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Moment angle complexes and
big Cohen–Macaulayness

SHISEN LUO

TOMOO MATSUMURA

W FRANK MOORE

Let ZK �Cm be the moment angle complex associated to a simplicial complex K

on Œm� , together with the natural action of the torus T D U.1/m . Let G � T be a
(possibly disconnected) closed subgroup and R WD T=G . Let ZŒK� be the Stanley–
Reisner ring of K and consider ZŒR�� WD H�.BRIZ/ as a subring of ZŒT�� WD
H�.BTIZ/ . We prove that H�G .ZK IZ/ is isomorphic to Tor�ZŒR��.ZŒK�;Z/ as
a graded module over ZŒT�� . Based on this, we characterize the surjectivity of
H�T .ZK IZ/ ! H�G .ZK IZ/ (ie H odd

G .ZK IZ/ D 0) in terms of the vanishing of
TorZŒR��

1 .ZŒK�;Z/ and discuss its relation to the freeness and the torsion-freeness
of ZŒK� over ZŒR�� . For various toric orbifolds X , by which we mean quasitoric
orbifolds or toric Deligne–Mumford stacks, the cohomology of X can be iden-
tified with H�G .ZK / with appropriate K and G and the above results mean that
H�.X IZ/ŠTor�ZŒR��.ZŒK�;Z/ and that H odd.X IZ/D0 if and only if H�.X IZ/ is
the quotient H�R .X IZ/ .

55N91; 57R18, 53D20, 14M25

1 Introduction

The equivariant cohomology and the ordinary cohomology with Z–coefficients of
a “compact smooth toric space” (including quasitoric manifolds, complete smooth
toric varieties) is known by the work of Danilov [8], Jurkiewicz [19] and Davis and
Januszkiewicz [9]: the equivariant cohomology is the Stanley–Reisner ring of the
associated simplicial complex and the ordinary cohomology is the quotient of the
equivariant cohomology by linear relations.

The orbifold analogue of these spaces has also been introduced and studied by several
people, for example, Lerman and Tolman [21], Borisov, Chen and Smith [3] and
Poddar and Sarkar [25]. The equivariant cohomology of these toric orbifolds with Z–
coefficients is also known to be the associated Stanley–Reisner rings and the ordinary
cohomology is the quotient of the equivariant cohomology over Q–coefficients; cf [3;
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8; 19; 25]. However the ordinary cohomology with Z–coefficients is hard to compute
because it is not the quotient of the equivariant cohomology in general (for example in
the case of a direct product of weighted projective spaces). The main theme of this
paper is to characterize when the ordinary cohomology is the quotient of the equivariant
cohomology.

Our approach is to view previously mentioned toric orbifolds as quotient stacks given
by partial quotients of moment angle complexes and consider the cohomology of stacks
in the sense of Edidin [10] (see also Tolman [28] and Edidin and Graham [11]). The
moment-angle complex ZK was introduced by Buchstaber and Panov in [6] as a
disc-circle decomposition of the Davis–Januszkiewicz universal space associated to
a simplicial complex K [9] where they introduced a quasitoric manifold as a partial
quotient of the moment angle manifold associated to a simple polytope.

If K is a simplicial complex on Œm� WD f1; : : : ;mg, then ZK carries a natural action
of the torus T WD U.1/m. The quotient stack ŒZK=G� with an appropriate choice of the
subgroup G� T can be used as a topological model to compute the cohomology of
quasitoric orbifolds [9; 25], symplectic toric orbifolds [21] and toric Deligne–Mumford
stacks [3]. In other words, the ordinary cohomology of these toric orbifolds as stacks can
be defined as the G–equivariant cohomology H�G .ZK IZ/. Similarly the equivariant
cohomology can be defined as H�T .ZK IZ/ which is isomorphic to the Stanley–Reisner
ring ZŒK� as quotient rings of ZŒT�� WDH�.BTIZ/D ZŒx1; : : : ;xm�. In Section 2,
we recall the constructions of those toric orbifolds and the relation to moment angle
complexes to motivate our readers.

In Section 3, we start with proving the following.

