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Entropic magmas, their homology and
related invariants of links and graphs

MACIEJ NIEBRZYDOWSKI

JÓZEF H PRZYTYCKI

We define link and graph invariants from entropic magmas, modeling them on the
Kauffman bracket and Tutte polynomial. We define the homology of entropic magmas.
We also consider groups that can be assigned to the families of compatible entropic
magmas.

55N35; 18G60, 57M25

1 Introduction

A binary operation satisfying the entropic property .a� b/� .c �d/D .a� c/� .b �d/

was probably first considered by Sushkevich in 1937 [12]. Soon after, Murdoch [6]
and Toyoda in a series of papers [13; 14; 15; 16] established the main properties of
such magmas. In particular, they proved the following result named after them; it is
very important in our considerations.

Theorem 1.1 [6; 13] If .X I �/ is an entropic quasigroup, then X has an abelian
group structure such that a�bD f .a/Cg.b/Cc , where f;gW X !X are commuting
group automorphisms.

The phrase entropic property that we use was coined in 1949 by Etherington [3]. Other
names for this property include: mediality, bicommutativity, alternation, bisymmetry
and abelianity. The word entropic refers to inner turning.

In the first part of the paper we show how to use the entropic property to define invariants
of links and graphs that are based on the Kauffman bracket and the Tutte polynomial
so that the assumption of linearity is not present in their construction. In the second
part we introduce homology of entropic magmas and its counterpart for families of
entropic magmas connected by a condition .a�i b/�j .c �i d/D .a�j c/�i .b �j d/.
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2 Tait graphs

We recall here (see eg [8]) a construction of Tait which gives a bijection between signed
plane graphs and link diagrams; a bijection which also sends a Kauffman bracket
version of the Tutte polynomial to the Kauffman bracket of a link diagram.

Tait was the first to notice the relation between knots and planar graphs. He colored the
regions of a knot diagram alternately white and black (motivated by Listing [5]) and
constructed a graph by placing a vertex inside each white region, and then connecting
vertices by edges going through the crossing points of the diagram (we place however
a vertex in black regions in our considerations, and study a “black” graph instead of a
dual “white” graph of Tait; Figure 1).

D G
D.G/

Figure 1: Tait’s construction of a graph from a link diagram (connected sum
of the figure-eight knot and the left-handed trefoil knot with white infinite
region) and back to the signed graph

It is useful to mention the Tait construction going in the opposite direction, from a
signed planar graph, G , to a link diagram D.G/. We replace every edge of a graph by
a crossing according to the convention of Figure 2 and connect endpoints along edges
as in Figure 1.

Figure 2: Convention for crossings assigned to signed edges (edges without
markers are assumed to be positive)

3 Entropic magma

We define link diagram invariants from entropic magmas by modeling them on the
Kauffman bracket polynomial (but not assuming linearity). In 1984, entropic magmas
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were used for the first time in knot theory to generalize the Jones and Homflypt link
invariants using Conway’s skein triple; see the work of Przytycki and Traczyk [10; 11]
and the survey articles [7; 9]. If we generalize the Kauffman bracket relation, then
in order to have link invariants (for framed links) from a magma .AI �/, we need an
entropic condition, and an additional condition for the second Reidemeister move. We
analyze these below and if initial conditions are given by .a1; : : : ; an; : : :/, we call the
magma a bracket (or Kauffman bracket) magma. Later we consider signed graphs and
play an analogous game with invariants coming from a Tutte magma.

3.1 Kauffman bracket magma

We consider link invariants taking values in an entropic magma .AI �/ with a chosen
sequence of not necessarily different elements a1; a2; : : : ; an; : : :, which satisfy the
following conditions for any n� 1. The relations are derived from the second Reide-
meister moves (assuming that the crossings are ordered and the two new crossings are
the last). We get (i) or (ii) as below:

(i) .anC1 � an/� .anC2 � anC1/D .anC1 � anC2/� .an � anC1/D an

This case is illustrated in Figure 3 for nD 1.

(ii) .an � anC1/� .anC1 � an/D anC1

This case is illustrated in Figure 4 for nD 1.

R2–move

Figure 3: R2 –move; denominator closure

First, we construct a regular isotopy1 link invariant from a Kauffman bracket magma:

1In regular isotopy we consider unoriented link diagrams modulo the second and the third Reidemeister
moves. In an equivalent approach, we can consider unoriented framed links and use the fact that two
diagrams on S2 representing framed links with blackboard framing are ambient isotopic if and only if
they are related by R2 and R3 moves. Notice that R1 changes the framing by ˙1 .

Algebraic & Geometric Topology, Volume 13 (2013)
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R2–move

Figure 4: R2 –move; numerator closure

Theorem 3.1 Let .AI �; a1; a2; : : :/ be a Kauffman bracket magma. Then there is a
unique unoriented framed link invariant, say P W fLinks fr

g!A, such that P .Tn/D an

and if

LD ; L0 D and L1 D

is a Kauffman bracket skein triple, then

P .L/D P .L0/�P .L1/:

Proof Our proof follows Kauffman’s proof of existence of the Kauffman bracket
polynomial but we give it here for completeness. The proof is organized as follows:

(1) We consider any link diagram D representing L and we order its crossings.
Then, we compute (in a unique way) the value (in A) of the diagram, resolving
crossings according to their ordering and using initial values at the end (at leaves of
the computational tree). We denote this invariant of diagrams with ordered crossings
by P .D/.

