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The proper geometric dimension
of the mapping class group

JAVIER ARAMAYONA

CONCHITA MARTÍNEZ-PÉREZ

We show that the mapping class group of a closed surface admits a cocompact
classifying space for proper actions of dimension equal to its virtual cohomological
dimension.

20F34, 20F65; 20J05

1 Introduction

Let �g;n be the mapping class group of a connected orientable surface of genus g with
n marked points. In this note we are interested in the minimal dimension gd.�g;n/

of a classifying space E�g;n for proper actions of �g;n . Recall that, given a discrete
group G , the space EG is a contractible space on which G acts properly, and such that
the fixed point set of a subgroup H < G is contractible if H is finite, and is empty
otherwise.

Since �g;n is virtually torsion-free, its virtual cohomological dimension vcd.�g;n/

is a lower bound for gd.�g;n/; we remark, however, that there are groups for which
the inequality is strict (Leary and Nucinkis [12]). In [7], Harer computed vcd.�g;n/

for all g; n� 0; see Theorem 2.1 below. A central ingredient of Harer’s argument is
the construction, for n > 0, of a cocompact �g;n –equivariant deformation retract (a
spine) of Teichmüller space Tg;n , of dimension vcd.�g;n/. Work of Penner [18] and
Hensel, Osajda and Przytycki [8] shows that Harer’s spine is in fact an Ey�g;n for the
pure mapping class group y�g;n .

On the other hand, the case of closed surfaces of genus g�2 is far from well-understood.
Ji and Wolpert [10] used the fact that the Teichmüller space Tg;n is an E�g;n to prove
that the thick part T ��g;n of Teichmüller space is a cocompact E�g;n for all g; n� 0 (see
also Broughton [4] and Mislin [17] for an alternative construction). Ji [9] has recently
exhibited cocompact spines of Tg;0 of dimension less than dim.Tg;0/ – but also greater
than vcd.�g;0/ – that serve as cocompact models of E�g;0 . However, it is not known
whether there is a cocompact spine of Tg;0 of optimal dimension; see [3, Question 1.1].
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More generally, Bridson and Vogtmann have asked whether if it possible to construct a
cocompact E�g;0 of dimension equal to vcd.�g;0/; see [3, Question 2.3]. The purpose
of this note is to prove the existence of such E�g;0 :

Theorem 1.1 For any g � 0 there exists a cocompact E�g;0 of dimension equal to
vcd.�g;0/. In other words, gd.�g;0/D vcd.�g;0/.

The main tool of our proof is the algebraic invariant cd.�g;n/ (see Section 3), which
serves as the algebraic counterpart of gd.�g;n/. These two invariants are related in
the same way as the ordinary cohomological dimension of a group G is related to the
minimal dimension of an EG . For example, generalizing what happens in the torsion-
free case, Lück [13] proved the following Eilenberg–Ganea-type theorem, which will
play a central role in our proof:

Theorem 1.2 [13] Let G be a group with cd.G/ D d � 3. Then there is a d –
dimensional EG . Moreover, if G has a cocompact EG then it also admits a cocompact
EG of dimension d .

In the light of Lück’s theorem, we will prove that cd.�g;0/ D vcd.�g;0/ whenever
g � 3, using a result of the second author stated as Theorem 3.3 below. The case g � 2

will require separate treatment.

Recall that the mapping class group �b
g;n of a surface with b> 0 boundary components

is torsion-free, and therefore gd.�b
g;n/D cd.�b

g;n/Dvcd.�b
g;n/, by Lück’s Theorem 1.2.

This fact, together with Theorem 1.1, plus a minor extension of our arguments (see
Remark 4.5 below) yields the following:

Corollary 1.3 For all g; n; b � 0, there exists a cocompact E�b
g;n of dimension equal

to vcd.�b
g;n/.
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2 Preliminaries

Let Sg;n be a connected, orientable surface of genus g � 0, with empty boundary
and n � 0 marked points. The mapping class group �g;n is the group of isotopy
classes of orientation-preserving homeomorphisms of Sg;n , where homeomorphisms
and isotopies are required to map the set of marked points to itself. For simplicity, we
will write Sg WD Sg;0 and �g WD �g;0 .

