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A spectral sequence for fusion systems

ANTONIO DÍAZ RAMOS

We build a spectral sequence converging to the cohomology of a fusion system
with a strongly closed subgroup. This spectral sequence is related to the Lyndon–
Hochschild–Serre spectral sequence and coincides with it for the case of an extension
of groups. Nevertheless, the new spectral sequence applies to more general situations
like finite simple groups with a strongly closed subgroup and exotic fusion systems
with a strongly closed subgroup. We prove an analogue of a result of Stallings in
the context of fusion preserving homomorphisms and deduce Tate’s p–nilpotency
criterion as a corollary.

55T10; 55R35, 20D20

1 Introduction

Let K E G be a normal subgroup of the finite group G and consider the extension

K!G!G=K:

The Lyndon–Hochschild–Serre spectral sequence of this short exact sequence is an
important tool to analyze the cohomology of G with coefficients in the ZG –module M.
It has second page E

n;m
2
DH n.G=KIH m.KIM // with G=K acting on H m.KIM /

and converges to H nCm.GIM /.

Our aim in this work is to construct a related spectral sequence in the context of fusion
systems. This concept was originally introduced by Puig and developed by Broto, Levi
and Oliver in [3], to which we refer the reader for notation. It consists of a category F
with objects the subgroups of a finite p–group S and morphisms bounded by axioms
that mimic properties of conjugation morphisms.

In the setup of fusion systems the concept of a short exact sequence is an evasive one:
Let F be a fusion system over the p–group S. For a strongly F–closed subgroup T

of S there is a quotient fusion system F=T ; Craven [7, 5.10]. Nevertheless, in general
there is no normal fusion subsystem of F that would play the role of the kernel of the
morphism of fusion systems F ! F=T ; Aschbacher [1, 8.11 ff]. So the answer to
Solomon and Stancu [16, Conjecture 11] is negative and one cannot expect to construct
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a Lyndon–Hochschild–Serre spectral sequence for fusion systems. Here we are able
to construct a spectral sequence that converges to the cohomology of F , H�.F IM /,
where M is a Z.p/–module with trivial action of S. Recall that H�.F IM / is defined
[3, Section 5] as the following subring of F–stable elements in H�.S IM /:

H�.S IM /F D fz 2H�.S IM / j res.z/D '�.z/ for each ' 2 HomF .P;S/g;

where resW H�.S IM /!H�.P IM / is restriction in cohomology.

Theorem 1.1 Let F be a fusion system over the p–group S, T a strongly F–closed
subgroup of S and M a Z.p/–module with trivial S–action. Then there is a first
quadrant cohomological spectral sequence with second page

E
n;m
2
DH n

�
S=T IH m.T IM /

�F
and converging to H nCm.F IM /.

The notation F for the second page will be fully described in Section 2, and must
be thought as taking F–stable elements in a similar way as explained for H�.F IM /

above. Consider for each subgroup P of S the Lyndon–Hochschild–Serre spectral
sequence of the extension

P \T ! P ! P=P \T Š PT=T

converging to H�.P IM /. A morphism ' 2 HomF .P;Q/ induces a morphism '�

between the spectral sequences corresponding to Q and P . Hence we have a contravari-
ant functor from F to the category of spectral sequences. Recall that a morphism in
this category from E0 to E00 is a sequence of homomorphisms of differential bigraded
Z.p/–modules, fk W E

0
k
! E00

k
, k � 0, such that H.fk/ Š fkC1 . The inverse limit

spectral sequence or spectral sequence of F–stable elements has E
n;m
2

entry equal to
H n.S=T IH m.T IM //F , ie, the elements z from

H n
�
S=T IH m.T IM /

�
such that '�.z/ D res.z/, where ' 2 HomF .P;S/ and res D �� is restriction in
cohomology for the inclusion P

�
� S . Hence H�.S=T IH�.T IM //F is a differential

graded subalgebra of the differential graded algebra H�.S=T IH�.T IM // and its
differential is just restriction of the differential of the latter. This should be useful
in computations. The theorem states that the abutment of this spectral sequence is
H�.F IM /.

For the case of a normal subgroup K E G and F D FS .G/ with S 2 Sylp.G/ we
have two spectral sequences converging to H�.GIM /. Here, M is a Z.p/–module
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with trivial G–action (and hence trivial S–action). On the one hand, we have the
Lyndon–Hochschild–Serre spectral sequence associated to K!G!G=K . On the
other hand, we have the spectral sequence associated to F and the strongly F–closed
subgroup T DK\S 2 Sylp.K/. In Section 5 we prove that the two spectral sequences
are isomorphic. Note that, in particular, this shows that the Lyndon–Hochschild–Serre
spectral sequence of the extension K!G!G=K depends only on the intersection
of K with a Sylow p–subgroup of G .

As an application of the spectral sequence in Theorem 1.1 we prove an analogue of a
result of Stallings. Meanwhile the original theorem deals with a group homomorphism,
here we replace that notion by that of a fusion preserving homomorphism. This is
a group homomorphism S1 ! S2 between the Sylow p–subgroups of two fusion
systems F1 and F2 such that morphisms of F1 are transformed into morphisms of
F2 (see Section 6).

Theorem 1.2 (Stallings [17, page 170]) Let Fi be a fusion system over the p–group
Si for i D 1; 2 and let �W S1 ! S2 be a fusion preserving homomorphism. If the
induced map in cohomology H i.F2IFp/!H i.F1IFp/ is an isomorphism for i D 1

and a monomorphism for i D 2 then S1=Op
F1
.S1/Š S2=Op

F2
.S2/.

The hyperfocal subgroup of Fi , O
p
Fi
.Si/, (i D 1; 2) is defined as follows:

O
p
Fi
.Si/D h ŒP;O

p.AutFi
.P //� j P � Sii:

It is the smallest subgroup of Si such that the quotient of Fi over that subgroup is a
p–group; see Broto, Castellana, Grodal, Levi and Oliver [2]. Hence, the conclusion
of the theorem is that the largest p–group quotients of F1 and F2 are isomorphic.
For instance, when F1 and F2 are already p–groups, ie, Fi D FSi

.Si/, i D 1; 2,
the conclusion is that S1 and S2 are isomorphic. This particular case is a variant of
Stallings’ result by Evens [10, 7.2.4]. We can also deduce fusion system versions of
another result of Evens and Tate’s p–nilpotency criterion:

Corollary 1.3 (Evens [10, 7.2.5]) Let F be a fusion system over the p–group S.
If the map H 2.F=Ep

F .S/IFp/!H 2.F IFp/ is a monomorphism then S=O
p
F .S/ is

elementary abelian.

Here, the elementary focal subgroup of F is defined as E
p
F .S/Dˆ.S/O

p
F .S/ (Díaz,

Glesser, Park and Stancu [8]), where ˆ.S/ is the Frattini subgroup of S. The conclusion
of this corollary is that the largest p–group quotient of F is elementary abelian.
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Corollary 1.4 (Tate [18, Corollary on page 109]) Let F be a fusion system over the
p–group S. If the restriction map H 1.F IFp/!H 1.S IFp/ is an isomorphism then
F D FS .S/.

This last result was already proven in [8] using transfer for fusion systems and in
Cantarero, Scherer and Viruel [5] by topological methods. Here the proof mimics Tate’s
original cohomological proof that relies on the five-term exact sequence associated to
the Lyndon–Hochschild–Serre spectral sequence but uses instead the spectral sequence
of Theorem 1.1.

There are situations where the Lyndon–Hochschild–Serre spectral sequence is not
applicable while the spectral sequence from Theorem 1.1 can be used. For instance,
a classical drawback of the Lyndon–Hochschild–Serre spectral sequence is that it
cannot be applied to finite simple groups. Nevertheless there are finite simple groups
that do have a strongly closed p–subgroup: Flores and Foote [11] classified all finite
groups with a strongly closed p–subgroup, in particular such finite simple groups.
Notice that even if F is induced from a nonsimple finite group F D FS .G/ not
every strongly closed F–subgroup T of S is of the form T D K \ S for some
normal subgroup K E G [1, Example 6.4]. This describes another circumstance where
Lyndon–Hochschild–Serre does not apply but Theorem 1.1 does. As final example of
this situation consider an exotic fusion system with a strongly closed p–subgroup. A
family of such exotic fusion systems is described in Díaz, Ruiz and Viruel [9], where
the authors classified all the fusion systems over p–groups of p–rank 2 (p odd).

