard unknot in J 1R. This Legendrian
knot has a single Reeb chord of index 2, and hence we have, for any generating family
f , that its Poincaré polynomial is Pf .t/D t2 .

Create another surface ƒ1 as follows; see Figure 2. Squeeze the front of ƒ0 along
a plane through the origin, producing a dumbbell shape as shown in Figure 2. The
region between the tubes can be stretched into a tube. Finally, make the tube into a
helical shape so that in the resulting front, the dumbbell ends are overlapping. It is not
hard to explicitly construct a generating family f WR2 �R!R for ƒ1 . Further, [17,
Proposition 4.10] shows that ƒ0 and ƒ1 have the same classical invariants.
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In [17], the authors compute that ƒ1 is Legendrian isotopic to a surface with seven
Reeb chords with the following gradings:

jaj D jbj D jcj D 2; jd j D 1; jej D 0; jf j D jgj D �1:

Proposition 3.2 shows that these gradings are the same as those for the generating
family cohomology. Working over a field, we immediately see that dim GH�1.f / > 0.
We conclude from Theorem 1.1 that there is no tame, generating family compatible
Lagrangian cobordism between ƒ0 and ƒ1 , in either order. Further, by Theorem 1.5,
ƒ1 cannot have a generating-family-compatible Lagrangian filling.

10.3 Legendrians with non-equivalent generating families

Finally, we return to R3 to show how subtle the question of the existence of a compatible
cobordism can be.

Let ƒ be the Legendrian knot pictured in Figure 9. Melvin and Shrestha found
that the Legendrian contact homology of ƒ (over Z2 ) has augmentations �1 and �2

with different linearized homologies [33]. Assume, for the moment, that there exist
generating families f1 and f2 for ƒ so that the Fuchs–Rutherford isomorphism yields
LCH��i

.ƒ/' GH�.fi/, and hence that:

Pf1
.t/D t�1

C 4C 2t and Pf2
.t/D 2C t:

Corollary 1.3 implies that there is no gf-compatible concordance between ƒ and itself
that interpolates between the generating families f1 and f2 , while Theorem 1.5 shows
that only the second generating family can support a gf-compatible Lagrangian filling
(in fact, a punctured torus). This demonstrates the subtlety of the question of existence
of gf-compatible cobordisms.

Figure 9: Two graded normal rulings of a Legendrian m.821/ knot and
the corresponding augmentations of the Chekanov–Eliashberg DGA. These
rulings may be used to construct generating families that cannot be related by
a gf-compatible concordance.
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We now sketch a proof that the generating families f1 and f2 do, indeed, exist.
Beginning with the augmentations �1 and �2 , the algorithm in [39] produces both the
graded normal rulings in Figure 9 and augmentations �0

1
and �0

2
on a diagram of ƒ

that has a set of “dips” between every pair of adjacent crossings or cusps. On one hand,
Fuchs and Rutherford show how to construct generating families f1 and f2 out of
these rulings [25, Section 3]. On the other, the new diagram does not quite yield the
DGA used in [25] to interpolate between the generating family and linearized contact
homologies; it is necessary to add in a new dip to the left of the dips surrounding each
crossing of the original diagram of ƒ that is augmented by �0i . The augmentations
on the newly dipped diagrams are obtained by, in the language of [29, Section 5.3.2],
extending the augmentation by HjC1;j , where the associated crossing occurs between
the strands j and j C 1 of the front diagram.

The resulting augmentations yield the linearized chain complexes that Fuchs and
Rutherford define, whose homology computes both the linearized contact homology
associated to the �i and the generating family homology associated to the fi .

It is reasonable to conjecture using the constructions of Melvin and Shrestha [33], or
alternatively using Sivek’s Whitehead double construction [42], that this example is
but one of an infinite family of Legendrian knots with two — and probably arbitrarily
many — non-compatibly concordant generating families.
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