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A bound for orderings of Reidemeister moves

JULIAN GOLD

We provide an upper bound on the number of ordered Reidemeister moves required
to pass between two diagrams of the same link. This bound is in terms of the number
of unordered Reidemeister moves required.

57M25

In 1927 Kurt Reidemeister proved that any two link diagrams representing the same
link may be joined by a finite sequence of Reidemeister moves. The importance of this
theorem to knot theory cannot be overstated. Mathematicians like Alexander Coward [1;
2], Marc Lackenby [2], Bruce Trace [4], and Joel Hass and Jeffery Lagarias [3] have
all explored properties of sequences of Reidemeister moves.
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Figure 1: Reidemeister moves

In 2006, Alexander Coward showed in [1] that given any sequence of Reidemeister
moves between link diagrams D1 and D2 , it is possible to construct a new sequence
ordered in the following way: first �"

1
moves, then �"

2
moves, then �3 moves, finally

�
#

2
moves. We present, via the following theorem, an upper bound on the number of

moves required for an ordered sequence in terms of the number of moves present in
any sequence of Reidemeister moves.

Theorem 1 Let D1 and D2 be diagrams for the same link that are joined by a
sequence of M Reidemeister moves. Let N D 6MC1M . Then there exists a sequence
of no more than exp.N /.N / moves from D1 to D2 ordered in the following way: first
�
"

1
, then �"

2
, then �3 , then �#

2
and finally �#

1
.

Here the function exp is defined as exp.x/ D 2x and exp.r/.x/ is the function exp
iterated r times on input x .

We define a link diagram to be a 4–valent graph embedded in R2 with crossing
information recorded at each vertex. All diagrams will be oriented, so that they
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represent oriented links. We regard two diagrams as the same if there is an ambient
isotopy of R2 taking one diagram to the other, preserving crossing information and the
orientation of each link component. To prove Theorem 1, we will adapt the methods
Alexander Coward uses in [1] and borrow the following terminology.

Definition Let D be a link diagram and suppose cW Œ0; 1�!R2 is an embedded path
whose image C intersects D transversely at finitely many points, where c.0/ 2D and
c.1/ …D . We stipulate that no point of intersection of D and C is a vertex of D . At
each such point, apart from c.0/, we designate whether C passes over or under D .

Let C � Œ��; �� be a small neighborhood of C such that

.C � Œ��; ��/\D D .C \D/� Œ��; ��:

Then define the diagram D0 as the 4–valent graph

D[ @.C � Œ��; ��/ n .c.0/� .��; �//

with crossing information induced by the path c . We write D D0 and say that D0

is obtained from D by adding a tail along C. Additionally, we will call C the core of
this tail. We require that adding a tail to a diagram D produces a diagram D0 where
c.D0/ > c.D/. Figure 2 illustrates the construction of a tail.

C

Figure 2: Adding a tail

Definition Suppose D1 D2 via some path cW Œ0; 1�!R2 . Suppose additionally
that c.1/ lies in a small neighborhood of some crossing � of D1 . Let D3 be as in
Figure 3, a diagram obtained from D2 by performing two �"

2
moves followed by one

�3 move.

We say D3 is obtained from D1 by adding a lollipop and write D1 � D3 . The
lollipop itself is defined as D3 nD1 . The tail part of the lollipop is .D3\D2/ nD1 ,
and the closure of the rest of the lollipop is the circle part of the lollipop. We say that
the lollipop is centered at �.

Algebraic & Geometric Topology, Volume 13 (2013)



A bound for orderings of Reidemeister moves 3101

D1 D2 D3

�
"

2
;�
"

2
;�3

�������!

�
 

Figure 3: Adding a lollipop

We think of a sequence S of Reidemeister moves, tails and lollipops between link
diagrams L1 and L2 in the following way:

S WL1 DD0

a1
�!D1

a2
�! � � �

an
�!Dn DL2

Here each ai is a Reidemeister move, a tail or a lollipop. A tail or lollipop may be
added from Di to DiC1 (eg Di DiC1 ) or from DiC1 to Di (eg DifDiC1 ). We
say the length of S is n. The intermediate link diagrams Di are often omitted from
the figures in this paper for clarity, but are implicit in any sequence.