(2) We show that obtained value does not depend on the ordering of crossings. Here,
it suffices to check that we can exchange the order of two crossings which were
consecutive in the initial ordering, say v1<v2 . For a diagram D with crossings v1; v2 ,
we write D

v1;v2
"1;"2

for a diagram obtained from D by smoothing v1 and v2 according
to "1; "2 , where "i D 0 or1 decides which Kauffman marker we use for smoothing;
of course D

v1;v2
"1;"2

DD
v2;v1
"2;"1

. We have (in an initial order):

P .D/D P .D
v1

0
/�P .Dv1

1/D
�
P .D

v1;v2

0;0
/�P .D

v1;v2

0;1
/
�
�
�
P .D

v1;v2

1;0
/�P .Dv1;v2

1;1/
�
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After switching the order of v1 and v2 we smooth v2 first and obtain analogously:

P .D/D P .D
v2

0
/�P .Dv2

1/D
�
P .D

v2;v1

0;0
/�P .D

v2;v1

0;1
/
�
�
�
P .D

v2;v1

1;0
/�P .Dv2;v1

1;1/
�

D
�
P .D

v1;v2

0;0
/�P .D

v1;v2

1;0
/
�
�
�
P .D

v1;v2

0;1
/�P .Dv1;v2

1;1/
�

Our invariants coincide on the four diagrams D
v1;v2

0;0
;D

v1;v2

0;1
;D

v1;v2

1;0
and D

v1;v2
1;1 . Thus,

in order for them to coincide on D it suffices to have an entropic condition. In our case�
P .D

v1;v2

0;0
/�P .D

v1;v2

0;1
/
�
�
�
P .D

v1;v2

1;0
/�P .Dv1;v2

1;1/
�

D
�
P .D

v1;v2

0;0
/�P .D

v1;v2

1;0
/
�
�
�
P .D

v1;v2

0;1
/�P .Dv1;v2

1;1/
�

is a special case of the entropic condition.

(3) We analyze the behavior of our diagram invariant under the second Reidemeister
move R2 . Because (by (2)) we can put crossings involved in R2 at the very end of the
calculations, we conclude that the relations (i) and (ii) of Figure 3 and 4 are necessary
and sufficient for invariance.

(4) The invariance under the third Reidemeister move follows from (3), in a similar
manner to the case of the Kauffman bracket: we start the resolution from the top
crossing; this is illustrated in Figure 5.

Figure 5: After smoothings of upper crossings, diagrams differ by R2 moves only

More precisely, by (2), we can start our calculation from the upper crossing involved
in the third Reidemeister move. After the first resolution, the left diagrams differ by
two R2 moves (so we can use (3)), and the right diagrams are isotopic (Figure 5).
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3.2 Kauffman bracket magma invariants and first Reidemeister moves

We discuss in this section how P .D/ changes under first Reidemeister moves. We have
to consider two types of the first move, a positive RC1 in which we add a positive kink,
and a negative R�1 in which a negative kink is added to a diagram D . Equivalently,
we measure the effect on P .L/ of twisting a framing in a positive direction (L!L.1/ )
or a negative one (L!L.�1/ ). Denote by �.D/ a link diagram D t
, that is, we
add a trivial component to the diagram D . Then we have

P .D.1//D P . /D P .�.D//�P .D/;

P .D.�1//D P . /D P .D/�P .�.D//:

For example, a positive loop (ie the trivial knot with framing 1, T .1/
1
D ) has

value a2 � a1 , while T .�1/
1
D has the value a1 � a2 .

Notice that the equality P ..L.1//.�1// D P .L/ follows from the relation (i) of
Section 3.1 even if twisting is performed on different component of L. Namely,
we can assume that kink crossings are the last crossings of the computational tree, thus
we can assume that L is represented by a trivial diagram of n components. Then we
have P .L.1//D anC1 � an , P .L.�1//D an � anC1 and

P ..L.1//.�1//D .anC1 � anC2/� .an � anC1/
.i/
D an D P .L/:

Let us extend the notation �.L/DLt
 to a subset of A realized by link invariants.
More precisely, let AL D fa 2A j aD P .D/ for some diagram Dg. Then on AL we
define �.a/ D P .�.D//, where P .D/ D a. It is not always the case that � can be
extended from AL to A, but if it does extend, we still denote an extension by � .

To produce an invariant of unoriented links (diagrams under all Reidemeister moves),
we can consider only zero framings on links (that is, the framing given by Seifert
surfaces of each component), or we can orient L and consider a framing given by the
Seifert surface of the oriented L. This can be rephrased using the writhe number of
an oriented diagram (the sum of signs of crossings), as was done in the case of the
Kauffman bracket (modified to Jones polynomial).

