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Length functions
of Hitchin representations

GUILLAUME DREYER

Given a Hitchin representation �W �1.S/! PSLn.R/ , we construct n continuous
functions `�i W CHöl.S/!R defined on the space of Hölder geodesic currents CHöl.S/

such that, for a closed, oriented curve  in S , the i th eigenvalue of the matrix
�. /2 PSLn.R/ is of the form ˙exp `�i . /: such functions generalize to higher rank
Thurston’s length function of Fuchsian representations. Identities and differentiability
properties of these lengths `�i , as well as applications to eigenvalue estimates, are
also considered.

57M50; 57M05, 37F30, 22E40

Let S be a closed, connected, oriented surface S of genus g � 2. This article is
concerned with homomorphisms �W �1.S/! PSLn.R/ from the fundamental group
�1.S/ to the Lie group PSLn.R/ (equal to the special linear group SLn.R/ if n is
odd, and to SLn.R/=f˙Idg if n is even), and more precisely with elements lying in
Hitchin components Hitn.S/ of the PSLn.R/–character variety

RPSLn.R/.S/D Hom
�
�1.S/;PSLn.R/

�
==PSLn.R/

identified by N Hitchin [18]. Here, the “double bar” sign indicates that the precise
definition of the character variety RPSLn.R/.S/ requires that the quotient be taken in the
sense of geometric invariant theory (Mumford, Fogarty and Kirwan [21]); however, for
the component Hitn.S/ that we are interested in, this quotient construction coincides
with the usual topological quotient.

A Hitchin component Hitn.S/ is defined as a component of RPSLn.R/.S/ that contains
some n–Fuchsian representation, namely some homomorphism �W �1.S/! PSLn.R/
of the form

�D � ı r;

where: r W �1.S/! PSL2.R/ is a discrete, injective homomorphism, and

�W PSL2.R/! PSLn.R/

is the preferred homomorphism defined by the n–dimensional, irreducible represen-
tation of SL2.R/ into SLn.R/. These components Hitn.S/ were singled out by
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N Hitchin [18] who first suggested the interest in studying their elements. We shall
refer to elements of Hitn.S/ as Hitchin representations.

Motivations for studying Hitchin representations find their origin in the case where
nD 2. Hitchin components Hit2.S/ then coincide with Teichmüller components T .S/
of RPSL2.R/.S/, whose elements, known as Fuchsian representations, are of particular
interest as they correspond to conjugacy classes of holonomies of marked hyperbolic
structures on the surface S . In addition, every element of T .S/ is a discrete, injective
homomorphism, and reversely, any such homomorphism lies in some component T .S/
(Weil [26] and Margulis [20]). It is a result due to W Goldman [13] that RPSL2.R/.S/

possesses exactly two Teichmüller components T .S/; each of these components T .S/
is known to be homeomorphic to R6g�6 (Thurston [25] and Fathi, Laudenbach and
Poénaru [10]).

In his foundational paper, Hitchin [18] proved that, in the case where n � 3, there
are one or two Hitchin components Hitn.S/ in RPSLn.R/.S/ according to whether
n is odd or even, and a beautiful result of Hitchin is that each of these components
Hitn.S/ is homeomorphic to R.2g�2/.n2�1/ . Hitchin’s proof is based the theory of
Higgs bundles, and as observed by Hitchin, this geometric analysis framework offers no
information about the geometry of the elements of Hitn.S/. The first geometric result
about Hitchin representations is to due to S Choi and W Goldman [8] who showed that,
for nD 3, the Hitchin component Hit3.S/ parametrizes the deformation space of real
convex projective structures on the surface S . As a consequence of their work, they
showed the faithfulness and the discreetness for the elements of Hit3.S/.

About a decade ago, F Labourie [19] (see also Guichard [16] and Guichard and
Wienhard [17]) proved the following result.

Theorem 1 (Labourie [19]) Let �W �1.S/! PSLn.R/ be a Hitchin representation.
Then � is discrete and injective. In addition, the image �. / 2 PSLn.R/ of any
nontrivial  2�1.S/ is diagonalizable, its eigenvalues are all real with distinct absolute
values.

The above statement comes as a consequence (among others) of a remarkable Anosov
property for Hitchin representations discovered by Labourie [19]. More precisely, let
�W �1.S/! PSLn.R/ be a Hitchin representation that lifts to �W �1.S/! SLn.R/;
consider the flat, twisted Rn –bundle T 1S ��RnD T 1S �Rn=�1.S/! T 1S , where
T 1S is the unit tangent bundle of S ; let .Gt /t2R on T 1S ��Rn be the flow that lifts
the geodesic flow .gt /t2R on T 1S via the flat connection. The total space T 1S��Rn

splits as a sum of line subbundles V1 ˚ � � � ˚ Vn with the property that each line
subbundle Vi! T 1S is invariant under the action of the flow .Gt /t2R . In addition,
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the action of the flow .Gt /t2R is Anosov in the following sense: pick a Riemannian
metric k k on T 1S �� Rn! T 1S ; there exist some constants A� 0 and a> 0 such
that, for every u 2 T 1S , for every unit vectors Xi.u/ 2 Vi.u/ and Xj .u/ 2 Vj .u/, for
every t > 0,

Ae�at
�

8̂̂̂̂
<̂̂
ˆ̂̂̂:

GtXj .u/


gt .u/GtXi.u/


gt .u/

if i > j IG�tXj .u/


g�t .u/G�tXi.u/


g�t .u/

if i < j:

Results

Given a Hitchin representation �W �1.S/! PSLn.R/, our main result uses Labourie’s
dynamical framework to define a family of n length functions `�i associated to � ;
these length functions extend to Hitchin representations Thurston’s length function of
Fuchsian representations in the Teichmüller space T .S/.

