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Factorization rules in
quantum Teichmüller theory

JULIEN ROGER

For a punctured surface S , a point of its Teichmüller space T .S/ determines an
irreducible representation of its quantization T q.S/ . We analyze the behavior of
these representations as one goes to infinity in T .S/ , or in the moduli space M.S/

of the surface. The main result of this paper states that an irreducible representation
of T q.S/ limits to a direct sum of representations of T q.S
 / , where S
 is obtained
from S by pinching a multicurve 
 to a set of nodes. The result is analogous to the
factorization rule found in conformal field theory.

57M50; 32G15, 20G42

Let S be an oriented surface of genus g obtained from a closed compact surface S by
removing s punctures v1 , . . . , vs . The Teichmüller space T .S/ of S is the space of
isotopy classes of complete hyperbolic metrics on S with finite area. It comes equipped
with a natural Kähler metric, called the Weil–Petersson metric, which is invariant under
the action of the mapping class group MCG.S/ on T .S/. A quantization of the
Teichmüller space was successfully described by L Chekhov and V V Fock in [10],
and, in a slightly different setting, by R Kashaev in [12]. In the work of Chekhov and
Fock, the main geometric ingredient is the notion of shear coordinates on the enhanced
Teichmüller space �T .S/, which were introduced by W Thurston [19]. On the algebraic
side, they make use of the quantum dilogarithm as described by L Faddeev and R
Kashaev [8].

In the physics literature, the interest for the quantization of Teichmüller theory can
be traced back to the work of E Verlinde and H Verlinde [21; 20]. In particular, H
Verlinde conjectured in [20] that quantum Teichmüller theory should give rise to a
family of representations of the mapping class groups which could be identified with
a modular functor obtained from Liouville conformal field theory. The existence of
such a modular functor associated to the quantum Teichmüller space was conjectured
also by Fock [9] and was studied further by J Teschner [18]. A generalized version of
this conjecture was made by Fock and A B Goncharov [11] in their study of (quantum)
higher Teichmüller theory.

The goal of this paper is to investigate a similar question in the context of the exponential
version of the quantum Teichmüller space studied by H Bai [3], F Bonahon and
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X Liu [7; 14]. Given a parameter q 2 C� , the quantum Teichmüller space T q.S/

is a non-commutative algebra, a deformation of an algebra of functions on T .S/.
For q a root of unity, Bonahon and Liu [7] described a complete classification of
the finite-dimensional irreducible representations �W T q.S/! End.V /. In particular,
in the case when q is a primitive N th root of unity with N odd and fixing weights
p1; : : : ;ps 2 f0; : : : ;N �1g labelling the punctures v1 , . . . , vs of S , one can associate
to every hyperbolic metric m2T .S/ a unique irreducible representation �mW T q.S/!

End.V /. Using a construction similar to the one described in [4], one can then construct
a projective vector bundle Kq D Kq.p1; : : : ;ps/ over T .S/ with fiber PV , where
the fiber at m 2 T .S/ is endowed with the action of the irreducible representation
�m of T q.S/. This construction behaves well under the action of the mapping class
group MCG.S/ and we obtain a projective vector bundle �Kq over the moduli space
M.S/D T .S/=MCG.S/.

In the spirit of conformal field theory, one can then ask if this bundle extends to the
Deligne–Mumford compactification M.S/ of the moduli space. To study this question,
we analyze how the representation �m of T q.S/ breaks down when the metric m

approaches a point of M.S/XM.S/, that is, when the lengths of a finite number of
geodesics of S tend to 0 for this metric. The result we obtain can be interpreted as a
factorization rule for this theory.

More precisely, let � be an ideal triangulation of S , that is, a triangulation of S with
vertices at the punctures. Following the construction of Chekhov and Fock in [10],
Bonahon and Liu [7; 14] associate to S , the triangulation � and a parameter q 2C� , an
algebra T q

�
.S/ called the Chekhov–Fock algebra. It is the skew-commutative algebra

over C with generators X˙1
1
; : : : ;X˙1

n associated to the edges of � and relations
XiXj D q2�ijXj Xi , where the �ij 2 f�2;�1; 0; 1; 2g are the coefficients of the Weil–
Petersson Poisson structure on the enhanced Teichmüller space �T .S/, parametrized
using Thurston’s shear coordinates.

Approaching a point in the boundary of M.S/ corresponds to shrinking a finite number
of non-intersecting geodesics of S to points. Hence we give ourselves a finite union
of non-intersecting, non-homotopic, essential simple closed curves 
 D

S
i 
i � S

and we consider the surface S
 D S X 
 . One should think of S
 as being obtained
from S by pinching the multicurve 
 to a set of nodes and removing them. It is a
possibly disconnected surface with two new punctures for each curve removed. The
ideal triangulation � on S induces an ideal triangulation �
 on S
 whose edges are
given by taking homotopy classes of edges of �\S
 .

An essential step is to relate the quantum Teichmüller spaces of S and S
 .
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Proposition 1 For every ideal triangulation � and every multicurve 
 on S , there
exists an algebra homomorphism

‚
q


;�
W T q

�

.S
 / �! T q

�
.S/

described explicitly by sending each generator of T q

�

.S
 / to certain monomials

in T q

�
.S/.

The existence of this homomorphism is the algebraic translation of the fact that the
Weil–Petersson Poisson structure extends naturally to the completion T .S/ of the
Teichmüller space for the Weil–Petersson metric (see H Masur [15] and S Wolpert
[23]). This completion is called the augmented Teichmüller space and was introduced
by W Abikoff [2] and L Bers [5]. As a set, it is the union of T .S/ and of the T .S
 /
for every multicurve 
 . The action of MCG.S/ on T .S/ extends to T .S/ and
the quotient T .S/=MCG.S/ can be identified topologically with M.S/. The key
geometric ingredient is given by an extension of the shear parameters on T .S/ to the
strata T .S
 / of this augmentation.

When q is a primitive N th root of unity with N odd, Bonahon and Liu associate an
irreducible representation �mW T q

�
.S/! End.V / of the Chekhov–Fock algebra to

each metric m2T .S/ and weights p1; : : : ;ps 2f0; : : : ;N �1g labelling the punctures
v1; : : : ; vs of S . The representation �m is defined uniquely up to isomorphism and
varies continuously with the metric m. We proceed with studying the behavior of �m

when m approaches a lower-dimensional stratum T .S
 / in T .S/.
For simplicity, let us restrict attention in the introduction to the case when 
 consists
of a single curve.

Theorem 2 Let mt 2 T .S/ be a continuous family of hyperbolic metrics such that,
as t ! 0, mt converges to m
 2 T .S
 / in T .S/. Let �t W T q

�
.S/ ! End.V /

be a continuous family of irreducible representations classified by mt and weights
p1; : : : ;ps 2 f0; : : : ;N � 1g labelling the punctures v1; : : : ; vs of S .

Then, as t ! 0, the representation

�t ı‚
q


;�
W T q

�

.S
 /! End.V /

approaches
N�1M
iD0

�i

 W T

q

�

.S
 /! End

�N�1M
iD0

Vi

�
where, for each i , �i


 W T
q

�

.S
 /! End.Vi/ is the irreducible representation classified

by m
 , the weights p1; : : : ;ps labelling the old punctures and the weight i labelling
the two new punctures v0 and v00 of S
 .
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The next step is to show that this decomposition is well-behaved under changes of
triangulations. More precisely, for any two triangulations � and �0 of S , Chekhov and
Fock introduce quantum coordinate change isomorphisms ˆq

��0
W �T q

�0.S/!
�T q

�.S/

between the fraction division algebras associated to the Chekhov–Fock algebras T q

�
.S/

and T q

�0
.S/. The quantum Teichmüller space T q.S/ of S is then defined to be the

union of the �T q

�.S/ for every triangulation �, modulo the relation which identifies
X 0 2 �T q

�0.S/ to ˆq

��0
.X 0/ 2 �T q

�.S/.

The coordinate change isomorphisms are only defined between fraction algebras. For
certain representations �� of T q

�
.S/ the composition with ˆq

�;�0
still makes sense

and we obtain a representation

�� ıˆ
q

�;�0
W T q

�0
.S/! End.V /:

A representation � of T q.S/ is then a family of representations f��g� of T q

�
.S/

such that �� ıˆ
q

��0
D ��0 for every pair of triangulations � and �0 . In particular,

given m 2 T .S/ and weights p1; : : : ;ps labelling the punctures of S , one obtains
a representation �m D f�m;�g� where �m;�W T

q

�
.S/ ! End.V / is the irreducible

representation of T q

�
.S/ classified by these data.

Theorem 3 Let �t D f�t;�g� be a continuous family of irreducible representations of
T q.S/ classified by weights p1; : : : ;ps and a continuous family mt 2 T .S/ such that
mt approaches m
 2 T .S
 / as t ! 0. For each triangulation � of S , we let the limit

lim
t!0

�t;� ı‚
q


;�
D

M
i

�i

;�

be given as in Theorem 2.

Then, for any triangulations � and �0 and weight i , we have

�i

;�0 D �

i

;� ıˆ

q

�
�
0


:

Hence the family of representations f�i

;�
g� determines an irreducible representation

�i

 W T q.S
 /! End.V /, which is classified by m
 , the weights p1; : : : ;ps labelling

the old punctures, and the weight i labelling the new punctures v0 and v00 of S
 .

Interpretation and perspectives

In his seminal work [22], E Witten described a correspondence between Chern–Simons
theory and conformal field theory for compact gauge groups. In this context, the
theory is rational, implying in particular that the spaces of conformal blocks are
finite-dimensional. The dimensions of the subspaces in the decompositions for the
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corresponding factorization rules must satisfy so-called fusion rules leading to the
celebrated Verlinde formula.

