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Irreducibility of q–difference
operators and the knot 74

STAVROS GAROUFALIDIS

CHRISTOPH KOUTSCHAN

Our goal is to compute the minimal-order recurrence of the colored Jones polynomial
of the 74 knot, as well as for the first four double twist knots. As a corollary, we
verify the AJ Conjecture for the simplest knot 74 with reducible nonabelian SL.2;C/
character variety. To achieve our goal, we use symbolic summation techniques
of Zeilberger’s holonomic systems approach and an irreducibility criterion for q–
difference operators. For the latter we use an improved version of the qHyper
algorithm of Abramov–Paule–Petkovšek to show that a given q–difference operator
has no linear right factors. En route, we introduce exterior power Adams operations
on the ring of bivariate polynomials and on the corresponding affine curves.

57N10; 57M25, 33F10, 39A13

1 Introduction

1.1 Notation

Throughout the paper the symbol K denotes a field of characteristic zero; for most appli-
cations one may think of KDQ. We write KŒX1; : : : ;Xn� for the ring of polynomials
in the variables X1; : : : ;Xn with coefficients in K, and similarly KŒX˙1

1
; : : : ;X˙1

n � for
the ring of Laurent polynomials, and K.X1; : : : ;Xn/ for the field of rational functions.
In a somewhat sloppy way we use angle brackets, eg KhX1; : : : ;Xni, to refer to
the ring of polynomials in X1; : : : ;Xn with some noncommutative multiplication.
This noncommutativity may occur between variables Xi and Xj , or between the
coefficients in K and the variables Xi . It will be always clear from the context
which commutation rules apply. Let p.X;Y1; : : : ;Yn/D

Pb
kDa pk.Y1; : : : ;Yn/X

k ,
a; b 2 Z, be a nonzero Laurent polynomial with pa ¤ 0 and pb ¤ 0; then we define
degX .p/ WD b and ldegX .p/ WD a. As usual, bac (resp. dae) denotes the largest integer
� a (resp. smallest integer � a).
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1.2 The colored Jones polynomial of a knot and its recurrence

The colored Jones function JK ;n.q/ 2 ZŒq˙1� of a knot K in 3–space for n 2N is a
powerful knot invariant which satisfies a linear recurrence (ie a linear recursion relation)
with coefficients that are polynomials in q and qn Garoufalidis and Le [15]. The
noncommutative A–polynomial AK .q;M;L/ of K is defined to be the (homogeneous
and content-free) such recurrence for JK ;n.q/ that has minimal order, written in
operator notation. (By “content-free” we mean that the coefficients of the recurrence,
which are polynomials in q and M , do not share a common nontrivial factor.) By
definition, the noncommutative A–polynomial of K is an element of the localized
q–Weyl algebra

W DK.q;M /hLi=.LM � qML/;

where KDQ and the symbols L and M denote operators which act on a sequence
fn.q/ by

.Lf /n.q/D fnC1.q/; .Mf /n.q/D qnfn.q/ :

The noncommutative A–polynomial of a knot allows one to compute the Kashaev
invariant of a knot in linear time, and to confirm numerically the Volume Conjecture of
Kashaev, the Generalized Volume Conjecture of Gukov and of Garoufalidis and Le, the
Modularity Conjecture of Zagier, the Slope Conjecture of Garoufalidis and the Stability
Conjecture of Garoufalidis and Le. For a discussion of the above conjectures and for a
survey of computations, see Garoufalidis [11]. This explains the importance of exact
formulas for the noncommutative A–polynomial of a knot.

In Garoufalidis [12] (see also Gelca [18]) the author formulated the AJ conjecture,
which relates the specialization AK .1;M;L/ with the A–polynomial AK .M;L/

of K . The latter parametrizes the affine variety of SL.2;C/ representations of the
knot complement, viewed from the boundary torus; see Cooper, Culler, Gillet, Long
and Shalen [7].

So far, the AJ conjecture has been verified only for knots whose A–polynomial consists
of a single multiplicity-free component (aside from the component of abelian represen-
tations); see Le [27] and Le and Tran [28]. For the remaining knots, and especially for
the hyperbolic knots, one does not know whether the noncommutative A–polynomial
detects

(a) all nongeometric components of the SL.2;C/ character variety,

(b) their multiplicities.

Our goal is to compute the noncommutative A–polynomial of the simplest knot whose
A–polynomial has two irreducible components of nonabelian SL.2;C/ representations
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(see Theorem 1.2), as well as recurrences for the colored Jones polynomials of the first
four double twist knots. En route, we will introduce Adams operations on W which
will allow us to define Adams operations of the ring QŒM;L� of A–polynomials and
their noncommutative counterparts.

1.3 Minimal-order recurrences

We split the problem of determining a minimal-order recurrence for a given sequence
into two independent parts:

(a) Compute a recurrence: if the sequence is defined by a multidimensional sum of
a proper q–hypergeometric term (as it is the case for the colored Jones polyno-
mial), numerous algorithms can produce a linear recurrence with polynomial
coefficients; see eg Petkovšek, Wilf and Zeilberger [35]. Different algorithms in
general produce different recurrences, which may not be of minimal order; see
Paule and Riese [32].

(b) Show that the recurrence produced in (a) has in fact minimal order: this can
be achieved by proving that the corresponding operator is irreducible in W .
Criteria for certifying the irreducibility of a q–difference operator are presented
in Section 4.

1.4 The noncommutative A–polynomial of the 74 knot

To illustrate our ideas concretely, rigorously and effectively, we focus on the simplest
knot with reducible A–polynomial, namely the 74 knot in Rolfsen’s notation [37]:

The 74 knot is a 2–bridge knot K.11=15/, and a double-twist knot obtained by
.�1=2;�1=2/ surgery on the Borromean rings. Its A–polynomial can be computed
with the Mathematica implementation by Hoste or with the Maxima implementation
by Huynh, see also Petersen [33], and it is given by

Algebraic & Geometric Topology, Volume 13 (2013)
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A74
.M;L/D .L2M 8

�LM 8
CLM 6

C 2LM 4
CLM 2

�LC 1/2

�
�
L3M 14

� 2L2M 14
CLM 14

C 6L2M 12
� 2LM 12

C 2L2M 10

C 3LM 10
� 7L2M 8

C 2LM 8
C 2L2M 6

� 7LM 6
C 3L2M 4

C 2LM 4
� 2L2M 2

C 6LM 2
CL2

� 2LC 1
�
:

The first factor of A74
.M;L/ has multiplicity two and corresponds to a nongeometric

component of the SL.2;C/ character variety of 74 . The second factor of A74
.M;L/

has multiplicity one and corresponds to the geometric component of the SL.2;C/
character variety of 74 . Let Ared

74
denote the squarefree part of the above polynomial

(ie where the second power of the first factor is replaced by the first power), called
the reduced A–polynomial. Finally, let Ared

�74
.M;L/DAred

74
.M;L�1/L5 2 ZŒM;L�

denote the reduced A–polynomial of �74 , the mirror of 74 .