Theorem A Let G� T be a (possibly disconnected) closed subgroup and R WD T=G.
There is an isomorphism of graded Z–modules:

H�G .ZK IZ/Š Tor�ZŒR��.ZŒK�IZ/

Furthermore there is a natural commutative diagram:

H�T .ZK IZ/ //

��

ZŒK�

��
H�G .ZK IZ/ // Tor�ZŒR��.ZŒK�;Z/

Here ZŒR�� WD H�.BRIZ/ D ZŒu1; : : : ;un� is considered as a subring of ZŒT�� so
that the ui are linear combinations of the xj . It is worth noting that this theorem holds
more generally. Namely, the theorem holds for any topological space X with T–action
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such that C �.ET�T X IZ/ is formal in the category of H�.BTIZ/–modules up to
homotopy in the sense of Franz [13]. See Section 3 for the details.

Based on this isomorphism, we prove our characterization theorem.

Theorem B The following conditions are equivalent:

(i) TorZŒR��
1

.ZŒK�;Z/D 0

(ii) H�G .ZK IZ/ is isomorphic to the quotient of ZŒK� by linear forms

(iii) H odd
G .ZK IZ/D 0

We will explain in Section 4 that, even though ZŒK� might not be finitely generated over
ZŒR��, the vanishing of TorZŒR��

1 .ZŒK�;Z/ has the usual meaning in terms of regular
sequences, ie TorZŒR��

1 .ZŒK�;Z/D 0 if and only if u1; : : : ;un form a ZŒK�–regular
sequence. Thus we say ZŒK� is big Cohen–Macaulay over ZŒR�� if (i) is satisfied.

By presenting a toric orbifold X as ŒZK=G�, we obtain the following immediate
corollary.

Corollary C If X is a toric orbifold stack presented as ŒZK=G�, then

H�.X IZ/Š Tor�ZŒR��.ZŒK�IZ/:

Also, H�.X IZ/ is the quotient of Stanley–Reisner ring ZŒK� if and only if one of the
following equivalent conditions holds: .i/ H odd.X IZ/D0; .ii/ TorZŒR��

1 .ZŒK�IZ/D0.

For example, the cohomology of weighted projective spaces as stacks are shown to
be the quotient of its equivariant cohomology, based on the computation exhibited
in Holm [17]. On the other hand, the cohomology of a direct product of weighted
projective spaces is not the quotient of its equivariant cohomology. See Section 6 for
the details and more examples.

In Section 5, we will discuss the freeness and the torsion-freeness of ZŒK� over ZŒR��.
In particular, we show that the equivariant cohomology of a toric orbifold is torsion-
free over ZŒR��. We also give an injectivity theorem on the equivariant cohomology
of ZK (Theorem 5.14) for a symplectic toric orbifold ŒZK=G�, which gives a sufficient
condition that ZŒK� is free over a subring of ZŒR��.

Finally, in Section 7, in light of Theorem 3.3, we construct an algebraic Gysin sequence
for Tor of ZŒK� in analogy with the Gysin sequence of S1–fibration over a toric
manifold.
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2 Moment angle complexes and toric orbifolds

In this section, we review the basic facts about moment angle complexes and various
toric orbifolds to motivate our results.

2.1 Moment angle complexes

The moment angle complex ZK associated to a simplicial complex K was introduced by
Buchstaber and Panov in [6] as a disc-circle decomposition of the Davis–Januszkiewicz
universal space associated to a simplicial complex K [9] and it has been actively
studied in toric topology and its connections to symplectic and algebraic geometry and
combinatorics. For convenience, we use the following notation for the rest of the paper.

Notation 2.1 Let X;Y be subsets of a set Z . For a subset �� Œm�, X ��Y Œm�n��Zm

is the direct product of X ’s and Y ’s where i th component is X if i 2 � and Y if i 62 � .

For a simplicial complex K on vertices Œm� WD f1; : : : ;mg, the moment angle complex
ZK �Cm is defined as ZK D

S
�2K D� � .@D/Œm�n�, where DD fz 2C j jzj � 1g is

the unit disk and @D is its boundary circle. This space ZK carries a natural action of
TD U.1/m . It is originally proved in [9] that

(1) H�T .ZK IZ/Š ZŒK� as graded ZŒT��–algebras:

Here, ZŒK�D ZŒx1; : : : ;xm�=hx� ; � 62Ki is the Stanley–Reisner (face) ring, where
x� WD

Q
i2� xi . With the identification ZŒT�� WD H�.BTIZ/ D ZŒx1; : : : ;xm�, the

isomorphism is as graded algebras over the polynomial ring with deg xi D 2. For the
details, we refer to Buchtaber and Panov [5, Chapter 6].

