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Decomposition of loop spaces
and periodic problem on 7,

CHEN WEIDONG
JIE WU

We provide a family of spaces localized at 2, whose stable homotopy groups are
summands of their unstable homotopy groups. Applications to mod 2 Moore spaces
are given.

55P35; 55Q10, 55Q52

1 Introduction

Homotopy theory is a central topic in the area of algebraic topology. Understanding the
relationship between the stable homotopy groups and unstable homotopy groups is an
important question in homotopy theory. Let X be a n—connected pointed space. Recall
that the classical Freudenthal Suspension Theorem [3] states that the canonical map

1 (X) = 7 (X)

is an isomorphism if & < 2n and an epimorphism if kK = 2n + 1. The Freudenthal
Suspension Theorem relates the unstable homotopy groups to the stable homotopy
groups.

Recently, a new interesting problem in this area has been proposed. Namely, find spaces
X whose stable homotopy groups are summands of the unstable homotopy groups.
Beben and Wu [1] gave examples of such spaces and applied their results to the Moore
Conjecture. They showed that for a fixed odd prime p and some p-localization of a
CW-complex of finite type X, there exists a sequence {/,} that converges to infinity
such that QX X is a homotopy retract of QX . Hence my 4 (=/n X) is a retract of
7, (X). Letting {/,} converge to infinity, the stable homotopy groups of X are seen
to be summands of its unstable homotopy groups. Symbolically, the group 73 (X) is a
summand of 74 (X). In this way, Beben and Wu reduced the aforementioned problem
to finding spaces X together with a sequence {/,} that converges to infinity such that
QX! X is a retract of QX . In this article, we consider the case when p = 2. Our
results are given as follows.

Published: 23 September 2013 DOI: 10.2140/agt.2013.13.3245


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=55P35, 55Q10, 55Q52
http://dx.doi.org/10.2140/agt.2013.13.3245

3246 Chen Weidong and Jie Wu

Theorem 1.1 Forevery 1 <i <n, let X; be a path-connected 2—local CW-complex
such that Hy«(X;;7Z/27) is of dimension 2 with generators u;, v; and |u;| < |v;].
Then ,

QEA/\?:](ZB —1)/2(|Mi|+|vi|)Xi)

is a retract of QE A \j—, X; forevery k > 1.

As a consequence of Theorem 1.1, the stable homotopy groups of certain 2—local
spaces retract off their regular homotopy groups.

Corollary 1.2 Forevery 1 <i <n, let X; be a path-connected 2—local CW-complex
such that Hy(X;;7Z/27) is of dimension 2 with generators u;, v; and |u;| < |v;|. Let

bx = i(3k_1

i=1

(sl + i) )

and suppose that /\7_; X; is (m—1)—connected. Then for large enough k such that j <
by +2m, the group n}‘(E A Ni=y Xi) is a homotopy retract of 7wj 45, (A N\i=; Xi).

Theorem 1.1 deals with the case of finite wedge products of 2—cell CW—complexes. In
the case of a single 2—cell CW—complex, this theorem can be strengthened by using a
known decomposition of QX X [5; 6]. The strengthened theorem is given as follows.

Theorem 1.3 Let X be a simply connected 2—local CW-complex such that the group
H.(X;7Z/27) is of dimension 2 with generators u, v and |u| < |v|. Then we have

QX ~ 1_[ Q1K (ul+vD x « (some other space)
J
where 2 < k1 < ko <--- are all prime numbers greater than 2.

A fundamental problem in homotopy theory is to compute the homotopy groups of a
given space. We apply Theorem 1.3 to compute Z/8Z—summands of the homotopy
groups of mod 2 Moore spaces. Let RP? be the projective plane. The n—dimensional
mod 2 Moore space P"(2) is defined by P"(2) = X" 2RP? for n > 2. P"(2) can
be viewed as the homotopy cofibre of the degree 2 map [2]: S~ ! — §”~1. That is
to say, the cell complex P”(2) is obtained by attaching an n—cell to S”~! and the
attaching map is give by the degree 2 map.

