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Growth of periodic quotients of hyperbolic groups

RÉMI COULON

Let G be a non-elementary torsion-free hyperbolic group. We prove that the ex-
ponential growth rate of the periodic quotient G=Gn tends to the one of G as n

odd approaches infinity. Moreover, we provide an estimate for the rate at which the
convergence is taking place.

20F65; 20F50, 20F67, 20F69

1 Introduction

A group G is said to have finite exponent n if for every g 2 G , gn D 1. At the
beginning of the 20th century, W Burnside [4] posed the following problem (now
known as the Bounded Burnside Problem). Is a finitely generated group with finite
exponent necessarily finite? In order to study this question, the natural object to look
at is the free Burnside group of rank k and exponent n denoted by Bk.n/. It is the
quotient of the free group of rank k , denoted by Fk , by the (normal) subgroup Fn

k

generated by the n th power of all elements of Fk . It is the largest group of rank k and
exponent n.

For a long time it was only established that Bk.n/ was finite for some small exponents
(nD2 due to Burnside [4], nD3 due to Burnside [4] and Levi and van der Waerden [16],
nD 4 due to Sanov [22] and nD 6 due to Hall [13]). The finiteness of B2.5/ is still
open. In 1968, P S Novikov and S I Adian achieved a breakthrough. In a series of three
articles [18], they provided the first examples of infinite free Burnside groups. More
precisely, they proved the following result. If k > 2 and n is an odd integer larger
than or equal to 4381, then Bk.n/ is infinite. Their result has been improved in many
directions. In particular, S V Ivanov [14] and I G Lysenok [17] solved the case of even
exponents. Since free Burnside groups of sufficiently large exponents are infinite, a
natural question is how “big” they are. This can be measured by the exponential growth
rate.

Given a finitely generated group G endowed with the word metric with respect to some
finite generating set of G , its (exponential) growth rate is defined to be

�D lim
r!1

r
p
jB.r/j;
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where jB.r/j denotes the cardinality of the ball of radius r of G . If � > 1, one says
that G has exponential growth (� depends on the generating set, however having
exponential growth is a property of the group G ). Furthermore, if for every generating
set, the corresponding growth rate is uniformly bounded away from 1, then G has
uniform exponential growth.

In his book [1], S I Adian proved that free Burnside groups of sufficiently large odd
exponents are not only infinite but also exponentially growing. Later D Osin showed
that they are uniformly non-amenable, and therefore they have uniform exponential
growth [21]. Another approach can be found in the paper by Atabekyan [3].

In 1991, using a diagrammatical description of graded small cancellation theory,
A Y Ol’shanskiı̆ proved an analogue of the Novikov–Adian Theorem [20] for hyperbolic
groups.

Theorem 1.1 (Ol’shanskiı̆ [20]) Let G be a non-elementary torsion-free hyperbolic
group. There exists a critical exponent n0 such that for all odd integers n > n0 , the
quotient G=Gn is infinite.

Non-elementary hyperbolic groups are known to have uniform exponential growth (see
Koubi [15]). On the other hand, hyperbolic groups are growth tight (see Arzhantseva
and Lysenok [2]). This means that, given such a group G and a finite generating set A,
for any infinite normal subgroup N of G , the exponential growth rate of G=N with
respect to the natural image of A is strictly less than the one of G with respect to A.
Therefore we were wondering what the growth rate of the periodic quotients G=Gn

could be. In particular, is there a gap between the respective growth rates of G and
G=Gn ? The following theorem answers this question negatively: the growth rate of
G=Gn converges to the one of G as n odd approaches infinity. Moreover, we provide
an estimate for the rate at which this convergence is taking place.

Theorem 1.2 Let G be a non-elementary torsion-free hyperbolic group and � its
exponential growth rate with respect to a finite generating set A of G . There exists
a positive number � such that for sufficiently large odd exponents n, the exponential
growth rate of G=Gn with respect to the image of A is at least

�
�
1�

�

n

�
:

In the case of free Burnside groups we even have a much more accurate estimate.

Theorem 1.3 Let k > 2. Let A be a free generating set of Fk (ie with exactly
k elements). There exists a positive number � such that for sufficiently large odd

Algebraic & Geometric Topology, Volume 13 (2013)



Growth of periodic quotients of hyperbolic groups 3113

exponents n, the exponential growth rate of Bk.n/ with respect to the image of A is
larger than

.2k � 1/

�
1�

�

.2k � 1/n=2

�
:

Our proof extends the ideas of S I Adian. However, considering hyperbolic groups
instead of free groups makes it much more complicated and requires new tools. Let us
first recall the key argument of Adian’s approach.

Main fact Let A be a free generating set of Fk . Let w be a reduced word over the
alphabet A[A�1 . We say that w contains an m th power if there exists a non-trivial
cyclically reduced word w0 over A[A�1 such that, as a concatenation of words,
w can be written w D w�wm

0
wC . Let g be an element of Fk . If the reduced word

representing g does not contain a 16 th power, then g induces a non-trivial element of
Bk.n/ for every odd integer n> 665.

In particular, two distinct reduced words which do not contain an 8 th power induce
different elements of Bk.n/. Therefore, it is sufficient to estimate the growth rate of
the set of reduced words without 8 th power. This is done by induction on the length of
the words. The main steps of this proof are recalled in Section 4.1.

Consider now an arbitrary non-elementary torsion-free hyperbolic group G endowed
with the word metric j � j. Following A Y Ol’shanskiı̆, an .L;m/–power is an element
of G that can be written uvmu0 where u and u0 have length at most L. An element g of
G is .L;m/–aperiodic if it cannot be written gDg1g2g3 where jgjDjg1jCjg2jCjg3j

and g2 is an .L;m/–power. The proof of Theorem 1.1 relies on the following fact.
In [20], A Y Ol’shanskiı̆ proved the existence of constants L, � and n0 , which depend
on G , with the following property. Let n be an odd integer larger than n0 . Then the
set of .L; b�nc/–aperiodic elements embeds into G=Gn . The infiniteness of G=Gn

follows from the one of the set of .L; b�nc/–aperiodic elements. Another approach
based on techniques introduced by T Delzant and M Gromov [10] can be found in
Coulon [8].