Definition 1.1 We say that an operator P 2 K.q/hM˙1;L˙1i=.LM � qML/ is
palindromic if and only if there exist integers a; b 2 Z such that

(1) P .q;M;L/D .�1/aqbm=2M mLbP .q;M�1;L�1/L`�b;

where mD degM .P /C ldegM .P / and `D degL.P /C ldegL.P /. An operator in W
is called palindromic if, after clearing denominators, it is palindromic in the above
sense.

If P D
P

i;j pi;j M iLj then Condition (1) implies that

pi;j D .�1/aqb.i�m=2/pm�i;`�j

for all i; j 2 Z. Note also that palindromic operators give rise to (skew-) symmetric
solutions (if doubly-infinite sequences .fn/n2Z are considered). More precisely, the
equation Pf D 0 for palindromic P admits nontrivial symmetric (ie fdrCneD fbr�nc

for all n) and skew-symmetric (ie fdrCne D �fbr�nc for all n) solutions, where
r D .`� b/=2 is the reflection point.

The next theorem gives the noncommutative A–polynomial of 74 in its inhomogeneous
form. Every inhomogeneous recurrence Pf Db gives rise to a homogeneous recurrence
.L� 1/.b�1P /f D 0.

Theorem 1.2 The inhomogeneous noncommutative A–polynomial of 74 is given by
the equation

(2) P74
J74;n.q/D b74

with b74
2Q.q; qn/ and P74

2W being a palindromic operator of .q;M;L/–degree
.65; 24; 5/; both are given explicitly in the Appendix.
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The proof of Theorem 1.2 consists of three parts:

(1) Compute the inhomogeneous recurrence (2) for the colored Jones function
J74;n.q/ using the iterated double sum formula for the colored Jones function
(Equation (3)) and rigorous computer algebra algorithms (see Section 3).

(2) Prove that the operator P74
has no right factors of positive order (see Section 4).

To this end, we discuss some natural W–modules associated to a knot, given by
the exterior algebra operations.

(3) Show that J74;n.q/ does not satisfy a zero-order inhomogeneous recurrence, by
using the degree of the colored Jones function (see Section 8).

Corollary 1.3 The AJ conjecture holds for the knot 74 :

P74
.1;M;L/DAred

�74
.M 1=2;L/.M �1/5.MC1/4.2M 4

�5M 3
C8M 2

�5MC2/:

Proof This follows from Theorem 1.2 by setting q D 1.

2 The colored Jones polynomial of double twist knots

Let JK ;n.q/ denote the colored Jones polynomial of the 0–framed knot K , colored by
the n–dimensional irreducible representation of sl2.C/ and normalized to be 1 at the
unknot; see Turaev [41; 42] and Jantzent [22]. The double twist knot Kp;p0 depicted
below is given by .�1=p;�1=p0/ surgery on the Borromean rings for integers p;p0 ,

2p0

2p
Kp;p0

where the boxes indicate halftwists as follows:

C1 D �1 D

Using the Habiro theory of the colored Jones function, (see Lauridsen [26, Section 6]
following Masbaum [30] and Habiro [19]) it follows that

(3) JKp;p0 ;n
.q/D

n�1X
kD0

.�1/kcp;k.q/cp0;k.q/q
�kn�k.kC3/

2 .qn�1
I q�1/k.q

nC1
I q/k ;

Algebraic & Geometric Topology, Volume 13 (2013)



3266 Stavros Garoufalidis and Christoph Koutschan

where .xI q/n denotes, as usual, the q–Pochhammer symbol defined as
Qn�1

jD0.1�xqj /

and

(4) cp;n.q/D

nX
kD0

.�1/kCnq�
k
2
Ck2

2
C 3n

2
Cn2

2
CkpCk2p .1� q2kC1/.qI q/n

.qI q/n�k.qI q/nCkC1

:

Keep in mind that the above definition of cp;n differs by a power of q from the one
given by Masbaum [30, Theorem 3.2]. With our definition, we have c�1;n.q/ D 1

and c1;n.q/D .�1/nqn.nC3/=2 . Garoufalidis and Sun [16] have shown that for each
integer p , the sequence cp;n.q/ satisfies a monic recurrence of order jpj with initial
conditions cp;n.q/D 0 for n< 0 and cp;0.q/D 1. In particular, for p D 2 we have

c2;nC2.q/C qnC3.1C q� qnC2
C q2nC4/c2;nC1.q/C q2nC6.1� qnC1/c2;n.q/D 0 :

Now, K2;2 D 74 . The first few values of the colored Jones polynomial

fn.q/ WD J74;n.q/

are listed here:

f1.q/D 1

f2.q/D q� 2q2
C 3q3

� 2q4
C 3q5

� 2q6
C q7

� q8

f3.q/D q2
� 2q3

C q4
C 4q5

� 6q6
C 2q7

C 6q8
� 9q9

C 3q10
C 7q11

� 8q12

C q13
C 7q14

� 7q15
� q16

C 5q17
� 4q18

� q19
C 3q20

� q21
� q22

C q23

f4.q/D q3
� 2q4

C q5
C 2q6

� 4q8
C q9

C 6q10
� 2q11

� 8q12
C 5q13

C 9q14

� 4q15
� 13q16

C 7q17
C 11q18

� 3q19
� 15q20

C 6q21
C 11q22

� q23

� 13q24
C q25

C 10q26
C 2q27

� 11q28
� 3q29

C 9q30
C 3q31

� 7q32
� 5q33

C 7q34
C 4q35

� 3q36
� 5q37

C 3q38
C 3q39

� 3q41
C q43

C q44
� q45

The above data agrees with the KnotAtlas of Bar-Natan [2].

3 Computing a recurrence for the colored Jones polynomial
of 74

We employ the definition of JKp;p0 ;n.q/ given in (3) and (4) in terms of definite sums
to compute a recurrence for the colored Jones polynomial of 74 DK2;2 . Thanks to
Zeilberger’s holonomic systems approach [45] this task can be executed in a completely
automatic fashion, eg using the algorithms implemented in the Mathematica package
HolonomicFunctions (Koutschan [25]); see Koutschan [23] for more details. The
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summation problem in (4) can be tackled by a q–analogue of Zeilberger’s [44; 46] fast
summation algorithm since the summand is a proper q–hypergeometric term; also see
Wilf and Zeilberger [43] and Paule and Riese [32].

As it was mentioned above, the sequence cp;n.q/ satisfies a recurrence of order jpj
and therefore the summand of (3) is not q–hypergeometric in general. Thus we
apply Chyzak’s generalization [5] of Zeilberger’s algorithm to derive a recurrence
for J74;n.q/.