This opens a new range of cohomology computations that can be carried out, some
of which the author intends to perform in a subsequent paper. The main limitation
here is that the spectral sequence from Theorem 1.1 requires knowledge of the Lyndon–
Hochschild–Serre spectral sequence of the extension of p–groups T ! S ! S=T ,
and these computations do not abound.

Remark 1.5 Theorem 1.1 holds for the wider class of F–stable Z.p/S–modules, ie,
for Z.p/S–modules M such that for any morphism 'W P!S in F and any p 2P we
have '.p/�mDp �m. Also, the Lyndon–Hochschild–Serre spectral sequence of K E G

and the spectral sequence from Theorem 1.1 for F DFS .G/ and T DS\K coincide
for G –stable Z.p/G –modules, ie, for Z.p/G –modules M such that g�1hg �mD h �m

for any h;g 2G .

Organization of the paper

In Section 2, F–stable elements and Mackey functors are defined and some related
results introduced. In Section 3, we describe a particular cohomological Mackey functor
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that will play a central role in the construction of the spectral sequence. In Section 4,
the spectral sequence is built and Theorem 1.1 is proven as Theorem 4.1. In Section 5
we compare the spectral sequence from Theorem 1.1 to the Lyndon–Hochschild–Serre
spectral sequence and we give an example. In Section 6 we prove Stallings’ result and
some of its corollaries.

Acknowledgements I would like to thank AViruel for several fruitful conversations
when developing this paper. Also, I am grateful to P Symonds for showing me
how to prove that the two spectral sequences coincide in the normal subgroup case
(Theorem 5.1).

This work was supported by MCI grant RYC-2010-05663 and partially supported by
FEDER-MCI grant MTM2010-18089 and Junta de Andalucía grant FQM-213

2 Cohomology and F–stable elements

Throughout this section F denotes a fusion system over the p–group S. We start
by introducing some notation: If AW F ! C is a contravariant functor and C is any
category then we denote the value A.'/ by '�, where ' is a morphism in F . For
' D �S

P
, the inclusion of P into S, we write res WD �S

P
�. If C is a complete category

then we denote by AF the inverse limit over F of the functor:

AF
WD lim
 �
F

A:

For the complete category CCh.Ab/ of (unbounded) cochain complexes we have the
following favourable description of inverse limits:

Lemma 2.1 Let AW F ! CCh.Ab/ be a contravariant functor. Then:

AF
DA.S/F WD fz 2A.S/ j res.z/D '�.z/ for each ' 2 HomF .P;S/g �A.S/:

We call the elements in A.S/F the F–stable elements in A.S/. For such a functor we
can consider the cohomology H�.AF /DH�.A.S/F / of A.S/F 2CCh.Ab/. Notice
that we also have functors H n.A/W F!Ab obtained by taking cohomology in degree
n. Hence we may also consider the inverse limits H�.A/F DH�.A.S//F. We are
interested in functors A for which taking F–stable elements and cohomology commute.
We prove in this section (Proposition 2.8) that being a cohomological Mackey functor
(Definition 2.2) with values in Z.p/–modules is sufficient for this.
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Definition 2.2 Let F be a saturated fusion system over the p–group S and let A
be an abelian category. A cohomological Mackey functor for F over A is a pair of
functors .A;B/W F ! A with AW F ! A contravariant and BW F ! A covariant
such that:

(1) A.P /DB.P / and A.'/DB.'�1/ for each P � S and ' 2HomF .P; '.P //.

(2) (Identity) A.cp/;B.cp/W A.P /!A.P / are the identity morphisms for every
p 2 P � S, where cpW P ! P , x 7! pxp�1 is conjugation by p .

(3) (Double coset formula)

A.�PQ/ ıB.�PR/D
X

x2QnP=R

B.�
Q
Q\xR

/ ıA.�
xR
Q\xR/ ıA.cx�1 jxR/

for Q;R� P � S, where QnP=R are the double cosets.

(4) (Cohomological) B.�
Q
P
/ ıA.�

Q
P
/W A.Q/!A.Q/ is multiplication by jQ W P j

for every P �Q� S.

See Webb [19] for the classical definition of Mackey functors and of cohomological
Mackey functors for finite groups.

Remark 2.3 In Definition 2.2 we have omitted the familiar conditions:

� (Transitivity)

B.�RQ/ ıB.�
Q
P
/D B.�RP / and A.�

Q
P
/ ıA.�RQ/DA.�RP /

for P �Q�R� S.

� (Conjugation)

B.�
Q
P
/ ıA.'jP /DA.'/ ıB.�

'.Q/

'.P//;

B.'jP / ıA.�
Q
P
/DA.�

'.Q/

'.P// ıB.'/;

for P �Q� S, ' 2 HomF .Q; '.Q//.

In fact, they are consequences of the functoriality of A and B and of Condition (1).

We will use several times in the paper that cohomology of finite groups is a cohomo-
logical Mackey functor. For a proof of this fact see, eg, Brown [4].
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Remark 2.4 If the maps B.�
Q
P
/ for the inclusions �Q

P
W P !Q with P;Q � S are

given (these maps are called transfer) we can define B as follows: For any mor-
phism ' 2HomF .P;Q/ define B.'/W A.P /!A.Q/ by B.'/DB.�

Q

'.P/
/ıA.z'�1/

with z'W P
Š
! '.P /. Such a B becomes functorial if for any P � Q � R we have

B.�R
Q
/ ıB.�

Q
P
/D B.�R

P
/ and for any P �Q

'
! '.Q/ we have

B.�
Q
P
/ ıA.'jP /DA.'/ ıB

�
�
'.Q/

'.P/

�
:

Before proving the main result of this section we need to introduce .G;H /–bisets:
Sets with commuting free right G –action and free left H –action. Every .G;H /–biset
� can be decomposed into a disjoint union of transitive .G;H /–bisets of the form

H �' G DH �G=� ;

with K �G , 'W K!H a monomorphism and

.h; kg/� .h'.k/;g/

for h 2H , g 2G and k 2K . A saturated fusion system gives rise to a special type of
biset:

Proposition 2.5 [3, Proposition 5.5] For any saturated fusion system F over a p–
group S, there is an .S;S/–biset � with the following properties:

(a) Each transitive component of � is of the form S �' S for some P � S and
' 2 HomF .P;S/.

(b) For each P � S and each ' 2HomF .P;S/, the .P;S/–biset �P obtained by
restricting the right action from S to P and the .P;S/–biset �' obtained by
restricting the right action from S to P via ' are isomorphic as .P;S/–bisets.

(c) j�j=jS j D 1 mod p .

We call such an .S;S/–biset an F–stable .S;S/–biset. Now let .A;B/W F ! A
be a cohomological Mackey functor for F over the abelian category A. For each
transitive .Q;R/–biset R�' Q with ' 2HomF .P;R/, P �Q� S, R� S, we have
the composition

(2-1) A.R/
A.'/
���!A.P /D B.P /

B.�
Q
P
/

����! B.Q/DA.Q/:

For each .Q;R/–biset � with

�D
a

R�' Q

we can define a map A.�/W A.R/!A.Q/ by

(2-2) A.�/ WD
X

B.�/ ıA.'/:
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Lemma 2.6 Let .A;B/W F !A be a cohomological Mackey functor. Then:

(1) For each transitive .Q;R/–biset R�' Q the morphism (2-1) depends only on
the isomorphism class of R�' Q as .Q;R/–biset.

(2) For any .Q;R/–biset � the morphism (2-2) depends only on the isomorphism
class of � as .Q;R/–biset.

(3) For any .Q;R/–biset � and any monomorphism  W P !Q we have

A. / ıA.�/DA.� /;

where � is the .P;R/–biset obtained by restricting the right action of � from
Q to P via  .