Baskakov, Buchstaber and Panov [2] also computed the ordinary cohomology of ZK ,

(2) H�.ZK IZ/Š Tor�ZŒT��.ZŒK�;Z/ as graded rings.
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Here the grading on the right hand side is the total degree of bidegree coming from the
(co)homological degree of Koszul complex and the degree of ZŒK�, as is explained in
the following definition.

Definition 2.2 Let M be a graded ZŒR�� WD ZŒu1; : : : ;un�–module. Let ƒ be the
exterior algebra generated by �1; : : : ; �n with deg �i D 1. Let M˝Rƒ be the corre-
sponding Koszul complex. Its homology is TorZŒR��

� .M;Z/ where the degree is given
by deg �i D 1. The complex M˝R ƒ is also a bigraded differential complex with
bideg.˛˝ �i/D Œ�1; 2�C Œ0; j˛j�, where ˛ 2M j˛j . The cohomological degree of Tor
is defined to be the total degree of this bidegree and is denoted by the superscript as
in Tor�ZŒR��.M;Z/.

It is natural to ask if H�G .ZK IZ/ can be computed by Tor�ZŒR��.ZK ;Z/, where G� T

is a (possibly disconnected) closed subgroup, R WD T=G and ZŒR�� WDH�.BRIZ/�
ZŒT��. In Section 3, we show that

H�G .ZK IZ/Š Tor�ZŒR��.ZK ;Z/ as graded ZŒT��–modules (Theorem 3.3):

2.2 Partial quotient of moment angle complexes

Various toric “spaces,” such as quasitoric orbifolds defined by Poddar and Sarkar [25],
symplectic compact toric orbifolds defined by Lerman and Tolman [21] and algebraic
toric orbifolds defined by Borisov, Chen and Smith [3], can be topologically regarded
as the quotient stack ŒZK=G� with an appropriate choice of subgroup G� T that acts
on ZK locally freely. In the next section, we recall the construction of those spaces and
see that the cohomology rings of all of these toric spaces in nice cases are computed as
the quotient of the Stanley–Reisner ring ZŒK�. In this section, we just give a criteria
for the local freeness of the action of a closed subgroup G of T on ZK and a remark
about the cohomology of orbifolds as stacks.

Lemma 2.3 Let n be the largest cardinality of a face in a pure simplicial complex K .
If a closed subgroup G�T acts on ZK locally freely, then dimG�m�n. Furthermore,
if n is the cardinality of maximal faces in K and dimGDm� n, then G acts on ZK

locally freely if and only if T� WDU.1/� �f1gŒm�n� �TDU.1/m surjects to R WDT=G

for all maximal faces � .

Proof Let � 2K such that j� jD n. Let 0� 2D
��.@D/Œm�n� such that i th component

of 0� for i 2 � is 0 2 D. Then the stabilizer of 0� in T is T� WD U.1/� � f1gŒm�n� �
TD U.1/m . Consider the map � W G�T� ! T; .g; t/ 7! gt . The kernel of this map �
is finite if and only if the stabilizer of 0� in G is finite. Therefore the local freeness of
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the G–action implies that the dimension of the image of � is dimGCj� j D dimGCn.
Thus dimG �m� n since dimTDm. To prove the latter claim, note that the local
freeness of the G–action is equivalent to the stabilizer of 0� in G being finite for each
maximal face � . Since G D m� n and dimT� , G\T� is zero-dimensional if and
only if T� ! R is surjective.

Remark 2.4 In [10], Edidin defined the integral cohomology of a stack and showed
that if the stack is given as a global quotient stack ŒM=G�, then H�.ŒM=G�IZ/ is
canonically isomorphic to H�G .M IZ/. Therefore when ŒM=G� is an orbifold, the
cohomology of the orbifold ŒM=G� as a stack is also H�G .M IZ/. On the other hand,
the projection map BG�G M !M=G, where M=G is the quotient topological space,
induces an isomorphism H�G .M IQ/ŠH�.M=GIQ/ since the fiber is “Q–acyclic”.
If G acts freely on M , then H�.ŒM=G�IZ/ Š H�G .M IZ/ Š H�.M=GIZ/. If L

acts on M and G is a subgroup of L that acts on M locally freely, we have the
action of K WD L=G on the orbifold ŒM=G�. In this case, there is an isomorphism of
stacks Œ ŒM=G�=K� Š ŒM=L� and we can define H�K .ŒM=G�IZ/ WD H�.ŒM=L�IZ/ D
H�L .M IZ/; cf Romagny [26] and Lerman and Malkin [20].

