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Fiber detection for state surfaces

DAVID FUTER

Every Kauffman state � of a link diagram D.K/ naturally defines a state surface S�
whose boundary is K . For a homogeneous state � , we show that K is a fibered link
with fiber surface S� if and only if an associated graph G0� is a tree. As a corollary,
it follows that for an adequate knot or link, the second and next-to-last coefficients of
the Jones polynomial are the obstructions to certain state surfaces being fibers for K .

This provides a dramatically simpler proof of a theorem of the author with Kalfagianni
and Purcell.

57M25, 57M27, 57M50

1 Introduction

In the 1930s, Seifert [15] gave an algorithm that starts with a link diagram D.K/

and produces an orientable surface whose boundary is K . The algorithm works as
follows. For every crossing of D , smooth the diagram near the crossing by following
an orientation on K . This gives a disjoint union of circles in the projection plane. These
circles bound a number of disks, disjointly embedded in the ball below the projection
plane. Then, these disks can be jointed by half-twisted bands at the crossings to give a
surface S � S3 , such that @S DK .

Seifert’s construction has a natural generalization. At each crossing, there are two
possible smoothings, or resolutions of the crossing, as depicted in Figure 1. A Kauffman
state is a choice of A– or B –resolution at each crossing. As in Seifert’s construction,
a state � gives rise to a union of circles in the projection plane. These circles bound
disjoint disks, which can be joined by half-twisted bands to give a state surface S� .
See Figure 2.

Another common example of a state surface is the two checkerboard surfaces of a
diagram. The regions in the complement of D.K/ can be checkerboard colored, black
and white. If the state � traces the boundaries of all the black regions, then joining these
regions together produces the black checkerboard surface. Making the opposite choice
for � produces the white surface. These checkerboard surfaces have been studied since
the time of Tait in the 19th century; see Przytycki [14] for a survey. In the special case
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A B

Figure 1: A– and B –resolutions at a crossing of D

of alternating diagrams, the checkerboard surfaces correspond to choosing the all-A or
all-B state for � .

The goal of this paper is to characterize when a state surface S� is a fiber in a fibration
of S3XK over S1 . For alternating diagrams, the strikingly simple answer is that the
all-A surface SA is a fiber if and only if D is a connected sum of positive 2–braids.
(See Lemma 4 below.) Stating our result in general requires a handful of definitions.

If every crossing of D.K/ is resolved as in Figure 1, according to a state � , then
the crossing point in the projection plane lies in a region complementary to the state
circles of � . These state circles partition the projection plane into regions. The state
� is called homogeneous if all crossings in the same region carry the same (A or B )
resolution. For example, the state shown in Figure 2 is homogeneous. This notion was
introduced by Cromwell [2] for the Seifert state, and easily extends to other states.

D.K/ A A

B

B

S�
G� G0�

Figure 2: Left to right: A diagram D.K/ . A homogeneous state � , coming
from Seifert’s algorithm. The state surface S� corresponding to � . The
graph G� embeds into S� as a spine. The reduced graph G0� .

The choices that lead to a Kauffman state � can be conveniently encoded in a state
graph G� . This graph has one vertex for each state circle of � . Each crossing x of
D gives rise to an edge between the state circles at the resolution of x . (In Figures 1
and 2, these edges are shown in red, lighter than the link projection.) From the graph
G� , we construct a reduced graph G0� by removing all duplicate edges between a pair
of vertices. Our main result is that this reduced graph carries fibering information.
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Theorem 1 Let � be a homogeneous state of a link diagram D.K/. Then S3XK

fibers over the circle with fiber S� if and only if the reduced graph G0� is a tree.

The topology of state surfaces was recently studied by Ozawa [13]. For homogeneous
states, he showed that the surface S� is essential in S3XK if and only the state � is
adequate, meaning that G� has no 1–edge loops (equivalently, G0� has no 1–edge
loops). Since a tree has no loops of any length, all the states where S� is a fiber must
be adequate.

In the special case where � is the all-A or all-B state, the graphs G0
A

and G0
B

are
particularly worthy of attention due to their connection to the Jones polynomial of K .
This is a Laurent polynomial invariant of K , which can be written in the form

JK .t/D ˛tk
Cˇtk�1

C � � �Cˇ0tmC1
C˛0tm;

so that the second and next-to-last coefficients of JK .t/ are ˇ and ˇ0 , respectively.
Stoimenow [17] and Dasbach and Lin [3] have observed that if D is A–adequate
(meaning the all-A state is adequate), then jˇ0j D 1 � �.G0

A
/. Similarly, if D is

B –adequate, then jˇj D 1��.G0
B
/. As a result, the following corollary immediately

follows from Theorem 1.

Corollary 2 Let K be a link that admits a connected, A–adequate diagram D . Then
S3XK fibers over S1 with fiber the state surface SA D SA.D/ if and only if ˇ0 D 0.

In other words, the next-to-last Jones coefficient ˇ0 is precisely the obstruction to
S3XK being fibered with fiber surface SA . Similarly, for B–adequate links, the
second coefficient ˇ is the obstruction to S3XK being fibered with fiber surface SB .