Lemma 3.2 Consider a Kauffman bracket magma .AI �; a1; a2; : : :/ that satisfies, for
every n� 1:

.an � anC1/� .anC1 � anC2/D .anC2 � anC1/� .anC1 � an/:

Then the invariant of links P .L/ is preserved by 4–moves.
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Proof We illustrate in Figure 6 how the 4–move changes the Kauffman bracket
magma invariant. This involves two variables and can be read as .a�b/� .b � �.b//D

.�.b/� b/� .b � a/. But in fact, as we work with diagrams on R2 , we can smooth all
crossings not involved in the move first and then deal exclusively with a clasp, again
having two cases, numerator and denominator, as illustrated in Figure 6.

4–move

Figure 6: 4–move and resolving computational trees

We also observe that if we work modulo relations giving invariants of 4–moves, then
the invariant is preserved by a framing change of multiplicity of four.

4 Tutte magma for signed graphs

We are motivated by a bijection between signed plane graphs and link diagrams (on R2

or on S2 , whichever is more convenient), but we define magma invariants for all signed
graphs, for any magma .AI �/ with a chosen sequence of elements a1; a2; : : : ; an; : : :

(not necessarily all different).

If the edges of G are ordered, we define an invariant of a signed graph in Tutte fashion,
by giving to a graph with no edges and n vertices (say Tn ) the value an (that is
P .Tn/D an ), and then:

(i) For a positive edge eC which is not a loop:

P .G/D P .G=eC/�P .G � eC/:

Here G � eC and G=eC denote deleting and contracting the edge eC , respectively.

(ii) For a negative edge e� which is not a loop:

P .G/D P .G � e�/�P .G=e�/:

Algebraic & Geometric Topology, Volume 13 (2013)
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(iii) If eC is a positive loop then:

P .G/D P .G==eC/�P .G � eC/;

where G==eC is obtained from G=eC by adding an isolated vertex.

(iv) If e� is a negative loop then:

P .G/D P .G � e�/�P .G==e�/;

where G==e� is obtained from G=e� by adding an isolated vertex.

When computing the value of P .G/ 2A, we use the edges of G one by one according
to their ordering.

The invariant is well-defined but depends on the ordering of the edges. If we switch the
order of two edges, we may have different results: one of the form .a� b/� .c � d/,
and the second of the form .a� c/� .b �d/. Thus, entropic magma may be used to get
an invariant of a signed graph. We can try to do better and consider only some entropic
relations. For example, if G has 2 edges, the only type of relation which .AI �/ has to
satisfy is an entropic relation

.anC1 � an/� .anC2 � anC1/D .anC1 � anC2/� .an � anC1/:

We meet this condition when considering the graph
C � with additional n�1

isolated points. Its two computational trees are shown in Figure 7.
C � C �

� � C C

a2 a1 a3 a2 a2 a3 a1 a2

Figure 7: Changing the ordering of edges in a computational tree

When analyzing graphs with 3 edges, we find 4 additional entropic conditions:

By considering the graph C C � we get

..anC2 � anC1/� .anC3 � anC2//� ..anC1 � an/� .anC2 � anC1//

D
�
.anC2 � anC1/� .anC1 � an/

�
�
�
.anC3 � anC2/� .anC2 � anC1/

�
and its reverse (by considering � � C )�
.anC1 � anC2/� .an � anC1/

�
�
�
.anC2 � anC3/� .anC1 � anC2/

�
D
�
.anC1 � anC2/� .anC2 � anC3/

�
�
�
.an � anC1/� .anC1 � anC2/

�
:
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From the positive graph we get an entropic identity�
.anC1 � an/� .an � anC1/

�
�
�
.anC2 � anC1/� .anC1 � anC2/

�
D
�
.anC1 � an/� .anC2 � anC1/

�
�
�
.an � anC1/� .anC1 � anC2/

�
and its reverse (by considering the negative graph )�
.anC2 � anC1/� .anC1 � anC2/

�
�
�
.anC1 � an/� .an � anC1/

�
D
�
.anC2 � anC1/� .anC1 � an/

�
�
�
.anC1 � anC2/� .an � anC1/

�
:

In general, we have to consider all graphs, so there are no easy criteria for setting the
conditions. Thus, we define a Tutte magma abstractly as a magma with distinguished
elements a1; a2; : : : ; an , such that if we compute the invariants of any fixed signed
graph G using different orders of the edges, we always get the same result (we know
that we need some, but not all entropic conditions). Formally:

Definition 4.1 Let A D .A;�; a1; a2; : : :/ be a magma with a chosen sequence of
elements, and P .Gord/ an associated invariant of graphs with ordered edges. We say
that A is a Tutte magma if P .Gord/ does not depend on the ordering of edges of G ,
for any signed graph G .

Clearly, if A is an entropic magma, it is also a Tutte magma, but as we demonstrated
earlier, not all entropic relations are needed. We could rephrase the definition using
partial computational trees for two edges with different orders, but we leave that to the
reader. Similarly, we can define partial Tutte magmas (by analogy with partial Conway
algebras in [9; 10]).

Now we describe another invariant of signed graphs, using the function P and congru-
ences on algebras. First, we recall the notion of a congruence on a magma.

Definition 4.2 Let AD .A;�; a1; a2; : : :/ be a magma, and let � be an equivalence
relation on A. � is a congruence on A if b1�c1 and b2�c2 implies .b1�b2/�.c1�c2/,
for b1 , b2 , c1 , c2 2A.