Both algorithms are based on the concept of creative telescoping [46]; see [23] for an
introduction and Garoufalidis and Sun [17] for an earlier application to the computation
of noncommutative A–polynomials. Let fn;k.q/ denote the summand of (3). Our
implementation of Chyzak’s algorithm yields the equation

P74
.fn;k/D cd .q; q

n/fnCd;k C � � �C c0.q; q
n/fn;k D gn;kC1�gn;k ;

where gn;k is a K.q; qk ; qn/–linear combination of certain shifts of f (eg fn;k ,
fnC1;k , fn;kC1 , etc). Now creative telescoping is executed by summing this equation
with respect to k . It follows that P74

.J74;n/D gn;n�gn;0 D b74
.

The summation problems (3) and (4) for pDp0D 2 are of moderate size: our software
HolonomicFunctions computes the solution in less than 2 minutes. The result is
given in the Appendix.

4 Irreducibility of q–difference operators

An element P 2 W is irreducible if it cannot be written in the form P D QR

with Q;R 2 W of positive L–degree. Since there is a (left and right) division
algorithm in W , it follows that every element P is a finite product of irreducible
elements. However, it can happen that P can be factored in different ways, but any two
factorizations of P into irreducible elements are related in a specific way; see Ore [31].

A factorization algorithm for elements of the localized Weyl algebra K.x/h@i, where
@x�x@D1 has been discussed by several authors that include Schwarz [38], Tsarev [40]
and Bronstein [3] and also van Hoeij [20, Section 8] and van der Put and Singer [36];
the factorization of more general Ore operators (including differential, difference,
and q–difference) has been investigated in Bronstein and Petkovšek [4]. Roughly, a
factorization algorithm for P 2K.x/h@i of order d (as a linear differential operator)
proceeds as follows: if P DQR where R is of order k , then the coefficients of R can
be computed by finding the right factors of order 1 of the associated equation obtained
by the k th exterior power of P . The problem of finding linear right factors can be
solved algorithmically.

Algebraic & Geometric Topology, Volume 13 (2013)
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For our purposes we do not require a full factorization algorithm, but only criteria for
certifying the irreducibility of q–difference operators. Consider P .q;M;L/ 2W and
assume that the leading coefficient of P does not vanish when specialized to q D 1.
The following is an algorithm for certifying irreducibility of P :

(1) If P .1;M;L/2K.M /ŒL� is irreducible, then P is irreducible (see Section 4.1).

(2) If not, factor the commutative polynomial P .1;M;L/ into irreducible factors
P1; : : : ;Pn .

(3) For each k D
P

i2I degL.Pi/ such that I � f1; : : : ; ng compute the exterior
power

Vk
P 2W (see Section 4.2).

(4) Apply the algorithm qHyper (eg in its improved version described in Section 7),
to show that none of the computed exterior powers has a linear right factor. Then
P is irreducible.

4.1 An easy sufficient criterion for irreducibility

In this section we mention an easy irreducibility criterion in W , which is sufficient
but not necessary, as we shall see. This criterion has been used in [17] to compute the
noncommutative A–polynomial of twist knots, and also in [27; 28] to verify the AJ
conjecture in some cases.

To formulate the criterion, we will use the Newton polygon at qD1, in analogy with the
Newton polygon at q D 0 studied in Garoufalidis [13]. Expanding a rational function
a.q;M / 2K.q;M / into a formal Laurent series in q� 1, let v.a.q;M // 2 Z[f1g
denote the lowest power of q�1 which has nonzero coefficient. It can be easily verified
that v is a valuation, ie it satisfies

v.ab/D v.a/C v.b/; v.aC b/�min.v.a/; v.b// :

Definition 4.1 For an operator P .q;M;L/D
Pd

jD0 aj .q;M /Lj 2W the Newton
polygon N.P / is defined to be the lower convex hull (see Loera, Rambau and Santos [8])
of the set f.j ; v.aj // j j D 0; : : : ; dg. Furthermore, let N e.P / denote the union of
the (nonvertical) boundary line segments of N.P /.

For instance, if P D .q� 1/2L5C ..q� 1/.M q� 1//�1L3CL2C .q� 1/�1LC 1,
then N.P / is shown in the figure on the following page. Here, N e.P / is the path of
straight line segments connecting the points .0; 0/, .1;�1/, .3;�1/ and .5; 2/.

The next lemma is elementary; it follows easily from the definitions: Recall that
the Minkowski sum ACB of two polytopes A and B is the convex hull of the set
faC b j a 2A; b 2 Bg (Ziegler [47]).
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N

Lemma 4.2 If Q;R 2W , then N.QR/DN.Q/CN.R/.

Proposition 4.3 Let P .q;M;L/D
Pd

jD0 aj .q;M /Lj 2W with d > 1 and assume
that P .1;M;L/ 2K.M /ŒL� is well-defined and irreducible with

a0.1;M /ad .1;M /¤ 0:

Then P .q;M;L/ is irreducible in W .

Proof The assumptions imply that N e.P / is the horizontal line segment from the
origin to .degL.P /; 0/. If P D QR with degL.Q/ degL.R/ ¤ 0, then Lemma 4.2
implies that both N e.Q/ and N e.R/ consist of a single horizontal segment as well.
Without loss of generality, assume that the leading coefficient of Q has valuation zero;
if not we can multiply Q by .1�q/a and R by .1�q/�a for an appropriate integer a.
Then, it follows that N e.Q/D Œ0; degL.Q/��0 and N e.R/D Œ0; degL.R/��0. Eval-
uating at q D 1, it follows that Q.1;M;L/;R.1;M;L/ 2K.M /ŒL� are well-defined
and P .1;M;L/DQ.1;M;L/R.1;M;L/, where Q.1;M;L/ and R.1;M;L/ are
of L–degree degL.Q/ and degL.R/ respectively. This contradicts the assumption
that P .1;M;L/ is irreducible and completes the proof.

4.2 Adams operations on W–modules

In this section we introduce Adams (ie exterior power) operations on finitely gener-
ated W–modules. The Adams operations were inspired by the Weyl algebra setting,
and play an important role in irreducibility and factorization of elements in W .

To begin with, a finitely generated left W–module M is a direct sum of a free module
of finite rank and a cyclic torsion module. The proof of this statement for W is
identical to the proof for modules over the Weyl algebra, discussed for example in [36,
Lemma 2.5 and Proposition 2.9].

Consider a torsion W–module M with generator f . We will write this by .M; f /,
following the notation of [36, Section 2.3]. f is often called a cyclic vector for M.
It follows that MDW =.W P / where P is a generator of the left annihilator ideal
ann.f / WD fQ 2W jQf D 0g of f .
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Definition 4.4 For a natural number k , we define the k th exterior power of .M; f / byVk
.M; f /D .

VkM; f ^Lf ^ � � � ^Lk�1f /:

If P D ann.f /, then we define
Vk

P WD ann.f ^Lf ^ � � � ^Lk�1f /.