Ever since Jones introduced his knot polynomial in the 1980s, it has been a tantalizing
open problem to understand exactly what this invariant and its generalizations say about
the topology of knot and link complements. The first rigorous relations of this sort have
appeared in the last few years, in the work of Dasbach and Lin [4], Garoufalidis [9]
and Futer, Kalfagianni and Purcell [5; 6; 7]. Corollary 2 is one of the more striking
connections between quantum knot invariants and classical geometric topology to have
been found so far.

Theorem 1 and Corollary 2 were first proved in the author’s joint work with Kalfa-
gianni and Purcell [7, Theorem 5.21 and Corollary 9.16]. However, the proof of [7,
Theorem 5.21] appears over 80 pages into the monograph. That proof relies on the
detailed study of a polyhedral decomposition of S3XS� , and much effort is expended
to show that the polyhedra have desirable properties [7, Chapters 2–4]. This polyhedral
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decomposition is also used to gain a detailed understanding of I –bundles in S3XS�
and the hyperbolic geometry of S3XK .

By contrast, the proof of Theorem 1 contained in this paper is short and direct. As a
consequence, one also obtains a short and readily digestible proof of Corollary 2.

Our proof builds up the surface S� inductively via Murasugi sums (see Figure 5),
applying results of Gabai [8] to deduce fibering information. This inductive approach is
very similar in spirit to the methods used by Ozawa [13]. It is also fruitfully exploited
in a recent paper of Girão [10] to prove a fibering criterion for augmented links.

2 Proof

Before beginning the main proof of Theorem 1, we wish to dismiss a few special cases.
If D.K/ depicts an unknot with no crossings, then G0� is a single vertex, and the
spanning disk S� is a fiber of the solid torus S3XK . Thus the theorem holds trivially.
If D.K/ is a split diagram, then G0� is a disconnected graph (which cannot be a tree),
and S3XK is reducible (hence cannot be fibered). Again, the theorem holds trivially
in this case.

If the state � is not adequate, ie G� has a 1–edge loop, the reduced graph G0� cannot
be a tree. In this case, the surface S� is nonorientable, hence cannot be a fiber. Thus
the theorem holds for nonadequate states.

For the remainder of the paper, we work under the assumptions that D.K/ is connected
and has at least one crossing, and that the state � is adequate. With these simplifying
assumptions, the proof of Theorem 1 proceeds by induction on the number of cut
vertices in the graph G0� . Recall that a cut vertex is a vertex that separates G0� .

The base case of the induction involves prime, alternating diagrams. Recall that a link
diagram D.K/ is called prime if, for every simple closed curve 
 in the projection
plane that intersects D.K/ transversely in two points, one of the two sides of 
 contains
no crossings. In other words, D.K/ fails to be prime precisely when it is the connected
sum of two nontrivial diagrams.

Lemma 3 Let � be a homogeneous state of D.K/. Then G0� does not contain any
cut vertices if and only if all of the following hold: D.K/ is prime and alternating, and
� is the all-A or all-B state.

Proof For the “if” direction, suppose that D.K/ is prime and alternating, and � is
the all-A or all-B state. Without loss of generality, � is the all-A state. Then G� is
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Figure 3: If D.K/ is an alternating diagram, and v is a cut vertex of the
checkerboard graph GA , then the corresponding black region Rv separates
the diagram as a connected sum (with summands on opposite sides of 
 )

the all-A checkerboard graph of D . The graph G� DGA naturally embeds as a spine
of the (black) checkerboard surface S� D SA , with one vertex in each black region of
D.K/ and one edge running through each half-twisted band.

Suppose, for a contradiction, that v 2G0
A

is a cut vertex. Then v also separates the
unreduced graph GA . Since GA is embedded as a spine of the checkerboard surface
SA , the black region Rv corresponding to v must separate the checkerboard surface,
hence also separate the diagram D.K/. In other words, there is a simple closed curve

 in the projection plane such that the only black region met by 
 is Rv , and such that
each component of R2X
 contains at least one crossing (these crossings correspond
to edges of GAXv ). This curve decomposes D.K/ as a connected sum, violating the
hypothesis of primeness. See Figure 3.

or

Figure 4: If D.K/ is a nonalternating diagram, a homogeneous resolution of
an over-over strand of D must result in a state circle that has other circles on
both sides. The same is true of an under-under strand.

For the “only if” direction, suppose that D.K/ is not alternating. Since � is homoge-
neous, some state circle of � (corresponding to a nonalternating segment of D ) must
have other state circles on both sides. See Figure 4. The corresponding vertex of G�

will separate G� , and also G0� . Thus, if G0� contains no cut vertices, D.K/ must be
alternating.
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If D is alternating but � is not the all-A or all-B state, then some state circle fails to
follow the boundary of a region of D . Just as in Figure 4, this implies that this state
circle has other circles on both sides, hence G0� has a cut vertex.