Thurston [25] considers the space of measured laminations ML.S/ of S , that is a
certain completion of the set of all isotopy classes of simple, closed, unoriented curves
in S . He then associates to a Fuchsian representation r W �1.S/! PSL2.R/ in T .S/
a continuous, homogeneous function `r WML.S/! R such that, for every simple,
closed, unoriented curve  � S ,

`r . /D 1
2

log
ˇ̌
�r

1. /
ˇ̌
;

where j�r
1
. /j is the largest absolute value of the eigenvalues of r. / 2 PSL2.R/.

Geometrically, r W �1.S/!PSL2.R/ is the holonomy of a marked hyperbolic structure
m on the surface S ; the number `r . / is then the length of the unique, simple, closed,
unoriented m–geodesic in S that is freely homotopic to the simple, closed, unoriented
curve  . This length function `r WML.S/!R has proved to be a fundamental tool
in the study of 2 and 3–dimensional hyperbolic manifolds.

Thurston’s length function `r was later extended by F Bonahon [1; 2] to the larger
space of measure geodesic currents C.S/ of S , which is a certain completion of the
set of all isotopy classes of closed, oriented curves in S . Later, Bonahon [3] also
developed a differential calculus for measured laminations, that is based on Hölder
geodesic currents. In particular, he obtains differentiability properties for Thurston’s
original function `r WML.S/! R by continuously extending `r WML.S/! R to
the space of Hölder geodesic currents CHRol.S/ of S .

We generalize these constructions in the case where �W �1.S/! PSLn.R/ is a Hitchin
representation. Let  2 �1.S/ be nontrivial element; by Theorem 1, the eigenvalues
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�
�
i . / of the matrix �. / 2 PSLn.R/ can be indexed so that

j�
�
1
. /j> j�

�
2
. /j> � � �> j��n. /j:

Theorem 2 (Length functions) Let �W �1.S/! PSLn.R/ be a Hitchin representa-
tion, and let CHRol.S/ be the vector space of Hölder geodesic currents. For every i D 1,
2; : : : ; n, there exists a continuous, linear function

`
�
i W C

HRol.S/!R

such that, for every closed, oriented curve  �S , `�i . /D log j��i . /j. This continuous
extension is unique on the space of measure geodesic currents C.S/� CHRol.S/.

In addition, let RW T 1S ! T 1S be the orientation reversing involution, namely R is
the map defined by R.u/D�u, where u 2 T 1

x S . For every Hölder geodesic current
˛ 2 CHRol.S/, R�˛ is the pullback current of ˛ under the involution R.

Theorem 3 (Identities) For every Hölder geodesic current ˛ 2 CHRol.S/:

(i)
nX

iD1

`
�
i .˛/D 0

(ii) `
�
i .R

�˛/D�`
�
n�iC1

.˛/

The above two identities are suggested by the case where ˛ 2 CHRol.S/ is a closed,
oriented curve  2 �1.S/. Indeed, since �. / 2 PSLn.R/,

Pn
iD1 log j��i . /j D 0.

Moreover, as a consequence of our indexing conventions, ��i .
�1/D 1=�

�
n�iC1

. /,
and thus log j��i .

�1/j D � log j��
n�iC1

. /j.

The continuity property of Theorem 2 is the fundamental feature of the length functions
`
�
i W C

HRol.S/! R. As an application of this continuity, we prove the two following
results; the proofs use the full force of Hölder geodesic currents.

Theorem 4 (Tangentiability) The functions `�i W C
HRol.S/! R restrict to functions

`
�
i jML.S/WML.S/ ! R that are tangentiable, namely, if .˛t /t�0 � ML.S/

is a smooth 1–parameter family of measured laminations with tangent vector
P̨0 D

d
dtC

˛t jtD0 at ˛0 , then

d

dtC
`
�
i .˛t /

ˇ̌
tD0
D `

�
i . P̨0/:

Finally, we prove the following asymptotic estimate for the eigenvalues of a Hitchin
representation.
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Theorem 5 (Eigenvalue estimate) Let �W �1.S/! PSLn.R/ be a Hitchin represen-
tation, and let ˛ , ˇ 2 �1.S/. For every i D 1; : : : ; n, the ratio

�
�
i .˛

mˇ/

�
�
i .˛/

m

has a finite limit as m tends to 1. This limit is equal to e`
�

i
. P̨ / for a certain Hölder

geodesic current P̨ 2 CHRol.S/.

Remarks

Dreyer [9] extends to Hitchin representations Thurston’s cataclysm deformations,
which themselves generalize (left) earthquake deformations of hyperbolic structures on
surfaces (Thurston [24; 25]). Given a Hitchin representation �W �1.S/! PSLn.R/,
we study various geometric aspects of these cataclysms, and prove a variational formula
for the associated length functions `�i .