The next lemma is an effective algorithm to compute
Vk

P . Recall the shifted analogue
of the Wronskian (also called Casoratian) of k sequences f .i/

n for i D 1; : : : ; k

given by

(5) W
�
f .1/; : : : ; f .k/

�
n
D det

0�j�k�1
1�i�k

f
.i/

nCj :

Lemma 4.5 Let P 2W and f .1/
n ; : : : ; f

.k/
n be k linearly independent solutions of

the equation Pf D0. Then
Vk

P is the minimal-order operator in W which annihilates
the sequence wn DW

�
f .1/; : : : ; f .k/

�
n

. In particular, there is a unique such solution
(up to left multiplication by elements from K.q;M /).

Proof Let d D degL.P / and fix k � d . Let

I D f.i1; : : : ; ik/ j 1� i1 < i2 < � � �< ik � dg:VkM has a basis fvI j I 2 Ig, where vI D Li1�1f ^ Li2�1f � � � ^ Lik�1f for
I D .i1; : : : ; ik/ 2 I . Now, using the fact that Pf D 0, it follows that for v 2M and
every natural number j we have

Ljv D
X
I2I

aj ;IvI ;

where the aj ;I are rational functions in q and qn . It follows that the set˚
Ljv

ˇ̌
j D 0; : : : ;

�
d
k

�	
is linearly dependent. A minimal dependency of this set gives rise to the operator

Vk
P

by definition of the latter.

To prove the lemma, choose a fundamental set of solutions f .i/ for i D 1; : : : ; d to
the recurrence equation Pf D 0 and consider the correspondence

� W fvI j I 2 Ig �! fwI j I 2 Ig; �.vI /D wI ;

where wI DW
�
f .i1/; : : : ; f .ik/

�
for I D .i1; : : : ; ik/2 I . The above correspondence

is invariant with respect to the L–action since

LW
�
g.i1/; : : : ;g.ik/

�
DW

�
Lg.i1/; : : : ;Lg.ik/

�
:
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It follows that for all natural numbers j we have

Ljw D
X
I2I

aj ;IwI ;

where w D �.f ^ Lf ^ � � � ^ Lk�1f / D W .f .1/; : : : ; f .k//. Since
Vk

P is the
operator that encodes the minimal dependency among the translates of v , it follows
that it is also the operator that encodes the minimal dependency among the translates
of w . The result follows.

Corollary 4.6 Lemma 4.5 gives the following algorithm to compute
Vk

P : The
definition of wn as a determinant together with the equations Pf .i/D0 for iD1; : : : ; k

allows to express wnC` for arbitrary ` 2N as a K.q; qn/–linear combination of the
products

kY
iD1

f .i/
nCji

where 0� ji < degL.P /

for 1 � i � k . This allows to determine the minimal ` such that wn; : : : ; wnC` are
K.q; qn/–linearly dependent. Compare also with [36, Example 2.29].

Lemma 4.7 Let P 2W be of the form P D Ld C
Pd�1

jD0 aj Lj with a0 ¤ 0, and
let

˚
f

.1/
n ; : : : ; f

.d/
n

	
be a fundamental solution set of the equation Pf D 0. Then

wnC1� .�1/da0wn D 0, where w DW .f .1/; : : : ; f .d//.

Proof The proof is done by an elementary calculation

wnC1 D det

0BB@
f

.1/
nC1

� � � f
.d/

nC1
:::

:::

f
.1/

nCd
� � � f

.d/

nCd

1CCAD det

0BBBB@
f

.1/
nC1

� � � f
.d/

nC1
:::

:::

f
.1/

nCd�1
� � � f

.d/

nCd�1

�a0f
.1/

n � � � �a0f
.d/

n

1CCCCAD .�/da0wn;

where in the second step the identities

f
.i/

nCd
D�

d�1X
jD0

ajf
.i/

nCj

and some row operations have been employed.

Theorem 4.8 Let P;Q;R 2W such that P DQR is a factorization of P , and let
k denote the order of R, ie k D degL.R/. Then

Vk
P has a linear right factor of the

form L� a for some a 2K.q;M /.
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Proof Let F D
˚
f .1/; : : : ; f .k/

	
be a fundamental solution set of R. By Lemma 4.7

it follows that w DW .f .1/; : : : ; f .k// satisfies a recurrence of order 1, say wnC1 D

awn; a 2K.q;M /. But F is also a set of linearly independent solutions of Pf D 0,
and therefore w is contained in the solution space of

Vk
P . It follows that

Vk
P has

the right factor L� a.

5 Plethysm

In this section we define Adams operations on the ring Q.M /ŒL�, and in particular on
the set of affine curves in C� �C� .

Let Q.M/CŒL� denote the subring of Q.M/ŒL� which consists of p.M;L/2Q.M/ŒL�

with p.M; 0/D 1. If p.M;L/ 2Q.M /CŒL� has degree d D degL.p/, then we can
write

p.M;L/D

dY
iD1

.1CLi.M /Li/

in an appropriate algebraic closure of Q.M /ŒL�.

Definition 5.1 For k 2N we define  W Q.M /CŒL� �!Q.M /CŒL� by

 k.p/.M;L/D
Y

1�ii <i2<���<ik�d

.1CLi1
.M / : : :Lik

.M /L/:

The next lemma expresses the coefficients of  k.p/ in terms of those of p using
the plethysm operations on the basis ei of the ring of symmetric functions ƒ. For a
definition of the latter, see Macdonald [29, Section I–8].

Lemma 5.2 If p D
Q1

iD1.1CxiL/D
P1

iD0 eiL
i then

 k.p/D

1X
iD0

.ei ı ek/L
i :

Corollary 5.3 In particular for d D 5 and k D 2; 3 (as is the case of interest for the
knot 74 ) the SF package (Stembridge [39]) gives:

p D 1C e1LC e2L2
C e3L3

C e4L4
C e5L5
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 2.p/D 1C e2LC .e1e3� e4/L
2
C .�2e2e4C e2

3 C e2
1e4� e1e5/L

3

C .e3
1e5C e3e5� e2

4 � 3e1e2e5C e1e3e4/L
4

C .e2
1e3e5� 2e1e4e5� 2e2e3e5C 2e2

5 C e2e2
4/L

5

C .e1e2e4e5� e2
1e2

5 C e2e2
5 � 3e3e4e5C e3

4/L
6

C .�e4e2
5 C e1e2

4e5� 2e1e3e2
5 C e2

2e2
5/L

7

C .e2e4e2
5 � e1e3

5/L
8
C e3e3

5L9
C e4

5L10

 3.p/D 1C e3LC .e2e4� e1e5/L
2
C .�2e1e3e5� e4e5C e1e2

4 C e2
2e5/L

3

C .e1e2e4e5� e2
1e2

5 C e2e2
5 � 3e3e4e5C e3

4/L
4

C .�2e2e3e2
5 C 2e3

5 C e2
1e3e2

5 C e2e2
4e5� 2e1e4e2

5/L
5

C .�e2
4e2

5 C e3e3
5 C e3

1e3
5 C e1e3e4e2

5 � 3e1e2e3
5/L

6

C .e2
3e3

5 � e1e4
5 C e2

1e4e3
5 � 2e2e4e3

5/L
7

C .�e4e4
5 C e1e3e4

5/L
8
C e2e5

5L9
C e6

5L10

6 Factorization of q–difference operators after Bronstein–
Petkovšek

This section is not needed for the results of our paper, but may be of independent interest.
Bronstein and Petkovšek [4] developed a factorization algorithm for q–difference
operators, and more generally, for Ore operators. A key component of their algorithm,
which predated and motivated the work of Abramov, Paule and Petkovšek [1], is to
reduce the problem of factorization into computing all linear right factors of a finite
list of so-called associated operators. Since this factorization algorithm is not widely
known, we will describe it in this section, following [4]. All results in this section are
due to [4].