2.1 Virtual cohomological dimension

Recall that �g;n has a torsion-free subgroup of finite index. As mentioned earlier,
Harer [7] computed the virtual cohomological dimension vcd.�g;n/ of �g;n :

Theorem 2.1 (Harer) If 2gC n> 2, then

vcd.�g;n/D

8<:
4gC n� 4 if g; n> 0;

4g� 5 if nD 0;

n� 3 if g D 0:

Remark 2.2 If n� 1 then �0;n is trivial. Also, �0;2 Š Z and �1;0 Š SL2.Z/ (Farb
and Margalit [6]). Therefore, vcd.�0;n/D 0 for n� 1, and vcd.�0;2/D vcd.�1;0/D 1.

2.2 Riemann–Hurwitz formula

Let g � 2. By the Nielsen realization theorem [11], every finite subgroup of �g may
be realized as a group of isometries with respect to some hyperbolic metric on Sg .
Therefore, given a finite subgroup L� �g , and slightly abusing notation, we may con-
sider the (hyperbolic) orbifold Sg=L. We denote by gL the genus of Sg=L; similarly,
let kL be the number of orbifold points of Sg=L, of orders pL

1
; : : : ;pL

kL
, respectively.

The tuple .gLIp
L
1
; : : : ;pL

kL
/ is called the signature of L. Since Sg ! Sg=L is an

orbifold cover of degree jLj, the multiplicativity of the orbifold Euler characteristic
implies that g and the signature of Sg=L are related by the so-called Riemann–Hurwitz
formula; see eg [6]:

(1)
2g� 2

jLj
D 2gL� 2C lL;

where

(2) lL D

kLX
iD1

�
1�

1

pL
i

�
:
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Observe that (2) implies

(3)
kL

2
� lL � kL:

We will need the following surely well-known observation:

Lemma 2.3 Let L < T be two distinct finite subgroups of �g , with g � 2, and
denote by .gLI q1; : : : ; qkL

/ and .gT Ip1; : : : ;pkT
/ the signatures of S=L and S=T ,

respectively. Then:

(i) If gT > 1 then gT < gL .

(ii) If gT � 1 then gT � gL ; moreover, if gT D gL then kT < kL .

Proof The map Sg=L! Sg=T is an orbifold cover of degree d D ŒT WL� > 1. By
the Riemann–Hurwitz formula, we have

2� 2gLC

kLX
iD1

1=qi � kL D d

�
2� 2gT C

kTX
iD1

1=pi � kT

�
:

Now
kLX
iD1

1=qi D d

kTX
iD1

1=pi :

(see, for instance, [6, Section 7.2.2]). Hence

(4) 2gLC kL� 2D d.2gT � 2/C dkT :

We prove the first claim of the lemma. Assume that gT > 1 and suppose, for contra-
diction, that gL � gT . From (4),

d.2gT � 2/C dkT D 2gL� 2C kL � 2gT � 2C dkT ;

which implies that d.2gT � 2/� 2gT � 2, a contradiction since d > 1. We have thus
proved part (i).

Moving on to the second claim of the lemma, assume gT � 1. We first prove that
gT � gL . Arguing again by contradiction, the only case to rule out is gT D 1 and
gLD 0. From (4), we get: kL�2D dkT � kL , which is impossible. Hence gL � gT ,
as claimed.