Another motivation for introducing length functions associated to a Hitchin representa-
tion is part of the development of a new system of coordinates on Hitchin components
Hitn.S/. In [18], Hitchin showed that Hitn.S/ is diffeomorphic to R.2g�2/.n2�1/ ; his
parametrization is based on Higgs bundle techniques, and in particular requires the
initial choice of a complex structure on S . In joint work with F Bonahon [5; 6], we
construct a geometric, real analytic parametrization of Hitchin components Hitn.Rn/.
One feature of this parametrization is that it is based on topological data only. In essence,
our coordinates are an extension of Thurston’s shearing coordinates (Thurston [24]
and Bonahon [1]) on the Teichmüller space T .S/, combined with Fock–Goncharov
coordinates [11] on moduli spaces of positive, framed, local systems on a punctured
surface. In particular, the length functions `�i play a crucial role in analyzing the image
of this parametrization.
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1 The eigenbundles of a Hitchin representation

Our construction makes great use of the machinery developed in Labourie [19], we
thus begin with reviewing some of Labourie’s framework. It is convenient to endow
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the surface S with an arbitrary hyperbolic metric m0 . It induces a m0 –geodesic flow
.gt /t2R on the unit tangent bundle T 1S of S ; we refer to the associated orbit space
as the m0 –geodesic foliation F of T 1S .

Let �W �1.S/ ! PSLn.R/ be a Hitchin representation. Since � lies in the same
component as some n–Fuchsian representation, it lifts to a representation valued in
SLn.R/, that we still denote by �W �1.S/! SLn.R/; see Goldman [13] for details.
Consider the flat twisted Rn –bundle

T 1S �� Rn
D T 1eS �Rn=�1.S/;

where eS is the universal cover of S , and where the action of �1.S/ is defined by the
property that, for every  2 �1.S/, for every .u;X / 2 T 1eS �Rn ,

 .u;X /D .u; �. /X /:

Let .Gt /t2R be the flow on the total space T 1S �� Rn that lifts the geodesic flow
.gt /t2R on T 1S via the flat connection; here, the “flatness” condition means that, if
one looks at the situation in the universal cover, the lift .eG t /t2R acts on T 1eS �Rn

as the geodesic flow .zg/t2R on the first factor, and trivially on the second factor. We
shall refer to T 1S �� Rn ! T 1S as the associated, flat Rn –bundle of the Hitchin
representation �W �1.S/! PSLn.R/.

For every nontrivial  2 �1.S/, index the eigenvalues ��i . / of �. / 2 PSLn.R/ as
in Theorem 2 so that

j�
�
1
. /j> j�

�
2
. /j> � � �> j��n. /j:

The key tool underlying Labourie’s analysis is the following decomposition.

Theorem 6 (Labourie [19] eigenbundle decomposition) The associated, flat Rn –
bundle pW T 1S ��Rn! T 1S splits as a sum of n line subbundles V1˚� � �˚Vn that
satisfy the following properties:

(i) Each line subbundle Vi! T 1S is invariant under the flow .Gt /t2R .

(ii) If u 2 T 1S is fixed by gt0
W T 1S ! T 1S for some t0 > 0, and if  2 �1.S/

represents the corresponding closed orbit of the geodesic flow, then the lift Gt0

acts on the fibre p�1.u/D V1.u/˚ � � �˚Vn.u/ by multiplication by 1=�
�
i . /

on the line Vi.u/.

(iii) Each line Vi.u/ depends smoothly on u 2 T 1S along the leaves of the geodesic
foliation F , and is transversally Hölder continuous.
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The terminology eigenbundle decomposition is motivated by the property (ii) that we
can make more precise as follows. For every i D 1; : : : ; n, let eV i ! T 1eS that lifts
the line subbundle Vi! T 1S . Let .egt /t2R be the lift on the universal cover T 1eS of
the geodesic flow .gt /t2R on T 1S . Let u 2 T 1S that is fixed by gt0

W T 1S ! T 1S

for some t0 > 0. Let zu 2 T 1eS that lifts u 2 T 1S , and let  2 �1.S/ be the (unique)
nontrivial element such that zgt0

.zu/ D  zu. Because of the flat connection, and the
invariance of the line subbundle Vi ! T 1S under the flow .Gt /t2R , we have thateV i.zgt0

.zu//D eV i.zu/ as lines of Rn . Also, eV i.zgt0
.zu//D eV i. zu/D �. /eV i.zu/ (it is

the equivariance property for the lift eV i!T 1eS ). Hence eV i.zu/�Rn is an eigenspace
for �. / 2 PSLn.R/, and �. / is diagonalizable. Finally, note that, for every X 2Rn ,
.zgt0

.zu/; eGt0
X / D . zu;X / identifies in the quotient with .zu; �. /�1X /. Therefore,

the lift Gt0
acts on the line Vi.u/ by multiplication by 1=�

�
i . /.

As a consequence of the above discussion, we make the following observation, that we
state as a lemma for future reference.

Lemma 7 Let eV i! T 1eS and eV n�iC1! T 1eS that lift the line subbundles Vi!

T 1S and Vn�iC1! T 1S , respectively. For every u 2 T 1S that lifts to zu 2 T 1eS , the
fibres eV i.zu/ and eV n�iC1.�zu/ coincide as lines of Rn .

Proof When u lies in a closed leaf of the geodesic foliation F , the assertion immedi-
ately comes as a consequence of the property (ii) of Theorem 6, and from our indexing
conventions for the eigenvalues of �. / 2 PSLn.R/ when  2 �1.S/. The general
case then follows from the latter by density of closed leaves in T 1S .