If a link diagram D2 is reached from D1 by a sequence of �"
2

moves of length n, we
write D1�n D2 . The following lemma allows us to take a sequence S and produce
a sequence S 0 with one less �3 move.

Lemma 2 Let D1 and D2 be link diagrams such that D1

�3
��!D2 . Then there exists

a diagram D3 such that D1�2 D3 and D2�D3 .

Proof The diagram

D1 D2

D3

2

�3

satisfies the required conditions.

If an �3 move occurs in a sequence of Reidemeister moves, tails and lollipops

S WA! � � � ! B
�3
��! C ! � � � !D;
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we may apply Lemma 2 to S to get a new sequence

S 0 WA! � � � ! B
�
"

2
��! B0

�
"

2
��! B00� C ! � � � !D:

When we apply Lemma 2 to construct S 0 from S , we call this capping the �3 move
from B to C . The following proposition and its corollary will also allow us to build
new sequences from old ones in a useful way.

Proposition 3 Suppose D1 D0
1

(or D1�D0
1

) and also that D1�1 D2 . Then
there exists a diagram D0

2
such that D2 D0

2
(D2�D0

2
respectively) and D0

1
�a

D0
2

, where

c.D02/� c.D2/� 2.c.D01/� c.D1//(a)

a� c.D01/� c.D1/:(b)

D0
1

D0
1

D0
2

D1 D1D2 D2

a

1 1

Proof The diagram D2 is obtained from D1 by a single �"
2

move which takes place
over two (possibly non-distinct) edges e1 and e2 of D1 . Pick points p1 and p2 on
e1 and e2 respectively, so that p1 and p2 lie outside a small neighborhood of the tail
D1 D0

1
. We can perform the �"

2
move from D1 to D2 by adding a tail along a

path  , which starts at p1 and ends slightly beyond p2 .

e1

e2

p1

p2



Figure 4: Constructing D02 by adding a tail along 

Diagram D0
1

contains the points p1 and p2 . We may arrange that the intersection of
 with the tail D1 D0

1
contains at most 2b.c.D0

1
/� c.D1//=4c points. Figure 4
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depicts such an arrangement. Adding a tail along  , we construct a diagram D0
2

with

c.D02/� c.D01/� 4

�
c.D0

1
/� c.D1/

4

�
C 2:

Hence
c.D02/� c.D01/� c.D01/� c.D1/C 2:

We note that c.D0
1
/�c.D1/C2�2.c.D0

1
/�c.D1//, because adding a tail to a diagram

must raise its crossing number by at least two. This implies the desired bound on a.
Also

c.D02/� c.D01/� c.D01/� c.D1/C 2

implies, by adding c.D0
1
/ to both sides and subtracting c.D2/, that

c.D02/� c.D2/� 2c.D01/� c.D1/C 2� c.D2/:

Using c.D2/D c.D1/C 2 we get

c.D02/� c.D2/� 2c.D01/� 2c.D1/:

In the case that D1 � D0
1

, choose p1 and p2 to be outside the circle part of the
lollipop, and the above considerations go through.

Corollary 4 is a natural generalization of Proposition 3.

Corollary 4 Suppose D1 D0
1

(or D1�D0
1

) and also that D1�n D2 . Then there
exists a diagram D0

2
such that D2 D0

2
(D1�D0

1
respectively) and D0

1
�b D0

2
,

where
b � 2n.c.D01/� c.D1//:

D0
1

D0
1

D0
2

D1 D1D2 D2

b

n n

Proof Let D1;D2 and D0
1

be as in the statement of the theorem. We work in the
case D1 D0

1
, but the proof for lollipops is identical. Let E be the sequence of �"

2

moves of length n from D1 to D2 ,

E WD1 DE0�1 E1�1
� � ��1 En DD2;

and let E0
0
DD0

1
. We use Proposition 3 to construct a diagram E0

1
such that E1 E0

1

and E0
0
�b0 E0

1
, where b0 � c.E0

0
/ � c.E0/. Apply Proposition 3 again to the

triple .E1;E
0
1
;E2/ to build a diagram E0

2
. Iterate this, constructing the diagrams E0

2

through E0n , as below.
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D01 DE00 E01 � � �

� � �

E0
n�2

E0
n�1

E0n DD0
2

D1 DE0 E1 En�2 En�1 En DD2

b0 b1 bn�2 bn�1

1 1 1 1

b

Proposition 3(b) gives us that bi � c.E0i/ � c.Ei/, while Proposition 3(a) tells us
c.E0i/� c.Ei/� 2i.c.E0

0
/� c.E0//. The sequence of �2 moves from E0

0
to E0n has

length b , where b D
Pn�1

iD0 bi . Hence,

b � .2n
� 1/.c.E00/� c.E0//:

Take D0
2
DE0n to complete the proof.

Theorem 5 below makes use of Lemma 2, Proposition 3 and Corollary 4 to begin
building an ordered sequence from an unordered sequence.

Theorem 5 Let D2 be a link diagram obtained from D1 via a sequence of �2 and
�3 moves of length M . Then there exists a diagram D3 such that D1�c D3 with
D3 is obtained from D2 by adding a sequence no more than M tails and lollipops.
Further, c � exp.M /.6M /.

Proof Consider a sequence A of �2 and �3 moves of length M from D1 to D2 ,
of which N are �3 :

A WD1 DA0!A1! � � � !AM DD2

Using Lemma 2, cap every �3 move to build a new sequence E1 :

E1 WD1 DE0!E1! � � � !EMC2N DD2;

where E1 contains no �3 moves. This is depicted in Figure 5.

If Ei

�
#

2
��!EiC1 , we relabel this as EifEiC1 , because a �"

2
move may be performed

by adding a tail. Define a local minimum of E1 to be a diagram Ei such that

Ei�1fEi

�
"

2
��!EiC1 or Ei�1�Ei

�
"

2
��!EiC1:

Let EJ 2 fE1; : : : ;EMC2N�1g be the local minimum appearing in E1 with greatest
index. Let r1 be the number of consecutive �"

2
moves in E1 to the right of EJ . Let

`1 be the number of consecutive �"
2

moves in E1 to the left of EJ�1 .

Algebraic & Geometric Topology, Volume 13 (2013)



A bound for orderings of Reidemeister moves 3105

� � �

� � �

A0

AM

E0

EMC2N

A1 A2

E1

E2

Figure 5: Constructing E1 from A

� � �E0

EJCr1

EJ

Fr2

EJ�1
r1

Figure 6: Constructing F (in this case, EJCr1
DEMC2N )

Apply Corollary 4 to the triple .EJ�1;EJ ;EJCr1
/ to build a diagram F , where

EJ�1�r 0
2F and where EJCr1

� F if EJ � EJ�1 or EJCr1
 F if EJ  

EJ�1 . Corollary 4 tells us r 0
2
� 4 � 2r1 , in the worst case that EJ �EJ�1 . Figure 6

depicts the construction of F . Define E2 to be the following sequence:

E2 WD1 DE0!E1! � � � !EJ�1! � � � ! F !EJCr1
! � � � !EMC2N

Then E2 is a sequence of diagrams with r2 consecutive �"
2

moves to the right of its
last local minimum, where we have the following bound on r2 :

r2 � 4 � 2r1 C `1 � 2r1C2C`1 :

Let Ek be the sequence obtained by k � 1 applications of Corollary 4, with rk the
number of �"

2
moves to the right of the last local minimum of Ek . Let `k be the

number of consecutive �"
2

moves preceding the diagram to the immediate left of the
last local minimum of Ek . Given the Ek and rk , we may apply Corollary 4 as above to
produce a sequence EkC1 and corresponding rkC1 with rkC1 � 2rkC2C`k , and hence

(1) rkC1 � exp.k/
�

r1C 2kC

kX
iD1

`i

�
:

Iterate the constructions of the .Ek ; rk/ until we produce a sequence EK with no local
minima and with rK consecutive �"

2
moves following E0 . The number of times we
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: : :

� � �
E0

EJCr1

F

EJ

D3

r1

rK

Figure 7: Repeatedly applying Corollary 4 to build D3

apply Corollary 4 to construct EK from E1 is exactly the number of tails and lollipops
in E1 , which is less than or equal to M . So K �M C 1, and via (1) above,

rK � exp.M /.6M /;

where we’ve used that r1 �M and
PK�1

iD1 `i �M C 2N � 3M .