Definition 4.3 Given a magma AD .A;�; a1; a2; : : :/ and a congruence � on A, one
can form a quotient magma A=� , whose underlying set is the set of equivalence classes
of � , with the binary operation Œa�� Œb�D Œa� b�, where Œx� denotes the equivalence
class of x 2A.

Now we are ready to define the invariant.
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Definition 4.4 We begin by fixing a magma A D .A;�/ with a sequence of not
necessarily different elements a1; a2; : : :. For any signed graph G , let XG �A denote
the set of values of the function P obtained using all possible orderings of the edges
of G . Let � be the smallest congruence on A generated by the set XG (that is, the
smallest congruence containing all the pairs .a; b/ for a, b 2XG ). Form the quotient
algebra AG DA=� . Then the function T assigning a quotient algebra AG to a signed
graph G is an invariant of signed graphs.

4.1 Examples of calculations for line graphs and polygons

This section contains calculations of P for certain signed plane graphs. We keep in
mind the correspondence between such graphs and link diagrams described in Section 2
(especially when using � below).

Example 4.5 Let Ln be a line graph (that is, a tree with nC 1 vertices, all except
two of degree two), with positive edges. Then we have

P .Ln/D P .Ln�1/� �.P .Ln�1//

with an initial condition P .L0/D a1 . We have for example:

P .L1/D P .L0/� �.P .L0//D a1 � a2;

P .L2/D P .L1/� �.P .L1//D .a1 � a2/� .a2 � a3/;

P .L3/D P .L2/� �.P .L2//D
�
.a1 � a2/� .a2 � a3/

�
�
�
.a2 � a3/� .a3 � a4/

�
;

P .L4/D P .L3/� �.P .L3//D
��
.a1 � a2/� .a2 � a3/

�
�
�
.a2 � a3/� .a3 � a4/

��
�
��
.a2 � a3/� .a3 � a4/

�
�
�
.a3 � a4/� .a4 � a5/

��
:

Example 4.6 Let Cn be an n–gon (a cycle graph with n edges and n vertices). Then
we have

P .Cn/D P .Cn�1/�P .Ln�1/

with an initial condition P .C1/D a2 � a1 . We have for example:

P .C2/D P .C1/�P .L1/D .a2 � a1/� .a1 � a2/;

P .C3/D P .C2/�P .L2/D
�
.a2 � a1/� .a1 � a2/

�
�
�
.a1 � a2/� .a2 � a3/

�
:

C3 corresponds to a right handed trefoil knot (x31 = ).

The notation 31 is used in the Rolfsen’s table of knots for the left-handed trefoil
knot .
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Example 4.7 Let C 0n be an n–gon with one edge doubled, then we have

P .C 0n/D .�.P .Cn�1//�P .Cn�1//�P .Cn/:

For example, if C 0
2

is a theta curve and describes the left handed trefoil knot we get

P .31/D P .C 02/D .�.P .C1//�P .C1//�P .C2/

D
�
.a3 � a2/� .a2 � a1/

�
�
�
.a2 � a1/� .a1 � a2/

�
:

The graph C 0
3

corresponds to the figure eight knot and we have

P .41/D P .C 03/D .�.P .C2//�P .C2//�P .C3/

D
��
.a3 � a2/� .a2 � a3/

�
�
�
.a2 � a1/� .a1 � a2/

��
�
��
.a2 � a1/� .a1 � a2/

�
�
�
.a1 � a2/� .a2 � a3/

��
:

5 Homology of entropic magmas

Let .X I �/ be a magma, A any set and � W A�X !X the projection to the second
factor. Any magma structure on A�X for which � is an epimorphism can be given
by a system of functions �a1;a2

.x1;x2/W X �X !A as

.a1;x1/� .a2;x2/D .�a1;a2
.x1;x2/;x1 �x2/:

The functions �a1;a2
.x1;x2/ are uniquely defined by the multiplication on A�X .

Thus, binary operations on A�X agreeing with � are in bijection with choices of
functions �a1;a2

. If we require some special structure on .X I �/ (eg associativity or
an entropic condition), we obtain a corresponding property of �a1;a2

.x1;x2/ which
we call a dynamical cocycle for the structure.

(1) Let .X I �/ be a semigroup; in order that an action on A � X be associative,
we need

..a1;x1/� .a2;x2//� .a3;x3/D
�
�a1;a2

.x1;x2/;x1 �x2

�
� .a3;x3/

D
�
��a1;a2

.x1;x2/;a3
.x1 �x2;x3/; .x1 �x2/�x3

�
to be equal to

.a1;x1/� ..a2;x2/� .a3;x3//D .a1;x1/�
�
�a2;a3

.x2;x3/;x2 �x3

�
D
�
�a1;�a2;a3

.x2;x3/.x1;x2 �x3/;x1 � .x2 �x3/
�
:

Thus, the dynamical cocycle condition in the associative case has the form

��a1;a2
.x1;x2/;a3

.x1 �x2;x3/D �a1;�a2;a3
.x2;x3/.x1;x2 �x3/:
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(2) We now assume that .X I �/ is an entropic magma, that is .a � b/ � .c � d/ D

.a � c/ � .b � d/ for any a; b; c; d 2 X . We look for a condition on the dynamical
cocycle so that A�X is entropic. We need�
.a1;x1/� .a2;x2/