(4) If AD Z.p/–mod and � is an F–stable .S;S/–biset then

A.S/F D Im
�
A.�/W A.S/!A.S/

�
:

Proof of Lemma 2.6

Proof of (1) The transitive .Q;R/–bisets R�'1
Q and R�'2

Q with '1W P1!R,
'2W P2!R, P1;P2 �Q are isomorphic as .Q;R/–bisets if and only if there exist
elements q 2Q and r 2R such that the following diagram commutes:

P1

cq

��

'1 // R

cr

��
P2

'2 // R

Hence both squares in the following diagram commute:

A.R/
A.'1/ // A.P1/

B.�
Q
P1
/
//

B.cq/

��

A.Q/

B.cq/

��
A.R/

A.cr /

OO

A.'2/ // A.P2/

A.cq/

OO

B.�
Q
P2
/
// A.Q/

Using Properties (1) and (2) from Definition 2.2 one finds that

B.�
Q
P1
/ ıA.'1/D B.�

Q
P2
/ ıA.'2/:

Proof of (2) Any automorphism of � permutes its transitive components via isomor-
phisms. So we may apply Lemma 2.6(1) to each component.
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Proof of (3) Write � as a disjoint union of transitive .Q;R/–bisets �D
`

R�' Q.
The transitive .Q;R/ biset R �' Q with 'W K ! R, K � Q decomposes as a
.P;R/–biset with P acting via  as follows:

R�' QD
[
q2

 .P/nQ=K

R�'ıc
q�1ı P;

with P � P \ �1.qK/
 j
!  .P /\ qK

c
q�1

�! K
'
!R. Hence,

A.� /D
X
'

X
q2

 .P/nQ=K

B.�P
P\ �1.qK /

/ ıA.' ı cq�1 ı j/:

Using functoriality of A and B we get

A.� /DA. z / ı

�X
'

X
q2

 .P/nQ=K

B
�
�
 .P/

 .P/\qK

�
ıA.cq�1/ ıA.'/

�
;

with z W P
Š
!  .P /. Now the Mackey decomposition (3) from Definition 2.2 gives

A.� /D
X
'

A. z / ıA.�
Q

 .P/
/ ıB.�

Q
K
/ ıA.'/DA. / ıA.�/:

Proof of (4) Let z 2 A.S/. We want to see that A.�/.z/ 2 A.S/F . So let  be a
morphism in HomF .P;S/. Then

A. /
�
A.�/.z/

�
D
�
A. / ıA.�/

�
.z/DA.� /.z/

by Part (3). By Proposition 2.5(b), the .P;S/–bisets � and ��S
P
D�P are isomor-

phic as .P;S/–bisets. Then by Part (2) we have A.� /DA.��S
P
/. Hence,

A. /
�
A.�/.z/

�
DA.� /.z/DA.��S

P
/.z/DA.�SP /

�
A.�/.z/

�
by Part (3). Thus A.�/.z/ 2A.S/F .

Now let z 2A.S/F . Then

A.�/.z/D
X

B.�/
�
A.'/.z/

�
D

X
B.�/

�
A.�/.z/

�
as z is F–stable. Now by (4) of Definition 2.2 we get

A.�/.z/D
�X

jS W P j
�
� z

and by Proposition 2.5(c) the number q D .
P
jS W P j/D j�j=jS j is a p0–number. So

A.�/. z
q
/D z and hence z 2 Im A.�/.
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For a fusion system F over the p–group S denote by CohMackZ.p/.F/ the abelian
category with objects the cohomological Mackey functors with values in Z.p/–mod
and morphisms the natural transformations commuting with both the contravariant and
covariant parts. This means that if .A;B/ and .A0;B0/ are cohomological Mackey
functors, a morphism � between them consists of a morphism of Z.p/–modules
�P W A.P /!A0.P / for each P � S such that for ' 2 HomF .P;Q/ we have

A0.'/ ı �Q D �P ıA.'/ and �Q ıB.'/D B0.'/ ı �P :

Lemma 2.7 Let F be a fusion system over the p–group S. Then the functor

CohMackZ.p/.F/
.�/F

����! Z.p/–mod

sending .A;B/ 7!AF is exact.

Proof Let
0) .A1;B1/) .A2;B2/

�
) .A3;B3/) 0

be an exact sequence in CohMackZ.p/.F/. We want to prove that

0!AF
1 �!AF

2

�F

�!AF
3 �! 0

is exact in Z.p/–mod. The nontrivial assertion to prove is that the arrow AF
2
!AF

3
is

an epimorphism. So let z be an F–stable element in A3.S/. Fix an .S;S/–biset �
satisfying the properties of Proposition 2.5. By Lemma 2.6 (4) there exists an element
z0 2A3.S/ with z DA3.�/.z

0/. By hypothesis, the map

A2.S/
�S
�!A3.S/

is an epimorphism and hence there exists an element y0 2 A2.S/ with �S .y
0/D z0 .

By Lemma 2.6 (4) again we have that

y
def
D A2.�/.y

0/

belongs to AF
2

. Because � commutes with the covariant and contravariant parts of
.A2;B2/ and .A3;B3/, it is easy to see that

�F .y/D �F
�
A2.�/.y

0/
�
DA3.�/

�
�F .y0/

�
DA3.�/.z

0/D z:

Proposition 2.8 Let F be a fusion system over S and let .A;B/W F ! CCh.Z.p//
be a cohomological Mackey functor. Then

H�
�
A.S/F

�
ŠH�

�
A.S/

�F
:

Proof This is a consequence of Lemma 2.7 and of the well-known fact that cohomology
commutes with exact functors.
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Remark 2.9 Let F be a fusion system over the p–group S and let M be a trivial
Z.p/S–module. By [3, Section 5] the cohomology of F is defined as

H�.F IM /DH�.S IM /F ;

where H�. � IM /W F ! Z.p/–modules is the cohomological Mackey functor with
values H�.P IM /. If one could choose cochains C �. � IM /W F ! CCh.Z.p// such
that C �. � IM / was the contravariant part of a cohomological Mackey functor then
Proposition 2.8 would give the computational-purposes formula

H�.F IM /DH�
�
C �.S IM /F

�
:

In the next section some problems related to the functoriality of cochains will become
apparent.

3 A Mackey functor

Let F be a fusion system over the p–group S, T a strongly F–closed subgroup of
S and M a Z.p/–module with trivial S–action. In this section we prove that for
every n;m � 0 the functor H n;mW F ! Z.p/–mod sending the subgroup P � S to
H n.P=P \T IH m.P \T IM // is the contravariant part of a cohomological Mackey
functor F ! CCh2.Z.p// with values in double (cochain) complexes (Definition 2.2).
Here, by double complexes we mean the abelian category with objects families of
Z.p/–modules fAn;mgn;m2Z together with maps dh (horizontal differential) and dv

(vertical differential)

dh
W An;m

!AnC1;m and dvW An;m
!An;mC1;

such that dhdh D dvdv D dhdv C dvdh D 0. A morphism from fAn;mgn;m2Z

to fA0n;mgn;m2Z is a family of maps of Z.p/–modules fAn;m! A0
n;m
gn;m2Z that

commute with horizontal and vertical differentials.

For P � S denote by P the group P=P \T . The bar resolutions B�
P

and B�
P

for P

and P respectively are projective resolutions of the trivial module Z.p/ over Z.p/P
and Z.p/P respectively. Recall that the bar resolution is functorial (covariant) over
finite groups and homomorphisms. Define A�;�.P / as the double complex associated
to the short exact sequence

0! P \T ! P ! P Š PT=T ! 0:

More precisely, for n� 0 and m� 0, we define

An;m.P /D HomP

�
Bn

P
˝Bm

P ;M
�
;
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where P acts on Bn

P
˝Bm

P
by p.y˝x/D py˝px for y 2 Bn

P
and x 2 Bm

P
.

As the action of P on M is trivial the cochains in An;m.P / are the homomorphisms
f 2 Hom.Bn

P
˝Bm

P
;M / such that

f .py˝px/D f .y˝x/

for all y 2 Bn

P
, x 2 Bm

P
and p 2 P .