This problem was studied earlier by Cohen and Wu [2]. They noted that a Z /87—
summand of 74 (P*"T1(2)) can be found in 7120,—14(P*"T1(2)). They also asked
whether 74 (P*"*t1(2)) has Z/8Z-summands in lower degrees. The following corol-
lary of Theorem 1.3 answers Cohen and Wu’s question in the affirmative.
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Decomposition of loop spaces and periodic problem on 14 3247

Corollary 1.4 The following homotopy equivalences exist for every n > 1:
(i) QP (2) ~ QPEk+9n=3k(2) » (some other space)
Thus 70(16k+8)n—6k—2(P*"(2)) contains a Z /87 -summand, for all k € Z=°
such that k = 2 (mod 4).
(i) QPT1(2) ~ QPEk+Hnt+1-k(2) x (some other space)
Thus 7T(16k+8)n—2k(P4n+1 (2)) contains a Z /87 —summand, for all k € Z=°
such that k =3 (mod 4).
(i) QP4"+2(2) ~ QPBk+In+2+k () « (some other space)
Thus 7T(16k+g)n+2k+2(P4n+3(2)) contains a 7 /87 —summand, for all k € Z=°
such that k = 0 (mod 4).
(iv) QP*t3(2) ~ QPpBk+Hn+343k (2) « (some other space)
Thus 716k +8)n+6k+4(P13(2)) contains a Z /8Z—~summand, for all k € Z=°
such that k =1 (mod 4).

In particular, there is a Z/8Z—summand in 7s¢,—g(P*"T1(2)). This is of a degree
lower than that given in [2].

This article is organized as follows. In Section 2, we introduce some notations and
basic properties. The proofs of Theorem 1.1 and 1.3 are given in Section 3. The proofs
of Corollary of 1.2 and 1.4 and some remarks are given in Section 4.
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2 Preliminary

Let X be a path-connected, 2—local CW—complex of finite type and let X ) be the
n—fold self smash product of the space X . Let S; denote the symmetric group on k
letters and let Z ;) (Sy) denote the group ring over the 2 local integer Z ;) generated
by Sg.

Consider the action of Z,)(Sy) on XX () by permuting coordinates and taking the
summations. For any § € Z3)(S,) we obtain a map

S xox®™ Ly x®™
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Let V = Hy(X;7/27), which is a graded Z/27Z-module. We use
sven = g*st,z/27) @ ve"
to denote the Z /27 reduced homology of X ™ . Therefore § induces a map

S ZY® _, iy ®n

by permuting factors.

Define the Dynkin—Specht—Wever elements inductively. Start with , =1 —(1,2) €
Z(z)(Sz). Then

Bn = Bno1 Aid—(1,2,...,n) 0 (Bn1 Aid).

The element 8, induces a map ,gn: SX® 2 X®  Let ; denote the generator of
the mod 2 reduced homology of S!. Then

Bt ® X1 ® - ®x) = 11 Q... [x1, %2], - -, Xp—1], X,

where [[...[[x1,X2], ..., Xp—1], Xn] € (Z/2Z)®" denotes the commutators. En* o
Bnx = nBn«, following [2]. Hence if # is an odd integer, then

%En* o %,gn* = %En*
Denote by hocolimy XX ) the mapping telescope of the following a sequence of
maps:
sy ™ i) sy ™ L
For an odd integer #n, the elements
’llgn* and (idEX(”) _%En)*

are orthogonal idempotents. Since

2 Bux o (idgxo —xBn), and (idgxw —5Bn), 0 % Bus
are trivial, the following the composite is a homotopy equivalence:

x® Myt s x® s hocolimTX® v hocolim_ £X ™
wBn idy. v () = B

This is because the induced map on the homology with coefficients in 2—local integers

is an isomorphism. Hence hocolim ; i Y X retracts off TX | Let

nkn

L,(X) = hocolim T X
1
LB
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Let p: SX™ Ln (X) be the projection and let i: L, (X) — X" be the canonical
inclusion. Then /3,,* is identical to the composition:

(1) Ho(EXP:7,27) 25 H (Fo(X):2/22) 25 H (X ™, 72/27)
In the special case when X is a suspension, as in [6] we let

Ln(X) = hocolim X,

nPn

In this case L,(X) >~ SL,(X).