�
�
�
.a3;x3/� .a4;x4/

�
D
�
�a1;a2

.x1;x2/;x1 �x2

�
�
�
�a3;a4

.x3;x4/;x3 �x4

�
D
�
��a1;a2

.x1;x2/;�a3;a4
.x3;x4/.x1 �x2;x3 �x4/; .x1 �x2/� .x3 �x4/

�
to be equal to�
.a1;x1/� .a3;x3/

�
�
�
.a2;x2/� .a4;x4/

�
D
�
�a1;a3

.x1;x3/;x1 �x3

�
�
�
�a2;a4

.x2;x4/;x2 �x4

�
D
�
��a1;a3

.x1;x3/;�a2;a4
.x2;x4/.x1 �x3;x2 �x4/; .x1 �x3/� .x2 �x4/

�
:

Thus, the dynamical cocycle condition in the entropic case has the form

��a1;a2
.x1;x2/;�a3;a4

.x3;x4/.x1 �x2;x3 �x4/

D ��a1;a3
.x1;x3/;�a2;a4

.x2;x4/.x1 �x3;x2 �x4/:

Extensions of modules, groups and Lie algebras are described in the classical book by
Cartan and Eilenberg [1].

Let .X I �/ be an entropic magma, A an abelian group with a given pair of commuting
homomorphisms t; sW A!A and a constant a0 2A; we consider .AI �/ as an entropic
magma with an affine action a� b D taC sbC a0 . Then we define a binary operation
on A�X by .a1;x1/� .a2;x2/D .a1 �a2Cf .x1;x2/;x1 �x2/. In order for A�X

to be an entropic magma, �a1;a2
.x1;x2/D a1 �a2Cf .x1;x2/ should be an entropic

dynamical cocycle. This leads to entropic cocycle condition

tf .x1;x2/� tf .x1;x3/C sf .x3;x4/� sf .x2;x4/

Cf .x1 �x2;x3 �x4/�f .x1 �x3;x2 �x4/D 0:

The above formula served as a hint in defining entropic homology. In particular, for a
unital ring R, @W RX 4!RX 2 may be given by

@.x1;x2;x3;x4/D t.x1;x2/� t.x1;x3/C s.x3;x4/� s.x2;x4/

C .x1 �x2;x3 �x4/� .x1 �x3;x2 �x4/

and @W RX 2!RX may be given by @.x1;x2/D tx1�x1 �x2C sx2 .

The last map (on the level of cohomology) is derived as follows (we follow the classical
case of a group extension by an abelian group; we adjust it to an extension of an
entropic magma .X I �/ by an entropic, affine magma .AI �/):
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We ask when extensions A � X ! X given by various f W X � X ! A with
.a1;x1/�.a2;x2/D.a1�a2Cf .x1;x2/;x1�x2/ are equivalent in the “fiber preserving”
sense. That is, we would like to know whether two extensions A�X !X with the
same affine action on A (a�bD taCsbCa0 ) are related by a magma homomorphism
F W A �X ! A �X , where F is constant on the X factor. We can express F as
F.a;x/D .c.x/C a;x/, with cW X !A. “Homomorphism” means, of course, that

F..a1;x1/�1 .a2;x2//D F.a1;x1/�2 F.a2;x2/:

Here �1 corresponds to f1 and �2 to f2 , so we write concretely

.a1 � a2Cf1.x1;x2/C c.x1 �x2/;x1 �x2/D .a1C c.x1/;x1/�2 .a2C c.x2/;x2/

and further

.a1 � a2Cf1.x1;x2/C c.x1 �x2/;x1 �x2/

D ..a1C c.x1//� .a2C c.x2//Cf2.x1;x2/;x1 �x2/

D .t.a1C c.x1//C s.a2C c.x2//C a0Cf2.x1;x2/;x1 �x2/

D .a1 � a2C tc.x1/C sc.x2/Cf2.x1;x2/;x1 �x2/:

Equivalently,

.f1�f2/.x1;x2/D tc.x1/C sc.x2/� c.x1 �x2/:

This suggests .@c/.x1;x2/D tc.x1/C sc.x2/� c.x1 �x2/ and .f1�f2/D @c . This
further suggests @W RX 2!RX given by

@.x1;x2/D tx1�x1 �x2C sx2;

as we wrote before. We should mention here that our map @W Hom.RX 1;A/ !

Hom.RX 2;A/ given by

.@c/.x1;x2/D tc.x1/C sc.x2/� c.x1 �x2/

does not use any specific properties of the magma .X I �/, thus for s D 1� t it gives
the coboundary operator for the twisted rack cohomology (see [2]),

.@c/.x1;x2/D tc.x1/C .1� t/c.x2/� c.x1 �x2/;

and in the group case (but with the trivial group action giving a central extension), we
put t D s D 1 and get

.@c/.x1;x2/D c.x2/� c.x1 �x2/C c.x1/:
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Now we will give a general definition of entropic homology which extends the above
for s D t D 0. For a given entropic magma .X I �/ and n� 0, let Cn.X / be the free
abelian group generated by 2n –tuples .x1;x2; : : : ;x2n/ of elements of X ; in other
words, Cn.X /D ZX 2n

D .ZX /˝2n

. We set Cn.X /D 0 for n< 0. We are going to
define several boundary homomorphisms going from Cn.X / to Cn�1.X /.