Remark 2.5 The following is a useful criteria for the connectedness of G. Let B be
the integer matrix induced from the quotient map T! R. Then G is connected if and
only if BW Zm! Zn is surjective.

2.3 Quasitoric orbifolds

Quasitoric manifolds are introduced and studied by Davis and Januszkiewicz [9] and
its orbifold counterpart is studied by Poddar and Sarkar [25]. Let � be a simple
polytope of dimensional n in Rn . Let H1; : : : ;Hm be the facets of � and for a face
F� D

T
i2� Hi , let T� WD U.1/� � f1gŒm�n� � TD U.1/m. Define Z� WD T��=�,

where .t1;p/ � .t2; q/ if and only if p D q is contained in a relative interior of F�
and t1t�1

2
2 T� ; cf [5, Definition 6.1]. It is known that Z� is a smooth manifold;

cf [5, Lemma 6.2]. Let B be an integer n � m matrix such that for each vertex
Hi1
\� � �\Hin

of �, the corresponding columns �i1
; : : : ; �in

form a basis of Qn . By
the assumption, B defines a surjective map T� R also denoted by B . Let G be the
kernel of B . A quasitoric orbifold for the pair .�;B/ is defined as the quotient stack
ŒZ�=G�. Here note that the assumption on B is equivalent to the local freeness of the G–
action on Z� (see Lemma 2.3). Since Z� is T–equivariantly homeomorphic to ZK� ,
where K� is the simplicial complex associated to � (see [5, Section 6.2]), the quasitoric
orbifold ŒZ�=G� is topologically the quotient of the moment angle complex ZK� by G.
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As a consequence and by Remark 2.4, the R–equivariant cohomology of the quasitoric
orbifold ŒZ�=G� is

H�R .ŒZ�=G�IZ/ŠH�T .Z�IZ/ŠH�T .ZK� IZ/Š ZŒK��:

The rational cohomology ring of the quasitoric orbifold is computed by Poddar and
Sarkar [25].

Theorem 2.6 (Poddar–Sarkar) If ŒZ�=G� is a quasitoric orbifold,

H�.ŒZ�=G�IQ/ŠQŒK��=hu1; : : : ;uni:

Here uj D
Pm

iD1 Bjixi 2ZŒx1; : : : ;xm� and we identify H�.BRIZ/DZŒu1; : : : ;un�.
A quasitoric orbifold given by .�;B/ is a quasitoric manifold if and only if for each
vertex Hi1

\ � � � \Hin
of �, the corresponding columns �i1

; : : : ; �in
of B form a

Z–basis. In this case, the isomorphism holds with Z–coefficients.

Theorem 2.7 (Davis–Januszkiewicz [9]) If ŒZ�=G� is a quasitoric manifold,

H�.ŒZ�=G�IZ/Š ZŒK��=hu1; : : : ;uni:

Moreover H�.ŒZ�=G�;Z/ has no Z–torison (which follows from [9, Theorem 3.1]
and the fact that a quasitoric manifold is closed and orientable).

Since Z� is T–equivariantly homeomorphic to ZK� , we have the following.

Corollary 2.8 If K� and B give a quasitoric orbifold, then

H�G .ZK� IQ/ŠQŒK��=hu1; : : : ;uni:

If K� and B give a quasitoric manifold, then H�G .ZK� IZ/Š ZŒK��=hu1; : : : ;uni.

2.4 Compact symplectic toric orbifolds

Lerman and Tolman [21] classified compact symplectic toric (effective) orbifolds in
terms of labeled polytopes. A labeled polytope .�; b/ is a rational simple polytope �
in Rn with each facet Hi ; i D 1; : : : ;m is labeled by a positive integer bi . If ˇi is the
integral primitive inward normal vector to each facet Hi , then by assigning the integer
matrix B D Œb1ˇ1; : : : ; bmˇm�, we obtain a quasitoric orbifold given by .�;B/. Here
the symplectic structure on ŒZ�=G� comes from identifying Z� with the level set for
the reduction of Cm by the action of G. A compact symplectic toric manifold is given
by the labeled polytope such that bi D 1, for all i D 1; : : : ;m and such that for each
vertex Hi1