In analogy with Witten’s work, H Verlinde proposed in [20] to relate Chern–Simons
theory for the non-compact group SL2.R/ to non-rational conformal field theory in
the context of quantum Liouville theory (see more recently Teschner [17]). The moduli
space of flat SL2.R/–connections being non-compact, its quantization gives rise to
an infinite-dimensional Hilbert space H , which Verlinde proposes to identify with
the space of conformal blocks of a conformal field theory. Via this identification, and
restricting to the Teichmüller space, Verlinde argues that the factorization rule for H
corresponds to its decomposition into the eigenspaces of the action of the quantum
length operators L
 associated to simple closed curves 
 . Unlike the rational case, the
fusion rules are trivial: the spectrum of these operators is simple and equal to .0;1/,
corresponding geometrically to the range of the length function `
 (see Kashaev [13]).
Following the same approach as in the rational case, one can try to construct a family
of projective representations of the mapping class groups by studying the “change of
bases” corresponding to decompositions of H for different pants decompositions of S ,
that is, maximal collections of essential simple closed curves [18].

In our context, given an ideal triangulation �, the relevant operator associated to a
curve 
 is the one introduced at the beginning of the proof of Theorem 17, called X
 .
It is the quantum analogue of the exponential graph length function x
 (see Lemma 7).
In particular, given a finite-dimensional irreducible representation of the Chekhov–Fock
algebra �mW T q

�
.S/! End.V / associated to a point m 2 T .S/, the decomposition

of V exhibited in Theorem 2 is given by the eigenspaces of the operator X
 . Its
spectrum is simple and of the form fc
 .m/qi j i D 0; : : : ;N � 1g, for some parameter
c
 .m/ 2 .1;1/ determined by m. As such, the fusion rules for the theory are once
again trivial.

The specificity of the finite-dimensional approach to quantum Teichmüller theory,
however, is its geometrical flavor. In particular, when letting m approach a metric m


pinched along 
 , one can see that the length function `
 is asymptotically equivalent
to log x
 . The parameter in the spectrum of X
 is in fact c
 .m/D

N
p

x
 .m/, possibly
after a shift by an N th root of unity. As such, although the decomposition of V

can be obtained at any point m 2 T .S/, it becomes geometrically meaningful when
approaching a lower-dimensional stratum T .S
 /.

The correct framework for studying this behavior further should be in terms of the
projective vector bundle �Kq over the moduli space M.S/ discussed in the introduction.
The first question to investigate will be whether the decomposition discussed above
provides a natural extension of this bundle to the Deligne–Mumford compactification
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M.S/ of the moduli space. The independence of the factorization rule under changes
of triangulations (see Proposition 25) should be the key ingredient in this extension. A
tantalizing question at this point is if this extension can be used to construct a family
of finite-dimensional representations of mapping class groups. We plan to study this
question further; however, we do not conjecture at this point if such a construction
exists or not.

Plan of the paper

In the first section we introduce the necessary background on Teichmüller space and its
augmentation, shear coordinates and the Weil–Petersson Poisson structure. Section 2
is dedicated to the study of a natural extension of shear coordinates to the augmented
Teichmüller space and to the proof that the Weil–Petersson Poisson bracket extends
to the augmentation for this extension. In Section 3, we apply this construction to the
study of the representation theory of the Chekhov–Fock algebras, which are versions of
the quantum Teichmüller space for a fixed triangulation. The last section is dedicated
to the study of the independence of the result under changes of triangulations, thus
extending it to the quantum Teichmüller space itself.
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1 Geometric background

Throughout this paper, S will be an oriented surface of genus g obtained from a closed
surface S without boundary by removing s punctures v1; : : : ; vs . We will assume that
S has at least one puncture and has Euler characteristic �.S/D 2� 2g� s < 0. The
simplest such surfaces are the spheres with 3 or 4 punctures and the once-punctured
torus.

Algebraic & Geometric Topology, Volume 13 (2013)



Factorization rules in quantum Teichmüller theory 3417

1.1 Teichmüller spaces

For the purpose of this paper we will need two variants of Teichmüller space. The
first and most classical one, denoted simply as T .S/, will be the set of isotopy classes
of complete hyperbolic metrics on S with finite area. We will call this space simply
the Teichmüller space of S . However, we will need to drop the finite area condition
to describe the exponential shear coordinates, which are essential to the definition of
the quantum Teichmüller space. Let Conv.S;m/ denote the convex core of S , that is,
the smallest non-empty closed convex subset of .S;m/. It is a surface with cusps and
geodesic boundaries whose interior is homeomorphic to S . If .S;m/ has finite area
then its convex core consists of the whole surface. Otherwise, some of the punctures of
.S;m/ will have a neighborhood isometric to an infinite area funnel bounded by one of
the geodesic boundaries of Conv.S;m/. We let �T .S/ be the space of isotopy classes
of complete hyperbolic metrics on S , possibly with infinite volume, together with an
orientation of each of the boundary components of Conv.S;m/. The set �T .S/ is called
the enhanced Teichmüller space of S . In particular, since, for a complete hyperbolic
metric, Conv.S;m/ has no boundary component, there is a natural embedding of T .S/
into �T .S/.
1.2 The augmented Teichmüller space

We will also need to consider the augmented Teichmüller space T .S/, which was
introduced by Abikoff [1; 2] and Bers [5], and was further studied by Masur [15]
(see more recently Wolpert [24] and references therein). We will briefly recall its
construction and some of its properties.

Let 
 D 
1 [ � � � [ 
k be the union of k disjoint, non-homotopic, essential simple
closed curves. Such a 
 will be called a multicurve. Alternatively, 
 corresponds to
a .k � 1/–simplex in C.S/, the complex of curves of S . We will denote by S
 the
surface obtained from S by removing the multicurve 
 . It is a possibly disconnected
surface with two new punctures for each curve removed. As a set, we define

T .S/D T .S/[
[


2C.S/

T .S
 /;

where T .S
 / is the product of Teichmüller spaces associated to the connected compo-
nents of S
 . The T .S
 / are called the strata of T .S/.

A topology on T .S/ can be defined as follows: a sequence of metrics .mn/n in
T .S/ converges to m
 2 T .S
 / if, as n!1, the length `mn

.
i/ of (the geodesic
representative of) 
i for mn tends to 0 for every i , and mn converges uniformly to
m
 on every compact subset of S
 .
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The action of the mapping class group MCG.S/ of S on the Teichmüller space extends
to T .S/ and the quotient T .S/=MCG.S/ can be identified, as a topological space,
with the Deligne–Mumford compactification M.S/ of the moduli space M.S/ D

T .S/=MCG.S/ [2].

1.3 Exponential shear coordinates

One of the main ingredients for the quantization of Teichmüller space as described
first in [10] is the notion of shear coordinates introduced by W Thurston [19] (see also
Bonahon [6]). We will describe here their exponential version, following for example
[14]. We use the notation RC D .0;1/.

Since �.S/ < 0 and S has at least one puncture, it admits an ideal triangulation
� D f�1; : : : ; �ng, that is, a triangulation of xS with vertices v1; : : : ; vs and edges
�1; : : : ; �n , where the edges are considered up to isotopy. The number of edges of
an ideal triangulation depends only on the Euler characteristic of S and is given by
nD�3�.S/D 6gC 3s� 6. If we endow S with a hyperbolic metric m, each edge
�i is isotopic to a unique geodesic gi for this metric. One can then associate to �i a
number xi 2RC , called the exponential shear parameter of m along �i , obtained as
follows: let zgi be a lift of gi to the universal cover of .S;m/, which we identify with
the upper half-space H2 . zgi separates two triangles zT 1

i and zT 2
i , bounded by lifts of

edges of � so that the union zQi D zgi [
zT 1

i [
zT 2

i forms a square in H2 with vertices
on the projective real line bounding H2 . For a given orientation of zgi , we name the
vertices of zQi by z� , zC , zr , zl , such that zgi goes from z� to zC , and zr and zl

are respectively to the right and to the left of zgi . The exponential shear parameter of
m along �i is defined as

xi D� cross-ratio.zr ; zl ; z�; zC/D�
.zr � z�/.zl � zC/

.zr � zC/.zl � z�/
2RC:

Geometrically, log xi corresponds to the (signed) distance between the orthogonal
projections of zr and zl onto zgi .

Conversely, one can construct a (possibly incomplete) hyperbolic metric m from
any choice of parameters x1; : : : ;xn 2 RC associated to the edges of �, obtained
by gluing ideal hyperbolic triangles into squares whose vertices have the prescribed
cross-ratio. Its completion is a hyperbolic surface S 0 with geodesic boundaries and
cusps, for which each end of the edges of � either converges to a cusp or spirals
around a geodesic boundary. The direction of the spiraling provides an orientation of
the geodesic boundary. This metric on S 0 admits a unique extension to a complete
metric on S whose convex core is S 0 . In this way, one obtains a homeomorphism
��W �T .S/!Rn

C for every ideal triangulation � of S .
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Given x1; : : : ;xn the shear parameters of m 2 �T .S/ associated to a triangulation �,
one can read the geometry of .S;m/ around each puncture vj of S as follows: let
pj D xk1j

1
� � �xknj

n where kij 2 f0; 1; 2g is the number of ends of the edge �i that
converge to vj . Then, if pj D 1, vj is a cusp. Otherwise, j log pj j is the length
of the boundary component of Conv.S;m/ facing vj . Its sign corresponds to the
orientation of the boundary component with respect to the orientation of Conv.S;m/.
As a consequence, the homeomorphism �� restricts to an embedding of T .S/ into
Rn
C , corresponding to setting all the pj equal to 1.