To obtain a double complex we consider the following horizontal and vertical differen-
tials for f 2An;m.P /:

dh.f /.y˝x/D .�1/nCmC1f .d.y/˝x/; y 2 BnC1

P
; x 2 Bm

P ;

dv.f /.y˝x/D .�1/mC1f
�
y˝ d.x/

�
; y 2 Bn

P
; x 2 BmC1

P
;

where we are using the differential d of the complexes B�
P

and B�
P

. We choose the
signs as given by Mac Lane [13, XI.10.1] to ensure that dhdv C dvdh D 0. We
will obtain the functor H n;m by taking vertical cohomology followed by horizontal
cohomology in An;m .

To define A on morphisms notice that any morphism ' 2 HomF .P;Q/ takes P \T

to Q\T as T is strongly F–closed. Hence it induces a homomorphism

'W P !Q:

Thus for any ' 2 HomF .P;Q/ we may define

An;m.Q/
An;m.'/
������!An;m.P /

mapping the cochain f 2An;m.Q/ to the cochain in An;m.P / that takes y 2 Bn

P
and

x 2 Bm
P

to
f
�
Bn.'/.y/˝Bm.'/.x/

�
;

where Bn.'/ and Bm.'/ are the usual morphisms between bar resolutions. They
commute with differentials and satisfy

Bn.'/.p �y/D '.p/ �Bn.'/.y/

for every y 2 Bn

P
and every p 2 P and

Bm.'/.p �x/D '.p/ �Bm.'/.x/

for every x 2 Bm
P

and p 2 P . It is straightforward that An;m.'/.f / 2 An;m.P /

and that the family of morphisms fAn;m.'/gn;m�0 commutes with the horizontal and
vertical differentials of the double complexes A�;�.Q/ and A�;�.P /.
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Remark 3.1 By definition the fusion system F=T is defined over the p–group S=T .
For T �P;Q�S the morphisms in HomF=T .P=T;Q=T / are those homomorphisms
 W P=T !Q=T induced on the quotient from  2 HomF .P;Q/.

For P;Q� S and ' 2HomF .P;Q/ we have a morphism 'W P !Q. Then we have
a commutative diagram

P

Š

��

' // Q

Š

��
PT=T

' // QT=T;

where the ' are induced by ' and where the vertical arrows are the natural isomor-
phisms. According to [7, 5.10] bottom morphism ' belongs to F=T , ie, there exists
 2HomF .PT;QT / such that the induced map  W PT=T !QT=T coincides with
the given one.

Remark 3.2 The construction of An;m is clearly functorial and hence so far we have
a contravariant functor A�;�W F ! CCh2.Z.p// with values in double complexes.

Now we define Bn;m.P / D An;m.P / for every P � S and n;m � 0. For each
morphism ' 2 HomF .P;Q/ we will define a morphism of double complexes

Bn;m.'/W An;m.P /!An;m.Q/:

This will not make B into a covariant functor F ! CCh2.Z.p// as the definition
depends on a choice of representatives. Nevertheless, B will become functorial once
we pass to cohomology.

To define B�;�. / on  2 HomF .P;Q/, write  D � ı z , where z W P !  .P / is
an isomorphism and � is the inclusion  .P /�Q, and set

(3-1) B�;�. /D B�;�.�/ ıA�;�. z �1/:

So we just need to define B on inclusions.

So let � be the inclusion between subgroups P �Q of S. There are maps of Z.p/P –
chain complexes and of Z.p/P –chain complexes respectively

�
Q;P
� W B�Q! B�P ; �

Q;P
� W B�

Q
! B�

P
;

built as in [4, (D), page 82]. More precisely, the map �Q;P
� is induced by a map of

left P –sets Q
�
!P defined as follows: fix a set of representatives for the right cosets

PnQ, then �.q/ D qq�1 , where q is the representative with Pq D Pq . The map
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�
Q;P
� is defined analogously choosing representatives for the right cosets PnQ. These

choices of representatives prevent Bp;q from being functorial.

We define the map

(3-2) Bn;m.�/W HomP .Bn

P
˝Bm

P ;M /! HomQ.Bn

Q
˝Bm

Q;M /;

Bn;m.�/.f /.y˝x/D
X

w2Q=P

f
�
�Q;P

n .w�1y/˝ �Q;P
m .w�1x/

�
;

where w runs over a set of representatives of the left cosets Q=P . This formula can be
thought as a relative transfer formula for twisted coefficients. Clearly its definition does
not depend on the representatives w chosen and Bn;m.�/.f / 2An;m.Q/. Moreover,
Bn;m.�/ commutes with both the horizontal and vertical differentials as �� and �� do
and so it is a map of double complexes.

Remark 3.3 By Park [14] there are finite groups G and G such that S is a p–
subgroup of G (not necessarily a Sylow p–subgroup), S D S=T is a p–subgroup of
G (not necessarily a Sylow p–subgroup) and with F D FS .G/ and F=T D FS .G/.
Let B�

G
and B�

G
be the bar resolutions of G and G respectively. Then we could

have defined for P � S

An;m.P /D HomP

�
Bn

G
˝Bm

G ;M
�
;

where P acts on Bn

G
˝Bm

G
by restricting the actions of G on B�

G
and of G on B�

G
.

This means that p.y˝x/D py˝px for p 2 P . In this setup clearly one can define
a functorial Bn;m on inclusions. On the other hand, to realize a morphism 'W P !Q

we need to choose g 2NG.P;Q/ with ' D cg and g 2NG.P ;Q/ with ' D cg and
then define

An;m.'/.y˝x/D .gy˝gx/:

It is clear that in general An;m defined this way will not be functorial on morphisms.
If one could choose An;m and Bn;m such that .An;m;Bn;m/W F ! CCh2.Z.p// was
a Mackey functor then the proof of Theorem 4.1 would be simpler.

On each double complex A�;�.P / with P � S we may take vertical cohomology
followed by horizontal cohomology to obtain H�.P IH�.P \ T IM // [13, Equa-
tion (10.2), page 352]. For any homomorphism ' 2 HomF .P;Q/ the maps A�;�.'/

and B�;�.'/ are maps of double complexes and hence they induce maps

H n;m.A/.'/W H n
�
QIH m.Q\T IM /

�
!H n

�
P IH m.P \T IM /

�
;

H n;m.B/.'/W H n
�
P IH m.P \T IM /

�
!H n

�
QIH m.Q\T IM /

�
:
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Lemma 3.4 For 'W P !Q the map H n;m.A/.'/ factors as

H n
�
QIH m.Q\T IM /

� H n.'/
����!H n

�
P IH m.Q\T IM /

�
H m.'/
�����!H n

�
P IH m.P \T IM /

�
;

where

� H n.'/ is the map induced by ' in cohomology with H m.Q\T IM /–coefficients,

� H m.'/ is the map induced by the change of coefficients

H m.'/W H m.Q\T IM /!H m.P \T IM /:

This map is a map of Z.p/P –modules where P acts on H m.Q\ T IM / via P
'
!

'.P /�Q.

Proof By construction.

Lemma 3.5 If P �Q and � denotes the inclusion then the map H n;m.B/.�/ factors as

H n
�
P IH m.P \T IM /

� H m.tr0/
�����!H n

�
P IH m.Q\T IM /

�
H n.tr/
����!H n

�
QIH m.Q\T IM /

�
;

where

� H n.tr/ is the transfer map in cohomology with H m.Q\T IM /–coefficients,

� H m.tr0/ is the map induced by the change of coefficients given by the transfer map
in cohomology:

H m.tr0/W H m.P \T IM /!H m.Q\T IM /

This map is a map of Z.p/P –modules where P acts on H m.Q\T IM / via P �Q.

Proof Choose representatives zi 2 Q of the left cosets Q=P and representatives
tj 2Q\T of the left cosets .Q\T /=.P \T /. Choose also representatives qk 2Q

of the left cosets QDQ=.Q\T /. Then each zi 2Q is represented as zi D qki
for a

unique ki . It is an exercise to prove that the set of elements of Q qki
tj for all i and j

is a set of representatives of Q=P . Then we can rewrite Equation (3-2) asX
zi2Q=P

X
tj2.Q\T /=.P\T /

f
�
�Q;P

n .qki
tj
�1

y/˝ �Q;P
m

�
.qki

tj /
�1x

��
;
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Because tj 2Q\T then qki
tj D qki

and the formula simplifies toX
zi2Q=P

X
tj2.Q\T /=.P\T /

f
�
�Q;P

n .qki

�1y/˝ �Q;P
m .t�1

j qki

�1x/
�
:

This coincides with the composition in the statement of the lemma.