Hence one way to prove Theorem 1.2 is to compute the growth rate of the set of
.L;m/–aperiodic elements. Instead of reasoning with words, we consider geodesic
paths in the Cayley graph X of G . However, this definition of .L;m/–aperiodic
elements does not behave well with the operations of extending geodesics or taking
subgeodesics. While working with words, as in the free group, we can say the following.
Let w be a reduced word and a a letter of A[A�1 . If wa does not contain an m th

power but wa does, then the word wa can be written waD w�w
m
0

(the m th power
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occurs at the end of the word). A similar statement is not true for geodesics in X . Let
g and h be two elements of G such that g lies on a geodesic � between 1 and h.
If g is .L;m/–aperiodic but h is not, then the .L;m/–power in h is not necessarily
contained in the part of � between g and h. Indeed, since X is not uniquely geodesic,
the element g could contain a .LC 2ı;m/–power as illustrated in Figure 1.

• •

•

•
•

•
•

1

�
g

h

L L

l
lvm

Figure 1: Extending aperiodic elements

To avoid this difficulty, we focus on a particular set of geodesics. We fix a spanning tree
in X such that for every h 2G , the path �h joining 1 to h in this tree is geodesic. We
call such a path a selected geodesic. In particular, if g 2G lies on �h , then �g is the
subpath of �h between 1 and g . Then we adopt the following definition. An element
g 2G contains an .L;m/–power if there are l 2G and a non-trivial cyclically reduced
element v 2G such that both l and lvm belong to the L–neighborhood of �g .

This adaptation leads to another difficulty. Given an element g 2G , we need to be sure
that �g has sufficiently many selected extensions. However this could be impossible
(see Figure 2). This question is handled in Section 3. For every r , we construct a
subset K of G which, among others, satisfies the following property. For all g 2K ,
the number of elements h 2 K such that �h extends �g by a length r is at least
�1�

r , where �1 is some positive constant which depends on G and A and � is the
exponential growth rate of G . Our proof uses as a tool the Cannon cone types [5].

• •

•

1

�g g

h

�h

Figure 2: Extending selected geodesics

Finally, we prove that the set of .L;m/–aperiodic elements of K grows exponentially
with a rate at least �.1 � a=m/ (see Section 4). Our theorem follows then from
Ol’shanskiı̆’s work (see Section 5).
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2 Hyperbolic geometry

In this section we fix notations and review some of the standard facts on hyperbolic
spaces and hyperbolic groups (in the sense of Gromov). For more details we refer
the reader to the original paper of M Gromov [12] or to Coornaert, Delzant and
Papadopoulos [7] or Ghys and de la Harpe [11].

Let G be a group generated by a finite set A. We denote by X the Cayley graph of
G with respect to A. The vertices of X are the elements of G . For every g 2G and
a 2 A[A�1 , g is joined to ga by an edge labeled by a. The group G acts on the
left by isometries on X .

Given two points x and x0 in X , jx�x0j stands for the distance between them. The
Gromov product of three points x;y; z 2X is defined by

hx;yiz D
1
2

˚
jx� zjC jy � zj � jx�yj

	
:

The space X is said to be ı–hyperbolic if for all x;y; z; t 2X ,

hx;yit >min
˚
hx; zit ; hz;yit

	
� ı:

Remark The constant ı depends on A. Nevertheless for a group, being hyperbolic
(for some ı ) does not depend on the generating set. In this article we fix once for all the
generating set A. Therefore the hyperbolicity constant ı of X is fixed as well. Beside
the hyperbolicity constant, the proof of the main theorem involves many parameters.
To help the reader, greek letters will represent constants which only depend on G and
A and not on the other objects that will be introduced later (eg in Sections 3.2 and 4.2).

In the rest of the article we assume that G is torsion-free and non-elementary, ie non
virtually cyclic.

As a consequence of hyperbolicity, the geodesic triangles of X are 4ı–thin, ie for
every x;y; z 2X , for every p (respectively q ) lying on a geodesic between x and y

(respectively between x and z ), if jx�pj D jx� qj6 hy; zix then jp� qj6 4ı .
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Let g 2 G . For simplicity of notation, jgj stands for the distance jg� 1j. This is
exactly the word length of g with respect to A. To measure the action of g on X , we
define two quantities: the translation length Œg� and the stable translation length Œg�1 .

Œg�D inf
x2X
jgx�xj I Œg�1 D lim

n!1

1
n

ˇ̌
gnx�x

ˇ̌
:

They are related as explained in the following proposition.

Proposition 2.1 (Coornaert, Delzant and Papadopoulos [7, Chapitre 10, Proposi-
tion 6.4]) For every element g 2G , we have

Œg�1 6 Œg�6 Œg�1C 50ı:

A cyclically reduced element is an element g 2G such that Œg�D jgj. Every conjugacy
class of G contains such an element. The set of all non-trivial cyclically reduced
elements is denoted by C .

If Œg�1 is positive then g is called hyperbolic. It is known that every element of G

either is hyperbolic or has finite order (in the latter case it is said to be elliptic). For
our purpose we assumed that G was torsion-free. Therefore every non-trivial element
is hyperbolic.

In a hyperbolic group, the range of stable translation lengths is discrete:

Theorem 2.2 (Delzant [9, Proposition 3.1]) There exists a constant � 2 Q�C such
that for all g 2 G , Œg�1 2 �N . In particular, for every hyperbolic element g 2 G ,
Œg�1 > � .