Definition 6.1 Let P 2W be of the form P DLd C
Pd�1

jD0 aj Lj with a0 ¤ 0, and
let
˚
f

.1/
n ; : : : ; f

.d/
n

	
be a fundamental solution set of the equation Pf D 0. Let

(6)
dX

lD0

w.d�l/Llf D det

0B@ f f .1/ � � � f .d/

:::
:::

:::

Ldf Ldf .1/ � � � Ldf .d/

1CA :
Lemma 6.2 With the notation of Definition 6.1 we have:

(a) w.d�j/=w.0/
D aj ; j D 0; : : : ; d:
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(b) w.0/ DW .f .1/; : : : ; f .d// satisfies w.0/
nC1
C .�1/da0w

.0/
n D 0.

(c) For j D 0; : : : ; d � 1 and n 2N we have

(7) aj .q; q
n/w

.d�j/
nC1

C .�1/daj .q; q
nC1/a0.q; q

n/w.d�j/
n D 0:

Proof Since
Pd

lD0w
.d�l/Llf .i/ D 0 for i D 1; : : : ; d and ff .1/; : : : ; f .d/g is a

fundamental solution of the equation Pf D 0, it follows that P D
Pd

lD0w
.d�l/Llf .

This proves (a). The definition of w.0/ implies that w.0/ DW .f .1/; : : : ; f .d// and
likewise

w.d/
DW .Lf .1/; : : : ;Lf .d//DLW .Lf .1/; : : : ;Lf .d//:

Using w.d/ D a0w
.0/ (by Part (a)) and the above, we obtain (b). Now, (a) gives

w.d�j/ D ajw
.0/ , hence

Lw.d�j/
D .Laj /Lw

.0/
D .�1/d�1.Laj /a0w

.0/:

Eliminating w.0/ , (c) follows.

Lemma 6.2 gives the following algorithm that produce a finite set of all possible right
factors RDLk C

Pk�1
jD0 aj Lj of an element P 2W .

Corollary 6.3 Using the definition of w.k�j/ for j D 0; : : : ; k together with the
equations Pf .i/ D 0 for i D 1; : : : ; k allows to express w.k�j/

nC`
for arbitrary ` 2 N

as a K.q; qn/–linear combination of the products
Qk

iD1 f
.i/

nCji
where 0�ji <degL.P /

for 1� i � k . This allows to determine the minimal ` such that

w.k�j/
n ; : : : ; w

.k�j/

nC`

are K.q; qn/–linearly dependent. Let
Vk

j P denote the corresponding monic minimal-
order operators. Using qHyper, list all right factors of

Vk
j P . If aj D 0, include it in the

list of possible values of aj . Otherwise, use the computed finite list and Equation (7) to
list all possible values of aj . The result follows.

7 Irreducibility of the computed recurrence for 74

The irreducibility of a monic operator P 2 W of order d can be established by
Theorem 4.8, ie by showing that none of the exterior powers

Vk
P for 1� k < d has a

linear right factor. In the case of the fifth-order operator P74
we observed that its qD 1

specialization factors into two irreducible factors of L–degrees 2 and 3, respectively
(and hence Proposition 4.3 is not applicable). We conclude that P74

cannot have right
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factors of L–degrees 1 or 4. Thus it suffices to inspect its second and third exterior
powers only.

The computation of an exterior power
Vk

P is immediate from its definition. We start
with an ansatz for a linear recurrence for the Wronskian:

(8) c`.q;M /wnC`C � � �C c1.q;M /wnC1C c0.q;M /wn D 0:

In the next step, all occurrences of wnCj in (8) are replaced by the expansion of the
determinant (5), eg for k D 2 we have

wnCj D f
.1/

nCjf
.2/

nCjC1
�f

.1/
nCjC1

f
.2/

nCj :

As before let d denote the L–degree of P . Now each f .i/
nCj with j � d is rewritten

as a Q.q;M /–linear combination of

f .i/
n ; : : : ; f

.i/

nCd�1
;

using the equation Pf .i/ D 0. Finally, coefficient comparison with respect to f .i/
nCj ,

1� i � k , 0� j < d yields a linear system for the unknown coefficients c0; : : : ; c` .
The minimal-order recurrence for wn can be found by trying `D 0, `D 1, . . . , until a
solution is found. This methodology was employed to compute

V2
P74

and
V3

P74

(see Table 1 for their sizes).

L–degree M –degree q–degree ByteCount

P74
5 24 65 463544V2

P74
10 134 749 37293800V3

P74
10 183 1108 62150408

Table 1: Some statistics concerning P74
and its exterior powers

Having the exterior powers of P74
at hand, we can now apply Theorem 4.8 to it: for

establishing the irreducibility of P74
we have to show that its exterior powers do not

have right factors of order one. Note that for our application we would not necessarily
need the minimal-order recurrences for the Wronskian; as long as they have no linear
right factors, the irreducibility follows as a consequence. Note also that one could try
to use Proposition 4.3 for this task; unfortunately this is not going to work, since from
the discussion in Section 5 it is clear that, after the substitution q D 1, the exterior
powers in question do have a linear factor.

It is well known that a linear right factor of a q–difference equation corresponds to a
q–hypergeometric solution, ie a solution fn.q/ such that fnC1=fn is a rational function
in q and qn . The problem of computing all such solutions has been solved in [1] and
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the corresponding algorithm has been implemented by Petkovšek in the Mathematica
package qHyper.

Let P .q;M;L/D
Pd

iD0 pi.q;M /Li be an operator such that all pi are polynomials
in q and M . The qHyper algorithm described in [1] attempts to find a right factor
L�r.q;M / of P where the rational function r is assumed to be written in the normal
form

r.q;M /D z.q/
a.q;M /

b.q;M /

c.q; qM /

c.q;M /

subject to the conditions

(9) gcd
�
a.q;M /; b.q; qnM /

�
D 1 for all n 2N

and

gcd
�
a.q;M /; c.q;M /

�
D 1; gcd

�
b.q;M /; c.q; qM /

�
D 1; c.0/¤ 0

(see [1] for the existence proof). It is not difficult to show that under these assumptions
a.q;M / j p0.q;M / and b.q;M / j pd .q; q

1�dM /. Therefore the algorithm qHyper
proceeds by testing all admissible choices of a and b . Each such choice yields a q–
difference equation for c.q;M / which also involves the unknown algebraic expression
z.q/. The techniques for solving this kind of equations (or for showing that no solution
exists) are described in detail in [1].