Finally, we prove that kT < kL whenever gT D gL ; recall that the latter implies
gT 2 f0; 1g. First, if gT D 1, (4) gives kL D dkT , and thus kT < kL , as desired. If
gT D 0, again (4) yields kL� 2D d.kT � 2/, which gives kT < kL as well (observe
that kL; kT > 2 since gT D gL D 0). This finishes the proof of the lemma.
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3 Preliminaries on classifying spaces for proper actions

As mentioned in the introduction, we will determine gd.�g;n/ using the algebraic
invariant cd.�g;n/, which is defined along the same lines as the ordinary cohomological
dimension but in the setting of proper actions. Informally, it is the length of the shortest
projective resolution of the trivial object in a certain category, whose objects are called
Bredon modules. Here, we will only need to make use of two facts about cd.G/,
referring the reader to Lück [13; 14] for a discussion on cd.G/.

The first fact about cd.G/ that we will need is Lück’s Theorem 1.2, which is a conse-
quence of [13, Theorem 13.19]. A proof of the existence of the model in Theorem 1.2
was given by Brady, Leary and Nucinkis [2]; we now explain how to adapt their
argument to produce a cocompact one.

Let X be a cocompact EG of dimension d . The .d � 1/–skeleton Z of X gives
a chain complex of free Bredon modules, which is exact except possibly in degree
d � 1. Let M be the .d � 1/th homology group of Z . As in the classical case – see
Brown [5, Section VIII, Lemma 2.1] – M is a projective Bredon module, which is
finitely generated since X is cocompact. Note that M might not be free. However, the
versions for Bredon modules, see [5, Section VIII, Lemma 4.4 and Proposition 6.5],
together imply that there is some free Bredon module P such that F WDP˚M is free
and that P can be taken to be finitely generated, so that F is also finitely generated. A
finitely generated free Bredon module is determined by a finite family of representatives
of conjugacy classes of finite subgroups. Denote by ƒP ; ƒF , respectively, the families
for P and F . Now, attach to Z orbits of .d � 1/–cells of types Sd�1 �G=H for
H 2ƒP , and use Hurewicz’s Theorem to attach orbits of d –cells of types Sd �G=H

for H 2ƒF . This way we get a new cocompact CW–complex Y such that the fixed
point set of L<G is contractible whenever L is finite and empty otherwise. In other
words, Y is the desired model for EG .

Remark 3.1 Theorem 1.2 also holds if d D 1; see [2].

Before we describe the second property of cd.G/ that will be used, we need some
definitions. Consider, for every finite subgroup H <G , the Weyl group

WH WDNG.H /=H;

where NG.H / denotes the normalizer of H in G . Observe that the centralizer ZG.H /

of H has finite index in NG.H /, and thus WH and ZG.H / are weakly commensurable.
Let FH D fT �G finite jH < T g, noting that the group WH acts on the poset FH

by conjugation.
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Let FH � be the chain complex of G –modules associated to the geometric realization
of FH , and let † zFH � be the result of augmenting and suspending FH � . Finally, write
pdWH †

zFH � for the projective dimension of the chain complex † zFH � , namely the
shortest length of a chain complex P� of projective G–modules such that there is a
morphism P�!† zFH � inducing an isomorphism in the homology groups.

A result of Connolly and Kozniewski, stated as [16, Theorem A], implies

(5) cd.G/D max
H�G finite

pdWH †
zFH �:

We will need:

Definition 3.2 (Length) The length �.L/ of a finite group L is the largest number
i 2N [f0g for which there is a sequence 1DL0 <L1 < � � �<Li DL.

We are finally ready to introduce the promised second fact about cd, which follows as
an easy consequence of (5):

Theorem 3.3 Let G be a virtually torsion-free group such that for any H �G finite,
vcd.WH/C�.H /� vcd.G/. Then cd.G/D vcd.G/.

Proof For i � 0, the i th term of † zFH � is the permutation module associated to the
action of G on the cells of the form T WDHi > � � �>H1 >H0 DH , whose stabilizer
is weakly commensurable with WT . Observe that i C�.H /� �.T /. Therefore

pdWH †
zFH � �maxf�.T /��.H /C vcd WT j T 2 FH [fH gg � vcd.G/:

Using (5) we get cd.G/� vcd.G/; the other inequality is well known.