Given r 2R, we write B.r/ for the closed ball of G of center 1 and radius r , ie the
set of elements g 2 G such that jgj 6 r . If r is an integer, the sphere of radius r ,
denoted by S.r/, is the set of elements g 2G such that jgj D r .

If P is a finite subset of G , jP j stands for its cardinality. In order to estimate the size
of an infinite subset of G , we use the exponential growth rate.

Definition 2.3 Let P be a subset of G . The (exponential) growth rate of P is the
quantity

lim sup
r!C1

r
p
jP \B.r/j:
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We denote by � the growth rate of G . Since the map r ! jB.r/j is submultiplicative,
� satisfies in fact

�D lim
r!C1

r
p
jB.r/j D inf

r2N�
r
p
jB.r/j:

In particular, for all r 2N , jB.r/j> �r . The next proposition gives an upper bound
for jB.r/j.

Proposition 2.4 (Coornaert [6]) There exists ˛>1 such that for all r 2RC , jB.r/j6
˛�r .

3 Growth of cone types

3.1 Essential cone types

Definition 3.1 Let g 2G . The cone type of g is the set of elements u 2G such that
there exists a geodesic of X between 1 and gu that passes through g . We denote it by
Tg .

We write T for the set of all cone types. One important feature of hyperbolic groups is
given by the following proposition.

Proposition 3.2 (Coornaert, Delzant and Papadopoulos [7, Chapitre 12, Théorème 3.2])
If G is a hyperbolic group, then the set T of all cone types is finite.

Definition 3.3 We say that a cone type T 2 T is essential if

9c > 0; 8r 2N; 9s 2N \ Œr;C1/; jT \B.s/j> c�s;

where � is the growth rate of G .

Notation An element g 2G is essential if its cone type Tg is essential. The set of
all essential elements is denoted by E . We write TE for the set of all essential cone
types.

Remark It follows easily from the definition that the growth rate of an essential cone
type is exactly �. Roughly speaking, the essential elements are the ones who are
responsible for the growth of G .

Proposition 3.4 There exists ˇ > 0 such that for all T 2 TE , for all r 2N ,

jT \B.r/j> ˇ�r :
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Proof Note that TE is finite. Hence it is sufficient to prove the following statement:

8T 2 TE ; 9ˇ > 0; 8r 2N; jT \B.r/j> ˇ�r :

Let T be an essential cone type. By definition there exists c > 0 such that for all
r 2N there is an integer s > r satisfying jT \B.s/j > c�s . Let r 2N . We denote
by s an integer greater than or equal to r such that jT \B.s/j> c�s . Every element
of T \B.s/ can be written uv where u 2 T \B.r/ and v 2 B.s� r/. Consequently,
jT \B.s/j6 jT \B.r/j � jB.s� r/j. Using Proposition 2.4 we obtain

c�s 6 jT \B.s/j6 ˛�s�r
jT \B.r/j :

Thus for all r 2N , jT \B.r/j> ˛�1c�r .

Lemma 3.5 Let g 2G . Let u 2 Tg . If gu is essential then so is g .

Proof By definition of the cone type, uTgu is a subset of Tg . Hence for all integers
r > juj,

ˇ̌
Tg \B.r/

ˇ̌
>
ˇ̌
Tgu\B.r � juj/

ˇ̌
: However, gu is essential. It follows from

Proposition 3.4 that for all integers r > juj,ˇ̌
Tg \B.r/

ˇ̌
>
ˇ̌
Tgu\B.r � juj/

ˇ̌
> ˇ��juj�r :

Thus g is essential.

Let g 2G and u 2 Tg . According to the previous lemma, if gu is essential, so is g .
The converse statement is not necessarily true. Nevertheless, the next proposition gives
a lower bound for

ˇ̌
g.Tg \S.r//\E

ˇ̌
which is the number of elements u2 Tg\S.r/

such that gu is essential. (Recall that S.r/ is the sphere of radius r defined in
Section 2.)

Proposition 3.6 There exists  2 .0; 1/ such that for all g 2E and for all r 2N ,ˇ̌
g.Tg \S.r//\E

ˇ̌
> �r :

Proof Let  2 .0; 1/. Suppose the proposition were false. There exist an essential
element g2E and r 2N such that

ˇ̌
g.Tg \S.r//\E

ˇ̌
<�r . Negating the definition

of essential cone types, we have

8T 2 T n TE ; 9s 2N; 8t 2N \ Œs;C1/; jT \B.t/j< �t :

Recall that the set of cone types T is finite. Thus we have in fact

(1) 9s 2N; 8T 2 T n TE ; 8t 2N \ Œs;C1/; jT \B.t/j< �t :
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Let t > s be an integer. It follows from the definition of cone types that

Tg \B.r C t/� Tg \B.r � 1/[

� [
h2g.Tg\S.r//

g�1h.Th\B.t//

�
:

Since g is essential, Proposition 3.4 yields

ˇ�rCt 6
ˇ̌
Tg \B.r C t/

ˇ̌
6
ˇ̌
Tg \B.r � 1/

ˇ̌
C

X
h2g.Tg\S.r//

jTh\B.t/j :

Let h2g.Tg\S.r//. If h is not essential, applying (1), we get jTh\B.t/j<�t . On
the other hand, if h is essential, then Proposition 2.4 leads to jTh\B.t/j6 jB.t/j6˛�t .
It follows thatˇ̌
Tg\B.rCt/

ˇ̌
6
ˇ̌
Tg\B.r�1/

ˇ̌
C �t

ˇ̌
g.Tg\S.r// nE

ˇ̌
C˛�t

ˇ̌
g.Tg\S.r//\E

ˇ̌
:

However, by assumption,
ˇ̌
g.Tg \S.r//\E

ˇ̌
<�r . Moreover, by Proposition 2.4 we

have
ˇ̌
Tg \B.r � 1/

ˇ̌
6 ˛�r�1 and

ˇ̌
g.Tg \S.r// nE

ˇ̌
6 ˛�r . Thus for all integers

t > s , we get
ˇ�rCt 6 ˛�r�1

C 2˛�rCt :

Therefore 0< ˇ 6 2˛ . This inequality holds for all sufficiently small  > 0, which
is impossible.