Finally, if D is not prime, then there is a simple closed curve 
 that meets only one
white region and only one black region, with crossings on both sides of 
 . One of
these regions corresponds to a vertex of G� (depending on whether � is the all-A or
all-B state), and this vertex separates G0� . Therefore, if G0� has no cut vertices, D.K/

must be prime and alternating, with � the all-A or all-B state.

The base case of the induction is the following lemma.

Lemma 4 Suppose D.K/ is a prime, alternating diagram with at least one crossing.
Then the following are equivalent for the all-A state:

(1) G0
A

is a tree.

(2) GA has exactly two vertices.

(3) D.K/ is a positive 2–braid.

(4) The checkerboard surface SA is a fiber in S3XK .

The same equivalence holds for SB , G0
B

and negative 2–braids.

Proof Suppose G0
A

is a tree. If it has only one vertex, then there are no edges,
contradicting the hypothesis that D.K/ has crossings. If it has three or more vertices,
some vertex will be separating, contradicting Lemma 3. Thus GA has exactly two
vertices, giving .1/) .2/.

If GA has two vertices, then D.K/ has exactly two black regions, connected to each
other at each crossing. This is the diagram of a positive 2–braid. Conversely, if D.K/

is a positive 2–braid, then G0
A

is a stick with two vertices, which is a tree. Thus
.1/, .2/, .3/.

For .3/) .4/, assume that D.K/ is a positive 2–braid. Then K is a .2; n/ torus knot
or link, and it is well-known that SA is a fiber (Stallings [16]).

For .4/) .3/, recall that if D is alternating, prime, and not a 2–braid, then S3XK

admits a hyperbolic structure (Menasco [12]). Then, Adams [1, Theorem 1.9] shows
that the checkerboard surface SA is not a fiber.
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Remark 5 There is also a more direct proof that .3/, .4/, which does not rely on
hyperbolic geometry. Instead, this alternate argument relies on Menasco’s decomposi-
tion of S3XK into two ideal polyhedra [11]. The 1–skeleton of each polyhedron is
isomorphic (as a planar graph) to the projection graph of D.K/. In particular, the faces
of the polyhedra can be 2–colored: the union of all the black faces is the checkerboard
surface SA , while the union of all the white faces is the checkerboard surface SB . In
particular, the manifold S3XSA can be obtained by gluing the two polyhedra along
white faces only.

For .3/) .4/, suppose D is a positive 2–braid. Then every white face is a bigon.
In other words, every polyhedron is combinatorially a prism P � I , where P is an
ideal polygon, and the lateral faces are the white bigons. The product structure of
P � I extends as we glue the two polyhedra along their lateral faces, implying that
S3XSA Š SA � I , hence SA is a fiber.

For .4/ ) .3/, suppose S3XSA Š SA � I . Then, [7, Lemma 4.17] shows that
Menasco’s polyhedral decomposition must “see” this product structure: every white
face must be a product of an ideal edge with I , ie an ideal bigon. Note that when the
proof of that lemma is applied to Menasco’s well-known polyhedral decomposition, it
becomes self-contained, and does not require the machinery developed in [7]. If every
white B –region of D.K/ is a bigon, these bigons must be joined end to end, implying
that D.K/ is a positive 2–braid.

We are now ready to complete the proof of the main theorem.

C D C D

S1 S2 S�

Figure 5: Left: The graph G� decomposes as a union of subgraphs G1 and
G2 , joined along the cut vertex v . Right: The corresponding decomposition
of S� as a Murasugi sum of state surfaces S1 and S2 .

Proof of Theorem 1 We proceed by induction on n, where n is the number of cut
vertices in G0� . For the base case, let nD 0, and recall the running assumption that
D.K/ has at least one crossing. Then Lemma 3 says that the diagram D.K/ is prime
and alternating, and � is the all-A or all-B state. By Lemma 4, S� is a fiber if and
only if G0� is a tree, as desired.
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For the inductive step, suppose n>0 and v is a cut vertex of G0� . Then G0�DG0
1
[vG0

2
,

where G0
1

and G0
2

are subgraphs that are disjoint except at v . The unreduced graph G� ,
which has the same adjacency relations as G0� , also decomposes as a union of subgraphs
G1 and G2 that are disjoint except at v . See Figure 5, left. On the diagrammatic side,
D.K/ decomposes as the Murasugi sum of diagrams D.K1/ and D.K2/, and the
state surface S� decomposes as the Murasugi sum of state surfaces S1 and S2 . See
Figure 5, right.

Note that the Kauffman state �i that gives rise to Si is obtained by restricting � to the
crossings of D.Ki/. Thus each Si is the state surface of a homogeneous state, with
reduced graph G0i . Note as well that each G0i has fewer than n cut vertices. Thus, by
the inductive hypothesis, Si is a fiber in S3XKi if and only if G0i is a tree.

Now, we recall Gabai’s Theorem [8]: S� is a fiber if and only if each Si is a fiber.
Clearly, G0� is a tree if and only if each G0i is a tree. This completes the proof.
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