The existence of an eigenbundle decomposition for the associated, flat R–bundle
T 1S��Rn!T 1S of a Hitchin representation �W �1.S/!PSLn.R/ as in Theorem 6
is a consequence of Labourie’s Anosov Property for Hitchin representations; see
Labourie [19], Guichard [16], Guichard and Wienhard [17] and Dreyer [9] for additional
details.

2 The length functions of a Hitchin representation

2.1 Hölder geodesic currents

Before tackling the construction of the length functions `�i W C
HRol.S/!R, we need to

remind the reader of the definition of Hölder geodesic currents; see Bonahon [2; 3; 4]
for details.

Let .X; d/ be metric space. A Hölder distribution ˛ is a continuous, linear functional
on the space of compactly supported, Hölder continuous functions �W X ! R. A

Algebraic & Geometric Topology, Volume 13 (2013)



3160 Guillaume Dreyer

special case of Hölder distributions are positive Radon measures, which are linear
functionals on the space of compactly supported, continuous functions, and associate
to a nonnegative function a nonnegative number.

The unit tangent bundle T 1S is a 3–dimensional manifold, and the orbits of the
m0 –geodesic flow .gt /t2R define a 1–dimensional foliation F of T 1S called its
m0 –geodesic foliation. It turns out that, whereas the geodesic flow depends of the
auxiliary metric m0 that we have chosen on S , the geodesic foliation does not. Indeed,
if another negatively curved metric m0 defines a geodesic foliation F 0 , there is a
homeomorphism of T 1S that sends F to F 0 . In addition, this homeomorphism can
be chosen to be isotopic to the identity, and Hölder bicontinuous; see Bridson and
Haefliger [7], Ghys [12] and Gromov [14; 15] for details.

A Hölder geodesic current ˛ on S is a transverse Hölder distribution for the geodesic
foliation F , namely ˛ assigns a Hölder distribution ˛D on every surface D � T 1S

transverse to F . This assignment is invariant under restriction: for any subsurface
D0 � D , ˛D jD0 D ˛D0 , and is homotopy invariant: for any (Hölder) homotopy
hW D!D00 from D to another transverse surface D00 that preserves F , ˛D D h�˛D00 ;
h�˛D00 is the pullback of ˛D00 by h.

When the transverse Hölder distribution ˛ is actually a measure ˛D for every surface
D � T 1S transverse to F , the corresponding Hölder geodesic current is a measure
geodesic current of S . Let CHRol.S/ and C.S/ be respectively the space of Hölder
geodesic currents, and the space of measure geodesic currents. Note that CHRol.S/ is a
(real) vector space, and C.S/ is stable under positive scalar multiplication.

The space of Hölder geodesic currents CHRol.S/ is endowed with the weak-� topology,
namely the weakest topology for which, for every surface D � T 1S transverse to F ,
the linear function 'D 7! ˛D.'D/ is continuous, where 'D ranges over all compactly
supported, Hölder continuous functions on the surface D .

A typical example of measure geodesic current is provided by the free homotopy class
of a closed, oriented curve  � S . Let k � 0 be the largest integer such that  is
homotopic to a k –multiple  k

1
of a closed curve 1 . The homotopically primitive curve

1 is freely homotopic to a unique closed, oriented geodesic, which itself corresponds
to a closed leaf  �

1
of the geodesic foliation F . In particular, we associate to 1 the

transverse 1–weighted Dirac measure for F defined by the closed orbit  �
1

: for every
surface D transverse to F , the measure 1D is the counting measure at the intersection
points D\ �

1
. As a result, we associate to  D  k

1
k –times the transverse 1–weighted

Dirac measure associated to 1 . Hence the following embedding

fclosed, oriented curves in Sg=homotopy � C.S/� CHRol.S/:
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In addition, the set of positive real, linear combinations of multiples of homotopy
classes of closed, oriented curves are dense in C.S/.

Finally, note that to a closed, unoriented curve  in S corresponds two closed leaves
 � and .R. //� of the geodesic foliation F , and thus two measure geodesic currents 
and R� 2 C.S/ (as in Theorem 3, RW T 1S! T 1S denotes the orientation reversing
involution, and R�W CHRol.S/! CHRol.S/ is the pullback involution induced by R).
Therefore, the set of closed, unoriented curves in S can be formally embedded in
CHRol.S/ as follows: for every closed, unoriented curve  � S ,

(1)  D 1
2
 C 1

2
R� 2 CHRol.S/:

In particular, the space of measured laminations ML.S/, that is defined as the closure
in C.S/ of the set of positive real multiples of homotopy classes of simple, closed,
unoriented curves in S (Bonahon [1; 2]), corresponds to the closure in C.S/ of the set
of positive real, linear combinations of elements of the above form (1).

2.2 Lengths of closed, oriented curves

Let �W �1.S/! PSLn.R/ be a Hitchin representation. For a nontrivial  2 �1.S/,
Theorem 1 shows that the eigenvalues ��i . / of the matrix �. / 2 PSLn.R/ are all
real, and can be indexed so thatˇ̌

�
�
1
. /

ˇ̌
>
ˇ̌
�
�
2
. /

ˇ̌
> � � �>

ˇ̌
��n. /

ˇ̌
:

Set `�i . / D log j��i . /j. Note that `�i . / depends only on the conjugacy class of
 2 �1.S/, and thus depends only on the free homotopy class of the closed, oriented
curve  � S . We have n maps

`
�
i W fclosed, oriented curves in Sg=homotopy!R:

2.3 1–forms along the geodesic foliation

We now construct, for every i D 1; : : : ; n, a 1–form !i along the leaves of the geodesic
foliation F of T 1S .