3.2 Selected cone types

From now on we fix a spanning tree in the Cayley graph X of G such that for every
h 2G , the path �h joining 1 to h in this tree is geodesic in X . The path �h is called
a selected geodesic. Note that if g 2G lies on �h , then �g is exactly the subpath of
�h between 1 and g .

Remark Such a tree can be obtained in the following way. Let us fix an arbitrary
order on A[A�1 . Let g; h 2G . Using the labeling of the edges of X , any geodesic
joining g to h can be identified with a word over the alphabet A[A�1 representing
g�1h. Thus the set of geodesics inherits the lexicographic order (we read the words
from the left to the right). For all h 2 G , �h is the geodesic joining 1 to h which is
the smallest for the lexicographic order.

Definition 3.7 Let g 2G . The selected cone type of g is the set of elements u 2G

such that �gu passes through g . We denote it by Lg .

Remark It follows from the definition that Lg is a subset of Tg . Contrary to T , it is
not clear whether or not the set of all selected cone types is finite.
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Our goal is to construct a subset K of G such that its elements satisfy analogues for
the selected cone types of Lemma 3.5 and Proposition 3.6. To that end, we need the
following lemma.

Lemma 3.8 (Arzhantseva and Lysenok [2, Lemma 5]) There exists a constant � 2
.0; 1/ satisfying the following. For every finite subset P of G , there is a subset P 0 of
P such that jP 0j> � jP j and for all distinct g , g0 in P 0 , jg�g0j> 20ı .

Recall that  is the constant given by Proposition 3.6. Let us put �1 D � jB.4ı/j
�1 .

Note that �1 belongs to .0; 1/. Let r be an integer larger than 10ı . The set K that
we are going to build will depend on the parameter r , which represents a distance.
However, for simplicity, we do not mention the dependence on r in the notation. First,
we construct by induction a sequence .Hi/ of subsets of G .

� Put H0 DG .

� Let i 2N . Assume that Hi is already defined. The set HiC1 is

HiC1 D
˚
g 2G

ˇ̌ ˇ̌
g.Lg \S.r//\Hi

ˇ̌
> �1�

r
	
:

The set H is defined to be the intersection of all Hi ’s.

Lemma 3.9 The sequence .Hi/ is non-increasing for the inclusion.

Proof The proof is by induction on i . First note that H1 is contained in H0 D G .
Assume now that Hi is contained in Hi�1 . Given g 2HiC1 we haveˇ̌

g.Lg \S.r//\Hi�1

ˇ̌
>
ˇ̌
g.Lg \S.r//\Hi

ˇ̌
> �1�

r :

Thus g belongs to Hi . Consequently, HiC1 is a subset of Hi .

Corollary 3.10 For all g 2H ,
ˇ̌
g.Lg \S.r//\H

ˇ̌
> �1�

r .

Proposition 3.11 For all g 2E , there exists g0 in gB.4ı/\H such that jg0j D jgj.

Proof According to the definition of H , it is sufficient to prove the following statement.
For all i 2N , for all g 2E , there exists g0 in gB.4ı/\Hi such that jg0j D jgj. To
that end, we proceed by induction on i . If i D 0, the statement follows from the fact
that H0 DG . Assume now that the statement holds for i 2N . Let g 2E . According
to the choice of  ,

ˇ̌
g.Tg \S.r//\E

ˇ̌
> �r (see Proposition 3.6). By the choice of

� , there exists a subset P of g.Tg \S.r//\E such that

(i) jP j> �
ˇ̌
g.Tg \S.r//\E

ˇ̌
> ��r ,
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(ii) for all distinct h1 , h2 in P , jh1� h2j> 20ı .

(See Lemma 3.8.) All elements of P are essential and have length jgjC r . According
to the induction assumption, for every h 2 P , the ball hB.4ı/ contains an element h0

of Hi of length jgjC r . We denote by P 0 the set of all elements h0 obtained in this
way (see Figure 3). Recall that two elements of P are a distance at least 20ı apart,
therefore P 0 contains at least jP j elements.

Legend:

points of P

points of P 0

geodesics
selected geodesics
balls of radius 4ı

1

g0

g

r

Figure 3: Elements of P and P 0

Let h 2 P and h0 be an element of P 0 contained in the ball hB.4ı/. We denote by g0

the point of �h0 such that jg0j D jgj. In this way h0 belongs to g0.Lg0 \S.r//. By
construction g (respectively g0 ) lies on a geodesic between 1 and h (respectively h0 ).
Moreover, jh� h0j6 4ı , thus˝

h; h0
˛
1
> 1

2

�
jhjC jh0j

�
� 2ı D jgjC r � 2ı > jgj D jg0j:

The triangle with vertices 1, h and h0 being 4ı–thin, jg�g0j64ı . Consequently, P 0 is
a subset of Hi contained in the union of all g0.Lg0\S.r// where g0 2gB.4ı/\S.jgj/.
In particular, there is g0 2 gB.4ı/\S.jgj/ such thatˇ̌
g0
�
Lg0\S.r/

�
\Hi

ˇ̌
> jB.4ı/j�1

ˇ̌
P 0
ˇ̌
> jB.4ı/j�1

jP j> � jB.4ı/j�1 �r
D �1�

r :
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By definition of HiC1 , g0 belongs to HiC1 . Thus the statement holds for i C 1.

Corollary 3.12 The element 1 belongs to H .

Proof Since T1 D G , 1 is essential. According to Proposition 3.11 there exists an
element of length 0 in H , ie 1 2H .