Lemma 3.5 proves in particular that the definition of H n;m.B/.�/ does not depend on
the representatives chosen to construct the maps �Q;P

� and �Q;P
� . (Although Bn;m.�/

do depends on them.)

Corollary 3.6 For n;m� 0 the assignment

H n;m.B/W F ! Z.p/–mod

taking P to H n.P IH m.P \ T IM // and taking ' 2 HomF .P;Q/ to H n;m.B/.'/

is a functor.

Proof By Remarks 2.4 and 3.2 and Equation (3-1) it is enough to prove that for any
P �Q�R we have

H n;m.B/
�
�RQ
�
ıH n;m.B/

�
�
Q
P

�
DH n;m.B/

�
�RP
�

and for any P �Q
'
! '.Q/ we have

H n;m.B/
�
�
Q
P

�
ıH n;m.A/.'jP /DH n;m.A/.'/ ıH n;m.B/

�
�
'.Q/

'.P/

�
:

We can check both conditions at the level of cochains: For the first condition, the
definitions (3-2) of Bn;m.�

Q
P
/, Bn;m.�R

Q
/ and Bn;m.�R

P
/ depend upon choices of rep-

resentatives for the right cosets

PnQ and PnQ; QnR and QnR; PnR and PnR

respectively. Fix choices of representatives for the first four right cosets. Then the
bijections PnQ�QnR! PnR and PnQ�QnR! PnR provide choices for the
last two right cosets. With these choices we have

Bn;m
�
�RQ
�
ıBn;m

�
�
Q
P

�
D Bn;m

�
�RP
�
:

For the second condition, the maps Bn;m.�
Q
P
/ and Bn;m.�

'.Q/

'.P/
/ depend on choices of

representatives for the right cosets

PnQ and PnQ; '.P /n'.Q/ and '.P /n'.Q/
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respectively. Fix representatives in PnQ and PnQ and force the other choices via the
bijections

PnQ
'
! '.P /n'.Q/ and PnQ

'
! '.P /n'.Q/:

Then we have

Bn;m
�
�
Q
P

�
ıAn;m.'jP /DAn;m.A/.'/ ıBn;m

�
�
'.Q/

'.P/

�
:

Proposition 3.7 For each p; q � 0 the functor F ! Z.p/–mod with values

H p.P IH q.P \T IM /

and taking ' 2 HomF .P;Q/ to H p;q.A/.'/ is a cohomological Mackey functor with
covariant part taking ' 2 HomF .P;Q/ to H p;q.B/.'/.

Proof Property (1) from Definition 2.2 holds by Equation (3-1). Property (2) follows
from Property (1), the well known fact that conjugation induces the identity on coho-
mology, from Lemma 3.4 and from cp D cp for p 2 P � S. Now we check Property
(3), also known as the Mackey condition or double coset formula. So let Q;R�P �S.
We will prove this condition at the level of cochains, ie

An;m.�PQ/ ıBn;m.�PR/D
X

x2QnP=R

Bn;m.�
Q
Q\xR

/ ıAn;m.�
xR
Q\xR/ ıAn;m.cx�1 jxR/:

So let f 2An;m.R/D HomR.Bn

R
˝Bm

R
;M /, y 2 Bn

Q
and x 2 Bm

Q
. Then

An;m
�
�PQ
��

Bn;m
�
�PR
�
.f /

�
.y˝x/D Bn;m

�
�PR
�
.f /

�
�P
Q
.y/˝ �PQ.x/

�
D Bn;m

�
�PR
�
.f /.y˝x/:

This equals X
w2P=R

f
�
�P;R

n .w�1y/˝ �P;R
m .w�1x/

�
;

where w runs over a set of representatives of the left cosets P=R, �P;R
n W Bn

P
! Bn

R
and �P;R

m W Bm
P
! Bm

R
. Now we let Q acts on the left on P=R and we group together

the terms corresponding to a given Q–orbit in P=R:X
p2QnP=R

X
q2Q=Q\pR

f
�
�P;R

n .qp�1y/˝ �P;R
m

�
.qp/�1x

��
;

where now p runs over a set of representatives for the double cosets QnP=R and q

runs over a set of representatives of the left cosets Q=Q\ nR. This equalsX
p2QnP=R

X
q2Q=Q\pR

f
�
�P;R

n .p�1q�1y/˝ �P;R
m .p�1q�1x/

�
:
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The right-hand side of the Mackey formula isX
p2QnP=R

X
q2Q=Q\pR

f
�
p�1�Q;Q\pR

n .q�1y/p˝p�1�Q;Q\pR
q .q�1x/p

�
with

�Q;Q\pR
n W Bn

Q
! Bn

Q\pR
; �Q;Q\pR

m W Bm
Q! Bm

Q\pR

and where we have realized cp�1
jpR

at the level of cochains as

An;m.cp�1
jpR
/.y˝x/D .p�1yp˝p�1xp/:

The map �
P;R
m depends on a choice of representatives for the right cosets RnP .

Similarly, for any representative p 2QnP=R, the map �Q;Q\pR
m is built out of a set

of representatives of Q\ pRnQ. We want to choose representatives of RnP and of
Q\ pRnQ for each double coset QpR such that

Q
�p //

q 7!p�1q
��

Q\ pR

q 7!p�1qp
��

P
� // R

commutes for each double coset QpR. For this is enough to choose arbitrary represen-
tatives q of Q\ pRnQ for each double coset QpR and build the representatives in
RnP via the bijection a

p2QnP=R

Q\ pRnQ!RnP

that takes .Q\pR/q to Rp�1q . The same argument for �P;R
n and the maps �Q;Q\pR

n

finishes the proof of Property (3).

To prove Property (4) we go back to the level of cohomology. Let P �Q � S. By
Lemmas 3.4 and 3.5 the composition H n;m.B/.�

Q
P
/ ıH n;m.A/.�

Q
P
/ is equal to

H n.tr/ ıH m.tr0/ ıH m
�
�
Q
P

�
ıH n

�
�
Q
P

�
:

Because cohomology over finite groups is a cohomological Mackey functor we know
that H m.tr0/ ıH m.�

Q
P
/ is multiplication by jQ\T j=jP \T j. Moving out this factor

we are left with
H n.tr/ ıH n

�
�
Q
P

�
:

As �Q
P
D �

Q

P
we obtain again by properties of cohomology for finite groups that this

composition is multiplication by jQj=jP j. So finally we obtain that

H n;m.B/
�
�
Q
P

�
ıH p;q.A/

�
�
Q
P

�
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is multiplication by
jQ\T j

jP \T j

jQj

jP j
D
jQj

jP j
:

4 Construction of the spectral sequence

In this section we prove the main theorem of this paper:

Theorem 4.1 Let F be a fusion system over the p–group S, T a strongly F–closed
subgroup of S and M a Z.p/–module with trivial S–action. Then there is a first
quadrant cohomological spectral sequence with second page

E
n;m
2
DH n

�
S=T IH m.T IM /

�F
and converging to H nCm.F IM /.

Proof For each subgroup P � S we have the short exact sequence

P \T ! P ! P D P=P \T:

The construction of the Lyndon–Hochschild–Serre spectral sequence in [13, XI.10.1]
associates to this short exact sequence a double complex naturally isomorphic to the
double complex

An;m.P /D HomP .Bn

P
˝Bm

P ;M /

defined in Section 3. This double complex we can filter either by columns or rows.
If we filter by columns we obtain a spectral sequence fcE�;�

k
.P /; dkg0�k�1 whose

second page is cE
n;m
2

.P /DH n.P IH m.P \T IM //. If we filter by rows we obtain a
spectral sequence frE�;�

k
.P /; dkg0�k�1 whose second page collapses as rE

n;m
2

.P /D

H m.P IM / for nD 0 and rE
n;m
2

.P /D 0 for n> 0.