It is well known that the mod 2 reduced homology of RP? A RP? contains a spherical
class of degree 3. We generalize this fact to any path-connected 2—cell CW—complex.

Proposition 2.1 Let X be a 2—local 2—cell path-connected CW-complex such that
H.«(X;Z/27) is of dimension 2 with generators u and v such that |v| = m and
|u| = n. Then there exists a map

a: ST L X AX

such that the image in ay of induced map on mod 2 homology is generated by [u, v] €
H.(XANX;Z/27).

Proof When m =n, X is just a wedge product of two spheres and the statement is
trivial. Assume without loss of generality that m > n. Let f: S™~! — S” be the
attaching map of the m—cell to the n—cell of X. Consider the homotopy cofibration

1 ldX/\f

XAS"T ! — S XAS" 5> X AX.

Take the (2m —1)—skeleton of X AX and note that S” A S™ ™1 ~ sk s (X AS™71),
hence we obtain a homotopy cofibration
StA SV S e (X A X).

Next we will show that i A f is null-homotopic. Since i A f is homotopic to the
composite

iNidgn

iden ASf
I 2 S SPAST =5 X AST,

STAS™T
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3250 Chen Weidong and Jie Wu

we obtain the homotopy commutative diagram

SnAsm—l %)Sn/\sn

Aid i Aid
Sm—l/\th;n-SnAsn tAdsn

X AS?,
where the bottom row is homotopy cofibration and t” and t are switching maps.

There are two cases: the map S” A S” 5 S" A S" has degree either 1 or —1. If
deg(r) =1, then v ~id g2, and

INf>~(G{Anidgn)o(idgn Af) >~ (I Aidgn)oT o (idgn A f)
~ (i Addgn) o (f Aidgn) o1’ ~ x.
If deg(t) = —1, since idgn A f is a suspension, we have
(idgn Af)o[—1]~to(idgn Af).
Thus we obtain that
idgn A f >~ (idgn A f)o[=1]o[=1] =~ To(idgn A f)o[—=1]~ (f Aidgn) o T' o [-1].
It follows that
inf~(@ANidgn)o(idgn Af) >~ (i Aidgn)o (f Aidgn) ot o[—1] =~ *.

Thus in either case, i A f is null-homotopic. Therefore

skom—1(X AX) >~ (X AS™) v ST,
Hence we can define o by the following composite of canonical inclusions:

SMH s ko1 (X AX) = X AX.

Because [u, v] is the only primitive generator of Hy,4+,(X A X;Z/27Z), one gets
O (tmtn) =[u,v]€ HW(X ANXZ/27). a

3 Decomposition of loop spaces and proofs of Theorems 1.1
and 1.3

Recall that for an odd integer 7, the space L, (X) is a homotopy retract of X ™ . By
studying the 2—local decomposition of XX | one can investigate the spaces L, (X).
In Selick and Wu [4], the finest 2—primary splitting of X (OB given.
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Suppose that Hx(X;Z/27) is generated by two elements u and v with |u| < |v].
Proposition 2.1 implies that, if » = 2k + 1 for some non-negative integer k, then there
exists a canonical inclusion S 1HA(ul+D y <y 5 x ()

Proposition 3.1 Let X be a path-connected 2—local 2—cell CW-complex such that
H.(X;Z/27) is of dimension 2 with generators u and v such that |u| < |v|. For
every odd integer n > 3, let p, be the natural projection defined in Equation (1). Then
the following composite has a left homotopy inverse

si+k(ul+lh y 5y 2y La(X).