Corollary 3.10 is an analogue for the selected cone types of Proposition 3.6. However,
given g 2G and u 2Lg , if gu lies in H , there is no reason that g should also belong
to H . That is why we have to consider a subset K of H which will in addition satisfy
an analogue of Lemma 3.5 (see Proposition 3.13 (iii)). To that end we proceed by
induction.
� Put K0 D f1g.
� Let i 2N such that Ki is already defined. The set KiC1 is given by

KiC1 D

[
g2Ki

g
�
Lg \S.r/

�
\H:

Finally, the set K is the union of all the Ki ’s. Note that K is a subset of H . Moreover,
for all g 2K , g.Lg \S.r//\H lies inside K . Therefore by Corollary 3.10 we have

8g 2K;
ˇ̌
g
�
Lg \S.r/

�
\K

ˇ̌
> �1�

r :

On the other hand, a proof by induction shows the following fact. Given h 2K , there
exist an integer i and elements 1 D g0;g1; : : : ;gi D h ordered in this way on �h

such that for every j 2 f0; : : : ; ig, gj belongs to Kj and the distance between two
consecutive gj is exactly r . Finally, we have proved the following result.

Proposition 3.13 There is �1 2 .0; 1/ such that for all r > 10ı , there exists a subset
K of G satisfying the following properties:

(i) 1 belongs to K ,
(ii) for all g 2K ,

ˇ̌
g
�
Lg \S.r/

�
\K

ˇ̌
> �1�

r ,
(iii) for all h 2 K , for all x 2 �h , there exists g 2 K which lies on �h between 1

and x such that jx�gj6 r .

4 Avoiding large powers

The goal here is to estimate the growth rate of a subset of G “without large power”.
This section entails many parameters. As a warmup we start with the case of free groups
(Section 4.1). We present briefly the ideas used by S I Adian in [1]. This particular
case only involves counting arguments and does not require Section 3. The estimation
that we obtain will also be useful in Section 5.
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4.1 The case of free groups

We assume here that A is a free generating set of Fk , ie it contains exactly k elements.
Consequently, the exponential growth rate of Fk with respect to A is �D 2k � 1. Let
m 2 N . An element of Fk is said to be m–aperiodic if the reduced word over the
alphabet A[A�1 representing it does not contain an m th power (see Main fact in the
introduction). We denote by Km the set of m–aperiodic elements of Fk .

Proposition 4.1 For all integers m> 2, for all s 2N ,

jKm\B.sC 1/j> � jKm\B.s/j �
2k

2k � 1

X
j>1

�j
jKm\B.sC 1�mj /j :

The proof is based on this observation. An m–aperiodic word of length sC 1 can
always be written as an m–aperiodic word of length s followed by one letter. However,
all such words are not necessarily m–aperiodic. Indeed, a power could occur at the
end of the word. We need to exclude them when counting the number of m–aperiodic
elements of length sC 1. More precisely, the proof works as follows.

Proof Let s 2N . An m–aperiodic word w of length sC 1 can be written w D w0a
where w0 is an m–aperiodic word of length s and a an element of A[A�1 . Since w
is reduced, the number of possible choices for a is 2k � 1.

Consider now a reduced word of the form w0a where w0 2Km\B.s/ and a2A[A�1 .
If such a word is not m–aperiodic, then there exist j 2N� , w0 2 Fk with jw0j D j

and w� 2Km\B.sC1�mj / such that w0aDw�wm
0

. The number of words of this
last form is bounded above by

jKm\B.sC 1�mj /j � jS.j /j6 2k.2k � 1/j�1
jKm\B.sC 1�mj /j :

Therefore the number of reduced words of the form w0a (w0 2 Km \ B.s/ and
a 2A[A�1 ) which are m–aperiodic is bounded below by

.2k � 1/ jKm\B.s/j � 2k
X
j>1

.2k � 1/j�1
jKm\B.sC 1�mj /j ;

which gives the desired conclusion.

Proposition 4.2 Let k > 2. For every a> 2k , there exists a number m0 such that for
every integer m>m0 , the exponential growth rate of Km is at least � .1� a��m/.
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Proof We consider the function fmW .
m
p
�; �/!R defined by

fm.�/D ��
2k�

2k � 1

X
j>1

�
�

�m

�j

D ��
2k�

�m��
:

Let a > 2k . We put �m D � .1� a��m/. The sequence .�m/ tends to � > 1 as m

approaches infinity. Therefore

fm.�m/D �

�
1�

2k

�m
C o

m!C1

�
1

�m

��
:

Since a> 2k , there exists a number m0 such that for every integer m>m0 , fm.�m/>
�m . Fix m>m0 . For simplicity of notation, we write � for �m . We now prove by
induction that for every s 2N , jKm\B.s/j> � jKm\B.s� 1/j. The statement is
true for s D 0. Assume that it holds for all integers less or equal to s . In particular,
for every j > 1, jKm\B.sC 1�mj /j6 �1�mj jKm\B.s/j. It follows then from
Proposition 4.1 that

jKm\B.sC 1/j>
�
��

2k�

.2k � 1/

X
j>1

�
�

�m

�j �
jKm\B.s/j :

The expression between the brackets is exactly fm.�/. Therefore the assertion holds
for sC 1. A second induction proves that for every s 2N , jKm\B.s/j> �s , which
leads to the result.

4.2 The general case

We now deal with the case of hyperbolic groups. Recall that a cyclically reduced
element is an element g 2 G such that Œg� D jgj. The set of non-trivial cyclically
reduced elements is denoted by C (see Section 2). Let L > 0 and m 2 N� . Given
g 2 G , we say that g contains an .L;m/–power if there exists .l; v/ 2 G �C such
that both l and lvm belong to the L–neighborhood of �g . If g does not contain any
.L;m/–power, it is called .L;m/–aperiodic.

Remark Our definition of .L;m/–aperiodic elements is a slightly weaker form of
the one of A Y Ol’shanskiı̆ [20]. However, it is sufficient to apply Ol’shanskiı̆’s results
(see the remark following Theorem 5.4).