There are rK moves of type �"
2

following D1 DE0 in EK , so let D3 be the diagram
obtained by performing these moves on D1 . Because D3 is obtained from EMC2N D

D2 by at most M tails and lollipops, Theorem 5 holds.

The following theorem allows us to construct an ordered sequence of �2 and �3

moves from the tails and lollipops arising in Theorem 5.

Theorem 6 Suppose D2 is obtained from D1 by a sequence T of tails and lollipops
of length M :

T WD1 D T0

a1
�! T1

a2
�! � � �

aM
��! TM DD2

where either Ti TiC1 or Ti�TiC1 . Then there exists a diagram D3 obtained from
D2 by a sequence of �"

2
moves of length no more than M

2
.c.D2/� c.D1//C 2M ,

followed by a sequence of �3 moves of length no more than M . Additionally D1

is obtained from D3 by a sequence of �#
2

moves of length at most MC1
2
.c.D2/�

c.D1//C 2M .
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Proof Consider a crossing � of the diagram D2 about which the circle part of any
lollipop in T is centered. There may be multiple lollipops (suppose there are k )
centered at �, so consider a point pk on the outermost one. Let q be a point in a small
enough neighborhood of � such that a straight line segment from q to � does not
intersect D2 except at �.

Consider a path cW Œ0; 1�!R2 such that c.0/D pk and c.1/D q . Choose c in such
a way that its image C intersects each concentric lollipop at only one point. The point
of intersection of C and the i th concentric lollipop is denoted pi . Let ık D 0 and let
ık�1 < ık�2 < � � �< ı1 2 .0; 1/ such that c.ıi/D pi .

�pk

q

p1
D2[C E

Figure 8: Adding concentric tails at the crossing �

As in the proof of Proposition 3, we also choose c so that C \D2 consists of no more
than 2

� c.D2/�c.D1/
4

˘
points, excluding the points p1 through pk .

Add a tail along the path cjŒı1;1� to construct a diagram E1 from D2 , where c.E1/�

c.D2/ � c.D2/� c.D1/. Perturb this tail slightly, so that it is closer to the crossing
�, and now add a second tail disjoint from the first tail along the path cjŒı2;1� . This
second tail introduces no more than c.D2/� c.D1/ crossings.

Repeating this process of perturbing and adding tails along cjŒıi ;1� for all i 2f1; : : : ; kg,
we produce a diagram Ek where c.Ek/� c.D2/� k.c.D2/� c.D1//. We then build
the diagram E by adding nested tails in the same way for every crossing of D2 that
is the center of some lollipop, so that c.E/ � c.D2/ � M.c.D2/ � c.D1//. The
construction of E is depicted in Figure 8. The diagram E may be obtained from D2

by a sequence of �"
2

moves of length at most M
2
.c.D2/� c.D1//.

Now construct the diagram E0 from E by performing the following at each crossing:
if there are k concentric circles centered at a crossing �, perform 2k type �"

2
moves,

Algebraic & Geometric Topology, Volume 13 (2013)
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E E0

Figure 9: Perform 2k type �"2 moves, so that each tail ‘forks’ over the crossing

forking the previously constructed tails over the edges of the crossing �, as Figure 9
illustrates.

The diagram E0 may be reached from D2 via a sequence of �"
2

moves with length at
most M

2
.c.D2/� c.D1//C 2M . Finally, construct the diagram D3 by performing at

most M moves of type �3 , as in Figure 10.

E0 D3

Figure 10: Performing �3 moves to pass from E0 to D3

We may now pass from D3 to D1 by performing �#
2

moves as follows. Each tail
and lollipop of T in D2 is still present in D3 , with the circle parts of each lollipop
modified. We remove them one at a time starting with the last tail or lollipop aM in
the sequence. If aM is a lollipop, it now has the form depicted by Figure 11 in D3 ,
and may be removed by �#

2
moves. If aM is a tail, it may likewise be removed by �#

2

moves. We continue to remove tails and lollipops in the reverse order they are added in
T until we obtain D1 .