Proof For every odd integer n > 3, let i, be the inclusion defined as in Equation (1).
Recall that

(in© pn)x = Pn: He(EXWZ/27) > H (SXW7/27).
Let o be the spherical class given in Proposition 2.1 and let ¢; be the composite

id A 30p3

SlHuRly ~ 5 A sl 9% s A v A x B2 sx A x A X
Take the mod 2 reduced homology:

P14(t1 @ U Lyy|+[v) = ({35 © p3x) (11 @ (Uuv + uvu))
= Bre(t1 ® (uuv + uvu)) = 1y ® [[u, v], u].
Similarly ¢1,(t1 ® v ®tjy|+|p) = t1 ®[[u, v], v]. Since I-_I*(Z3(X)) is of dimension 2,

the composite p3o¢; induces an isomorphism in mod 2 homology. Because the spaces
involved are CW—complexes of finite type, hence we have the homotopy equivalence

P3odr: s+l y Z3(X).
Define ¢: X! Th(ul+vh x5 5 x Ck+1 inductively as the composite
si+k(ul+P) y ~ 1+ E=D(ul+v) y o glul+v]
dr—1/ X EX(Zk_l) /\X(Z) D2k4+1°P2k+1 EX(2k+1).

Set @1 = p3. Define ¢f: TX @k+D 5 p1+k(ul+vD) ¥ jnductively as the composite

sy G+ PN S ) (D Ay Ay e PSSkl o)

Since iy 410 pak+1 factors through L2k+1 (X)), the composite ¢y oy factors through
Logs1(X). Let ad(x)(y) = [y, x] and ad"*!(x)(y) = [ad’ (x)(y), x] for i > 1. The
coefficients are taken mod 2, hence ad([u, v])(u) = [[u, v], u] = [u, [u, v]].
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Thus it is sufficient to show that the following composite is a homotopy equivalence
forall k > 1:

s 1k (ul+v]) y ﬁ) ¥ x @k+1D) Pk s 1tk(ul+v]) y
Since the spaces involved are CW—complexes of finite type, it is enough to show that
¢k © ¢ induces an isomorphism on mod 2 homology. Explicitly, we will prove the
following statements by induction on £ :
@) P Blex (U1t k(ul+o) ® 1) = @ix (11 ® ad® (. V) (1)) = 11 k(- po)) @ U
Phere © lex (L1 4kl + o)) © V) = Ghes (11 @ ad* (14, V) (V) = 1 1 fu| o)) B V-

The case of k = 1 has already been shown. Suppose that the statement is true for all
k" < k. We have

B3« (11 @ ad([u, v]) (u)) = B3x(ts @ [[u. v], u]) = 11 ® [[u, v]. u] = 1 @ ad([u, v]) (u).
Also

Bors1x(t1 ® [, v] ® (ad ! ([u., v]) (w))
= Bokr1x (1 ® uv ® (ad* 1 ([, v]) () + Bak+1x(t1 ® vu @ (ad® ([u, v]) ()
= 2Bok414(t1 ®uv ® (ad* ! ([u, v]) ()
=0.

Hence we obtain

Bak+1x(t1 ®ad® ([u, v]) (1) = Bak-414(t1 ® [ad* " (1. v]) (w). [u, v]))
= Baskt1+(t1 ® (ad* " ([, v]) () & [u, v])
+ Bokr14 (11 @, 1] @ (@d* ! ([, v ()
= Bakr 14 (11 ® (ad* ! ([u. v]) () ® [, V).

Furthermore

Bokr14 (11 ® (ad* ! (u, v)) () ® [u, v])
= Bok+1x(t1 ® (@d* ™ ([, V) (1) ® uv) + Basi14(11 ® (ad* ! ([, v]) () @ vur)
= [[[Bak—1x(t1 ® (ad* " (fu, v]) (u)))], ], v]
+[[[Bak—1x(t1 ® (@d* ! ([, v]) (@)))]. V], u]
= [Bak—1+ (11 ®ad* ™! ([u, v)) (). [, v]]
= ad([u. v]) (Bax—1 (11 ® ad* ™ ([u, v]) (1)),
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where the third equality is due to Jacobi identity. Thus we have
B+ (11 ® ad® ([, v]) () = ad([u, v]) (Bak—1+(11 ® ad* ™" (fu, v]) (1))
= ad? ([, v]) (Bak—3+ (1 ® ad* 2 ([ue, v]) (w))).
Hence we obtain that
Bk 1+ (11 @ ad® ([, v]) () = 11 ® ad* ([u, v]) (w).