Now let’s apply qHyper to P .2/.q;M;L/ WD
V2

P74
whose trailing and leading coef-

ficients are given by

p0.q;M /D q162M 44.M � 1/

� 9Y
iD6

.qiM � 1/

�
�

� 10Y
iD6

.qiM C 1/.q2iC1M 2
� 1/

�
F1.q;M /;

p10.q; q
�9M /D q�397.q2M � 1/

� 7Y
iD4

.M � qi/

�
�

� 8Y
iD4

.M C qi/.M 2
� q2iC1/

�
F2.q;M /;

where F1 and F2 are large irreducible polynomials, related by q280F1.q;M / D

F2.q; q
10M /. A blind application of qHyper would result in

45 � 216
� 216
D 193 273 528 320
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possible choices for a and b ; far too many to be tested in reasonable time. Cluzeau
and van Hoeij [6] and Horn [21] have presented improvements to qHyper which are
based on local types and exclude a large number of possible choices; however, the
simple criteria described below seem to be more efficient.

In order to confine the number of qHyper’s test cases we exploit two facts. The first is
the fact that P .2/.1;M;L/DR1.M / � .L�M 4/ �Q1.M;L/ �Q2.M;L/, where Q1

and Q2 are irreducible of L–degree 3 and 6, respectively. In other words, we need
only to test pairs .a; b/ which satisfy the condition

(10) a.1;M /DM 4b.1;M /:

The second fact is that a and b must fulfill Condition (9); Petkovšek [34, Remark 4.1]
has already suggested this improvement, formulated in the setting of difference equa-
tions. In our example we are lucky because the two criteria exclude most of the possible
choices for a and b ; the process of figuring out which cases remain to be tested is now
presented in detail.

(1) Equation (10) implies that either both F1 and F2 must be present or none of
them; Condition (9) then excludes them entirely.

(2) Clearly the factor M 4 in Equation (10) can only come from M 44 in p0 ; thus all
other (linear and quadratic) factors in a.1;M /=b.1;M / must cancel completely.

(3) The most simple admissible choice is a.q;M /DM 4 and b.q;M /D 1.

(4) Because of Equation (9) a cancellation can almost never take place among factors
which are equivalent under the substitution q D 1. This is reflected by the fact
that the entries in the first column of Table 2 are (row-wise) larger than those
in the second column, eg .q6M C 1/ j a.q;M / and .q�4M C 1/ j b.q;M /

violates Equation (9).

(5) The only exception is that .M�1/ ja.q;M / cancels with .q2M�1/ jb.q;M / in
a.1;M /=b.1;M /. In that case, Equation (9) excludes further factors of the form
qiM �1, and together with Equation (10) we see that no other factors at all can
occur. This gives the choice a.q;M /DM 4.M � 1/ and b.q;M /D q2M � 1.

(6) We may assume that a.q;M / contains some of the quadratic factors qiM 2� 1.
For q D 1 they factor as .M � 1/.M C 1/ and therefore can be canceled with
corresponding pairs of linear factors in b.q;M /. Condition (9) forces a.q;M /

to be free of linear factors and b.q;M / to be free of quadratic factors. Thus we
obtain

P5
mD1

�
5
m

�
3 D 2251 possible choices.

(7) Analogously a.q;M / can have some linear factors which for qD 1 must cancel
with quadratic factors in b.q;M /; this gives 2251 further choices.
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Summing up, we have to test 4504 cases which can be done in relatively short time
on a computer. None of these cases delivered a solution for c.q;M / and z.q/ which
proves that P .2/ does not have a linear right factor.

V2
P74

V3
P74

p0.q;M / p10.q; q
�9M / p0.q;M / p10.q; q

�9M /

qiM � 1 0, 6, 7, 8,
9

�7;�6;�5;�4,
2

0, 7, 8, 9 �6, �5, �4, 3

qiM C 1 6, 7, 8, 9,
10

�8;�7;�6;�5,
�4

7, 8, 9, 10, 11 �8, �7, �6, �5,
�4

qiM 2�1 13,15, 17,
19, 21

�17,�15, �13,
�11, �9

5, 7, 9, 11, 132,
152, 172, 192,
212, 23

�17;�152;�132,
�112, �92, �72,
�5, �3, �1, 1

Table 2: Factors of the leading and trailing coefficients of the exterior powers
of P74

; each cell contains the values of i of the corresponding factors.
Superscripts indicate that factors occur with multiplicities.

The situation for P .3/.q;M;L/ WD
V3

P74
is very similar. Now the trailing and leading

coefficients turn out to be

p0.q;M /D q297M 66.M � 1/.q7M � 1/ � � � .q23M 2
� 1/F3.q;M /;

p10.q; q
�9M /D q�456.q3M � 1/.M � q4/ � � � .M 2

� q17/F4.q;M /;

where the linear and quadratic factors can be extracted from Table 2. Also not explicitly
displayed are the large irreducible factors F3 and F4 which satisfy q275F3.q;M /D

F4.q; q
10M /. For q D 1 we obtain the factorization

P .3/.1;M;L/DR2.M / � .LCM 7/ �Q3.M;L/ �Q4.M;L/;

where Q3 and Q4 are irreducible of L–degree 3 and 6, respectively. As before we
get two special cases, the first with a.q;M /DM 7 and b.q;M /D 1, and the second
with a.q;M / DM 7.M � 1/ and b.q;M / D q3M � 1. For the choices where we
cancel quadratic against linear factors, we obtain

2

4X
mD1

�
4

m

��
5

m

� bm=2cX
jD0

�
5

j

��
10� j

m� 2j

�
D 23600

possibilities. Again, none of these cases yields a solution for c.q;M / and therefore
we have shown that P .3/ does not have a linear right factor.
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Theorem 4.8 now implies that P74
cannot have a right factor of order 2 or 3. We

conclude that the operator P74
is irreducible.

8 No recurrence of order zero

In this section we give an elementary criterion to deduce that a q–holonomic sequence
does not satisfy an inhomogeneous recurrence of order zero, and apply it in the case of
the 74 knot to conclude the proof of Theorem 1.2. The next lemma is obvious.

Lemma 8.1 If degq.fn.q// is not a linear function of n, then fn.q/ does not satisfy
af D b for a; b 2K.q; qn/.

The degree degq.JK ;n.q// of an alternating knot is well-known and given by a quadratic
polynomial in n; see eg [14; 27]. In the case of the alternating knot 74 , we have

degq.J74;n.q//D
7
2
n2
�

5
2
n� 1 :

It follows that J74;n does not satisfy an inhomogeneous recurrence of order zero.

9 Proof of Theorem 1.2

In this section we will finish the proof of Theorem 1.2. It follows from the following
lemma, of independent interest.