Let h 2G and g be an element of G which lies on �h . If h is .L;m/–aperiodic, so
is g .
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Given a subset K of G , we denote by KL;m the set of elements g 2 K which are
.L;m/–aperiodic. Our aim is to give a lower bound for the growth rate of GL;m . More
precisely, we prove the following result.

Proposition 4.3 Let L> 0. There exist a> 0 and m0 2N satisfying the following
property. For all integers m>m0 , the exponential growth rate of GL;m is larger than
or equal to � .1� a=m/.

The rest of this section is dedicated to the proof of Proposition 4.3. We will not compute
directly the growth of GL;m but provide an estimate for the growth of KL;m for a well
chosen subset K of G . To that end, we first need to fix some parameters. The constants
� and �1 are the ones respectively given by Theorem 2.2 and Proposition 3.13. Let
L> 0. Let r be an integer larger than 10ı . According to Proposition 3.13, there exists
a subset K of G containing 1, such that

(i) for all g 2K ,
ˇ̌
g
�
Lg \S.r/

�
\K

ˇ̌
> �1�

r ,

(ii) for all h 2K , for all x 2 �h , there exists g 2K which lies on �h between 1

and x such that jx�gj6 r .

Let m be an integer such that m� > 2LC r . We now define auxiliary subsets of G .

� Z D
˚
h 2 g

�
Lg \S.r/

�
\K

ˇ̌
g 2KL;m

	
.

� For all v 2 G n f1g, Zv is the set of elements h 2 G that can be written
hD guvmu0 where
(i) g belongs to KL;m ,

(ii) jhj> jgjC jvmj � 2L,
(iii) juj; ju0j6LC r .

Roughly speaking, Z denotes the set of elements of K which are a selected extension
of an .L;m/–aperiodic element of K by a length r . On the other hand, Zv contains
the elements which extend an .L;m/–aperiodic element by an almost m th power of
v . The idea of the next proposition is the following. An .L;m/–aperiodic element of
length sC r can be obtained by extending a .L;m/–aperiodic element of length s .
However, this extension should not involve an m th power.

Proposition 4.4 The set Z n
S
v2C Zv is contained in KL;m .

Proof Equivalently, we prove that Z nKL;m �
S
v2C Zv . Let h be an element of

Z nKL;m . In particular it belongs to KnKL;m . Therefore there exist l 2G and v 2C
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such that l and lvm belong to the L–neighborhood of �h . We are going to prove that
h belongs to Zv .

We denote by p and q respective projections of l and lvm on �h . By replacing if
necessary v by v�1 , one can assume that 1, p , q and h are ordered in this way on �h .
We claim that jh� qj6 r . Assume on the contrary that this assertion is false. Since h

belongs to Z , there is g1 2KL;m \ �h such that jh�g1j D r < jh� qj. It follows
that p and q both belong to �g1

. In particular, l and lvm lie in the L–neighborhood
of �g1

. This contradicts the fact that g1 is .L;m/–aperiodic.

•

•

•

•

•

•

•

•

1

g2

p

L

l

g1

q
h

L
lvm

Figure 4: Positions of the points on �h

Recall that h belongs to K . The point p is on �h . Therefore there is a point g2 2K

which lies on �h between 1 and p such that jg2�pj 6 r (see Figure 4). We put
uD g�1

2
l and u0D v�ml�1h. Hence hD g2uvmu0 . The triangle inequality combined

with our previous claim gives juj; ju0j 6 LC r and jhj > jg2j C jv
mj � 2L. It only

remains to prove that g2 is .L;m/–aperiodic. We assumed that m� > 2LC r . The
previous inequality becomes

jhj> jg2jC jv
m
j � 2L> jg2jCm� � 2L> jg2jC r:

Hence g2 lies on �g between 1 and g1 . Since g1 is .L;m/–aperiodic, so is g2 .

Corollary 4.5 For all s 2N ,ˇ̌
KL;m\B.s/

ˇ̌
> jZ \B.s/j �

X
v2C

jZv \B.s/j :

Lemma 4.6 For all s 2N , jZ \B.sC r/j> �1�
r
ˇ̌
KL;m\B.s/

ˇ̌
:

Remark Recall that �1 is given by Proposition 3.13, whereas r is the radius that we
fixed at the beginning of this section.
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Proof By definition of Z ,

Z \B.sC r/D
[

g2KL;m\B.s/

g
�
Lg \S.r/

�
\K:

We claim that this union is in fact a disjoint union. Assume on the contrary that this
assertion is false. There are two distinct elements g;g0 2KL;m\B.s/ and u;u0 2S.r/

such that g and g0 lie on the selected geodesic from 1 to gu D g0u0 . Since u and
u0 have the same length, jg�g0j D jjgj � jg0jj D 0, thus g D g0 . Contradiction.
Therefore we have

jZ \B.sC r/j D
X

g2KL;m\B.s/

ˇ̌
g
�
Lg \S.r/

�
\K

ˇ̌
:

It follows from Proposition 3.13, that for all g 2KL;m\B.s/,
ˇ̌
g
�
Lg \S.r/

�
\K

ˇ̌
>

�1�
r . Consequently,

jZ \B.sC r/j> �1�
r
ˇ̌
KL;m\B.s/

ˇ̌
:

Lemma 4.7 Let v 2G n f1g. For all s > 0,

jZv \B.sC r/j6 ˛2�2.LCr/
ˇ̌
KL;m\B.sC r C 2L�m Œv�1/

ˇ̌
:

Proof Let h be an element of Zv \B.sC r/. By definition there are g 2KL;m and
u;u0 2 B.LC r/ such that hD guvmu0 . Moreover,

jhj> jgjC jvm
j � 2L> jgjCm Œv�1� 2L:

Consequently, g belongs to the ball of center 1 and radius sCrC2L�m Œv�1 . Hence
Zv \B.sC r/ is a subset of�

KL;m\B.sC r C 2L�m Œv�1/
�
B.LC r/vmB.LC r/:

The conclusion follows from Proposition 2.4.