The shear parameters are defined along each edge of � or equivalently for pairs of
adjacent triangles. This definition generalizes to any pair of triangles in the universal
cover of S as follows: let z� be the lift of � to the universal cover zS of .S;m/. Let P

and Q be two ideal triangles in zS delimited by z�. Let z�i1
; : : : ; z�il

, lifts of �i1
; : : : ; �il

respectively, be the set of edges of z� separating P and Q. We include in this set the
edges of P and Q that are closest to each other. The shearing cocycle � of m 2 T .S/
associated to � is defined for such triangles by

�.P;Q/D

lX
jD1

log xij ;

where xij is the shearing parameter of m for the edge �ij . Some properties of the
shearing cocycles will be needed later on and we refer to [6] for more details.

1.4 The Weil–Petersson Poisson structure

The enhanced Teichmüller space can be endowed with a Poisson structure that admits
a simple expression in the logarithmic shear coordinates associated to a triangulation �
of S (see for example [9]). The collection of triangles S X� has 2n spikes converging
toward the punctures, each of them delimited by edges �i and �j not necessarily
distinct. For i; j 2 f1; : : : ; ng, let aij 2 f0; 1; 2g be the number of spikes of S X �

that are delimited to the left by �i and to the right by �j , when looking toward the
end of the spikes. The Weil–Petersson Poisson structure is given in coordinates by the
following bi-vector

…WP D
X
i;j

�ij
@

@ log xi
^

@

@ log xj
;

where �ij D aij � aji 2 f�2;�1; 0; 1; 2g. Its degeneracy is well understood: The
lengths log pj associated to the punctures vj are Casimir functions for …WP and the
cusped Teichmüller space

T .S/D flog p1 D � � � D log ps D 0g
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is a symplectic leaf for this structure. The induced symplectic form on T .S/ can then
be identified with the Kähler form associated to the usual Weil–Petersson metric on
Teichmüller space.

2 Pinching along curves: geometric aspects

We suppose once again that S is an oriented surface of genus g with s � 1 punctures
v1; : : : ; vs and such that �.S/ < 0. Let 
 D 
1 [ � � � [ 
k be a multicurve and
S
 D S X 
 . It is homeomorphic to a surface with sC 2k punctures: the “old” ones
v1; : : : ; vs and two new punctures v0i and v00i corresponding to the removal of 
i for
i D 1; : : : ; k . Alternatively one can think of S
 as being obtained from S by pinching
the multicurve 
 to k nodes and removing them. Note that S
 may be disconnected.

The goal of this section is to describe explicitly the behavior of the shear coordinates
and the Weil–Petersson Poisson structure when going from T .S/ to T .S
 / in the
topology of the augmented Teichmüller space T .S/.

2.1 Induced ideal triangulations

Given an ideal triangulation � D f�1; : : : ; �ng of S , we want to define an induced
ideal triangulation �
 of S
 . We can choose 
 D

S
i 
i so that the 
i never cross

the same edge twice in a row. Let � X 
 denote the family of arcs obtained from
the edges of � intersected with S
 . We group these arcs into distinct isotopy classes
�1; : : : ; �l in S
 , each consisting of a certain number of segments of �1; : : : ; �n .
Hence f�1; : : : ; �lg is a family of non-intersecting and non-homotopic arcs in S
 .

Lemma 4 The family �
 D f�1; : : : ; �ng is an ideal triangulation of S
 consisting
of n distinct isotopy classes of arcs.

Proof Since the 
i do not backtrack, �X 
 decomposes S
 into pieces of the form
given in Figure 1, where the dashed lines represent 
 and the first piece can have 0, 1, 2
or 3 dashed sides. The first piece is an ideal triangle in S
 and the other two are bigons.
One can collapse these bigons successively to arcs with one or two vertices among
the new punctures of S
 . This can be done for all the bigons successively unless one
of the situations described in Figure 2 occurs. This cannot happen, however, since
the 
i are essential and non-homotopic to each other. The remaining arcs correspond
to the homotopy classes �1; : : : ; �l and decompose S
 into ideal triangles. Since
�.S
 /D �.S/ and the number of edges of an ideal triangulation depends only on the
Euler characteristic, the ideal triangulation �
 D f�1; : : : ; �ng of S
 has the same
number of edges as �.
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Figure 1

Figure 2

We call �
 the ideal triangulation of S
 induced by �.

Remark 5 In practice each edge �i of �
 is obtained from � by considering a
maximal sequence of adjacent bigons in the decomposition of S
 by � X 
 and
collapsing it to an edge. Via this process, ideal triangles for �
 on S
 are identified
naturally with ideal triangles for � on S (see Figure 3).

�

�i1 �i2 �ik




�


�i

Figure 3

2.2 Extension of the shear coordinates

Let � D f�1; : : : ; �ng be an ideal triangulation of S and �
 D f�1; : : : ; �ng be the
induced triangulation of S
 . We suppose that, for i D 1; : : : ; n, �i corresponds to the
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homotopy class of kij segments from �j for j D 1; : : : ; n. The following proposition
relates the shear coordinates on T .S/ associated to � to the ones on T .S
 / associated
to �
 .

Proposition 6 Let mt 2 T .S/ be a continuous family of hyperbolic metrics on S ,
.x1.t/; : : : ;xn.t//2Rn

C their shear parameters for �, and m
 2T .S
 /, .y1; : : : ;yn/2

Rn
C its shear parameters for �
 . Then

mt ���!
t!0

m
 in T .S/ ) lim
t!0

x
ki1

1
.t/ � � �xkin

n .t/D yi for i D 1; : : : ; n:

Proof Let �i be an edge of �
 in S
 and z�i be one of its lifts to the universal cover
of .S
 ;m
 /. Then z�i is the diagonal of a square consisting of two ideal triangles P i

0

and Qi
0

. Note that the universal cover of .S
 ;m
 / is isometric to several copies of
H2 , one for each connected component of S
 . We denote by zS
 the one containing
z�i . By Remark 5, �i corresponds to a rectangle composed of a succession of bigons in
the decomposition of S
 by �X
 , ending at the sides of two (non-necessarily distinct)
triangles. We consider a lift of this rectangle to the universal cover �St of .S;mt /. It
ends at the sides of two triangles P i

t and Qi
t , which are separated by kij lifts of the

edge �j for j D 1; : : : ; n. Hence the shearing cocycle �t associated to mt satisfies

�t .P
i
t ;Q

i
t /D

X
j

kij log xj .t/:

In addition, since mt!m
 , these lifts can be chosen so that, with the right identification
of zS
 with zSt , P i

t and Qi
t approach P i

0
and Qi

0
, respectively, as t ! 0.

We can then use the following inequality, derived from [6, Lemma 8]: if at (resp. bt )
is the projection of the third vertex of P i

t (resp. Qi
t ) onto gt (resp. ht ), where gt

and ht are the edges of P i
t and Qi

t that are the closest to each other, and if b0t is the
projection of bt onto gt , then

j�t .P
i
t ;Q

i
t /� d.at ; b

0
t /j � `mt

.
 /:

We refer to Figure 4 for an example with notation.

Since P i
t and Qi

t approach P i
0

and Qi
0

respectively, we have at!a0 and bt ; b
0
t! b0

where a0 and b0 are the projections of the third vertex of P i
0

and Qi
0

, respectively,
onto g0 D h0 D z�i . Then

lim
t!0

X
j

kij log xj .t/D lim
t!0

�t .P
i
t ;Q

i
t /D lim

t!0
d.at ; b

0
t /

D d.a0; b0/

D �0.P
i
0;Q

i
0/D log yi :
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z
 z


bt

b0t
at

P i
t

Qi
t

zSt

a0

b0

P i
0

Qi
0

zS


Figure 4

In other words, the shear parameter on T .S
 / associated to an edge �i of �
 is the
limit of a monomial in the shear parameters on T .S/ associated to �. This monomial
is given by the product of parameters associated to the (segments of) edges of �
constituting the homotopy class of �i .

Another important monomial can be associated to 
 itself, when it consists of one
simple closed curve. We denote by ci the number of times 
 intersects the edge �i

and let
x
 D x

c1

1
� � �xcn

n :

We call this monomial the exponential graph length of 
 .

If mt 2 T .S/, t 2 .0; 1�, is a family of hyperbolic metrics with shear parameters
x1.t/; : : : ;xn.t/ and x
 .t/ is the associated exponential graph length of 
 , we have
the following lemma.

Lemma 7 If, as t! 0, `mt
.
 / approaches 0, then the exponential graph length x
 .t/

of 
 approaches 1.

Proof This is a consequence of the formula for the length of 
 in shear coordinates
as described for example in [10]. In particular, we have

(1) 2 cosh.`mt
.
 /=2/D x1=2


 .t/Cx�1=2

 .t/C � � � ;

where all the terms in the sum are positive.

Since the left hand side approaches 2, we see that x
 .t/ must approach 1 as t ! 0.
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It also follows from this proof that the other terms on the right hand side of (1)
approach 0 as t ! 0. This means that, near the stratum T .S
 /, the length function
`:.
 / is asymptotically equivalent to the graph length function log x
 . This explains
the essential rôle the quantum analogue X
 of x
 will play later on.