By induction hypothesis, we have

P15 (L1 4 Ge—1) (4o ® 1) = 11 @ ad* ™" ([u, v]) ().
It follows that
Brex L1k ul+1v)) ® U) = (T2k+1 0 Pak+1)% (Dk— 15 U1+ (1) (| +]v]) B U) R [u, V])
= Barr 1 (0 ®ad* ™ (u. v @) @ [u v))
= Bakr1x(ty @ ad® (u. v) ()
=1 ® adk([u, v])(u).
Similarly
Prex (14 k(ul+1o) ® V) = 1 @ ad® ([u, v])(v).

Also we have

(@kx © Bkt 15 (11 @ ad¥ (u, v]) ()
= @xx (11 ® ad* ! (u, V) () @ [u, v]))
= (sEDUETRD pa) o ((pr—14 ®id) (11 @ ad* ™" ([, V] () @ [, v])
= (BEDWIHRD 51y, o (14 (1 ® ad* ™ ([, V] () ® [u, v])
= (ZEDWFRD by, (g 1yl o)) @ 4 @ [, V)

= Utk(lul+]v)) ® U
Since Bok 415 = i2k+1%© P2k+1% and Bogy1x = Bak+1x © Bak+1%, We have
Phx © Phex = Phex © Bok+1x © P

Hence

(@kx © Phes) (L1 -k (| +-[v]) ® 1)
= (Pkx © Bok+1% © Dres) L1+ (k—1) (ul +v]) B U @ Lu|+[v]) = L1+k(ul+|v]) B U-
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Similarly we obtain
(Pt © Prexe) (L1 +k((ul+]v]) ® V)

= (Phex © Bak+1% © Phex) (1 (k=) (ful +1v]) @ V B Liu|+[v]) = L1k (|ul+v]) D V-
This completes the induction step. Thus (2) holds. As noted earlier, this implies the

composite ¢ o ¢ is a homotopy equivalence, which completes the proof. a

We can obtain a weaker result when the space studied is a finite wedge product of
2—cell CW—complexes.

Proposition 3.2 For every 1 < k < n, let X} be a path-connected 2—local 2—cell
CW-complexes such that Hx(X}y;Z/27) is of dimension 2 with generators uj and
vg such that |uy| < |vg|. Then the following map has a left homotopy inverse:

S A /\Z=1 Z|”k|+|vk|Xk N Z3(/\Z=1 Xk)-
Proof Asshown in the proof of Proposition 3.1, for each space X} we have a canonical

projection
Pk =x ) o st ~ T (xy)

and a canonical inclusion
ik s+ o~ Taxg) - sx 2.
The map p31, ..., p%§ induce the projection
P ANz X ® = Z A Njo, Sty
The map i 31 ..., 1} induce the inclusion
AN Sl xS s AN X O
Let 6 be the composite
Xt 3) P 7
= A Nkt X ® = =(Ajo Xk)( ' L3(N\k=1 Xx)
i 3) Xt/
SNz XD ZES S AN 0O,

where the maps 7 and t’ switch positions. Explicitly, for x, vk, zx € H« (X Z/27),
the maps t and 7’ induce the following maps on homology:

T (®%=1 xkykzk) = (HZ=1 xk) ® (HZ=1 J’k) ® (HZ=1 Zk)’
T ((TTe=1 xi) ® (TTx=1 Y1) ® ([Tr=1 26)) = Q=1 Xk Yz
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Recall that for the canonical inclusion i and canonical projection p, we have ,g 3 =
ix o px. Then O (Ll R Rr—1 xkykzk) is given by the following:

(Z1)«
3 ®®k—1kaka — U ®(Hk—1xk) (HZ=1 J’k)®(n2=1 Zk)

B @ (T, o), (T v) ] (T 20)]

(Z1)«
—— 11 ® (Qp=1 Xk Vkzk + et VkXkZk

+ Q1 ZkXk Vi + Qh—1 Zk Vi Xk)

Let y1, 2, ¥3, Y4 be the mapping defined by:

Y1(t1 ® @iy Xk Vkzk) = t1 ® (Qf=1 Xk Vk2k)
va(t ® Rk Xk yizk) = 1 ® (Rk=1 Vi Xk k)
Y3t @ Qi1 Xk vizk) = t1 @ (k=1 Zk Xk Vi)
va(t ® Qp= 1xkyk2k)—t1®(®k | Zk VK XK)-

Therefore 6 =1+ Y2+ 3+ Y4 and (poB)x = px06yx = proyr + pxoys+ pso
Y3+ PxoVa.