Let us summarize. Let s 2N . By Corollary 4.5 and Lemma 4.6,ˇ̌
KL;m\B.sC r/

ˇ̌
> jZ \B.sC r/j �

X
v2C

jZv \B.sC r/j(2)

> �1�
r
ˇ̌
KL;m\B.s/

ˇ̌
�

X
v2C

jZv \B.sC r/j :(3)

Let j 2N� . We consider v2C such that Œv�1Dj � (see Theorem 2.2). By Lemma 4.7,

jZv \B.sC r/j6 ˛2�2.LCr/
ˇ̌
KL;m\B.sC r C 2L�mj �/

ˇ̌
:
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Since v is cyclically reduced, it satisfies jvjD Œv�6 Œv�1C50ı . Hence such an element
belongs to B.j � C 50ı/. The number of elements v 2 C such that Œv�1 D j � is
therefore bounded above by jB.j � C 50ı/j6 ˛�j�C50ı . Consequently,X
v2C

jZv \B.sC r/j6 ˛3�2.LCrC25ı/
X
j>1

�j�
ˇ̌
KL;m\B.sC r C 2L�mj �/

ˇ̌
:

Note that in the sum on the right-hand side all but finitely many terms vanish. Combining
this last inequality with (3), we getˇ̌
KL;m\B.sC r/

ˇ̌
> �1�

r
ˇ̌
KL;m\B.s/

ˇ̌
�˛3�2.LCrC25ı/

X
j>1

�j�
ˇ̌
KL;m\B.sC r C 2L�mj �/

ˇ̌
:

Finally we have proved the following proposition.

Proposition 4.8 There exist positive constants � , �1 and �2 with �1 < 1 satisfying
the following property. Let L> 0. Let r be an integer larger than 10ı . There exists a
subset K of G containing 1 such that for all integers m satisfying m� > 2LC r , for
all s 2N ,ˇ̌
KL;m\B.sC r/

ˇ̌
> �1�

r
ˇ̌
KL;m\B.s/

ˇ̌
� �2�

2.LCr/
X
j>1

�j�
ˇ̌
KL;m\B.sC r C 2L�mj �/

ˇ̌
:

Before proving Proposition 4.3, we introduce a family of auxiliary maps. For all L> 0,
for all m 2N� , the function fL;mW .

m
p
�; �/�RC!R is given by

fL;m.�; r/D �1�
r
� �2�

4.LCr/
X
j>1

�
�

�m

�j�

D �1�
r
� �2�

4.LCr/ ��

�m� ���
:

Proposition 4.9 Let L > 0. Let b 2 .0; �=3/ and a > � ln.�1/=b . There exists a
number m0 such that for all integers m>m0 ,

fL;m

�
�
�
1�

a

m

�
;mb

�
>
h
�
�
1�

a

m

�imb

:

Remark Recall that �1 < 1, thus a> 0.
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Proof For every m 2N� , we put �m D � .1� a=m/. Note that if m is sufficiently
large, �m 2 .

m
p
�; �/. For every d > 0, we have the following asymptotic behavior

.�m/
md
D �md

h
e�ad

C o
m!C1

.1/
i
:

In particular,

(4) .�m/
mb
D �mb

h
e�ab

C o
m!C1

.1/
i
;

and

�2�
4.LCmb/ ��

.�m/m� ���
D �m.4b��/

h
�2ea��4LC�

C o
m!C1

.1/
i
:

Since b < �=3, the previous quantity is asymptotically dominated by �mb . Conse-
quently,

fL;m.�m;mb/D �1�
mb
� �2�

4.LCmb/ ��

.�m/m� ���
D �mb

h
�1C o

m!C1
.1/
i
:

By construction, e�ab < �1 . By (4), there exists m0 such that for every m>m0 ,

fL;m .�m;mb/> .�m/
mb:

Proof of Proposition 4.3 Let L> 0. According to Proposition 4.9, there are positive
numbers a, b and m0 2N such that for all m>m0 ,

(i) mb > 10ı ,

(ii) m� > 2LCmb ,

(iii) m ln
�
�
�
1� a

m

��
> ln�,

(iv) fL;m

�
�
�
1� a

m

�
;mb

�
>
�
�
�
1� a

m

��mb .

Let m > m0 . For simplicity of notation, we write � D � .1� a=m/ and r D mb .
Hence, the previous inequalities can be written r > 10ı , m� > 2LC r , ���m < 1

and fL;m.�; r/> �r . By Proposition 4.8, there exists a subset K of G containing 1

such that for all s > 0,ˇ̌
KL;m\B.sC r/

ˇ̌
> �1�

r
ˇ̌
KL;m\B.s/

ˇ̌
� �2�

2.LCr/
X
j>1

�j�
ˇ̌
KL;m\B.sC r C 2L�mj �/

ˇ̌
:

We now prove by induction that for all i 2N ,

(Hi)
ˇ̌
KL;m\B.i r/

ˇ̌
> �r

ˇ̌
KL;m\B..i � 1/r/

ˇ̌
:
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.H0/ is obviously true. Assume the induction hypothesis holds for every integer smaller
than or equal to i . In particular, for all t > 0, we haveˇ̌

KL;m\B.i r � t/
ˇ̌
6 ��b

t
r cr

ˇ̌
KL;m\B.i r/

ˇ̌
6 �r�t

ˇ̌
KL;m\B.i r/

ˇ̌
:

By construction of m0 , for all j > 1, we have mj � � 2L� r > 0, thus

�j�
ˇ̌
KL;m\B.i r C r C 2L�mj �/

ˇ̌
6
�
�

�m

�j�

�2.rCL/
ˇ̌
KL;m\B.i r/

ˇ̌
6
�
�

�m

�j�

�2.rCL/
ˇ̌
KL;m\B.i r/

ˇ̌
:

Note that m0 has been chosen in such a way that ���m < 1. Hence by summing these
inequalities, we obtainˇ̌

KL;m\B..i C 1/r/
ˇ̌
>
�
�1�

r
� �2�

4.LCr/
X
j>1

�
�

�m

�j� � ˇ̌
KL;m\B.i r/

ˇ̌
> fL;m.�; r/

ˇ̌
KL;m\B.i r/

ˇ̌
:

However, by construction, fL;m.�; r/> �r . Consequently, .HiC1/ holds. A second
induction shows that for all i 2N ,

ˇ̌
KL;m\B.i r/

ˇ̌
> �ir . Therefore the growth rate

of KL;m , and thus the one of GL;m , is at least �D � .1� a=m/.