Given a Hitchin representation �W �1.S/! PSLn.R/, consider its associated flat Rn –
bundle T 1S ��Rn! T 1S as in Section 1. Let .Gt /t2R the flow on T 1S ��Rn that
lifts the geodesic flow on T 1S via the flat connection. Let V1;V2; : : : ;Vn! T 1S be
the line subbundles of the eigenbundle decomposition of Theorem 6; a fundamental
property for each of the line subbundles Vi ! T 1S is to be invariant under the action
of the flow .Gt /t2R . Finally, pick a Riemannian metric k k on T 1S �� Rn! T 1S .
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Let L be a leaf of the geodesic foliation F . Pick a point u0 2 L � T 1S and a
vector Xi.u0/ in the fibre Vi.u0/ of the line subbundle Vi ! T 1S . For every t on a
neighborhood of 0 in R, set

fXi .u0/

�
gt .u0/

�
D log kGtXi.u0/kgt .u0/

:

The above expression defines a function fXi .u0/W I !R, where I is a neighborhood
of u0 in the leaf L. In addition, the fibre Vi.u/ depending smoothly on the point
u 2 T 1S along the leaves of the geodesic foliation F , the function fXi .u0/ is smooth
along the leaf L. For every u on the same neighborhood I of u0 in the leaf L, set

!i.u/D�dufXi .u0/;

where the differential dufXi .u0/ is taken along the leaf L.

Lemma 8 Defined as above, !i is a well-defined 1–form along the leaf L� F .

Proof We must verify that !i does not depend on the choices of the point u0 2 I ,
and of the vector Xi.u0/ 2 Vi.u0/.

Since the fibre Vi.u0/ is a line, any other choice X 0i .u0/ for Xi.u0/ is of the form
X 0i .u0/D cXi.u0/ for some c 2R. Then

fX 0
i
.u0/
D fXi .u0/C log jcj

and dfX 0
i
.u0/
D dfXi .u0/ . Hence !i is independent of the choice of Xi.u0/ 2 Vi.u0/.

Let u0
0
D gt0

.u0/ 2 I be another point, and let X 0i .u
0
0
/DGt0

Xi.u0/ 2 Vi.u
0
0
/. Then

the functions
fu0

0
;X 0

i
.u0

0
/ D fu0;Xi .u0/

coincide on I since GtX
0
i .u
0
0
/D GtCt0

Xi.u0/, and thus have the same differential
along the leaf L.

It follows from Lemma 8 that !i is a well-defined 1–form along the leaves of F .
Moreover, let us also make the following observation regarding the global regularity of
the 1–form !i .

Lemma 9 The 1–form !i is smooth along the leaves of the geodesic foliation F , and
is transversally Hölder continuous.

Proof This is an immediate consequence of the regularity property (iii) of Theorem 6.
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2.4 Lengths of Hölder geodesic currents

We now make use of the 1–forms !i to define the lengths `�i .˛/ of a Hölder geodesic
current ˛ 2 CHRol.S/.

Let fUj gjD1;:::;m be a finite family of flow boxes fUj gjD1;:::;m that covers the compact,
foliated 3–manifold T 1S . By flow box, we mean an open subset Uj � T 1S such
that there exists a diffeomorphism Uj ŠDj � .0; 1/, where Dj is an open subset of
R2 , and where, for every x 2Dj , the interval fxg � .0; 1/ corresponds to an arc in a
leaf of F . Let f�j gjD1;:::;m be a partition of unity subordinate to the open covering
fUj gjD1;:::;m . By integrating the 1–form �j!i along the arcs of leaves in Uj , we define
a function �j W Dj !R by

�j .x/D

Z
fxg�.0;1/

�j!i :

Note that, by Lemma 9, the above function �j W Dj ! R is Hölder continuous with
compact support. The Hölder geodesic current ˛ induces a Hölder distribution ˛Dj on
Dj , that we shall still denote by ˛ to alleviate notations. Let us denote the evaluation
of ˛ at the function �j by

˛.�j /D

Z
Uj
�j!i d˛;

where the integral notation is suggested by the case where ˛ is a transverse measure
for F . Finally, set

`
�
i .˛/D

Z
T 1S

!i d˛ D

mX
jD1

Z
Uj
�j!i d˛:

By the usual linearity arguments, `�i .˛/ is independent of the choice of the open
covering fUj gjD1;:::;m and of the partition of unity f�j gjD1;:::;m .

Theorem 10 Defined as above, for every i D 1; : : : ; n,

`
�
i W C

HRol.S/!R

is a continuous, linear function on the vector space of Hölder geodesic currents CHRol.S/

that extends the length `�i of closed, oriented curves of Section 2.2. This continuous
extension is unique on the space of measure geodesic currents C.S/ � CHRol.S/. In
addition, the length `�i does not depend on the choice of the Riemannian metric k k
on the associated, flat Rn –bundle T 1S �� Rn! T 1S that defines the 1–form !i of
Section 2.3.
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Proof of Theorem 10

We organize the proof into several steps.