Since 0 = 53*(“ QUiUp VL) = ié‘* op’3‘*(tl ® uyuyvy) and ié‘* is a monomorphism,
one gets pé‘*(Ll Qupupvg)=0. Recall that p is induced by p;, oo Py I XYz =

ujuyv; for some 1 </ <n, then py(1 ® ®Z=1 Xk Vizr) = 0. Since tensor product
is bilinear,

o o
Q=1 (rugvi + viugug) =Y i Q= SAVETE
JoJJ

where x; y; zj, = ugupvg or vguguy for 1 < j <2".

Hence if xljyljzlj = uyu;v; for some 1 </ <n, we have

Provi(u ® =i Xpyiz]) = Pu(t1 ® ey X1 2])
= Pu(l1 @ ®uuvy ®-++) = 0.

It follows that ps o y; (Ll R Ry x,i y,i ZIJC) is non-zero if and only if
k=1 Vit = Q=1 Vklikk.
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‘We must have

Provi(tn ® =y (upupvy + viugug))
= peovi (i 1 @ oy X[ ¥lz]) = 30, Peovi(t ® ey x]yiz])
= Pxoyi(t1 @ Ry vkurtr) = Px(t1 ® Q=i Vktirlk)
=11 ® Q=1 Wuge|+]vi ]| ® tk)-

Similarly:

Proya(tn ® Q= (ugugvi + viugu))
= peora (7o 1 @ ®foy ¥ ¥iz]) = Yjmy Prova(t ® Qhoy X1 ¥221)
= Pxoya(t1 ® Qp=y viurur) = Px(t1 ® Q= Uk vitik)
=11 ® Q=1 Uug|+1vrc| ® k)

Do va(tt @ @l (g vk + vugug))
= pxo© V4(ij-n:1 1O Qk— x;{J/;iZ;{) = Z,z-nzl Pxova(t ® Qi x,iy,iz,i)
= Pxoya(ts ® =y ukurvi) = Px(t1 ® Ry vkuku)
=11 ® Q=1 g |+]vi] ® ti)-

Also notice that py o y3 (®Z=1 x,{ y,{zi) is non-zero for 1 < j < 2", We get

Prova(tn ® Qf— (uruvi + viugug))
- o o o o
= Dx °V3(Zj=1 1 ® Q= xliylizli) = Zj:l Px °V3(L1 ® Qk=1 x,ﬁy,ﬁzi)
=2"11 & k=1 (fugl 41| ® k) = 0.

Therefore we have

(Po0)s(ts ® Qp=y (urugvi + viuguy))
= pxoyi(t1 ® Q= (ururvi + viuguy))
+ P o ya(ts ® Qpoy (U tig vy + viugug))
+ Pxoy3(ts ® Qp—y (UkUg vk + viugug))
+ Pxova(ts ® Qp—i (upugvi + vgugug))
=11 ® k=1 Quge|+ve| © Uk)-

Similarly we have

(700)s(t1 ® Ry (Vrvrtk + urvivi)) = t1 @ Qe Clug|+lvic| @ Vk)-
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Thus
SANZ, E\uk|+|vk|Xk i) S AN, X, ® i SAN X @

25 A NI, Sl
induces an isomorphism on mod 2 homology. Since the spaces considered are CW—

complexes of finite type, the composite p o oi is a homotopy equivalence. Because
0 factors through L3 ( /\Z=1 X k)’ the statement follows. a

Proposition 3.3 is due to Paul Selick and Jie Wu. The case when X = X' is a
suspension is shown in [6]; if X is not a suspension, one can modify an idea of Paul
Selick and Jie Wu in [5] to prove this proposition.

Proposition 3.3 (Paul Selick and Jie Wu) Let X be a path-connected 2—local CW-
complex of finite type. Let 2 <k <k, <--- be all the odd prime numbers in increasing
order. Then there exists a topological space A such that

QEX ~[]Q(Ly, (X)) x 4
J
localized at 2. O

Theorems 1.1 and 1.3 are consequences of Propositions 3.1, 3.2 and 3.3.