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Figure 8: Addresses of nodes in a binary tree

Let Tn be the 2n –tuple of addresses of nodes on the nth level of the infinite binary tree.
For example, T3 D f000; 001; 010; 011; 100; 101; 110; 111g (see Figure 8). We view
Tn as a 2n –element set with elements numbered 1 through 2n . For brevity, we write

wŒi �1 D k

when the i th place on the list w has an address containing k ones. Thus, for example,
T3Œ4�1 D 2. Let Sk

2n denote the set of permutations of the symmetric group S2n that
permute only addresses containing k 1s. For example,

S1
23 D f. /; .3; 5/; .2; 3/; .2; 3; 5/; .2; 5; 3/; .2; 5/g;

where . / is the identity permutation. For a 2n –tuple w of elements of X , let �w be
the result of applying the permutation � to w ; we extend this linearly to the whole Cn .
We define a homomorphism ık

n W ZX 2n

! ZX 2n

by

ık
n .w/D

X
�2Sk

2n

sgn.�/�w;

where sgn.�/ denotes the sign of the permutation � . Also, for a list � of integers
.a1; : : : ; an�1/, we define ı�n W ZX 2n

! ZX 2n

by

ı�n.w/D
X

i2f1;:::;n�1g

aiı
i
n.w/:

Algebraic & Geometric Topology, Volume 13 (2013)



Entropic magmas, their homology and related invariants of links and graphs 3237

For example,

ı
.2;1/
3
D 3. /C 2.2; 3; 5/C 2.2; 5; 3/� 2.3; 5/� 2.2; 3/� 2.2; 5/

C .4; 6; 7/C .4; 7; 6/� .6; 7/� .4; 6/� .4; 7/:

We will also need a homomorphism �nW ZX 2n

! ZX 2n�1

defined on 2n –tuples by

�n.x1;x2;x3;x4; : : : ;x2n�1;x2n/D .x1 �x2;x3 �x4; : : : ;x2n�1 �x2n/:

We will show that the maps @k
n D�nı

k
n , with k 2 f1; : : : ; n�1g, play the role of basic

differentials.

Theorem 5.1 For k 2f1; : : : ; n�1g, l 2f1; : : : ; n�2g and n>2, we have @l
n�1

@k
nD0.

Proof First we prove that �n�1. /�nı
k
n D �n�1@

k
n D 0, for any n > 1 and k 2

f1; : : : ; n� 1g. It is a useful fact when defining the first homology group. One of the
properties of the binary tree is that if the addresses in Tn , with n > 1, are divided
into 4–tuples, then the middle two addresses in each 4–tuple have the same number
of ones. Moreover, for each k 2 f1; : : : ; n� 1g, n > 1, there is at least one 4–tuple
such that the middle two addresses have exactly k 1s. Let i , i C 1 be the positions
of such addresses, so TnŒi �1 D TnŒi C 1�1 D k . Then .i; i C 1/ 2 Sk

2n . The map
� 7! .i; i C 1/� gives a bijection between even and odd permutations of Sk

2n . The
entropic condition (used after applying �n�1�n ) ensures that for any 2n –tuple w , we
have �n�1�n.i; i C 1/�w D �n�1�n�w for any � 2 Sk

2n . Thus,

�n�1�n

X
�2Sk

2n

sgn.�/�w D 0;

that is, �n�1. /�nı
k
nw D 0.

Now we will show that for k 2 f1; : : : ; n� 1g, l 2 f1; : : : ; n� 2g, n > 2, and any
� 2 S l

2n�1 , we have �n�1��nı
k
n D �n�1�@

k
n D 0. In the infinite binary tree, every

node with an address containing l 1s has two branches leading from it; the left branch
leads to a node with an address having l 1s, the right branch leads to a node with
l C 1 1s. The map �n corresponds to going up the binary tree, from Tn to Tn�1 .
It follows that if xi � xiC1 is an element in a 2n�1 –tuple �nw that has a position
with an address containing l 1s, then wŒi �1 D l and wŒi C 1�1 D l C 1. Thus, any
permutation � 2 S l

2n�1 determines two permutations �1 2 S l
2n and �2 2 S lC1

2n such
that ��n D �n�1�2 . It now follows that

�n�1��nı
k
nw D �n�1�n�1�2

X
�2Sk

2n

sgn.�/�w D �n�1�n

X
�2Sk

2n

sgn.�/�1�2�w D 0:
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The last equality is true because if both �1 and �2 do not permute addresses with k

1s, then �1�2�w D ��1�2w , and we can use the first part of the proof applied to a
2n –tuple �1�2w . If one of them, say �1 , permutes the addresses with k 1s, thenX

�2Sk
2n

sgn.�/�1�2�w D sgn.�1/
X
�2Sk

2n

sgn.�1�/�1��2w;

and again the equality holds because we take the sum over all permutations from Sk
2n .

Now, since ıl
n�1 in @l

n�1 is just a sum of signed permutations � 2 S l
2n�1 , it follows

that @l
n�1

@k
n D 0.

For a map ı�n as defined before, let @�n D �nı
�
n .

Corollary 5.2 For any ˛ 2 Zn�1 and ˇ 2 Zn�2 , we have @ˇ
n�1

@˛n D 0.