\ � � � \Hin
of �, the corresponding primitive normal vectors ˇi1

; : : : ; ˇin

of B form a Z–basis. This is exactly the Delzant condition in the classification of
compact symplectic manifolds.
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2.5 Algebraic toric (effective) orbifold (also known as toric Deligne–
Mumford stack)

Let K be a pure simplicial complex on Œm�. Define a fan †K in Rm where each cone
is generated by the part of standard basis ei ; i 2 � for each � 2K . The corresponding
toric variety X†K

is a smooth open subvariety of Cm that is exactly the complement
of subspace arrangements given by K ; cf [5, Chapter 8]. There is a natural embedding
of ZK into X†K

.

Proposition 2.9 [5, Proposition 8.9] There is a T–equivariant deformation retract for
ZK �X†K

and, in particular, H�G .ZK IZ/ŠH�GC
.X†K

IZ/ for each subgroup G� T

and its complexification GC .

The algebraic toric orbifolds studied by Borisov, Chen and Smith [3] are defined by
the stacky fan. There they consider possibly noneffective orbifolds. In this paper,
since we are interested in the effective case, we simplify the stacky fan and call it
the labeled fan. A labeled fan .†; b/ is a rational simplicial fan † in Rn with each
ray �i labeled by a positive integer bi , where i D 1; : : : ;m. Let K be the simplicial
complex associated to †. Let ˇi be the integral primitive generator of each ray �i ,
define an integral n�m matrix B WD Œb1ˇ1; : : : ; bmˇm�, and let G be the kernel of the
induced map of tori BW T! R. The toric Deligne–Mumford (DM) stack associated to
a labeled fan .†; b/ is defined as the quotient stack X†;b WD ŒX†K

=GC �, where GC is
the complexification of G.

A toric DM stack X†;b (or its labeled fan .†; b/) is complete if the fan is complete ie
the union of cones is Rn . A toric DM stack X†;b is a nonsingular toric variety if and
only if the labels bi D 1 and the fan † is nonsingular, ie for each maximal cone, the
primitive generators of the rays in the cone, ˇi1

; : : : ; ˇin
, form a Z–basis. In this case,

we call .†; b/ nonsingular. For a nonsingular and complete labeled fan, we have the
following classical result.

Theorem 2.10 (Danilov [8], Jurkiewicz [19]) If .†; b/ is nonsingular and com-
plete, then H�.ŒX†K

=GC �IZ/ Š ZŒK�=hu1; : : : ;uni. Furthermore, it has no Z–
torison [8, Theorem 10.8].

In [3, Proposition 3.7], it is proved that the coarse moduli space (underlying alge-
braic variety) for ŒX†K

=GC � is exactly the toric variety X† given by the fan †;
see also Cox [7].1 Thus for more general cases, one still has an isomorphism with
Q–coefficients.

1Even if the toric orbifold is a nontrivial orbifold, its coarse moduli space could be a nonsingular
toric variety. The simplest example of such a case may be the weighted projective space ŒCP1

12
� D

ŒC2nf.0; 0/g=C�� where the action of C� is weighted by .1; 2/ . Its coarse moduli space is simply CP1.

Algebraic & Geometric Topology, Volume 14 (2014)



Moment angle complexes and big Cohen–Macaulayness 387

Theorem 2.11 (Danilov [8]) If .†; b/ is complete, then

H�.ŒX†K
=GC �IQ/ŠQŒK�=hu1; : : : ;uni;

where uj D

mP
iD1

Bjixi .

Proposition 2.9 and Remark 2.4 therefore imply the following corollary.

Corollary 2.12 If K and B are given by a complete labeled fan, then H�G .ZK IQ/Š
QŒK�=hu1; : : : ;uni. If K and B are given by a complete and nonsingular labeled fan,
then H�G .ZK IZ/Š ZŒK�=hu1; : : : ;uni.

Note that the underlying combinatorial structures for quasitoric orbifolds and toric
DM stacks are both simplicial complexes. Any symplectic toric orbifold can be
made into an algebraic one by taking the normal fans to the polytopes. However,
not all quasitoric orbifolds can be made algebraic. A toric DM stack associated to a
polytopal fan can be made into a symplectic toric orbifold but there is a toric DM stack
associated to a nonpolytopal fan. Such a toric DM stack can not be realized even as a
quasitoric orbifold.