For each morphism ' 2 HomF .P;Q/ we have morphisms of double complexes

An;m.'/W An;m.Q/!An;m.P / and Bn;m.'/W An;m.P /!An;m.Q/

defined in Section 3. These morphisms of double complexes induce morphisms of
spectral sequences consisting of a sequence of morphisms of differential bigraded
Z.p/–modules

cE
�;�
k
.A/.'/W cE

�;�
k
.Q/! cE

�;�
k
.P /;

cE
�;�
k
.B/.'/W cE

�;�
k
.P /! cE

�;�
k
.Q/;

rE
�;�
k
.A/.'/W rE

�;�
k
.Q/! rE

�;�
k
.P /;

rE
�;�
k
.B/.'/W rE

�;�
k
.P /! rE

�;�
k
.Q/;
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for 0 � k � 1. We deal now with the filtration by columns spectral sequences.
The second page cE

�;�
2

is obtained by computing vertical cohomology followed by
horizontal cohomology in the double complex A�;� . Hence we have

cE
n;m
2

.P /DH n
�
P IH m.P \T IM /

�
;

cE
n;m
2

.A/.'/DH n;m.A/.'/;

cE
n;m
2

.B/.'/DH n;m.B/.'/;

for P � S and ' 2 HomF .P;Q/, where H n;m.A/ and H n;m.B/ are functors F !
Z.p/–mod by Remark 3.2 and Corollary 3.6 respectively. Hence, for each 2� k �1,
we have a contravariant functor

cE
�;�
k
.A/W F ! differential bigraded Z.p/–modules

and a covariant functor

cE
�;�
k
.B/W F ! differential bigraded Z.p/–modules:

On the one hand, we can take invariants for each 2� k �1 to obtain a differential
bigraded Z.p/–module

cE
�;�
k

F
D fz 2 cE

�;�
k
.S/ j cE

�;�
k
.A/.'/.z/D cE

�;�
k
.A/.�SP /.z/ for P

'
! Sg:

On the other hand, for kD2, we have by Proposition 3.7 that .cE�;�2 .A/; cE�;�2 .B// is a
cohomological Mackey functor. Because cE�;�kC1DH�.cE�;�k ; dk/ and because passing
to cohomology preserves cohomological Mackey functors we deduce that cE�;�k .A/ is
a cohomological Mackey functor with covariant part cE�;�k .B/ for 2 � k <1. By
Proposition 2.8 we obtain then that

(4-1) cE
�;�
kC1

F
DH�

�
cE
�;�
k
; dk

�F
DH�

�
cE
�;�
k

F
; dk

�
for 2� k <1. Fix now n� 0 and m� 0. For each subgroup P � S we have

cE
n;m
k

.P /D cE
n;m
kC1

.P /D � � � D cEn;m
1 .P /

for k big enough. Because there are a finite number of subgroups of S we deduce that

cE
n;m
k

F
D

cE
n;m
kC1

F
D � � � D

cEn;m
1

F

for k big enough. Hence Equation (4-1) also holds for k D1 and we have obtained a
spectral sequence ˚

cE
�;�
k

F
; dk

	
2�k�1

:
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To study whether this spectral sequence converges recall that for P � S the spectral
sequence fcE�;�

k
.P /; dkg0�k�1 converges to H�.P IM /. Hence we have short exact

sequences

0 // FnH nCm.P IM / // FnC1H nCm.P IM / // cEn;m
1 .P / // 0;

where

0� � � � � FnH nCm.P IM /� FnC1H nCm.P IM /� � � � �H nCm.P IM /

is the filtration induced on H�.P IM / by the filtration by columns on the double
complex A�;�.P /. This short exact sequence is natural with respect to morphisms
of double complexes. Hence for each ' 2 HomF .P;Q/ we have morphisms of short
exact sequences

0 // FnH nCm.QIM /

F nH nCm.A/.'/
��

// FnC1H nCm.QIM / //

F nC1H nCm.A/.'/
��

cE
n;m
1 .Q/

cE
n;m
1 .A/.'/

��

// 0

0 // FnH nCm.P IM / // FnC1H nCm.P IM / // cEn;m
1 .P / // 0

and

0 // FnH nCm.P IM /

F nH nCm.B/.'/
��

// FnC1H nCm.P IM / //

F nC1H nCm.B/.'/
��

cE
n;m
1 .P /

cE
n;m
1 .B/.'/

��

// 0

0 // FnH nCm.QIM / // FnC1H nCm.QIM / // cEn;m
1 .Q/ // 0:

We want to show that the morphism H n.A/.'/W H n.QIM /! H n.P IM / and the
morphism H n.B/.'/W H n.P IM /!H n.QIM / induced by A and B on the targets
of the spectral sequences are the usual maps in cohomology of groups. We consider
the total complex of the double complex A�;�.P / defined as usual by

Tots.A/D
M

nCmDs

An;m.P /

and with total differential dhC dv . There is a chain map given by

�W HomP .B�P ;M /! Tot�.A/

sending f 2 HomP .Bm
P
;M / to �.f / 2A0;m defined by

�.f /.p˝x/D f .x/; p 2 P ; x 2 Bm
P :
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The map � induces an isomorphism between the cohomology of the total complex and
H�.P IM /; cf [13, page 352]. Now, from the definitions of the maps

A0;m.'/W A0;m.Q/!A0;m.P / and B0;m.�
Q
P
/W A0;m.P /!A0;m.Q/

it is easy to check that H n.A/.'/ and H n.B/.�
Q
P
/ are the usual maps in cohomology

of groups; see [4, (D), page 82].

By properties of cohomology for finite groups .H n.A/;H n.B//W F ! Z.p/–mod
is a cohomological Mackey functor for each n � 0. Hence so are the functors
.FnH nCm.A/;FnH nCm.B//W F ! Z.p/–mod induced in the filtration for n;m� 0.
By the arguments above also the pair .cEn;m

1 .A/; cE
n;m
1 .B//W F ! Z.p/–mod is a

cohomological Mackey functor for n;m � 0. Then by Lemma 2.7 we have a short
exact sequence of Z.p/–modules

0 // .FnH nCm/F // .FnC1H nCm/F // cEn;m
1

F // 0:

It is immediate that taking invariants and filtering commute and hence we have

0 // Fn.H nCmF
/ // FnC1.H nCmF

/ // cEn;m
1

F // 0

for the filtration of H nCmF
DH nCm.S/

F given by

Fn.H nCmF
/D Fn.H nCm.S//\H nCm.S/F :

This finishes the proof.

Remark 4.2 We have seen in the proof that for each 2� k �1 the pair�
cE
�;�
k
.A/; cE

�;�
k
.B/

�
W F ! differential bigraded Z.p/–modules

is a cohomological Mackey functor. Moreover, f.cE�;�
k
.A/; cE

�;�
k
.B//g2�k�1 is a

spectral sequence of Mackey functors that converges as a Mackey functor to the usual
cohomology of finite groups Mackey functor .H�.A/;H�.B//W F ! Z.p/–mod.

5 Comparison

In this section we compare our spectral sequence and Lyndon–Hochschild–Serre spectral
sequence. Let G be a finite group, K E G and S 2 Sylp.G/. Then T DK \S is
a Sylow p–subgroup of K . Moreover, T is strongly FS .G/–closed. Fix a Z.p/–
module M with trivial G–action. The Lyndon–Hochschild–Serre spectral sequence
E�;G of the extension K!G!G=K is

H n
�
G=KIH m.KIM /

�
)H nCm.GIM /
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meanwhile the spectral sequence E� from Theorem 1.1 associated to T is

H n
�
S=T IH m.T IM /

�FS .G/
)H nCm.F IM /:

Note that by the classical stable elements theorem, attributed to Tate by Cartan and
Eilenberg [6, XII.10.1], H�.GIM /DH�.F IM / and both spectral sequences con-
verge to the same target. Recall that, by construction, E� is a subspectral sequence of
the Lyndon–Hochschild–Serre spectral sequence E�;S of T ! S ! S=T .