By selecting a sequence of differentials dn D @�n for n > 1, d1 D �1 and di D

0 for i � 0, we obtain a chain complex fCn.X /; dng. The (co)homology of this
chain complex is called the entropic (co)homology. For an abelian group G , define
the chain complex C�.X IG/ D C� ˝G , with d 0 D d ˝ id . The groups of cycles
and boundaries are denoted respectively by Ker.dn/ D Zn.X IG/ � Cn.X IG/ and
Im.dnC1/DBn.X IG/�Cn.X IG/. The nth entropic homology group of the entropic
magma .X I �/ with coefficient group G is defined as

Hn.X IG/DHn.C�.X IG//DZn.X IG/=Bn.X IG/:

Lemma 5.3 Let w D .x1; : : : ;x2n/ 2 Cn satisfy the following condition: there are
i and j , i ¤ j , such that wŒi �1 D k , wŒj �1 D k , for some k 2 f1; : : : ; n� 1g, and
xi D xj . Then ık

n .w/D 0 (and thus also @k
n.w/D 0).

Proof If the above condition holds, then for any � 2 Sk
2n we have �.i; j /wD �w . It

follows that

ık
n .w/D

X
�2Sk

2n

sgn.�/�wD
X
�2Sk

2n

sgn.�/D1

�w �
X
�2Sk

2n

sgn.�/D�1

�wD
X
�2Sk

2n

sgn.�/D1

�w �
X
�2Sk

2n

sgn.�/D�1

�.i; j /wD 0;

because the second sum is now over all even permutations �.i; j / 2 Sk
2n .

Corollary 5.4 Let � D .a1; : : : ; an�1/ 2 Zn�1 and w D .x1; : : : ;x2n/ 2 Cn . Then
@�n.w/ D 0 if w satisfies the following condition: For every i 2 f1; : : : ; n� 1g with
ai ¤ 0, there are xri

and xsi
, ri ¤ si , such that

wŒri �1 D i; wŒsi �1 D i and xri
D xsi

:
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For example, any tuple .x1; a;x3; b; a;x6; b;x8/ is a cycle in Z3.X IZ/.

It is useful to have a homomorphism �k
n W ZX 2n

! ZX 2n

, with k 2 f1; : : : ; n� 1g,
defined on 2n –tuples w by

�k
nw D .s; sC 1/wCw;

where s is the first place in w such that sD4iC2, for some i , and wŒs�1DwŒsC1�1D

k . In other words, for w divided into 4–tuples, �k
n finds the first 4–tuple in which

the two middle places have k ones in their addresses, permutes the corresponding
elements, and adds w , so that �k

nw is a fixed element of the permutation .s; sC 1/.

Lemma 5.5 For any wD .x1; : : : ;x2n/2Cn , we have ık
n �

k
nwD 0 (and @k

n�
k
nwD 0).

Further, for any � D .a1; : : : ; an�1/ 2 Zn�1 , @�n�
n�1
n � � � �2

n�
1
nw D 0; here �i

n can be
omitted if ai D 0.

Proof ık
n �

k
nw D 0 because for any � 2 Sk

2n , �.s; s C 1/�k
nw D ��

k
nw , and � 7!

�.s; s C 1/ is a bijection between even and odd permutations. This holds for any
k 2f1; : : : ; n�1g if we take �n�1

n � � � �2
n�

1
nw instead of �k

nw , thus, the second statement
is true.

It follows that every chain from Cn.X / can by made into a cycle by adjusting it with
respect to every map ık

n appearing in the differential @�n . In particular, a sequence of
elements of an entropic magma assigned to the last level of the resolving tree of a link
(as described in Section 3) determines a cycle in the entropic homology of the magma.
The topological meaning of this correspondence will be investigated in the future work,
for now we consider an example.

Example 5.6 Let AD .A;�; a1; a2; : : :/ be an entropic magma with a sequence of
elements satisfying the conditions of Section 3. The last level of the resolving tree of
the framed link , with the left crossing being resolved first, is:

It corresponds to a list wD .a3; a4; a2; a3/ 2C2.A/. In general, this list is not a cycle,
but �1

2
w D .a3; a2; a4; a3/C .a3; a4; a2; a3/ is:

@
.1/
2
�1

2w D �2ı
1
2�

1
2w D �2

�
.. /� .2; 3//..2; 3/wCw/

�
D �2

�
. /.2; 3/wC . /w� .2; 3/.2; 3/w� .2; 3/w

�
D �2.0/D 0:
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Let A be the entropic magma

� 1 2 3 4
1 2 1 3 4
2 1 4 3 2
3 3 3 3 3
4 4 2 3 1

with the sequence of elements a1 D 1, a2 D 2, a3 D 4, a4 D 1, a5 D 2, a6 D 4; : : :.
Then w D .4; 1; 2; 4/ and calculations in GAP [4] show that

�1
2w D .4; 1; 2; 4/C .4; 2; 1; 4/

is one of the free generators of H2.A/D Ker.@.1/
2
/= Im.@.1;0/

3
/.