In light of Theorem 3.3, and Corollaries 2.8 and 2.12, it is natural to ask the following
question.

Question 2.13 When is H�G .ZK IZ/ a quotient of the Stanley–Reisner ring for a
general subgroup G?

Our answer to this question is Theorem 5.1. Also we will see in Section 5 that when
the G–action is locally free and H�G .ZK IQ/ is a quotient of Stanley–Reisner ring,
then the dimension of G must be maximal.

3 The proof that H �

G.ZK IZ/Š Tor�
ZŒR��

.ZŒK �; Z/

In this section, we prove that H�G .ZK IZ/ is isomorphic to Tor�ZŒR��.ZŒK�;Z/ as a
graded module over ZŒT��. The idea of the proof, especially to use the homological
machinery developed in [12], was communicated to us by Franz. Throughout, we will
use terminology found in [12].

We will use the following notation consistently throughout this paper unless otherwise
specified.
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Notation 3.1 Let K be a simplicial complex on Œm� WD f1; : : : ;mg possibly with ghost
vertices, ie there may be i 2 Œm� such that fig 62K . Let ZK be the associated moment
angle complex with the standard torus T WDU.1/m –action. Let t WD Lie.T/DRm , and
let NT D Zm be the kernel of the exponential map t! T. Let G� T be a (possibly
disconnected) closed subgroup of dimension m� n and let R WD T=G be the quotient
torus. We identify RŠU.1/n so that the quotient map T!R defines an integral n�m

matrix B which is viewed as the surjective linear map t! r WD LieR.

Let ZŒT�� WDH�.BTIZ/DZŒx1; : : : ;xm� where fxj g is the standard basis of N�T and
let ZŒR�� WDH�.BRIZ/DZŒu1; : : : ;un� where fuig is the standard basis of N�R . We
regard ZŒR�� as a subring of ZŒT�� so that ui WD

Pm
jD1 Bij xj . The Stanley–Reisner

ring ZŒK� is defined as the quotient of ZŒT�� by the monomials corresponding to
nonfaces of K .

Definition 3.2 M is an H�.BRIZ/–module up to homotopy if it is a module over
the reduced cobar construction of H�.RIZ/ [13, Section 4]. Note that H�.RIZ/ is
regarded as a coalgebra dual to the algebra H�.RIZ/ which is canonically isomorphic
to the exterior algebra of NR .

Theorem 3.3 Under Notation 3.1, there is an isomorphism of graded Z–modules

‚RW H
�
G .ZK IZ/! Tor�ZŒR��.ZŒK�;Z/;

where the cohomological grading on the right hand side is given in Definition 2.2.
Furthermore there is a commutative diagram of graded Z–modules

(3)

H�T .ZK IZ/
‚

//

��R

��

ZŒK�

�R

��
H�G .ZK IZ/

‚R

// Tor�ZŒR��.ZŒK�;Z/;

where �R is the obvious map induced from the inclusion of Koszul complexes, ��R is the
pullback of the quotient map �RW ET�GZK!ET�TZK and ‚ is the isomorphism (1)
of Section 2. In particular, ‚R is an isomorphism of graded rings if ��R is surjective.

Proof We suppress the coefficient ring Z. Given a map pW Y ! BR, the twisted
tensor product C �.Y /˝R H�.R/ is defined by [12, (5.7)]. Franz [12, Proposition 5.2]
states that there is a quasi-isomorphism of differential graded (dg) H�.R/–modules

ˆ�Y W C
�.Y /˝R H�.R/! C �.Y �BR ER/;
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where Y �BR ER is a pullback of ER! BR along pW Y ! BR.

Let Y WDER�R .ET�G ZK / and pW Y ! BR be defined as the composition of

ER�R .ET�G ZK / qR
// ET�T ZK

// BT // BR;

where qR is the projection to the 2nd and 3rd components, the second map is the
projection to the 1st component and the last map is a classifying map for BW T! R.
We observe that p is obtained by taking the quotient of

ER� .ET�G ZK /!ET�G ZK !ET=G!ER

by the free actions of R on each space. This implies that Y �BRERDER�.ET�GZK /.