Lemma 11 For every closed, oriented curve  � S ,

`
�
i . /D log

ˇ̌
�
�
i . /

ˇ̌
;

where `�i . / is the image of the Hölder geodesic current  2CHRol.S/ under the function
`
�
i W C

HRol.S/!R, and where ��i . / is the i th eigenvalue of �. /.

Proof We need to return to the definition of the Hölder geodesic current  2 CHRol.S/.

By homogeneity of the function `�i , we can focus attention to the case where the closed,
oriented curve  � S is homotopically primitive, namely  is not homotopic to a
multiple  k

1
of a closed, oriented curve 1 with k � 2. Thus  determines a closed,

oriented m0 –geodesic of S , and a closed leaf  � of the geodesic foliation F . Identify
the closed, oriented curve  � S with the Hölder geodesic current  2 CHRol.S/, which
is the transverse 1–weighted Dirac measure defined by the associated closed leaf  �

(see Section 2.1).

By definition of the function `�i W C
HRol.S/!R,

`
�
i . /D

Z
T 1S

!i d D

Z
�
!i :

To compute this integral, pick a point u0 2 
� � T 1S , and a nonzero vector Xi.u0/ 2

Vi.u0/ in the fibre of the line subbundle Vi ! T 1S . By definition of the 1–form !i

(see Section 2.3),Z
�
!i D

Z t

0

d

ds

�
� log kGsXi.u0/kgs.u0/

�
ds

D log kG0Xi.u0/ku0
� log kGtXi.u0/kgt .u0/;

where t is the necessary time to go around the closed leaf  ��F by the geodesic flow
.gt /t2R , namely t is the smallest t > 0 such that gt .u0/D u0 . By the property (ii) of
Theorem 6, GtXi.u0/ D 1=�

�
i . /Xi.u0/, and G0Xi.u0/ D Xi.u0/ since .Gt /t2R

is a flow, which proves the assertion.

Lemma 12 The function `�i W C
HRol.S/! R is linear and continuous. Its restriction

`
�
i jC.S/W C.S/!R is positively homogeneous, and is the unique, continuous extension

to the space of measure geodesic currents C.S/� CHRol.S/ for the length `�i of closed,
oriented curves of Section 2.2.
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Proof By construction, for every Hölder geodesic current ˛ 2 CHRol.S/,

`
�
i .˛/D

mX
jD1

˛.�j /:

The linearity and homogeneity are immediate. The continuity follows from the definition
of the weak-� topology of CHRol.S/. Finally, since the set of positive real, linear
combinations of multiples of closed, oriented curves are dense in the space of measure
geodesic currents C.S/, the restriction of this continuous extension to C.S/ is unique.

Lemma 13 The length `�i .˛/ is independent of the choice of the Riemannian metric
k k on the associated, flat Rn –bundle T 1S �� Rn! T 1S .

Proof Let k k0 be another Riemannian metric on the associated, flat Rn –bundle
T 1S �� Rn ; it induces another 1–form !0i along the leaves of the geodesic foliation
F . Since the line Vi.u/ depends smoothly on u 2 T 1S along the leaves of F , there
exists a positive function f W T 1S !R, smooth along of the leaves of F , such that,
for every Xi.u/ 2 Vi.u/, kXi.u/kuD f .u/ kXi.u/k

0
u . As a result, !0i D!i�d logf ,

which implies that Z
T 1S

!
0

i d˛ D

Z
T 1S

!i d˛�

Z
T 1S

d logf d˛:

Since
Pm

jD1 �j D 1,

Z
T 1S

d logf d˛ D

mX
jD1

Z
Uj

d.�j logf /d˛:

For our notation conventions, for every j D 1; : : : ;m,Z
Uj

d.�j logf /d˛ D ˛Dj

Z
fxg�.0;1/

d.�j logf /;

where Uj Š Dj � .0; 1/. By Stokes’s,
R
fxg�.0;1/ d.�j logf / D 0, which proves the

assertion.

This achieves the proof of Theorem 10.
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3 Properties of the length functions

3.1 Symmetries of the lengths

We now prove the two properties of Theorem 3.

Proposition 14 For every Hölder geodesic current ˛ 2 CHRol.S/,

nX
iD1

`
�
i .˛/D 0:

Proof Endow each fibre fzug �Rn of the trivial bundle T 1eS �Rn! T 1eS with the
canonical volume form � D dx1 ^ dx2 ^ � � � ^ dxn of Rn . Recall that �1.S/ acts
on T 1eS �Rn via the diagonal action. Since each �. / is in SLn.R/, the form � is
invariant under the action of �1.S/. In addition, because of the flat connection, the lift
.eG t /t2R on T 1eS �Rn of the geodesic flow .zgt /t2R on T 1eS acts trivially on the
factor Rn of T 1eS �Rn , and consequently preserves � . As a result, � descends to a
well-defined Gt –invariant volume form on the fibres of the bundle T 1S �� Rn .

Recall that the length functions `�i W C
HRol.S/!R are independent of the choice of the

Riemannian metric k k on the bundle T 1S �� Rn . Without loss of generality, we can
arrange that the line subbundles Vi are orthogonal for k k, and that the volume form
defined by k k coincides with the volume form � .