Lemma 9.1 Suppose f is a q–holonomic sequence such that

(1) f satisfies the inhomogeneous recurrence Pf D b ,

(2) P 2W is irreducible, degL.P / > 1 and b 2K.q; qn/¤ 0,

(3) f does not satisfy a recurrence of the form af D c for a; c 2K.q; qn/, a¤ 0.

Then the minimal-order homogeneous recurrence relation that f satisfies is given by
.L� 1/.b�1P /f D 0.

Proof Let dDdegL.P / and P 0D .L�1/.b�1P /. P 0 is the product of two irreducible
elements of W (namely, L�1 and b�1P ) of L–degrees 1 and d respectively. Recall
that W is a Euclidean domain. Although the factorization of an element in W into
irreducible factors is not unique in general, [31, Theorem 1] proves that the number of
irreducible factors of a fixed order is independent of the factorization. It follows that
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any factorization of P 0 into a product of irreducible factors has exactly two factors,
one of L–degree 1 and another of L–degree d .

Suppose P 00f D 0 where P 00 has minimal L–degree strictly less than dC1. Since W
is a Euclidean domain, it follows that P 00 is a right factor of P 0 , and P 00 is a product
of irreducible factors. The above discussion implies that P 00 is irreducible of L–degree
1 or d . Since W is a Euclidean domain, we can write P DQP 00CR where R¤ 0

and degL.R/ < degL.P
00/. It follows that Rf D b , thus .L� 1/.b�1R/f D 0. By

the choice of P 00 , it follows that P 00 is a right factor of .L� 1/.b�1R/.

Case 1 .degL.P
00/D1) Then degL.R/D 0 and f satisfies Rf D b contrary to the

hypothesis.

Case 2 (degL.P
00/Dd ) Then P 00 is irreducible and is a right factor of .L�1/.b�1R/

where degL.b
�1R/ < d . It follows that any factorization of b�1R, extended to a

factorization of .L�1/.b�1R/, will contain an irreducible factor of L–degree d . This
is impossible since degL.b

�1R/ < d .

10 Extension to double twist knots

10.1 The A–polynomial of double twist knots

The SL.2;C/ character variety of nonabelian representations of Kp;p for p > 1

consists of two components, the geometric one, and the nongeometric one; see Petersen
[33]. It follows that the A–polynomial of Kp;p is the product of two factors, with
multiplicities. The values of AKp;p

.M;L/ for pD 2; : : : ; 8, as well as the recurrences
presented in Section 10.2, are available from [9]. For p D 2; : : : ; 8 we have that

AKp;p
.M;L/DA

geom
Kp;p

.M;L/A
ngeom
Kp;p

.M;L/2

is the product of two irreducible factors: the geometric component has .M;L/–degree
.2p� 1; 8p� 2/ and multiplicity one, and the nongeometric one has .M;L/–degree
.p2�p; 4p2� 4/ and multiplicity two. The Newton polygons of A

geom
Kp;p

and A
ngeom
Kp;p

are parallelograms given by the convex hull of˚
.2p� 1; 8p� 2/; .1; 8p� 2/; .0; 0/; .2p� 2; 0/

	
and ˚

.p2
�p; 4p2

� 4p/; .p� 1; 4p2
� 4p/; .0; 0/; .p2

� 2pC 1; 0/
	

respectively in .M;L/–coordinates. The area of the above Newton polygons is
4.4p� 1/.p� 1/ and 4p.p� 1/3 , respectively. The behavior of the Newton polygon
of Ap;p.M;L/ as a function of p is in agreement with a theorem of [10].
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10.2 The noncommutative A–polynomial of double twist knots

We have rigorously computed an inhomogeneous recurrence for the double twist
knot K3;3 , using the creative telescoping algorithm proposed in Koutschan [24]; see
also Section 3. It has order 11 and its .q; qn/–degree is .458; 74/. Moreover, it verifies
the AJ conjecture using the reduced A–polynomial. The corresponding operator factors
for q D 1 into two irreducible factors of L–degrees 5 and 6. In order to show the
irreducibility of the operator itself (to prove that the computed recurrence is of minimal
order), we would have to investigate its fifth and sixth exterior powers, a challenge that
currently seems hopeless.

For K4;4 and K5;5 we were able to obtain recurrences, using an ansatz with undeter-
mined coefficients (“guessing”). Although they were derived in a nonrigorous way,
they both confirm the AJ conjecture using the reduced A–polynomial. Again, both
recurrences are inhomogeneous; the one for K4;4 has order 19 and .q; qn/–degree
.2045; 184/, the one for K5;5 is a truly gigantic one: it is of order 29, has .q; qn/–
degree .6922; 396/, and its total size is nearly 8GB (according to Mathematica’s
ByteCount). These data qualify it as a good candidate for the largest q–difference
equation that has ever been computed explicitly. A rigorous derivation of these two
recurrences using creative telescoping, or even the application of the irreducibility
criterion using exterior powers, is far beyond our current computing abilities.
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Appendix: Formula for the noncommutative A–polynomial
of 74

In the following, Equation (2) from Theorem 1.2 is given explicitly; note that the
operator P74

.q;M;L/D
P5

jD0 aj .q;M /Lj is palindromic since

aj .q;M /D�q60M 24a5�j .q; .q
5M /�1/

(and therefore only a5 , a4 , and a3 are displayed).

a5 D .qM � 1/.qM C 1/.qM 2
� 1/.q2M � 1/.q2M C 1/.q3M 2

� 1/.q5M � 1/

�

�
q8.qC 1/M 4

� q5.q3
C 2q2

C qC 1/M 3

C q2.2q4
C q3

C 2q2
C 2qC 1/M 2

� q.q3
C 2q2

C qC 1/M C .qC 1/
�
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a4 D q.qM � 1/.qM C 1/.qM 2
� 1/.q3M 2