5 Growth of periodic quotients

In the introduction we pointed out the main fact used by S I Adian to prove that free
Burnside groups of large odd exponents have exponential growth: if two distinct
elements of Fk can be represented by reduced words that do not contain an 8 th power,
then they induce distinct elements in the Burnside group. Therefore one can estimate the
growth rate of the free Burnside group by computing the one of the set of 8–aperiodic
words. Actually, a stronger statement is true. It will allow us to estimate more accurately
the growth rate of Bk.n/.

Theorem 5.1 (Coulon [8, Theorem 4.5]) Let k > 2. Let A be a free generating
set of Fk . There exist numbers n0 and � such that for every odd exponent n > n0 ,
the following holds. Let w1 and w2 be reduced words over A[A�1 . If they do not
contain an bn=2� �c–power, then they represent distinct elements of Bk.n/.

Remark A similar statement can be found in Adian [1, Chapter IV, Proposition 2.16]
or Ol’shanskiı̆ [19, Lemma 5.5] respectively for n=150– and n=3–aperiodic elements.
Their method could also be adapted to get the previous theorem.

Algebraic & Geometric Topology, Volume 13 (2013)



Growth of periodic quotients of hyperbolic groups 3131

Theorem 5.2 Let k > 2. Let A be a free generating set of Fk . There exists a positive
number � such that for sufficiently large odd exponents n, the exponential growth rate
of Bk.n/ with respect to the image of A is at least

.2k � 1/

�
1�

�

.2k � 1/n=2

�
:

Proof The constants n0 and � are the ones given by Theorem 5.1. We fix a > 2k .
According to Proposition 4.2, there exists an integer m0 such that for every m>m0 ,
the exponential growth rate of the set of m–aperiodic words is at least

.2k � 1/

�
1�

a

.2k � 1/m

�
:

Let n > max fn0; 2m0C 2�C 2g be an odd integer. By Theorem 5.1, the natural
map Fk ! Bk.n/ restricted to the set of bn=2� �c–aperiodic elements is one-to-one.
Therefore the growth rate of Bk.n/ is larger than or equal to the one of this set. In
particular, it is at least

.2k � 1/

 
1�

a.2k � 1/�C1

.2k � 1/n=2

!
:

In [20], A Y Ol’shanskiı̆ solved the Burnside problem for hyperbolic groups.

Theorem 5.3 (Ol’shanskiı̆ [20]) Let G be a non-elementary torsion-free hyperbolic
group. There exists an integer n0 such that for all odd exponents n> n0 , the quotient
G=Gn is infinite.

The proof relies on the following fact. If n is large enough, then the restriction of the
canonical projection G�G=Gn to a set of sufficiently aperiodic elements (which is
infinite) is injective. More precisely, he showed the following statement.

Theorem 5.4 (Ol’shanskiı̆ [20, Proof of the main theorem, page 540]) Let G be
a non-elementary torsion-free hyperbolic group. There exist constants L, � and n0

with the following property. Let n > n0 be an odd integer. Then the restriction of
G�G=Gn to the set of .L; b�nc/–aperiodic elements is one-to-one.

Remarks The definition of aperiodic elements used by A Y Ol’shanskiı̆ is slightly
different from ours (see Section 4). He says that an element g 2G contains an .L;m/–
power if there is .l; v/2G�C such that both l and lvn belong to the L–neighborhood
of some geodesic between 1 and g (not necessarily �g ). However, in a hyperbolic
space, two geodesics joining the same extremities are 2ı–close one from the other.
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Hence an .L;m/–aperiodic element in the sense of Ol’shanskiı̆ is .L;m/–aperiodic
in our sense. Conversely, an .LC 2ı;m/–aperiodic element in our sense is .L;m/–
aperiodic in the sense of Ol’shanskiı̆. Therefore the statement of Theorem 5.4 with
one or the other definition are equivalent. Another approach based on the work of
T Delzant and M Gromov [10] can be found in Coulon [8].

Theorem 5.5 Let G be a non-elementary torsion-free hyperbolic group and � its
exponential growth rate with respect to a finite generating set A. There exists a positive
number � such that for sufficiently large odd exponents n, the exponential growth rate
of G=Gn with respect to the image of A is at least � .1� �=n/.

Proof Let the parameters L, � and n0 be given by Theorem 5.4. The constants a

and m0 are then provided by Proposition 4.3. Let n>max
˚
��1.m0C 1/; n0; 2�

�1
	

be an odd integer. We put mD b�nc. According to Proposition 4.3, the exponential
growth rate of GL;m is at least � .1� a=m/ > � .1� 2a=�n/. By Theorem 5.4, the
restriction of G�G=Gn to GL;m is one-to-one. On the other hand, for every g 2G ,
the length of g with respect to A is not smaller than the length of its image in G=Gn

with respect to the image of A. Therefore for all r > 0, the ball of radius r in G=Gn

contains at least
ˇ̌
GL;m\B.r/

ˇ̌
elements. Thus the exponential growth rate of G=Gn

is not less than the one of GL;m . In particular, it is at least � .1� 2a=�n/.
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