By definition of the 1–form !i , for every u 2 T 1S , for every vector Xi.u/ 2 Vi.u/,

nX
iD1

!i.u/D

nX
iD1

d

dt

�
� log kGtXi.u/kgt .u/

�
dt
ˇ̌̌
tD0

D�
d

dt
log
� nY

iD1

kGtXi.u/kgt .u/

�
dt
ˇ̌̌
tD0

D�
d

dt
log
�
�gt .u/

�
GtX1.u/;GtX2.u/; : : : ;GtXn.u/

��
dt
ˇ̌̌
tD0

D�
d

dt
log
�
�u

�
X1.u/;X2.u/; : : : ;Xn.u/

��
dt
ˇ̌̌
tD0
D 0:

By integrating, it follows that, for every Hölder geodesic current ˛ 2 CHRol.S/,

nX
iD1

`
�
i .˛/D 0:
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The unit tangent space T 1S comes endowed with a natural, fibrewise involution
RW T 1S ! T 1S , which to u 2 T 1

x S associates R.u/ D �u: it is the orientation
reversing involution. In particular, R respects the geodesic foliation F , and thus
induces an involution R�W CHRol.S/! CHRol.S/ defined as follows: for every Hölder
geodesic current ˛ 2 CHRol.S/, R�˛ is the pullback current of ˛ under the involution
R, namely, if 'W D ! R is Hölder continuous with compact support defined on a
transverse surface D � T 1S , then R�˛.'/ D ˛.' ıR/. Note that the restriction
to each oriented leaf of the geodesic foliation F of the involution R is orientation
reversing.

Proposition 15 For every Hölder geodesic current ˛ 2 CHRol.S/,

`
�
i .R

�˛/D�`
�
n�iC1

.˛/:

Proof The involution R acts freely on the unit tangent bundle T 1S with quotientbT 1S D T 1S=R. Thus, it also acts freely on the total space T 1S �� Rn with quotient
a bundle bT 1S �� Rn . Consider a Riemannian metric k k on T 1S �� Rn obtained by
lifting a Riemannian metric on bT 1S �� Rn . By construction, the Riemannian metric
k k is invariant under the involution R.

On the other hand, let eV i ! T 1eS and eV n�iC1 ! T 1eS that lift the subbundles
Vi! T 1S and Vn�iC1! T 1S , respectively. By Lemma 7, for every zu 2 T 1S , for
every t 2R, the fibres eV i.zgt .R.zu/// and eVn�iC1.zg�t .zu// coincide as lines of Rn .
Therefore, R�!i D !n�iC1 . By integrating, it follows that, for every Hölder geodesic
current ˛ 2 CHRol.S/, `�i .R

�˛/D�`�n�iC1.˛/; note that a minus sign pops up due to
the orientation reversing property of the involution R.

3.2 Differentiability of the lengths

We discuss some regularity properties for the length functions `�i W C
HRol.S/!R.

Thurston [25] considers the space of measured laminations ML.S/ of S , that is a
certain completion of the set of all isotopy classes of simple, closed, unoriented curves
in S . A fundamental feature of the space ML.S/ is that it is a piecewise linear
manifold, which is homeomorphic to R6g�6 . Therefore, every measured lamination
admits tangent vectors, which allows to tackle tangentiality properties for functions that
are defined on ML.S/. We refer the reader to Penner and Harer [22] and Bonahon
[3] for additional details about the PL–structure of ML.S/.

The definition of tangent vectors to ML.S/ is rather abstract and not very convenient
in practice. In [3], Bonahon gives an analytical interpretation for the tangent vectors to
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ML.S/ as certain Hölder geodesic currents. In particular, a consequence of this work
is the following simple criterion.

Recall that the space of measured laminations ML.S/ can be viewed as the closure
in CHRol.S/ of the set of positive real, linear combinations elements of the form

 D 1
2
 C 1

2
R�;

where  2 CHRol.S/ is a closed, oriented curve, and RW T 1S! T 1S is the orientation
reversing involution; see Section 2.1.

Theorem 16 (Bonahon [3]) Let f WML.S/! R be a homogeneous function de-
fined on the space of measured lamination ML.S/. If f admits a continuous, linear
extension f W CHRol.S/! R to the vector space of Hölder geodesic currents CHRol.S/,
then f WML.S/ ! R is tangentiable, namely it is differentiable with respect to
directions of tangent vectors to ML.S/.

For every i D 1, : : : , n, let `�i jML.S/WML.S/! R be the functions obtained by
restricting the length functions `�i W C

HRol.S/!R to the space of measured laminations
ML.S/. The following corollary is a straightforward consequence of the criterion of
Theorem 16.

Corollary 17 The functions `�i jML.S/WML.S/! R are tangentiable, namely, if
.˛t /t�0 �ML.S/ is a smooth 1–parameter family of measured laminations with
tangent vector P̨0 D d

dtC
˛t jtD0 at ˛0 , then

d

dtC
`
�
i .˛t /

ˇ̌
tD0
D `

�
i . P̨0/:

4 An asymptotic estimate for the eigenvalues

As another application of the continuity property of the lengths `�i , we now prove the
following estimate.

Theorem 18 Let �W �1.S/! PSLn.R/ be a Hitchin representation, and let ˛ , ˇ 2
�1.S/. For every i D 1; : : : ; n, the ratio

�
�
i .˛

mˇ/

�
�
i .˛/

m

has a finite limit as m tends to 1. This limit is equal to e`
�

i
. P̨ / , where P̨ is the Hölder

geodesic current P̨ D limm!1 ˛
mˇ�m˛ 2 CHRol.S/.
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Proof Without loss of generality, we can assume that ˛ is primitive in �1.S/. As in
Section 2.1, identify the closed, oriented curves ˛ and ˛mˇ with the corresponding
closed leaves ˛� and ˛mˇ� of the geodesic foliation F of T 1S . Endowing these
closed leaves with the transverse Dirac measures that they define, we can regard ˛ and
˛mˇ as Hölder geodesic currents.