4 Proof of Theorem 1.1

In the light of Theorem 3.3, we are going to need to understand the relation between
vcd.�g/ and vcd.WL/, for every finite subgroup L<�g . The following is well-known;
see, for instance, Maher [15, Proposition 2.3]:

Lemma 4.1 Let L� �g be a finite subgroup of signature .gLIp
L
1
; : : : ;pL

kL
/. Then

WL has finite index in �gL;kL
. In particular, vcd.WL/D vcd.�gL;kL

/.

For notation purposes, it will be convenient to write

�.L/ WD 4gLC kL� 4:
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Observe that, from Theorem 2.1 and Lemma 4.1, we have

(6) vcd.WL/D

8<:
�.L/ if gL; kL > 0;

�.L/� 1 if kL D 0;

�.L/C 1 if gL D 0:

We will need:

Proposition 4.2 Let L < T be finite subgroups of �g , where g � 2. Assume that
gT < gL . Then vcd.WT/ < vcd.WL/, unless we are in one of the following two cases:

(i) .gL; kL/D .2; 0/ and .gT ; kT /D .0; 6/.

(ii) .gL; kL/D .1; r/ and .gT ; kT /D .0; r C 3/, for some r � 1.

Proof First, observe that L < T implies Z�g
.T / �Z�g

.L/, and thus vcd.WT/ �
vcd.WL/. Using (3) and the Riemann–Hurwitz formula we deduce that

(7) �.T /D 4gT � 4C kT � 4gT � 4C 2lT D
4gL� 4C 2lL

jT WLj

�
4gL� 4C 2kL

jT WLj
D
�.L/C kL

jT WLj
�
�.L/C kL

2
:

Armed with inequality (7), and noting that gL > 0, we distinguish the following cases:

Case 1 (gT > 0) We have the following subcases:

(1a) kT D kL D 0: Since gT < gL then vcd.WT/ < vcd.WL/.

(1b) kL D 0, kT ¤ 0: Since gL � 2, we have that �.L/� 4. From (6),

vcd.WT/D �.T /�
�.L/

2
< �.L/� 1D vcd.WL/:

(1c) kL ¤ 0, kT D 0: Note that gT � 2, and so gL � 3. In particular, vcd.WL/D
4gL� 4C kL � kLC 8. Therefore, using (6) and (7),

vcd.WT/D �.T /� 1�
�.L/C kL� 2

2
< vcd.WL/:

(1d) kL ¤ 0, kT ¤ 0: In this case, since 0< gT < gL , then vcd.WT/ < vcd.WL/.

Case 2 (gT D 0) Note that kT > 0. We have the following subcases:

(2a) kL D 0: Again by (1), gL � 2, and in particular vcd.WL/� 3. From this, and
using (6) and (7), we deduce

vcd.WT/� 1�
vcd.WL/C 1

2
< vcd.WL/� 1
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unless vcd.WL/D3. In the latter case, either vcd.WT/<vcd.WL/ or .gL; kL/D .2; 0/

and .gT ; kT /D .0; 6/, as claimed.

(2b) kL ¤ 0: Suppose first that gL � 2, in which case vcd.WL/D 4gL� 4C kL �

kLC 4. From (6) and (7), we obtain

vcd.WT/� 1�
vcd.WL/C kL

2
�

2 vcd.WL/� 4

2
< vcd.WL/� 1;

and thus the result follows. Suppose now that gL< 2, and thus gLD 1 as 0DgT <gL .
As vcd WT � vcd WL , in the equality case we have

kL D vcd.WL/D vcd.WT/D kT � 3;

and we are in part (ii) of the theorem.