2.3 Extension of the Weil–Petersson Poisson structure

Masur [15] (see also Wolpert [23]) proved that the Weil–Petersson Kähler metric on
T .S/ extends in an appropriate sense to its augmentation T .S/ and can be identified
with the Weil–Petersson metric on the lower-dimensional strata T .S
 /. We would like
to know how this fact together with Proposition 6 translate in terms of the expression
of the Weil–Petersson Poisson structures on T .S/ and T .S
 / in the shear coordinates
associated to � and �
 respectively. To do so we use Lemma 8 given below, which is
a homological interpretation of the Weil–Petersson structure as described for example
in [7]. Proposition 9 can then be interpreted as a topological translation of the result of
Masur.

Let � D .�ij /ij be the matrix of coefficients of the Weil–Petersson Poisson structure
on �T .S/ in the coordinates .log x1; : : : ; log xn/ associated to an ideal triangulation
�D f�1; : : : ; �ng, as was described in Section 1.4. Setting �.�i ; �j /D �ij , � can be
identified with an antisymmetric bilinear form on H.�;Z/ŠZn , the free abelian group
generated over the set of edges of �. We are going to use a homological interpretation
of � as given for example in [7]. This formulation follows [6] where it is used to
describe the Thurston symplectic form.

Let G be the dual graph of � and yG be the oriented graph obtained from G by keeping
the same vertex set and replacing each edge of G by two oriented edges that have the
same endpoints as the original edge but with opposite orientations.

There is a unique way to thicken yG into a surface yS such that:
(1) yS deformation retracts to yG .
(2) As one goes around a vertex yv of yG in yS , the orientation of the edges of yG

ending at yv points alternately toward and away from yv .
(3) The natural projection pW yG!G extends to a 2–fold cover yS ! S , branched

along the vertex set of yG .

Let �W yS ! yS be the covering involution of the branched cover pW yS ! S .

Lemma 8 The group H.�;Z/ can be identified with the subgroup of H1. yS/ consist-
ing of those y̨ such that ��.y̨/ D �y̨ . In addition, if ˛; ˇ 2 H.�;Z/ correspond to
y̨; y̌ 2H1. yS/, then �.˛; ˇ/D y̨ � y̌; their algebraic intersection number.

Proof See [7, Lemmas 6 and 7].
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The identification of Lemma 8 is given as follows: if ei 2 H.�;Z/ is the element
associating weight 1 to the edge �i and weight 0 to the other edges, yei is the lift in
yG of the edge of G dual to �i . The closed curve yei comes with a natural orientation
given by the one on yG , and we identify yei with its homology class in H1. yS/. More
generally, to ˛ D

P
˛iei , we can then associate the homology class y̨ D

P
˛iyei .

Suppose now that �D .�ij /ij is the matrix of coefficients of the Weil–Petersson Poisson
structure on �T .S
 / for the induced ideal triangulation �
 Df�1; : : : ; �ng. We suppose
that, for i D 1; : : : ; n, �i corresponds to the homotopy class of kij segments from �j

for j D 1; : : : ; n. We let ki D .ki1; : : : ; kin/ 2Zn and identify � with a bilinear form
on Zn ŠH.�;Z/. The following proposition relates the entries of � and � .

Proposition 9 With the notation above, the coefficients of the Weil–Petersson Poisson
structure on T .S/ and T .S
 / for � and �
 , respectively, are related via the following
formula: for i; j D 1 : : : n,

�ij D �.ki ;kj /D
X
s;t

kiskjt�st :

Proof Let G be the graph dual to � in S , G
 be the graph dual to �
 and G0
 the
graph dual to �X 
 in S
 . We recall that �X 
 denotes the family of arcs obtained
from the edges of � intersected with S
 , where we do not consider the arcs up to
homotopy. It decomposes S
 into triangles and bigons, hence the vertices of G0
 are
either bivalent or trivalent. We will call a maximal chain in G0
 any chain of edges
connected via bi-valent vertices and with endpoints at trivalent vertices. In particular,
edges connecting trivalent vertices are maximal chains. Following Remark 5, the
maximal chains of G0
 are in one-to-one correspondence with the edges of G
 , and
this defines a natural homeomorphism G0
 ŠG
 . In addition, the identification of ideal
triangles for � and �
 gives an identification of G and G0
 in a neighborhood of each
of their trivalent vertices.

We also consider the oriented graphs yG and yG
 (see beginning of section), as well as
the oriented graph yG0
 obtained from G0
 by keeping the same set of trivalent vertices
and replacing each maximal chain by two such chains connected to the same (6–valent)
endpoints, endowed with opposite orientations. This graph is naturally homeomorphic
to yG
 . As described above, yG thickens into yS , and both yG
 and yG0
 thicken into
yS
 . We have covering maps pW yS ! S and p
 W yS
 ! S
 , which restrict to the
corresponding graphs.

Recall that, by definition, S
 D S X 
 � S . Similarly one can identify yS
 with
yS X y
 , where y
 D p�1.
 /. Indeed, let U � S
 � S be a union of small discs around
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the trivalent vertices of G0
 where it is identified with G . By construction, we have
p�1

 .U / Š p�1.U / � yS . Outside of U both coverings are trivial, so we also have

a natural identification p�1

 .S
 X U / Š p�1.S
 X U / � yS . Hence we obtain that

yS
 Š p�1.S
 /� yS . Note, in addition, that 
 can be chosen so that it does not pass
through any of the ramification points of p (that is, the vertices of G ). With this
assumption, p�1.S
 /D yS X y
 , where p�1.
 /D y
 consists of two non-intersecting
multicurves and we can identify yS
 with yS X y
 sitting in yS . Accordingly, p
 is
identified with the restriction of p to S X 
 .

The inclusion y�W yS
 ,! yS induces a map y��W H1. yS
 /!H1. yS/ at the level of homology.
By construction, if we denote by �
 the covering involution associated to p
 , we have
that y�� ı �
� D �� ıy�� .

On the other hand, there is a natural map � W G0
 !G defined by sending each edge
of G0
 onto the edge of G dual to the same edge of the triangulation �, which lifts
to a �–invariant map y� W yG0
 ! yG . One can then consider retractions yr W yS ! yG and
yr
 W yS
 ! yG

0

 such that y� ı yr
 is equal to yr ıy�, giving the following commutative

diagram:

(2)

H1. yS
 /
y�� //

yr
�o

��

H1. yS/

yr�o

��
H1. yG

0

 /

y�� // H1. yG/

Let ei be the generator of H.�;Z/ assigning weight 1 to �i and 0 to the other edges
of �, and fi be the generator of H.�
 ;Z/ assigning weight 1 to �i and 0 to the other
edges of �
 . Following Lemma 8, we associate to ei the homology class yei 2H1. yS/

corresponding to the lift in yG of the edge of G dual to �i . To fi on the other hand, we
associate yfi 2H1. yS
 /, which corresponds to the lift in yG0
 of the maximal chain of
G0
 dual to �i . By construction, this chain consists of the lift of kis edges dual to �s

for s D 1; : : : ; n. Hence, as curves, y�. yfi/ covers kis times each yes . Homologically,
using the commutativity of diagram (2), we obtain:

(3) y��. yfi/D yr
�1
� ı y�� ı yr
�.

yfi/D

nX
sD1

kisyes for i D 1; : : : ; n

Hence we have the following equalities:

�ij D
yfi �
yfj Dy��. yfi/ �y��. yfj /

D

X
s

kisyes �

X
t

kjtyet D

X
s;t

kiskjtyes � yet D

X
s;t

kiskjt�st :
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In terms of shear coordinates and with the notation of Section 2.2, Proposition 9 implies
that the Poisson brackets associated to the Weil–Petersson structure on T .S/ and
T .S
 / are related via the formula

flog yi ; log yj gT .S
 / D flog.xki1

1
� � �xkin

n /; log.xkj1

1
� � �x

kjn

n /gT .S/

which is consistent with Proposition 6 and Masur [15] and Wolpert [23].

3 Pinching along curves: quantum aspect

3.1 The Chekhov–Fock algebra

Let �Df�1; : : : ; �ng be an ideal triangulation of S and fix a non-zero complex number
q 2C� . Following [14], we define the Chekhov–Fock algebra T q

�
.S/ of S associated

to � to be the algebra over C with generators X˙1
i associated to the edges �i of �

and subject to the relations
XiXj D q2�ijXj Xi

for every i; j , where the �ij 2 f�2;�1; 0; 1; 2g are the coefficients of the Weil–
Petersson Poisson structure on �T .S/ in the shear coordinates associated to �. We will
sometimes use the notation T q

�
.S/DC ŒX1; : : : ;Xn�

q

�
to specify the generators of the

algebra.

If A and B are two monomials in the variables X1; : : : ;Xn , then they satisfy a relation
of the form ABDq2˛BA for some integer ˛ , and we will use the notation �.A;B/D˛ .
This coefficient is independent of the order of the generators inside each monomial.

For kD .k1; : : : ; kn/ 2 Zn , if A is a monomial consisting of ki times the generator
Xi for i=1; : : : ; n, in any given order, we define the following element in T q

�
.S/:

ŒA�DXk D q�
P

i<j ki kj�ijX
k1

1
� � �X kn

n :

This is known as the Weyl quantum ordering. These monomials satisfy the following
relations:

XkXl D q�.k;l/XkCl D q2�.k;l/Xl Xk;

where we once again identify � with a bilinear form on Zn . The different notation for
� coincides in the sense that �.Xk;Xl /D �.k; l/.

In particular, if ˛ is a path between two vertices in the dual graph G of � (which
does not backtrack), we can identify it with the element ˛ D .˛1; : : : ; ˛n/ of H.�;Z/,
where ˛i is the number of times the path ˛ passes through the edge of G dual to �i .
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Then we associate to ˛ the monomial X˛ defined as above. If ˇ is another path in G ,
we have

X˛Xˇ D q2y̨� y̌XˇX˛

by Lemma 8, where y̨ and y̌ are the associated elements in H1. yS/. Of particular
interest will be the element X
 associated to a simple closed curve 
 in S , which we
identify with its retraction to a cycle in G .