Proof of Theorem 1.1 By Proposition 3.2 and 3.3, the following map has a left
homotopy inverse:
QT AN, Shiltlily, 5 Qv A AL X

[+]v;

For each i, the space ¥ lui | X; is again a 2—cell complex. By induction, we can

conclude that
QEA/\?:I Z(3k_1)/2(|ui|+|vi|)Xi

retracts off QX A AJ—; Xi. O

Proof of Theorem 1.3 Recall from in Proposition 3.1 that the following map has a
left homotopy inverse:

sl+k(ul+) y Z2k+1 (X).

Therefore QX1 HcUul+vD ¥ retracts off QZ2k+1 (X). The statement follows from
Proposition 3.3. a
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4 Proofs of Corollaries 1.2 and 1.4 and some remarks

First we give proofs of Corollaries 1.2 and 1.4.

Proof of Corollary 1.2 Theorem 1.1 implies that
nm(E A/\?:l E(3k_1)/2(|ui|+|vi|)Xi)

is a summand of 7, (X A AY_; X;) for m > 1. For k >0, let

b= 3 (3Ll + D).

i=1

When k is large enough such that j < by 4+ 2m, the Freudenthal Suspension Theorem
implies:

T (S ANy SO D20 ) ot (50 AT S GED 20D )

Thus
”;+bk (E A /\?:1 E(3k_1)/2(|ui\+|vi\)Xl.) ~ ﬂ;(z A /\?:1 Xi)-

The statement follows. i
Proof of Corollary 1.4 As an immediate consequence of Theorem 1.3, for kK > 1 and
n > 2, the following map has a left homotopy inverse

QPn+1+k(2n_l)(2) s QPn-H (2)
Further, for 0 <m < 3, the following map has a left homotopy inverse:

QP(4+8k)n+(2k+l)m—3k(2) s QP4n+m (2)

Cohen and Wu [2] showed that if 7 >4 and n = 1 (mod 2), then 74,—>(P>"(2)) has
a 7Z/8Z—-summand. Therefore, if (4 + 8k)n + 2k 4+ 1)m — 3k = 2 (mod 4), then
74 (Q P8+ Q2k+1)m=3k (2)) has a 7, /87 —summand, The statement follows when
wesetm=20,1,2,3. O

Next we remark that Beben and Wu’s result [1, Proposition 5.2] can be combined with
Corollary 1.2 to give a uniform formula. First recall Beben and Wu’s result.
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Proposition 4.1 [1, Proposition 5.2] Let X' be the p—localization of a suspended
CW-complex. Set V = H«(X;Z/pZ). Let M denote the sum of the degrees of the
generators of V. Define the sequence of integers b; recursively, with by = 0 and

bi = (1 +dim V)bj_, + M.

Let V= H (X:Z/pZ), 1 <dimV < p—1 and Vogq = 0 or Veyen = 0. Assume
X is (m — 1)—connected for some m > 1. Then for each j, the stable homotopy
group ﬂ;(EX) is a homotopy retract of wjp,(XX) for i large enough such that
Jj <bi+2m. O

Notice that when we set X = /\7=1 Xj, all the b; in Corollary 1.2 are the same as
the b; in Proposition 4.1. Combine Proposition 4.1 and Corollary 1.2 to obtain the
following.

Theorem 4.2 Let X be the p—localization of a suspended CW-complex. Set V =
H.(X;Z/pZ). Let M denote the sum of the degrees of the generators of V. Define
the sequence of integers b; recursively by setting by = 0 and

bi=(14+dimV)b;_; + M.

Assume X is (m — 1)—connected for some m > 1 and let V = Hy(X). If either one
of the following is satisfied:

e Il<dimV < p—1,and Vogg =0 or Veyen = 0.

e 2=p=dim(W;),and X = /\;’=1 X; with W; = Hy(X;) for 1 <i <n.

Then for each j, the stable homotopy group n;(EX) is a homotopy retract of
7j4p, (XX) for i large enough such that j < b; +2m. a
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