� 1/.q4M � 1/2.q4M C 1/

�

�
q33.qC 1/M 11

� q29.qC 2/.q3
C qC 1/M 10

C q24.qC 1/
�
2q6
� 2q5

C 5q4
C q3

C 4q2
C 3q� 1

�
M 9
� q20

�
4q7
C 2q6

C 9q5
C 10q4

C 6q3
C 6q2

� q� 2
�
M 8

� q16
�
2q11

C q9
� 2q8

� 4q7
� 12q5

� 10q4
� 3q3

C 6qC 3
�
M 7
C q12

�
q13
C 2q12

C 5q11
C q10

C 4q9
� 2q7

� 8q5
C q4

C 7q3
C 7q2

C 7qC 2
�
M 6
� q9

�
q13
C 3q12

C 8q11

C 8q10
C q9

C 4q8
C q7

C 3q6
C q5

� 4q4
C 7q3

C 10q2
C 7qC 3

�
M 5
C q6

�
4q12

C 7q11

C 9q10
C 4q9

� 2q8
C q7

� 4q6
� 3q5

� 3q4
� q3

C 5q2
C 4qC 2

�
M 4
� q5

�
q10
C 5q9

C 6q8
C 3q7

� 7q6
� 10q5

� 7q4
� 9q3

� 9q2
� 9q� 3

�
M 3
C q2.q2

C qC 1/
�
q7
C 2q6

� 5q5
� 5q4

� 3q3
� 2q2

� 3q� 2
�
M 2
C q

�
q5
C 6q4

C 9q3
C 8q2

C 3qC 2
�
M

� .qC 1/.qC 2/
�

a3 D� q2.qM � 1/.qM C 1/.qM 2
� 1/.q3M � 1/2.q3M C 1/.q9M 2

� 1/�
�
q41.qC 1/M 15

� q37
�
q4
C 2q3

C 3q2
C 4qC 1

�
M 14

C q34
�
q5
C q4

C 7q3
C 9q2

C 8qC 3
�
M 13

C q29
�
q9
C 2q8

� 2q7
� 2q6

� 10q5
� 17q4

� 12q3
� 3q2

C 2qC 1
�
M 12

� q25.2q11
C 4q10

C 5q9
C 4q8

� 3q7
� 11q6

� 17q5
� 11q4

C 2q3
C 8q2

C 5qC 1/M 11

C q22
�
6q11

C 12q10
C 8q9

C 8q8
� 14q6

� 19q5
� 6q4

C 11q3
C 16q2

C 9qC 2
�
M 10

C q18
�
2q14

� 2q13
� 9q12

� 17q11
� 11q10

C 10q8
C 20q7

C 24q6
C 7q5

� 15q4
� 20q3

� 10q2
C 1

�
M 9
� q15

�
q15
C 6q14

� 3q13
� 14q12

� 14q11
� 4q10

C 11q9
C 25q8

C 36q7

C 35q6
C 16q5

� 9q4
� 13q3

� 6q2
C 3qC 3

�
M 8
C q12

�
4q15

C 6q14
� 3q13

� 18q12

� 16q11
C 4q10

C 23q9
C 30q8

C 39q7
C 31q6

C 12q5
� 14q4

� 14q3
� q2

C 3qC 3
�
M 7

� q9
�
5q15

C 3q14
� 11q13

� 23q12
� 18q11

C 2q10
C 19q9

C 20q8
C 21q7

C 8q6
� 7q5

� 20q4
� 22q3

� 5q2
C qC 1

�
M 6
C q8.qC 1/

�
2q12

� 4q11
� 13q10

� 17q9
� q8

C 2q7

C 11q6
� 2q5

C 5q4
� 9q3

� 13q2
� 12q� 6

�
M 5
C q5

�
5q12

C 16q11
C 25q10

C 11q9

� 8q8
� 19q7

� 16q6
� 4q5

� 2q4
C 6q3

C 11q2
C 5qC 1

�
M 4
� q4

�
2q10

C 10q9
C 9q8

� 3q7
� 22q6

� 23q5
� 20q4

� 13q3
� 6q2

� 3qC 1
�
M 3
C q2.qC 1/

�
2q7
� 4q6

� 6q5
� 17q4

� 6q3
� 6q2

� 2q� 1
�
M 2
C q

�
2q5
C 8q4

C 11q3
C 10q2

C 3qC 1
�
M � .qC 1/.2qC 1/

�
b74
D� q10M 3.qM C 1/.q2MC 1/.q3MC 1/.q4MC 1/.qM 2

�1/.q3M 2
�1/.q5M 2

�1/.q7M 2
�1/

� .q9M 2
� 1/

�
q10.q3

C q2
� qC 1/M 4

� q6.2q5
C 2q3

C q2
� qC 1/M 3

C q2.qC 1/

� .q7
�2q6

C4q5
�q4
Cq3
Cq2
�qC1/M 2

� q.2q5
C2q3

Cq2
�qC1/M C .q3

Cq2
�qC1/

�
When q is set to 1, the above expressions simplify drastically. For a concise presentation
we introduce the following notation for some frequently appearing irreducible factors:

v1 DM 4
�M 3

� 2M 2
�M C 1

v2 DM 4
� 2M 3

C 6M 2
� 2M C 1

v3 D 2M 4
� 5M 3

C 8M 2
� 5M C 2
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v4 DM 7
� 2M 6

C 3M 5
C 2M 4

� 7M 3
C 2M 2

C 6M � 2

v5 DM 8
� 2M 7

C 6M 6
C 2M 5

� 10M 4
C 2M 3

C 6M 2
� 2M C 1

v6 DM 12
� 6M 11

C 16M 10
� 24M 9

C 15M 8
C 14M 7

� 36M 6
C 14M 5

C 15M 4
� 24M 3

C 16M 2
� 6M C 1

v7 D 2M 14
� 10M 13

C 16M 12
� 4M 11

� 46M 10
C 67M 9

C 28M 8
� 116M 7

C 28M 6
C 67M 5

� 46M 4
� 4M 3

C 16M 2
� 10M C 2

v8 DM 18
� 4M 17

C 10M 16
� 10M 15

� 3M 14
C 40M 13

� 67M 12
� 34M 11

C 157M 10
� 14M 9

� 140M 8
C 40M 7

C 66M 6
� 18M 5

� 14M 4
C 4M 3

C 4M 2
� 4M C 1

v9 DM 26
� 8M 25

C 42M 24
� 142M 23

C 345M 22
� 554M 21

C 521M 20
C 51M 19

� 729M 18

C 827M 17
C 234M 16

� 843M 15
C 707M 14

� 45M 13
C 707M 12

� 843M 11
C 234M 10

C 827M 9
� 729M 8

C 51M 7
C 521M 6

� 554M 5
C 345M 4

� 142M 3
C 42M 2

� 8M C 1

Now the inhomogeneous part b74
and the operator P74

, together with its second and
third exterior power, evaluated at q D 1, can be written in a few lines. A bar is used to
denote the mirror of a polynomial, ie v DM deg.v/v.1=M /.

b74
.1;M /D �M 3.M � 1/5.M C 1/9v3

P74
.1;M;L/D .M � 1/5.M C 1/4v3.L

2
� v1LCM 4/.L3

C v4L2
C v4LCM 7/

P
.2/
74
.1;M;L/D .M� 1/10.MC 1/10.M 2

C 1/2v2v
4
3v5v6v9.L�M 4/.L3

� v4L2
CM7v4L�M14/

�
�
L6
C v1v4L5

C v8L4
�M 4v1v7L3

CM 8v8L2
CM 15v1v4LCM 26

�
P

.3/
74
.1;M;L/D .M � 1/19.M C 1/20.M 2

C 1/2v2v
6
3v5v6v9.LCM 7/

� .L3
CM 4v4L2

CM 8v4LCM 19/

�
�
L6
� v1v4L5

CM 4v8L4
CM 11v1v7L3

CM 18v8L2
�M 29v1v4LCM 40

�
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