If † is another surface with ideal triangulation �, a homomorphism between T q

�
.S/

and T q
�.†/ does not in general preserve the quantum ordering. However, we have the

following elementary lemma, which will be useful later on.

Lemma 10 Let A1; : : : ;As be monomials in T q

�
.S/, B1; : : : ;Bs be monomials in

T q
�.†/. If ‰W T q

�
.S/! T q

�.†/ is an algebra homomorphism such that ‰.ŒAi �/D

ŒBi � for all i , then ‰.ŒA1 � � �As �/D ŒB1 � � �Bs �.

3.2 A homomorphism between Chekhov–Fock algebras

As a direct consequence of Propositions 6 and 9, we construct a natural homomorphism
between the Chekhov–Fock algebras associated to S and S
 . We recall that, by
Lemma 4, � induces an ideal triangulation �
 D f�1; : : : ; �ng of S
 , where �i

is the homotopy class in S
 of kij segments from �j , for j D 1; : : : ; n. We let
ki D .ki1; : : : ; kin/ for i D 1; : : : ; n.

Proposition 11 The map

‚
q


;�
W T q

�

.S
 /DCŒY1; : : : ;Yn�

q

�

�!CŒX1; : : : ;Xn�

q

�
D T q

�
.S/

defined on the generators by ‚q


;�
.Yi/DXki

extends to an algebra homomorphism.

Proof We check it on the generators of T q

�

.S
 /:

‚
q


;�
.YiYj /D‚

q


;�
.Yi/‚

q


;�
.Yj /DXki

Xkj Dq2�.ki ;kj /XkjXki
Dq2�ij‚

q


;�
.Yj Yi/;

where the last equality is given by Proposition 9.

The following lemma states that, if we pinch the curves constituting 
 in different
orders, the resulting homomorphisms given by Proposition 11 are the same.

Lemma 12 Consider any sequence of integers i1; : : : ; ik such that fi1; : : : ; ikg D
f1; : : : ; kg and let 
 l D

Sl
jD1 
ij for l � k . Then

‚
q


;�
D‚

q


ik
;�

k�1
ı‚

q


ik�1
;�

k�2
ı � � � ı‚

q


i2
;�

1
ı‚

q


i1
;�
:
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Proof The definition of the edges �i of �
 as homotopy classes of segments from
�1; : : : ; �n does not depend on the order in which the curves 
1; : : : ; 
k are pinched.
Hence the generators Yi of T q

�
.S
 / are sent to the same monomials by the two maps,

up to ordering. Since all the maps considered send generators to quantum ordered
monomials, Lemma 10 implies that the quantum orders are respected on each side and
hence the maps coincide.

Remark 13 For future reference, we want to interpret ‚q


;�
in terms of dual graphs.

As in the proof of Proposition 9, we let G be the graph dual to � in S and G0
 be the
graph dual to �X
 in S
 . There is a natural map � W G0
 !G defined by sending each
edge of G0
 onto the edge of G dual to the same edge of �. If ˛ is any path between
trivalent vertices in G0
 , we denote by Y˛ 2 T q

�

.S
 / the quantum ordered product

of generators associated to the edges crossed by ˛ (after making the identification
G0
 ŠG
 with the graph dual to �
 ), and we define similarly Xˇ 2 T

q

�
.S/ for ˇ any

path between vertices in G . Then, by definition of ‚q


;�
, we have

‚
q


;�
.Y˛/DX�.˛/:

4 Application to the representation theory of Chekhov–Fock
algebras

4.1 Representations of the Chekhov–Fock algebras

The irreducible finite-dimensional representations of T q

�
.S/ for q a root of unity have

been studied in detail in [7]. We will recall the main results that will be needed for our
purpose.

An important step is to describe the center of these algebras. For i D 1; : : : ; s , consider
the element

Pi DXpi
D
�
X

pi1

1
X

pi2

2
� � �X pin

n

�
of T q

�
.S/ associated to the puncture vi of S , where pij 2 f0; 1; 2g is the number of

ends of the edge �j that converge to vi and pi D .pi1; : : : ;pin/. Namely, Pi is the
quantum ordered product of generators associated to the edges ending at vi . If ˛i is a
small loop around vi and we identify it with its retraction to a cycle in the dual graph
G , we also have Pi DX˛i

, with the notation introduced previously.

In addition, let hD .1; : : : ; 1/ and H DXh D ŒX1 � � �Xn�. The following proposition
describes the center of the Chekhov–Fock algebras for certain non-generic values of
the parameter q .
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Proposition 14 (Bonahon–Liu) If q2 is a primitive N th root of unity with N odd,
the center Zq

�
of T q

�
.S/ is generated by the elements X N

i for i D 1; : : : ; n, Pj for
j D 1; : : : ; s and H .

A complete classification of the finite-dimensional irreducible representations of T q

�
.S/

when q2 is a root of unity was obtained in [7]. A particular case of this classification
can be summarized by the following theorem. Note the further restriction to a condition
on q instead of q2 .

Theorem 15 (Bonahon–Liu) Suppose that q is a primitive N th root of unity with
N odd. Every irreducible finite-dimensional representation �W T q

�
.S/! End.V / has

dimension N 3gCs�3 and is determined completely by its restriction to the center Zq

�

of T q

�
.S/.

In particular, given pj 2 f0; : : : ;N � 1g integers labelling the punctures vj of S

and m 2 T .S/ with shear parameters .x1; : : : ;xn/ associated to �, there is a finite-
dimensional irreducible representation �W T q

�
.S/! End.V / such that:

� �.X N
i /D xi IdV for i D 1; : : : ; n.

� �.Pj /D qpj IdV for j D 1; : : : ; s .

These conditions determine � uniquely up to isomorphism.

Proof The first part is given by [7, Theorem 20]. The second part is a specialization of
[7, Theorem 21] to the case where the xi are positive real numbers and xpj1 � � �xpjnD1

for j D 1; : : : ; s , corresponding to the shear parameters of a complete hyperbolic metric
on S . In this case �.H / is completely determined by the fact that �.H N /D IdV and
H 2 D P1 � � �Ps .

We call pD .p1; : : : ;ps/ the weights of the representation � associated to the s–tuple
of punctures .v1; : : : ; vs/. Depending on the context we will use the notation �m or
�

p
m to emphasize the dependence of an irreducible representation on its associated

weights and metric.

Remark 16 Theorem 15 generalizes directly to the case of a disconnected surface
S D S1 t S2 , except for the statement about the dimensions. More precisely, if
�D �1[�2 is a triangulation of S , then there is a natural isomorphism

T q

�
.S/Š T q

�1
.S1/˝ T q

�2
.S2/

since the generators associated to �1 and �2 commute with each other. Hence an
irreducible representation of T q

�
.S/ is a tensor product of irreducible representations
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�1 ˝ �2 of each factor and has dimension N 3g1Cs1�3 � N 3g2Cs2�3 D N 3gCs�6 .
In particular, given a multicurve 
 D 
1 [ � � � [ 
k , the dimension of an irreducible
representation of T q

�
.S/ is N k times the dimension of an irreducible representation

of T q

�

.S
 /, regardless of the connectivity of S and S
 .

4.2 Convergence of representations in the augmented Teichmüller space

We suppose once again that q is a primitive N th root of unity with N odd. Theorem 15
implies that, to pD .p1; : : : ;ps/ 2 f0; : : : ;N � 1gs and a continuous family of hyper-
bolic metrics mt 2T .S/, t 2 .0; 1�, one can associate a continuous family of irreducible
representations �t W T q

�
.S/! End.V / as follows: let x1.t/; : : : ;xn.t/ be the shearing

parameters associated to mt for the triangulation �, and let �1 be an irreducible
representation classified by m1 and weights p1; : : : ;pn . Then, by Theorem 15, there
are elements A1; : : : ;An of End.V / such that AN

i D IdV and �1.Xi/D
N
p

xi.1/Ai ,
for i D 1; : : : ; n. One can then construct a family of representations �t , defined on the
generators by �t .Xi/D

N
p

xi.t/Ai . In this way, we obtain a family of representations
�t classified by mt , t 2 .0; 1�, and weights p . It is continuous in the sense that, for
any element X 2 T q

�
.S/, �t .X / is a continuous family in End.V /.

By composing with the homomorphism ‚
q


;�
from Proposition 11, any representation

� of T q

�
.S/ gives a representation

� ı‚
q


;�
of T q

�

.S
 /:

If �m is an irreducible representation classified by m 2 T .S/ and weights p , then,
by the dimension count done in Remark 16, �m ı ‚

q

;� is a reducible representa-

tion. We would like to know how this representation decomposes into irreducible
subrepresentations when m approaches m
 2 T .S
 /.

We recall that the punctures of S
 are v1; : : : ; vs corresponding to the same punc-
tures in S together with the new punctures v0

1
, v00

1
; : : : ; v0

k
, v00

k
corresponding to the

removal of the curves 
1; : : : ; 
k . Given p D .p1; : : : ;ps/ weights labelling the
punctures of S , we say that p
 2 f0; : : : ;N �1gsC2k are compatible weights labelling
.v1; : : : ; vs; v

0
1
; v00

1
; : : : ; v0

k
; v00

k
/ if they are of the form

p
 D .p1; : : : ;ps; i1; i1; : : : ; ik ; ik/:

Theorem 17 Let mt 2 T .S/ be a continuous family of hyperbolic metrics such
that mt converges to m
 2 T .S
 / in T .S/ as t ! 0. Let �t W T q

�
.S/! End.V /

be a continuous family of irreducible representations classified by mt and weights
p 2 f0; : : : ;N � 1gs labelling the punctures v1 , . . . , vs of S .
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Then, as t ! 0, the representation

�t ı‚
q


;�
W T q

�

.S
 /! End.V /

approaches M
p


�
p


 W T q

�

.S
 /! End

�M
p


Vp


�
where the direct sum is over all possible compatible weights p
 on S
 and

�
p


 W T q

�

.S
 /! End.Vp
 /

is an irreducible representation classified by the metric m
 and the weights p
 .