Figure 11

Because c.D3/D c.E0/, we know c.D3/�c.D1/ is exactly c.E0/�c.D2/Cc.D2/�

c.D1/, which is at most M.c.D2/� c.D1//C 4M C c.D2/� c.D1/. Halving this
gives us a bound on the number of �#

2
moves from D3 to D1 .
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We consolidate previous results into Theorem 7, a special case of Theorem 1.

Theorem 7 Let D2 be a link diagram obtained from D1 by a sequence of �2 and �3

moves of length M . Then there is a sequence of at most exp.2M /.6M / Reidemeister
moves from D1 to D2 ordered in the following way: first �"

2
moves, then �3 moves

and finally �#
2

moves.

Proof Given D1 and D2 , construct a diagram D3 using Theorem 5, where D3 is
obtained from D1 by no more than exp.M /.6M / type �"

2
moves, and where D3 is

obtained from D2 by no more than M tails and lollipops. Note that c.D3/� c.D2/�

2 � exp.M /.6M /C 2M .

From D2 and D3 , apply Theorem 6 to construct a diagram D4 with the following
properties: there is a sequence of �"

2
moves whose length is no more than M �

exp.M /.6M /CM 2C 2M , followed by a sequence of �3 moves of length no more
than M from D3 to D4 . There is also a sequence of �#

2
moves whose length is at

most .M C 1/ � exp.M /.6M /CM 2C 3M from D4 to D2 .

Following the sequences of moves constructed from D1 to D3 , then to D4 and finally
to D2 , we have a sequence of no more than .2M C 2/ � exp.M /.6M /CM.2M C 6/

Reidemeister moves ordered as desired. For M � 1, exp.2M /.6M / � .2M C 2/ �

exp.M /.6M /CM.2M C 6/.

Before considering the more general case of an arbitrary sequence of M Reidemeister
moves, we need two lemmas relating to �1 moves. These lemmas allow us to take a
sequence of Reidemeister moves and build a new sequence in which the �1 moves
occur only at the beginning and end.

Lemma 8 Let A, B and C be link diagrams such that

A
�
�! B

�
"

1
��! C

where � is an arbitrary �2 or �3 move. Then there exists a diagram B0 which may
be obtained from A by a single �"

1
move, and where C is obtained from B0 by no

more than six �2 or �3 moves. Additionally, if instead �D�#
1

, there is a diagram
B0 such that

A
�
"

1
��! B0

�
#

1
��! C:

Lemma 9 Let A, B and C be link diagrams such that A
�
#

1
��!B

�
�!C , where � is an

�2 or �3 move. Then there exists a diagram B0 such that B0 is obtained from A by
no more than six �2 or �3 moves and where C may be obtained from B0 by a single
�
#

1
move.
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The proofs of Lemma 8 and Lemma 9 are left to be verified by the reader, and
Corollary 10 is a rapid consequence of these lemmas:

Corollary 10 Let D2 be obtained from D1 by an arbitrary sequence of M Reidemeis-
ter moves, ˛ of which are �"

1
and ˇ of which are �#

1
. Then there exist diagrams D0

1

and D0
2

such that D0
1

is obtained from D1 by ˛ type �"
1

moves and D2 is obtained
from D0

2
by ˇ type �#

1
moves. Additionally, D0

2
is obtained from D0

1
by no more

than 6M M Reidemeister moves of type �2 and �3 .

We conclude by proving Theorem 1.

Proof of Theorem 1 Begin with an arbitrary sequence of M Reidemeister moves from
diagram D1 to diagram D2 , ˛ of which are �"

1
and ˇ of which are �#

1
. Construct

D0
1

and D0
2

as in Corollary 10. Apply Theorem 7 to the sequence of �2 and �3

moves from D0
1

to D0
2

to obtain a sorted sequence of Reidemeister moves from D1 to
D2 of length at most

exp.2�6
M M /.6 � 6M M /C˛Cˇ � exp.6

MC1M /.6MC1M /:
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