Remark 4.3 Cases (i) and (ii) in Proposition 4.2 do occur in practice. Indeed, there
is a branched double-cover S2;0! S�

0;6
, where S�

0;6
denotes a sphere with six cone

points of angle � , induced by the hyperelliptic involution of S2;0 . By a result of
Birman and Hilden [1], we may realize �0;6 as a subgroup of index 2 in �2;0 . Along
similar lines, �0;5 is a subgroup of index 2 in �1;2 , arising from the hyperelliptic
involution of S1;2 .

The next result is the key technical observation of this note:

Proposition 4.4 If g � 3, then for any T < �g finite,

vcd.WT/C�.T /� vcd.�g/:

Proof Our first objective is to establish the following:

Claim Let 1¤ T < �g be finite, where g � 3. If gT > 0, then

(8) vcd.WT/C�.T /C 1� vcd.�g/:

Proof of Claim Using (1) and (3), and since gT > 0, we have

vcd.�g/C 1

jT j
D

4g� 4

jT j
D 4gT � 4C 2lT � 4gT � 4C kT

D �.T /� vcd.WT/:

Rearranging, we obtain vcd.�g/� jT j vcd.WT/� 1. In particular, observe that (8) is
satisfied whenever

(9) vcd.WT/C�.T /C 2� jT j vcd.WT/

Algebraic & Geometric Topology, Volume 14 (2014)
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holds. We distinguish the following cases, depending on the value of vcd.WT/:

(i) If vcd.WT/� 3, then 4 is true for all finite subgroups T ��g , as �.G/� jGj�1

for every finite group G .

(ii) If vcd.WT/D 2, then 4 holds unless jT j D 2, again since �.T /� jT j � 1. But
if jT j D 2 then �.T /D 1, and thus (8) follows because vcd.�g/� 7 as g � 3.

(iii) If vcd.WT/D 1 then 4 is satisfied unless jT j 2 f2; 3; 4g. To see this, observe
that if T has a maximal subgroup satisfying 4, then the same holds for T , and
that groups of orders 8; 9; 6;p for p a prime p > 3 satisfy 4. In the remaining
cases �.T /� 2, and hence (8) follows as in the previous case since g � 3.

This finishes the proof of the claim.

Returning to the proof of the proposition, let T � �g be a finite subgroup. If T D 1

then the result is trivial, and if gT > 0, then it follows from the claim above. Therefore,
assume that T ¤ 1 and gT D 0. Let L� T be such that �.T /D �.L/C 1. Suppose
first that L D 1, noting that �.T / D 1. Since gL D g � 3, Proposition 4.2 implies
that vcd.WT/ < vcd.WL/D vcd.�g/, and so we are done. Thus assume that L¤ 1.
If gL > 0, the claim above yields

vcd.WT/C�.T /� vcd.WL/C�.L/C 1� vcd.�g/:

On the other hand, if gL D 0 then kT < kL , by Lemma 2.3. Thus

vcd.WT/C�.T /D kT � 3C�.T /

< vcd.WL/C�.L/C 1:

Hence vcd.WT/C �.T / � vcd.WL/C �.L/, and the result follows by induction on
the length of T .

We are finally ready to prove Theorem 1.1:

Proof of Theorem 1.1 First, if g�3, the result follows combining Lück’s Theorem 1.2
with Theorem 3.3 and Proposition 4.4. If g D 0 then �0;0 D 1 so the result is trivial.
Next, if g D 1 then �1;0 D SL2.Z/ and one can take the dual tree to the Farey graph
as a model of E�1;0 . Finally, �2;0 is a central extension of �0;6 by Z2 . Let X be
a cocompact model for E�0;6 of dimension vcd.�0;6/ – Harer’s spine, for instance.
Then the action of �0;6 on X can be lifted to an action of �2;0 , and thus X is a
cocompact model for E�2;0 too. Since vcd.�2;0/D vcd.�0;6/, we are done.

Remark 4.5 An inductive argument along the lines of [17, Section 4], using the
Birman short exact sequence, [14, Theorem 5.16] and Harer’s formula yields the
analogue of Theorem 1.1 for surfaces with a non-empty set of marked points.
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