Proof We first suppose that k D 1, that is, 
 consists of a single curve.

Let P1; : : : ;Ps be the central elements of T q

�
.S/ associated to the punctures v1; : : : ; vs

of S and P


1

, . . . , P


s be the central elements of T q

�

.S
 / associated to the same

punctures in S
 . We also have the two central elements P 0 and P 00 associated to the
two new punctures v0 and v00 . Consider also the monomial X
 2 T q

�
.S/ associated to

the retraction of 
 to a cycle in G . In practice, if 
 crosses ci times the edge �i of �
for i D 1; : : : ; n, we have

X
 D ŒX
c1

1
� � �X cn

n �:

This element is the quantum analogue of the exponential graph length x
 discussed at
the end of Section 2.2.

Lemma 18 The elements defined above satisfy:

(1) ‚
q


;�
.P



i /D Pi for i D 1; : : : ; s .

(2) ‚
q


;�
.P 0/D‚

q


;�
.P 00/DX
 .

Proof This is a consequence of the interpretation of ‚q


;�
given in Remark 13.

For (1), let ˛i be a small curve going around vi once in S
 � S . If we identify ˛i

with its retraction to a cycle in G0
 , we have that P


i D Y˛i

. Since �.˛i/ corresponds
to the retraction of ˛i onto G , we see that

‚
q


;�
.P



i /DX�.˛i / D Pi :

For (2), let 
 0 be a curve parallel to 
 such that 
 0 is homotopic to v0 in S
 . Then 
 0

retracts to a cycle in G0
 and P 0 D Y
 . In addition �.
 0/ corresponds to the retraction
of 
 0 , and hence of 
 , onto G , so

‚
q


;�
.P 0/DX�.
 0/ DX
 :
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The same argument holds for P 00 if one considers a curve 
 00 parallel to 
 and
homotopic to v00 in S
 .

Lemma 19 There exists � 2 T q

�
.S/ such that X
�D q4�X
 .

Proof By Lemma 8, it suffices to find a path ı in G such that y
 � yı D˙2, where y

and yı are (the classes in H1. yS/ of) oriented �–anti-invariant lifts of 
 and ı to yS .
Then �DX˙1

ı
will satisfy the lemma, since X
Xı D q2y
 �yıXıX
 .

If 
 is non-separating, and since 
 is an essential simple closed curve, there exists ı
another essential simple closed curve in S that intersects 
 exactly once. In addition,
one can choose representatives of 
 and ı not passing through the ramification points
of the covering pW yS ! S , that is, not passing through the vertices of G . Then, by
construction, yı D p�1.ı/ is such that y
 � yı D˙2j
 \ ıj D ˙2.

If 
 is separating then it divides the set of vertices of G into two non-empty subsets.
Let ı be an arc in S with endpoints at vertices of G on each side of 
 and intersecting

 exactly once. Then yıD p�1.ı/ is a closed curve in yS with a natural orientation and
by construction y
 � yı D 2.

End of proof of Theorem 17 Since N and 4 are coprime, Lemma 19 implies that, un-
der the action of �t .X
 /, V decomposes into eigenspaces Vi of dimension N 3gCp�4

with associated eigenvalues c.t/qi , where i 2 f0; : : : ;N � 1g and c.t/ 2 C� . In
addition

�t .X
N

 /D �t ..X

N
1 /

c1 � � � .X N
n /

cn/D x
c1

1
.t/ � � �xcn

n .t/ IdV D x
 .t/ IdV ;

where x
 .t/ is the exponential graph length of 
 . Hence, after a shift by some N th

root of 1, we can consider that c.t/D N
p

x
 .t/ 2RC .

P 0 and P 00 are central in T q

�

.S
 /, so the eigenspaces of

�t ı‚
q


;�
.P 0/D �t ı‚

q


;�
.P 00/D �t .X
 /

are invariant under the action of �t ı‚
q


;�
. In other words

�t ı‚
q


;�
D

M
i

�i
t;
 ;

where �i
t;
 W T

q

�

.S
 /! End.Vi/ is such that

�i
t;
 .P

0/D �i
t;
 .P

00/D c.t/qi IdVi
:

For dimensional reasons these representations are irreducible by Theorem 15.
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By Lemma 18, we have that �t ı‚
q


;�
.P



j /D �t .Pj /D qpj IdV , hence

�i
t;
 .P



j /D qpj IdVi

;

and by definition of ‚q


;�
,

�t ı‚
q


;�
.Y N

j /D �t ..X
N
1 /

k1 � � � .X N
n /

kn/D x
kj1

1
.t/ � � �x

kjn

n .t/ IdV ;

hence
�i

t;
 .Y
N

j /D x
kj1

1
.t/ � � �x

kjn

n .t/ IdVi
:

Then, by Proposition 6, as t ! 0, x
kj1

1
.t/ � � �x

kjn

n .t/! yj , the shear parameters of
m
 , and by Lemma 7, x
 .t/! 1. This implies that, as t ! 0, �i

t;
 approaches the
irreducible representation �i


 of T q

�

.S
 / that is classified by the weights p1; : : : ;ps

associated to the punctures v1 , . . . , vs , the weight i associated to v0 and v00 , and the
hyperbolic metric m
 2 T .S
 /.

Using Lemma 12, the case of a multicurve 
 D f
1; : : : ; 
kg follows by induction
on k .

5 Behavior under changes of coordinates: the quantum Te-
ichmüller space

5.1 The quantum Teichmüller space

We want to apply the results of the preceding section to the representations of the
quantum Teichmüller space T q.S/. Let us first recall its construction as given in [14].
If � is an ideal triangulation of S , we denote by �T q

�.S/ the fraction division algebra
of the Chekhov–Fock algebra T q

�
.S/. Chekhov and Fock constructed a family of

isomorphisms
ˆ

q

��0
W �T q

�0.S/!
�T q

�.S/

called (quantum) coordinate change isomorphisms, defined for any two triangulations
�, �0 of S . In particular, if �00 is another triangulation, they satisfy the composition
relation ˆq

��00
D ˆ

q

��0
ıˆ

q

�0�00
. The main example is given by the case when � and

�0 differ by a diagonal exchange in an embedded square in S as in Figure 5. Then
ˆ

q

��0
.X 0n/DXn if n¤ 1; : : : ; 5, ˆq

��0
.X 0

0
/DX�1

0
and:

ˆ
q

��0
.X 01/D .1C qX0/X1; ˆ

q

��0
.X 02/D .1C qX�1

0 /�1X2;

ˆ
q

��0
.X 03/D .1C qX0/X3; ˆ

q

��0
.X 04/D .1C qX�1

0 /�1X4:

Algebraic & Geometric Topology, Volume 13 (2013)



Factorization rules in quantum Teichmüller theory 3435

We refer to [14] or [7] for similar formulas when some of the edges of the square
are identified. One can then construct ˆq

��0
for any triangulations �, �0 , using the

composition relation and the fact that one can get from any triangulation � to another
triangulation �0 by a succession of diagonal exchanges and re-indexings (see Penner
[16] for a proof). The fact that the maps so-obtained do not depend on the choice of a
sequence of triangulations from � to �0 is one of the achievements of [10].

c1 c2

c3c4

�0

�1

�2

�3

�4
�00

�01

�02

�03

�04

ˆ
q

��0

Figure 5

Using these isomorphisms we can construct the quantum Teichmüller space T q.S/ as
the quotient

T q.S/D
G
�

�T q

�.S/=�;

where the disjoint union is over all triangulations � of S , and the equivalence relation
� identifies X 0 2 �T q

�0.S/ with ˆq

��0
.X 0/ 2 �T q

�.S/.

5.2 Representations of the quantum Teichmüller space

A first attempt at defining a representation of T q.S/ would be to consider a family of
representations �� of �T q

�.S/ for every triangulation � of S such that �� ıˆ
q

��0
D ��0

for every �; �0 . However, one can easily check that such representations cannot be
finite-dimensional. On the other hand, when q2 is an N th root of unity, the Chekhov–
Fock algebras T q

�
.S/ admit many finite-dimensional representations. Hence, for

our purpose, a representation of the quantum Teichmüller space T q.S/ will be a
family of representations of T q

�
.S/, for every triangulation � of S , satisfying certain

compatibility relations when changing triangulations.

More precisely, let ��W T
q

�
.S/! End.V / be an algebra homomorphism satisfying the

following condition: for every Laurent polynomial X 0 2 T q

�0
.S/, the rational fraction

ˆ
q

��0
.X 0/ 2 �T q

�0.S/ can be written as

ˆ
q

��0
.X 0/D P1Q�1

1 DQ�1
2 P2;
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where P1;Q1;P2;Q2 2 T q

�
.S/ are Laurent polynomials for which ��.Q1/ and

��.Q2/ are invertible in End.V /. If �� satisfies such a condition, we say that the
composition

�� ıˆ
q

��0
W T q

�0
.S/! End.V /

makes sense and is defined naturally as

�� ıˆ
q

��0
.X 0/D ��.P1/��.Q1/

�1
D ��.Q2/

�1��.P2/ 2 End.V /:

One can check that this definition does not depend on the decomposition of ˆq

��0
.X 0/

as a quotient of polynomials, and that this indeed defines an algebra homomorphism.