Theorem 5.1 The spectral sequences E�;G and E� are isomorphic.

Proof Consider the category FG.G/ with objects the subgroups of G and morphisms
given by MorFG.G/.H; I/D HomG.H; I/. Clearly FS .G/ is a full subcategory of
FG.G/. For each subgroup H �G we have a short exact sequence

H \K!H !H DH=H \K:

If ' D cgW H ! I is a morphism in FG.G/ then, as K is normal in G , conjugation
by g 2G takes H \K!H !H to I \K! I! xI . Exactly the same construction
of Section 3 gives a cohomological Mackey functor .A;B/W FG.G/! CCh2.Z.p//
with values H 7!An;m.H /DHomH .Bn

H
˝Bm

H
;M /, where B�

H
and B�

H
are the bar

resolutions for H and H respectively. Moreover, for H � S, as T DK\S, we have
H \K DH \T and this functor over FG.G/ extends the one built in Section 3 over
FS .G/.

The inclusion of the short exact sequence T ! S! S=T into K!G!G=K gives
a morphism fresr gr�2 of spectral sequences from E�;G into E�;S . The morphism of
differential graded algebras res2W E2;G!E2;S coincides with the morphism induced
in cohomology by the functor A applied to the inclusion morphism S �G of FG.G/,
H�;�.A/.�G

S
/. Applying the functor B to the same inclusion S �G we get another

morphism going in the opposite direction (transfer)

H n
�
G=KIH m.KIM /

� H n;m.A/.�G
S
/

**
H n

�
S=T IH m.T IM /

�
:

H n;m.B/.�G
S
/

jj

Recall that E2�E2;S are exactly the F–stable elements H p.S=T IH q.T IM //FS .G/ .
Because conjugation by g 2 G induces the identity on H p.G=KIH q.KIM // it is
straightforward that res2.E2;G/ � E2 . Hence fresr gr�2 is a morphism of spec-
tral sequences E�;G ! E� . If we prove that res2.E2;G/ D E2 then res2 is an
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isomorphism and hence resr is an isomorphism for each r � 2 and we are done.
To see that res2.E2;G/ D E2 we proceed as usual when there is a Mackey functor
available; cf [4, Theorem III.10.3]. Let z 2H n.S=T IH m.T IM //FS .G/ and consider
w DH n;m.B/.�G

S
/.z/ 2H n.G=KIH m.KIM //. By the double coset formula 2.2(3)

and the cohomological condition 2.2(4) and because z is FS .G/–stable we obtain

H n;m.A/
�
�GS
�
.w/D

X
x2SnG=S

B
�
�SS\xS

�
A
�
�
xS
S\xS

�
c�

x�1.z/

D

X
x2SnG=S

B
�
�SS\xS

�
A
�
�SS\xS

�
.z/

D

X
x2SnG=S

jS W S \ xS jz D jG W S jz:

As q D jG W S j is a p0–number it follows that z D res.w
q
/.

Example 5.2 Consider the symmetric group on 6 letters S6 . It has Sylow 2–subgroup
S D C2 �D8 , where D8 is the dihedral group of order 8. Because A6 E S6 , the
subgroup T D S \A6 DD8 is strongly closed in F D FS .S6/. In this example we
describe the Lyndon–Hochshild–Serre spectral sequence of A6!S6!C2 interpreted
as the spectral sequence E

�;�
� of Theorem 1.1 applied to F and T . This demonstrates

how the new spectral sequence works.

In the fusion system F there are three F–centric an F–radical subgroups, namely, S,
P DC 3

2
and QDC 3

2
. The intersections P\T and Q\T are the two Klein subgroups

of T DD8 . The automorphisms are AutF .S/D 1 and AutF .P /Š AutF .Q/Š S3 ,
the symmetric group on 3 letters.

Denote by E�;��;S , E�;��;P and E�;��;Q the Lyndon–Hochschild–Serre spectral sequences of
the extensions T ! S! C2 , P \T !P ! C2 and Q\T !Q! C2 respectively.
All three extensions are direct products and hence all differentials are 0 and the three
spectral sequences collapse at the second page. In particular, the ring H�.S IF2/ is
isomorphic as a ring to E

�;�
2;S

and hence H�.S6IF2/ is isomorphic as a ring to E
�;�
2

.
Moreover, for the invariants we have

E
�;�
2
DE

�;�
2;S

F
DE

�;�
2;S
\
�
resS

P

��1�
E
�;�
2;P

S3
�
\
�
resS

Q

��1�
E
�;�
2;Q

S3
�
;

because it is enough to consider invariants with respect to F–centric and F–radical
subgroups by Alperin’s fusion theorem. Here,

resS
P W E

�;�
2;S
!E

�;�
2;P

and resS
QW E

�;�
2;S
!E

�;�
2;Q
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are the restriction maps. Denoting by subscripts the degrees we have the following:

E
�;�
2;S
DH�.D8IF2/˝H�.C2IF2/D F2Œx1;y1; w2�=.xy/˝F2Œu�;

E
�;�
2;P
DH�.C 2

2 IF2/˝H�.C2IF2/D F2Œx1;x
0
1�˝F2Œu�;

E
�;�
2;Q
DH�.C 2

2 IF2/˝H�.C2IF2/D F2Œy1;y
0
1�˝F2Œu�:

Restrictions are given by

resS
P .x/D x; resS

P .y/D 0; resS
P .w/D xx0Cx02; resS

P .u/D u;

resS
Q.x/D 0; resS

Q.y/D y; resS
Q.w/D yy0Cy02; resS

Q.u/D u:

Now S3 D AutS6
.P / acts on P \ T D C 2

2
and on the quotient C2 D P=P \ T .

The induced action on H�.C 2
2
IF2/ is the natural one and on H�.C2IF2/ the only

possibility is the trivial action. Hence, the invariants are given by

E
�;�
2;P

S3
D F2Œx1;x

0
1�

S3 ˝F2Œu�D F2Œd2; d3�˝F2Œu�;

where d2Dx2Cx02Cxx0 and d3D .xCx0/xx0 are Dickson’s invariants. Analogously,
we have that

E
�;�
2;Q

S3
D F2Œe2; e3�˝F2Œu�

with e2 D y2Cy02Cyy0 and e3 D .yCy0/yy0 . It is straightforward that

d2D resS
P .x

2
Cw/; d3D resS

P .xw/; e2D resS
Q.y

2
Cw/ and e3D resS

Q.yw/:

From this, it is immediate that F2Œx
2Cy2Cw;xw;yw�˝F2Œu��E

�;�
2

.

To check the reversed inclusion we first consider stable elements in the polynomial
algebras F2Œx; w� and F2Œy; w�. As for Long [12, Lemma 1.4.6], the restrictions
resS

P
jF2Œx;w� and resS

Q
jF2Œy;w� are injective, therefore

F2Œx; w�\ .resS
P /
�1.E

�;�
2;P

S3
/D F2Œx

2
Cw;xw�;

F2Œy; w�\ .resS
Q/
�1.E

�;�
2;Q

S3
/D F2Œy

2
Cw;yw�:

A class v of H n.D8IF2/ can be written as follows, where we set k D Œn
2
�:

v D

kX
iD0

˛iw
ixn�2i

Cˇiw
iyn�2i :

From the discussion above we have that if v is F–invariant then

v D �wk
C

X
2iC3jDn

i.x
2
Cw/i.xw/j C ıi.y

2
Cw/i.yw/j ;
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where � D 0 for n odd and � D ˛k Cˇk D k D ık if n is even. If n is odd, then the
equalities .x2Cy2Cw/.xw/D .x2Cw/.xw/ and .x2Cy2Cw/.yw/D .y2Cw/.yw/

give that v2F2Œx
2Cy2Cw;xw;yw�. If n is even, then the only term left to consider is

k.x
2
Cw/k C ık.y

2
Cw/k C �wk

D k

�
.x2
Cw/k C .y2

Cw/k Cwk
�

and an easy induction shows that .x2Cw/k C .y2Cw/k Cwk D .x2C y2Cw/k .
So E

�;�
2
D F2Œx

2Cy2Cw;xw;yw�˝F2Œu�. The corner of E
�;�
2

is

xw;yw xwu;ywu xwu2;ywu2

x2Cy2Cw .x2Cy2Cw/u .x2Cy2Cw/u2

0 0 0

1 u u2

and we deduce that H�.S6IF2/D F2Œu1; a2; b3; c3�=.bc/ with generators

aD x2
Cy2

Cw; b D xw and c D yw:

6 Stallings’ Theorem

Associated to every first quadrant spectral sequence there is a five-term exact sequence.
In the case of the Lyndon–Hochschild–Serre spectral sequence for K E G and the
G –module M we obtain the inflation-restriction exact sequence:

(6-1) 0!H 1.G=KIM K /!H 1.GIM /

!H 1.K;M /G=K !H 2.G=KIM K /!H 2.GIM /;

where the second arrow from the right is the transgression. Before introducing the
five-term exact sequence for the spectral sequence of Theorem 1.1 we introduce some
notation. So let F be a fusion system over the p–group S with a strongly closed
F–subgroup T . Set ŒT;F �D hŒt; '� j t 2 T , ' 2 HomF .hui;T /i � T , where Œt; '�D
t'.t�1/, T pDhtp; t 2T i, which is characteristic in T , and the commutator subgroup
ŒT;S �Dht�1s�1ts j t 2T and s2SiET . Because the element-wise product T p ŒT;S �

is a normal subgroup of T , the element-wise product T p ŒS;T �R is a subgroup of T

for any R� T . For instance, T p ŒT;S � ŒT;F �D T p ŒT;F �� T .

The five-term exact sequence for the spectral sequence of Theorem 1.1 for F , T and
the Z.p/–module M with trivial S–action is the following:

(6-2) 0!H 1.S=T IM /F !H 1.F IM /

!H 1.T IM /F !H 2.S=T IM /F !H 2.F IM /;
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where the arrow H 1.T IM /F !H 2.S=T IM /F is the transgression.

For coefficients M D Fp we have

H 1.F IFp/DH 1.S IFp/
F
D Hom.S=Sp ŒS;F �;Fp/;(6-3)

H 1.T IFp/
F
D Hom.T=T p ŒT;F �;Fp/:(6-4)

We also have

(6-5)
H 1.S=T IM /F DH 1.S=T IM /F=T ;

H 2.S=T IM /F DH 2.S=T IM /F=T ;

by Remark 3.1.

If Fi is a fusion system over the p–group Si for i D 1; 2, a homomorphism of
groups �W S1! S2 is fusion preserving if for each ' 2 HomF1

.P;S1/ there exists
y' 2 HomF2

.�.P /;S2/ such that � ı ' D y' ı � . It is easy to see that such a homo-
morphism induces a map in cohomology H�.F2IFp/!H�.F1IFp/. In fact, by the
work of Ragnarsson [15], it induces a map even at the level of stable classifying spaces.
Assume, in addition, that � induces a map of short exact sequences

T1
//

��

S1
//

�

��

S1=T1

��
T2

// S2
// S2=T2;

where Ti is strongly closed in Si with respect to Fi for i D 1; 2. This is equivalent
to assume that �.T1/ � T2 . Denote by Ei the spectral sequence from Theorem 1.1
applied to the strongly closed subgroup Ti for i D 1; 2. Then � induces a morphism
of spectral sequences E2!E1 and, in particular, a map of five terms exact sequences.

Theorem 6.1 (Stallings [17]) Let Fi be a fusion system over the p–group Si for
i D 1; 2 and let �W S1! S2 be a fusion preserving homomorphism. Define

Si;0 D Si and Si;nC1 D S
p
i;nŒSi;n;Fi � for i D 1; 2 and n� 0:

If the induced map in cohomology H i.F2IFp/! H i.F1IFp/ is isomorphism for
i D 1 and monomorphism for i D 2 then S1=S1;n Š S2=S2;n for each n � 1. In
particular, for n big enough we obtain that S1=Op

F1
.S1/Š S2=Op

F2
.S2/.

Proof We will prove by induction that S1=S1;n Š S2=S2;n and that Si;n is strongly
Fi –closed and contains O

p
Fi
.Si/ for i D 1; 2. For the base case nD 1, we have that

Si;1 contains O
p
Fi
.Si/ and is strongly Fi –closed by [8, Corollary A.6] (i D 1; 2).
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Moreover, by hypothesis, H 1.F2IFp/ŠH 1.F1IFp/ and then by Equation (6-3) we
get S1=S1;1 Š S2=S2;1 .

Now let n� 1. As ˆ is fusion preserving it is easy to see that �.S1;n/� S2;n . Then
we have the following map of short exact sequences:

S1;n
//

��

S1
//

�

��

S1=S1;n

��
S2;n

// S2
// S2=S2;n

By the induction hypothesis, S1;n and S2;n are strongly closed in F1 and F2 respec-
tively. Then by the discussion before the theorem we have a map of five-term short
exact sequences in cohomology with trivial Fp –coefficients:

0 // H 1.S1=S1;n/
F1 //

f1
��

H 1.F1/ //

g1

��

H 1.S1;n/
F1 //

h1
��

H 2.S1=S1;n/
F1 //

f2
��

H 2.F1/

g2

��
0 // H 1.S2=S2;n/

F2 // H 1.F2/ // H 1.S2;n/
F2 // H 2.S2=S2;n/

F2 // H 2.F2/

Because O
p
Fi
.Si/ is contained in Si;n the quotient F=Si;n is a p–group, ie,

F=Si;n D FS=Si;n
.S=Si;n/ for i D 1; 2:

Then, by Equation (6-5), the maps f1 and f2 are isomorphisms as S1=S1;nŠS2=S2;n .
Now, by hypothesis, g1 is an isomorphism and g2 is a monomorphism. Hence
by the five lemma h1 is an isomorphism. Then by Equation (6-4) we obtain that
S1;n=S1;nC1 Š S2;n=S2;nC1 and hence S1=S1;nC1 Š S2=S2;nC1 .

To finish the induction step, denote by Fi;n the unique p–power index fusion sub-
system of Fi on Si;n [2, Theorem 4.3]. Then using [8, Lemma A.5] we obtain that
Si;nC1 D S

p
i;nŒSi;n;Si �O

p
Fi;n

.Si;n/ and hence, by [8, Corollary A.14],

Si;nC1 D S
p
i;nŒSi;n;Si �O

p
Fi
.Si/:

Then Si;nC1 contains O
p
Fi
.Si/ and by [8, Proposition A.7(1)] Si;nC1 is strongly

Fi –closed for i D 1; 2.

For the second part of the statement recall that for any finite p–group R the series
R0 D R, Rn D R

p
n�1

ŒRn�1;R� (n � 1) becomes trivial for n big enough. Then,
considering the image of Si;n in Si=O

p
F .Si/, it is easy to see that Si;n DO

p
F .Si/ for

n big enough and i D 1; 2.
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Corollary 6.2 (Evens [10, 7.2.5]) Let F be a fusion system over the p–group S.
If the map H 2.F=Ep

F .S/IFp/!H 2.F IFp/ is a monomorphism then S=O
p
F .S/ is

elementary abelian.

Proof Set F1 D F and F2 D F=Ep
F .S/ and consider the fusion preserving quotient

map F1! F2 . By Equation (6-3) and because E
p
F .S/Dˆ.S/O

p
F .S/D Sp ŒS;F �,

the quotient map induces an isomorphism in degree-1 cohomology. Then Theorem 6.1
gives that O

p
F .S/DE

p
F .S/ and we are done.

Corollary 6.3 (Tate [18]) Let F be a fusion system over the p–group S. If the
restriction map H 1.F IFp/!H 1.S IFp/ is an isomorphism then F D FS .S/.

Proof Consider F1DFS .S/, F2DF and the fusion preserving morphism given by
inclusion F1�F2 . Then H 1.F IFp/!H 1.S IFp/ is isomorphism by hypothesis and
H 2.F IFp/!H 2.S IFp/ is monomorphism by definition. Then from Theorem 6.1 we
obtain O

p
F .S/D 1. Thus there are no p0–automorphisms in F and F D FS .S/.
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