Now [12, Proposition 5.2] states that we have the quasi-isomorphism of dg H�.R/–
modules:

ˆ�Y W C
�.ER�R .ET�G ZK //˝

R H�.R/! C �.ER� .ET�G ZK //

The homology of the right hand side is H�G .ZK /. On the left hand side, since R acts on
ET�GZK freely, the fibers of qR are ER and therefore it induces a quasi-isomorphism
of H�.BT/–modules up to homotopy

q�RW C
�.ET�T ZK /! C �.ER�R .ET�G ZK //;

ie it is a homomorphism of dg C �.BR/–modules such that after taking homology,
it becomes an isomorphism of H�.BR/–modules. Franz [13, Theorem 1.1] implies
that C �.ET�T ZK / is formal as a H�.BT/–module up to homotopy, ie there is a
sequence of quasi-isomorphisms connecting C �.ET�TZK / to H�.ET�TZK / as dg
modules over the reduced cobar construction of H�.T/, and therefore as dg modules
over the reduced cobar construction of H�.R/. Since the operation to take the twisted
tensor product ˝RH�.BR/ and the homology of it preserves quasi-isomorphisms of
H�.BR/–modules up to homotopy (cf McCleary [24, Theorem 8.20]), the map q�R
induces a quasi-isomorphism

zq�RW C
�.ER�R .ET�G ZK //˝

R H�.R/! C �.ET�T ZK /˝
R H�.R/;

and there is a sequence of quasi-isomorphisms connecting C �.ET�TZK /˝
R H�.R/

and H�.ET�TZK /˝
RH�.R/. Since the homology of H�.ET�TZK /˝

RH�.R/ is
Tor�ZŒR��.ZŒK�;Z/, we obtain the isomorphism ‚R . We summarize all in the diagram:
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(4)

H�G .ZK /

Š‚R

��

C �.ER� .ET�G ZK //
homologyks

C �.ER�R .ET�G ZK //˝
R H�.R/

ˆ�
Y

OO

zq�R
��

C �.ET�T ZK /˝
R H�.R/

OO

sequence of quasi-isomorphisms
��

Tor�ZŒR��.ZŒK�;Z/ H�.ET�T ZK /˝
R H�.R/

homology
ks

The right vertical maps gives a sequence of quasi-isomorphisms of dg H�.R/–modules
and at the both ends, we have the desired graded Z–modules after taking homology.

To prove the commutativity of diagram (3), first note that ‚ coincides with ‚R when
RD 1, where 1 is the trivial group. Consider the map 'W R! 1. Since it satisfies the
condition in [12, Proposition 4.11], the naturality stated in [12, Proposition 5.2] implies
that the following diagram commutes:

C �.ET�T ZK /

xq�R
��

C �.ET�T ZK /˝
1 H�.1/oo

x�R
��

C �.ER� .ET�G ZK // C �.ER�R .ET�G ZK //˝
R H�.R/;

ˆ�
Yoo

where xq�R is the pullback of the projection xqRW ER � .ET �G ZK / ! ET �T ZK

and x�R is the map induced by qR and 'W R ! 1. After taking the homology, xq�R
and x�R naturally coincide with ��R and �R respectively and the resulting diagram
extends to the commutative diagram (3) since the rest of the right vertical maps in the
diagram (4) are also natural with respect to 'W R! 1.

Lastly, if ��R is surjective, the commutative diagram (3) makes ‚R an isomorphism of
rings since the other three maps are ring homomorphism.

Remark 3.4 Let X be any topological space with a T–action where C �.ET�TX IZ/
is formal as a H�.BTIZ/–module up to homotopy. Then Theorem 3.3 also holds
for X . Namely, the above proof can be identically applied to this case and gives the
isomorphism ‚RW H

�
G .X IZ/Š Tor�ZŒR��.H

�
T .X IZ/;Z/.

In terms of toric orbifolds discussed in Section 2, we have the following corollary.
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Corollary 3.5 Let X is a quasitoric orbifold or an effective toric Deligne–Mumford
stack with associated simplicial complex K , and let R and T be the tori given in the
notation of Section 2. Then there is an isomorphism of graded modules over ZŒT��

H�.X IZ/Š Tor�ZŒR��.ZŒK�;Z/:

Remark 3.6 Theorem 3.3 (or Corollary 3.5) generalizes several results that have been
proved.