Definition 20 A representation �D f��g� of the quantum Teichmüller space T q.S/

over the vector space V consists of the data of an algebra homomorphism ��W T
q

�
.S/!

End.V / for every triangulation � such that, for every �; �0 , the representation
�� ıˆ

q

��0
W T q

�0
.S/! End.V / makes sense and is equal to ��0 .

We will sometimes use the notation �W T q.S/! End.V / for such a representation,
keeping in mind that � consists in fact of a family of homomorphisms:

f��W T
q

�
.S/! End.V /g�:

Such representations were called representations of the polynomial core of T q.S/

in [7].

To prove that a family of representations f��g� of the Chekhov–Fock algebras is in
fact a representation of T q.S/, one can use the following lemma (Lemma 25 in [7]).

Lemma 21 Let an algebra homomorphism ��W T
q

�
.S/! End.V / be given for every

ideal triangulation �. Suppose that �� ıˆ
q

��0
W T q

�0
.S/! End.V / makes sense and is

equal to ��0 whenever � and �0 differ by a diagonal exchange or a re-indexing. Then
�D f��g� is a representation of T q.S/.

Given an irreducible representation ��W T
q

�
.S/!End.V / for some ideal triangulation

�, one can show that the composition �� ıˆ
q

��0
W T q

�0
.S/! End.V / makes sense

for any other ideal triangulation �0 and defines an irreducible representation ��0 of
T q

�0
.S/. Such a family � D f��g� is thus called an irreducible representation of

T q.S/.

In addition, if �� is classified by the weights pD .p1; : : : ;ps/ and the metric m2T .S/
expressed in the shear coordinates for �, then the representation ��0 is also classified
by the same weights and the metric m expressed in the shear coordinates for �0 . In
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this case we say that �D f��g� is the irreducible representation of T q.S/ classified
by m and p (see [7, Lemma 29 and Theorem 30]).

Finally, if mt 2 T .S/ is a continuous family of hyperbolic metrics and �t;� is a
continuous family of representations of T q

�
.S/ classified by mt and weights p , we

say that the representations �t Df�t;�g� obtained in this way form a continuous family
of representations of T q.S/.

5.3 Main theorem

In this section we restrict once again to the case when q is an N th root of unity with
N odd. The next step is to study how the decomposition obtained in Theorem 17 is
affected by changing the triangulation. Given two triangulations �, �0 , we can consider
the following diagram:

(4)

�T q

�0.S/
ˆ

q

��0 // �T q

�.S/

�T q

�0

.S
 /

‚
q


;�0

OO

ˆ
q

�
 �
0

 // �T q

�
 .S
 /

‚
q


;�

OO

which is in general non-commutative.

�0

�1

�2

�3

�4 �0
0

�0
1

�0
2

�0
3

�0
4

�0

�1

�2

�3

�4 �0
0

�0
1

�0
2

�0
3

�0
4

ˆ
q

�
 �
0



ˆ
q

��0

‚
q


;�
‚

q


;�0

Q

Q


Figure 6
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We focus on the case when � and �0 differ only by a diagonal exchange in a square Q

as in Figure 5.

If the curve 
 never crosses Q vertically or horizontally, that is, never crosses succes-
sively �1; �0; �3 or �2; �0; �4 , the triangulations �
 and �0
 also differ by a diagonal
exchange and can be identified outside of a square Q
 (see Figure 6).

�1 �2

�3�6

�5 �4

�0

�1

�2

�3

�4

�00

�01

�02

�03

�04

ˆ
q

��0

‚
q


;�
‚

q


;�0

Q

Q


Figure 7

If 
 does cross Q vertically or horizontally, the triangulations �
 and �0
 can be
identified (see Figure 7). In this case we introduce two maps ‰q

��0;v
and ‰

q

��0;h
,

defined for each case of identifications of the boundary of Q as follows: in each case
‰

q

��0;v
.X 0i /D‰

q

��0;h
.X 0i /DXi for i � 5, ‰q

��0;v
.X 0

0
/D‰

q

��0;h
.X 0

0
/DX�1

0
and:

� If Q is embedded,

‰
q

��0;v
.X 01/D qX0X1; ‰

q

��0;v
.X 02/DX2;

‰
q

��0;v
.X 03/D qX0X3; ‰

q

��0;v
.X 04/DX4;

and
‰

q

��0;h
.X 01/DX1; ‰

q

��0;h
.X 02/D q�1X0X2;

‰
q

��0;h
.X 03/DX3; ‰

q

��0;h
.X 04/D q�1X0X4:
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� If �1 D �3 and �2 ¤ �4 ,

‰
q

��0;v
.X 01/D q4X 2

0 X1; ‰
q

��0;v
.X 02/DX2;

‰
q

��0;v
.X 04/DX4;

and
‰

q

��0;h
.X 01/DX1; ‰

q

��0;h
.X 02/D q�1X0X2;

‰
q

��0;h
.X 04/D q�1X0X4:

� If �1 D �2 and �3 ¤ �4 ,

‰
q

��0;v
.X 01/DX0X1;

‰
q

��0;v
.X 03/D qX0X3; ‰

q

��0;v
.X 04/DX4;

and
‰

q

��0;h
.X 01/DX0X1;

‰
q

��0;h
.X 03/DX3; ‰

q

��0;h
.X 04/D q�1X0X4:

� If �1 D �3 and �2 D �4 , that is, S is a once-punctured torus:

‰
q

��0;v
.X 01/D q4X 2

0 X1;

‰
q

��0;v
.X 02/DX2;

and
‰

q

��0;h
.X 01/DX1;

‰
q

��0;h
.X 02/D q�4X 2

0 X2:

The other cases are inverses of the ones above. Note that we exclude the case when
�1 D �2 and �3 D �4 corresponding to a sphere with three holes since there are no
essential simple closed curves on S in this case.

One can easily check that ‰q

��0;v
and ‰q

��0;h
are algebra homomorphisms.

Proposition 22 If � and �0 differ by a diagonal exchange in a square Q as in Figure 5
then one of the following is true:

(1) The multicurve 
 does not cross Q horizontally or vertically and

ˆ
q

��0
ı‚

q


;�0
D‚

q


;�
ıˆ

q

�
�
0


:

(2) 
 crosses Q vertically at least once and

‰
q

��0;v
ı‚

q


;�0
D‚

q


;�
:

(3) 
 crosses Q horizontally at least once and

‰
q

��0;h
ı‚

q


;�0
D‚

q


;�
:
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Proof We use the notation of Figures 5, 6 and 7. The following lemma is a simple
computation.

Lemma 23 Let Ai , i D 1; 2; 3; 4, monomials in T q

�
.S/, be the products of generators

associated to the edges of � converging to the corner ci of Q, A5 be the product of
generators when one crosses Q vertically, and A6 the product of generators when one
crosses Q horizontally. Define similarly B1; : : : ;B6 monomials in T q

�0
.S/ for the

triangulation �0 . Then, for i; j D 1; : : : ; 4

ˆ
q

��0
.ŒBi �/D‰

q

��0;v
.ŒBi �/D‰

q

��0;h
.ŒBi �/D ŒAi �

and
‰

q

��0;v
.ŒB5�/D ŒA5� and ‰

q

��0;h
.ŒB6�/D ŒA6�:

Lemma 23 says that ˆq

��0
, ‰q

��0;v
and ‰q

��0;h
send the products of generators at a

corner of Q for �0 to the respective products for �, respecting the quantum orderings.
In addition ‰q

��0;v
and ‰q

��0;h
respect the quantum ordered products of generators

when crossing Q vertically and horizontally respectively.

We first consider the case where both Q and Q
 are embedded in S and S
 , respec-
tively, and we look at the generators Y1 and Y 0

1
associated to the edges �1 and �0

1
.

We recall that, by Remark 5, the edges of �
 can be identified with rectangles in the
decomposition of S
 by �X 
 , formed by maximal chains of bigons.

For (1), we notice that �1 corresponds to a rectangle for �X 
 that starts along �1 ,
and then crosses Q li times around the corner ci for i D 1; 2; 3; 4. It also crosses
�i ki times for i D 5; : : : ; n. The same is true for �0

1
. We let Z DX

k5

5
� � �X

kn
n and

Z0 DX
0k5

5
� � �X

0kn
n . Then

‚
q


;�
.Y1/D

�
X1A

l1

1
A

l2

2
A

l3

3
A

l4

4
Z
�
D q˛X1

�
A

l1

1
A

l2

2
A

l3

3
A

l4

4
Z
�
;

where ˛ is some integer. We note that �.X1;Ai/D �.X
0
1
;Bi/ for i D 1; 2; 3; 4, hence

‚
q


;�
.Y 01/D

�
X 01B

l1

1
B

l2

2
B

l3

3
B

l4

4
Z0
�
D q˛X 01

�
B

l1

1
B

l2

2
B

l3

3
B

l4

4
Z0
�

for the same integer ˛ . We also note that �0 corresponds to the edge �0 and hence
‚

q


;�
.Y0/DX0 . Using Lemma 23 together with Lemma 10 we obtain

ˆ
q

��0
ı‚

q


;�0
.Y 01/Dˆ

q

��0

�
q˛X 01

�
B

l1

1
B

l2

2
B

l3

3
B

l4

4
Z0
��

D q˛.1C qX0/X1

�
A

l1

1
A

l2

2
A

l3

3
A

l4

4
Z
�

D‚
q


;�
..1C qY0/Y1/

D‚
q


;�
ıˆ

q

�
�
0


.Y 01/:
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A similar computation works for Y 0
2

, Y 0
3

and Y 0
4

. For i > 4, �i corresponds to a
rectangle with neither side ending along Q but which may still cross it at the corners,
and one shows in the same way that the equality holds for Y 0

5
; : : : ;Y 0n . Hence (1) is

true in the case of embedded squares.