For m large enough, the closed leaf ˛mˇ is made up of one piece of uniformly bounded
length, and of another piece that wraps m times around ˛ . As m tends to 1, this
closed leaf converges to the union of the closed orbit ˛ and of an infinite leaf ˛1ˇ of
the geodesic foliation whose two ends spiral around ˛ ; Figure 1 shows the situation in
the surface S .

ˇ

˛

˛mˇ ˛1ˇ

mD 5 mD1

Figure 1: Projection of the leaf ˛ˇm of the geodesic foliation F in the surface S

More precisely, let D � T 1S be a small surface transverse to the geodesic foliation F
that intersects the closed leaf ˛� in one point x11 , as shown on Figure 2. The infinite
leaf ˛1ˇ� intersects D in two sequences of points x1

1
;x1

2
; : : : and y1

1
;y1

2
; : : :

in such a way that x1
1
;x1

2
; : : : converges in this order to one end of ˛1ˇ , and

y1
1
;y1

2
; : : : converges in this order to the other end. Moreover, the two sequences

x1
1
;x1

2
; : : : and y1

1
;y1

2
; : : : both converge to the point x11 .

Likewise, the closed leaf ˛mˇ� intersects D in points xm
1
;xm

2
; : : : ;xm

km
;ym

1
;ym

2
; : : : ,

ym
lm

(see Figure 2), in such a way that, as m tends to 1, each xm
k

converges to x1
k

,
and each ym

l
converges to y1

l
. Besides, the total number kmC lm of points is of the

order of m, and more precisely, the difference m� .kmC lm/ is equal to a constant
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cD for m large enough. As a result, if ' is a continuous function defined on D ,

lim
m!1

1

m
˛mˇ.'/�˛.'/

D lim
m!1

1

m

� kmX
iD1

'.xm
i /C

lmX
jD1

'.ym
j /� .kmC lmC cD/'.x

1
1/

�
D 0:

D

˛

˛mˇ

mD 4

mD1

˛

D

x11
x4

2

x4
1

y4
2

y4
1

x11

x1
1

x1
2

x1
3

y1
1

y1
3

y1
2

Figure 2: A transverse surface D to the geodesic foliation F that intersects
both leaves ˛ and ˛ˇm

If, in addition, we assume ' to be Hölder continuous, we can refine the above estimate.
Because of the compacity of S , classical hyperbolic estimates guarantee that there
exists some bound M > 0 such that, for every m�M , both sequences xm

i and ym
i

converge uniformly to x11 as i tends to 1, and this convergence is of exponential
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order. Therefore

lim
m!C1

�
˛mˇ�m˛

�
.'/

D lim
m!C1

kmX
iD1

�
'.xm

i /�'.x
1
1/
�
C

lmX
jD1

�
'.ym

j /�'.x
1
1/
�
� cD'.x

1
1/

D

1X
iD1

�
'.x1i /�'.x

1
1/
�
C

1X
jD1

�
'.y1j /�'.x11/

�
� cD'.x

1
1/

exists and is finite.

In other words, the above calculation shows that the limit

lim
m!1

˛mˇ�m˛ D P̨

exists in the space of Hölder geodesic currents CHRol.S/. The limit Hölder geodesic
current P̨ is supported in the union of the closed leaf ˛� , and of the infinite leaf ˛1ˇ�

whose two ends spiral around ˛� .

Thus, by linearity and continuity of the length functions `�i ,

lim
m!1

`
�
i .˛

mˇ/�m`
�
i .˛/

exists and is equal to `�i . P̨ /. Taking the exponential on both sides, we conclude that

�
�
i .˛

mˇ/

�
�
i .˛/

m

converges to e`
�

i
. P̨ / , which proves the required result.

We conclude this section with one last observation:

P̨ D lim
m!1

˛mˇ�m˛ D lim
m!1

1
m
˛mˇ�˛

1
m

is very reminiscent of the expression of a derivative. In fact, there exists a 1–parameter
family of Hölder geodesic currents ˛t 2 CHRol.S/, t 2 Œ0; "�, such that ˛0D ˛ , ˛1=mD

1
m
˛mˇ , and P̨ D d

dtC
˛t jtD0 . As a result, the distribution P̨ should be understood as a

tangent vector at the point ˛ , and the above estimate comes as a consequence of the
first order approximation

`
�
i .˛t /� `

�
i .˛0/C t

d

dtC
`
�
i .˛t /

ˇ̌
tD0

;
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where d
dtC

`
�
i .˛t /jtD0 D `

�
i . P̨ / by the previous facts. This should be compared with

the differentiability property of the length functions `�i of Corollary 17.

Remark In a preprint following the publication of an earlier version of the present
paper, M Pollicott and R Sharp [23] proposed an alternative proof of the estimate of
Theorem 18 that is based on symbolic dynamics. Their method enables to improve
the result. They also prove asymptotic growth estimates for the length functions `�i .
In particular, their approach makes crucially use of the 1–forms !i introduced in
Section 2.3.
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