Now suppose that we are given a finite family fXi D .X;�i/g of entropic magmas
with an underlying set X , satisfying the compatibility condition

.a�i b/�j .c �i d/D .a�j c/�i .b �j d/

for any elements a, b , c , d 2X . In this situation we change the notation for the map
�n . Let ��i

n W ZX 2n

! ZX 2n�1

be defined by

��i
n .x1;x2;x3;x4; : : : ;x2n�1;x2n/D .x1 �i x2;x3 �i x4; : : : ;x2n�1 �i x2n/:

For X1; : : : ;Xr as above, let � D .�1; : : : ; �r / 2 fC;�g
r (basically, we are fixing the

sign of each operation �i ). Then we define

��n D
X

i2f1;:::;rg

�i�
�i
n :

Also, let @k;�i
n D �

�i
n ı

k
n and @

k;�
n D ��nı

k
n for k 2 f1; : : : ; n � 1g, @�;�i

n D �
�i
n ı

�
n

and @�;�n D �
�
nı
�
n for � 2 Zn�1 . The map @�;�n is obtained by adding (or subtracting,

depending on � ) the considered earlier differentials @�n for each operation �i , i 2

f1; : : : ; rg. A simple check gives the following lemma.

Lemma 5.7 ��
1
@
�;�
2
D ��

1
��

2
ı�

2
D 0

This leads to the “untwisted” (with sD t D 1) version of the entropic cocycle condition
that we considered at the beginning of this section:

f .x1;x2/�f .x1;x3/Cf .x3;x4/�f .x2;x4/

Cf .x1 �x2;x3 �x4/�f .x1 �x3;x2 �x4/D 0:
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Here we used three entropic operations: �1 D �, and the two trivial ones, a�L b D a,
a�R b D b , for all a and b , with � D fC;�;�g.

In general, ��n�1@
�;�
n ¤ 0. We can however make a change that leads to a setting in

which this kind of condition holds. Let us define a homomorphism �nW ZX 2n

!ZX 2n

defined on 2n –tuples by

�n.x1;x2;x3;x4; : : : ;x4i ;x4iC1;x4iC2;x4iC3; : : : ;x2n�3;x2n�2;x2n�1;x2n/

D .x1;x3;x2;x4; : : : ;x4i ;x4iC2;x4iC1;x4iC3; : : : ;x2n�3;x2n�1;x2n�2;x2n/:

The involution �n appears naturally when we have a family of compatible entropic
magmas, namely

�
�i

n�1
�
�j
n w D �

�j

n�1
��i

n �nw:

Now we change the maps ık
n .w/. Let

yık
nw D

X
�2Sk

2n

sgn.�/.�w� �n�w/:

We note that �nyık
nw D�

yık
nw .

Because of the above change in the definition of ık
n .w/, we slightly change the notation

for the remaining maps:

For k 2 f1; : : : ; n� 1g W y@k;�i
n D ��i

n
yık

n and y@k;�
n D ��n

yık
n :

For � D .a1; : : : ; an�1/ 2 Zn�1
W yı�n D

P
i2f1;:::;n�1g ai

yıi
n;

y@�;�i
n D ��i

n
yı�n and y@�;�n D �

�
n
yı�n :

Theorem 5.8 For any � D .a1; : : : ; an�1/ 2 Zn�1 and � D .�1; : : : ; �r / 2 fC;�g
r ,

we have
��n�1

y@�;�n D �
�
n�1�

�
n
yı�n D 0:

Proof For any k 2 f1; : : : ; n� 1g,

��n�1
y@k;�

n D ��n�1�
�
n
yık

n D

X
i2f1;:::;rg

�i�
�i

n�1

X
i2f1;:::;rg

�i�
�i
n
yık

n :

We have
�
�i

n�1
��i

n
yık

n D �
�i

n�1
��i

n �n
yık

n D��
�i

n�1
��i

n
yık

n :

Thus, ��i

n�1
�
�i
n
yık

n D 0. Similarly,

�
�i

n�1
�
�j
n
yık

n D �
�j

n�1
��i

n �n
yık

n D��
�j

n�1
��i

n
yık

n :
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Thus, ��
n�1
y@

k;�
n D 0. Also, ��

n�1
y@
�;�
n D

P
k2f1;:::;n�1g ak�

�
n�1

��n
yık

n , so the result
follows.

Fixing a � D .�1; : : : ; �r / 2 fC;�g
r , and choosing a sequence of homomorphisms

y@
�;�
n for n> 1, allows us to define groups

yHn.X /D Ker.��n/= Im.y@�;�
nC1

/D Ker.��n/= Im.��nC1
yı�nC1/

for n> 0, and
yH0.X /D C0.X /= Im.��1/:

The maps involved in this definition are depicted in the following diagram:

C0

0

{{

C1
��

1

{{

C2
��

2

{{

C3
��

3

{{

: : :

{{
C�1 C0

��
0
D0

oo
id

OO

C1
��

1

oo
id

OO

C2
��

2

oo

yı�
2

OO

C3
��

3

oo

yı�
3

OO

: : :oo

We remark that we could also use � 0 D .�1/n� instead of � in the above definition.

Calculations of yHn in GAP show that these groups frequently have torsion elements.
We were able to calculate some groups yH1 and yH2 , and the torsion parts included
powers of Z2 , Z3 and Z4 ; we expect different Zk s for higher groups yHn .
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