For (2), �1 corresponds to a rectangle for �X
 that starts along �1 , crosses the square
Q li times around the corner ci for i D 1; 2; 3; 4, and crosses Q vertically l5 times.
For �0 X 
 , it corresponds to a rectangle that starts along �0

0
, crosses �0

1
, then crosses

Q in the same way. It also crosses �i (resp. �0i ) ki times, for i D 5; : : : ; n. Then

‚
q


;�
.Y1/D

�
X1A

l1

1
A

l2

2
A

l3

3
A

l4

4
A

l5

5
Z
�
D q˛X1

�
A

l1

1
A

l2

2
A

l3

3
A

l4

4
A

l5

5
Z
�
;

where ˛ is some integer. We note that �.X1;Ai/D �.X
0
0
X 0

1
;Bi/ for i D 1; 2; 3; 4; 5,

hence

‚
q


;�
.Y 01/D

�
X 00X 01B

l1

1
B

l2

2
B

l3

3
B

l4

4
B

l5

5
Z0
�
D q˛

�
X 00X 01

��
B

l1

1
B

l2

2
B

l3

3
B

l4

4
B

l5

5
Z0
�

D q˛�1X 00X 01
�
B

l1

1
B

l2

2
B

l3

3
B

l4

4
B

l5

5
Z0
�
:

Using the definition of ‰q

��0;v
in case 1, together with Lemmas 23 and 10, we obtain

‰
q

��0;v
ı‚

q


;�0
.Y 01/D‰

q

��0;v

�
q˛�1X 00X 01

�
B

l1

1
B

l2

2
B

l3

3
B

l4

4
B

l5

5
Z0
��

D q˛�1X�1
0 qX0X1

�
A

l1

1
A

l2

2
A

l3

3
A

l4

4
A

l5

5
Z
�

D q˛X1

�
A

l1

1
A

l2

2
A

l3

3
A

l4

4
A

l5

5
Z
�

D‚
q


;�
.Y1/:

A similar argument works for the other generators Y 0
2
; : : : ;Y 0n .

The case (3) is similar to (2), where �1 corresponds to a rectangle that does not cross
Q vertically but crosses it horizontally l6 times. The argument is the same replacing
B5 , l5 and ‰q

��0;v
with B6 , l6 and ‰q

��0;h
, respectively.

If some of the edges of Q or Q
 are identified, the same method works using the
corresponding formulae for ˆq

��0
, ‰q

��0;v
and ‰q

��0;h
. One also needs to take into

account that, in this case, an edge �i of �
 may correspond to a rectangle in S X 


with both ends along edges of Q. The formulae for ‚q


;�
.Yi/ and ‚q


;�
.Y 0i / have to

be changed accordingly.

The maps ‰q

��0;v
and ‰q

��0;h
can be interpreted as the “limit” of the coordinate change

ˆ
q

��0
when the length of 
 approaches 0, depending on whether 
 crosses Q vertically

or horizontally. This is made clearer by the following lemma.
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Lemma 24 Let �t be a continuous family of irreducible representations of T q

�
.S/

classified by a continuous family mt 2 T .S/ such that, as t ! 0, mt approaches
m
 2 T .S
 / in T .S/. Then, if �0 differs from � by a diagonal exchange as in Figure 5
and 
 crosses Q vertically (i D v ) or horizontally (i D h), we have

�t;� ıˆ
q

��0
� �t;� ı‰

q

��0;i
as t ! 0:

Proof We suppose that .x1.t/; : : : ;xn.t// are the shear parameters associated to mt

for the triangulation �. Then, as in Section 4.2, there are matrices A1; : : : ;An such
that �.Xi/D

N
p

xi.t/Ai for every t .

For simplicity, we consider the case when Q is embedded in S . The computations
are similar in the non-embedded cases. If 
 crosses Q vertically then x0.t/!1 as
t ! 0 and, considering for example the generator X1 , we have

�t;� ıˆ
q

��0
.X1/D .I C q N

p
x0.t/A0/

N
p

x1.t/A1

� q N
p

x0.t/
N
p

x1.t/A0A1 D �t;� ı‰
q

��0;v
.X1/

and similarly for the other generators.

If 
 crosses Q horizontally then x0.t/! 0 as t ! 0 and, considering for example
the generator X2 , we have

�t;� ıˆ
q

��0
.X2/D .I C q. N

p
x0.t/A0/

�1/�1 N
p

x2.t/A2

� q�1 N
p

x0.t/
N
p

x2.t/A0A2 D �t;� ı‰
q

��0;h
.X2/

and similarly for the other generators.

Proposition 25 Suppose that �t;�W T
q

�
.S/! End.V / and �t;�0 W T

q

�0
.S/! End.V /

are two continuous families of irreducible representations classified by the same weights
and by a continuous family mt 2T .S/ such that, as t!0, mt approaches m
 2T .S
 /
in T .S/. By Theorem 17 and using the same notation, we have

lim
t!0

�t;� ı‚
q


;�
D

M
p


�
p


;�

and lim
t!0

�t;�0 ı‚
q


;�0
D

M
p


�
p


;�0

:

Suppose in addition that, for all t , we have �t;� ıˆ
q

��0
D �t;�0 . Then

�
p


;�0
D �

p


;�
ıˆ

q

�
�
0



for all compatible p
 :

Proof We show the result for the case when 
 D 
1 is a simple closed curve. The
general case follows by induction on k using Lemma 12.
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By Lemma 21, it suffices to show the result for a diagonal exchange in a square Q as
in Figure 5. We let P
 be the quantum ordered product of generators associated to the
edges of �
 ending at one of the new punctures of S
 . If �0
 is different from �
 , we
define similarly P 0
 . Following the proof of Theorem 17, we have that

�t;� ı‚
q


;�
D
L
i

�i
t;�
;

where �i
t;�

are representations of T q

�

.S
 / onto Vi , the eigenspace of �t;�ı‚

q


;�
.P
 /

with eigenvalue qi . Then, by definition, �i

;�

is the limit as t approaches 0 of �i
t;�

.

We have
�t;� ı‚

q


;�
ıˆ

q

�
�
0


!
�L

i

�i

;�

�
ıˆ

q

�
�
0



and by hypothesis

�t;� ıˆ
q

��0
ı‚

q


;�0
D �t;�0 ı‚

q


;�0
!
L
i

�i

;�0

:

If 
 does not cross Q vertically or horizontally, then ˆq

��0
ı‚

q


;�0
D ‚

q


;�
ıˆ

q

�
�
0



by Proposition 22. Composing on both sides of this equation by �t;� on the left and
taking the limit as t approaches 0, we get

L
i �

i

;�0
D
�L

i �
i

;�

�
ıˆ

q

�
�
0



. Note that
ˆ

q

�
�
0


.P 0
 /D P
 so it sends the eigenspaces of P 0
 onto those of P
 with the same

eigenvalues. Hence �i

;�0
D �i


;�
ıˆ

q

�
�
0



for every i .

If 
 crosses Q, say vertically, then ˆq

�
�
0



is the identity. By Proposition 22,

‰
q

��0;v
ı‚

q


;�0
D‚

q


;�

and, by Lemma 24, �t;� ıˆ
q

��0
� �t;� ı‰

q

��0;v
. Composing on both sides of this

equivalence by ‚q


;�0
on the right and taking the limit as t approaches 0 we get thatM

i

�i

;�0 D

M
i

�i

;�:

The decomposition V D
L

Vi is the same on each side, given by the eigenspaces of
P
 D P 0
 , hence we have �i


;�0
D �i


;�
for all i in this case.

In the notation of Proposition 25, we see that �p


;�

may differ from �
p


;�0

only if �
 is
different from �0
 . Hence we can rename these representations �p



;�

.

If � is a subset of the set ƒ.S/ of ideal triangulations of S and if f��g�2� is a family
of compatible representations of the Chekhov–Fock algebras T q

�.S/, we can extend
this family to a representation �D f��g�2ƒ.S/ of T q.S/ by setting �� D �� ıˆ

q

��

for any � 2 ƒ.S/, for some fixed � 2 �. The composition rule for the coordinate
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change isomorphisms implies that this definition does not depend on �. Of particular
interest here is the subset ƒ
 D f�
 induced by � j � 2 ƒ.S/g of the set ƒ.S
 / of
ideal triangulations of S
 .

By Proposition 25, if �t D f�t;�g� is such a continuous family of representations of
T q.S/, the limiting irreducible factors �p



;�

for each �t;� , as given by Theorem 17,

satisfy the compatibility relations

�
p



;�0

D �

p


;�

ıˆ

q

�
�
0


:

Hence, taken together, they can be extended to form irreducible representations of
T q.S
 /, proving the following theorem.

Theorem 26 Let �t Df�t;�g� be a continuous family of irreducible representations of
T q.S/ classified by weights p 2 f0; : : : ;N � 1gs and a continuous family of metrics
mt 2 T .S/ such that mt approaches m
 2 T .S
 / in T .S/ as t ! 0. For each
triangulation �, we let the limit

lim
t!0

�t;� ı‚
q


;�
D

M
p


�
p


;�


be given as in Theorem 17.

Then, for compatible weights p
 on S
 , the family of representations f�p


;�

g�
2ƒ


extends to an irreducible representation �p


 of T q.S
 / classified by the metric m


and the weights p
 .
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