(i) In case GD T, Theorem 3.3 states that the T–equivariant cohomology of ZK is
the Stanley–Reisner ring of K , which is well-known; cf [5]. In case GD 1, then
one recovers that the ordinary cohomology of ZK is the Tor–algebra of ZŒK�
over ZŒT�� [5, Theorem 7.6]. One may therefore view this result as interpolating
between these extreme cases.

(ii) If ZK=G is a quasitoric manifold, then one recovers [5, Theorem 7.37].

(iii) When X† WD X†K
=GC is the coarse moduli for a toric orbifold, one recov-

ers [13, Theorem 1.2]:

H�.X†IQ/ŠH�GC
.X†K

IQ/DH�G .ZK IQ/Š Tor�ZŒR��.ZŒK�;Z/˝Q

4 Basics from commutative algebra

In this section, we collect some definitions and basic properties of graded modules over
a polynomial ring and discuss the relations among them. Throughout this section, R

will be a polynomial ring in variables u1; : : : ;un (generated in degree 2) over k D Z
or Q, and M will be a graded R–module (though not necessarily finitely generated).
We will denote the ideal of R generated by polynomials of positive degree by RC .

Below we give brief names to several properties of R–modules so that we can refer to
them later.

Definition 4.1 For M and R as above, one says that

(k1) M is free over R if M Š
L

e2E R � e and R � e Š R as graded R–modules
where E is a subset of M ,

(k2) M is flat over R if TorR
>0.M;N /D 0 for any (finitely generated) module N ,

(k3) M is torsion-free over R if there is no torsion over R (x 2M is a torsion
element over R if x is in the kernel of the multiplication map � r W M !M for
some nonzero r 2R),

(k4) M is a big Cohen–Macaulay R–module if TorR
1 .M; k/D 0.

In general, (k1) implies (k2), and (k2) implies both (k3) and (k4).
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We will see that in the case of interest to us, (k4) has the usual meaning in terms of
regular sequences; see Proposition 4.6.

Definition 4.2 A nonzero element r 2R is M–regular if 0�!M r
�!M is exact. A

sequence of elements f1; : : : ; fc �R is an M–regular sequence if, for each i � c , fi

is .M=.f1; : : : ; fi�1/M /–regular.

Remark 4.3 We call the condition (k4) in Definition 4.1 big Cohen–Macaulay because
TorR

1 .M; k/D 0 is the same as saying that there exists a system of parameters of RC
(namely, the variables of R; see Corollary 4.12) that is an M–regular sequence. The
‘big’ terminology is a reference to the fact that M need not be finitely generated; see
Bruns and Herzog [4, Chapter 8].2

Definition 4.4 Let I be an ideal of R such that M 6D IM . One defines the grade
of I on M by

(5) grade.I;M / WDminfi j ExtiR.R=I;M / 6D 0g:

If M D IM , one sets grade.I;M /D1. When M is finitely generated over R, this
definition is the usual definition of the grade of I on M and it is the length of maximal
M–regular sequence in I [4].

If I DRC is the ideal generated by the positive degree elements of R, the grade of I

on M is called the depth of M over R, and is denoted depthRM WD grade.I;M /.

Our goal for this section is to show that depthR.M / is the length of the longest M–
regular sequence in RC when M is only assumed to be finitely generated over S ,
where f W R! S is a ring homomorphism and the R–action on M is induced by f .
This is recorded in the following proposition.

Proposition 4.5 Let S DkŒx1; : : : ;xm�, M be a finitely generated graded S –module,
and 'W R! S be a graded ring homomorphism (so that M is hence a graded R–
module via ' ). Then all maximal M–regular sequences in RC have the same length
depthR.M /.

This proposition is a special case of the following proposition, whose proof will come
after some lemmas.

2In the reference [4], it is mentioned that the existence of a big Cohen–Macaulay module over a
local ring is an open problem. This question is not interesting for R , since it is a (nonlocal) Cohen–
Macaulay ring.
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Proposition 4.6 Let 'W R!S be a homomorphism of Noetherian rings, M a finitely
generated S –module and I an ideal of R with IM 6DM . Then grade.I;M / agrees
with the length of all maximal M–regular sequences in I .

The fact that allows one to extend the usual finitely generated setup to the generality
above is the following lemma.

Lemma 4.7 Let 'W R! S be a homomorphism of graded Noetherian rings, M a
finitely generated S –module and N a finitely generated R–module. Then we have
HomR.N;M /D 0 if and only if AnnR.N / contains an M–regular element.

Remark 4.8 Before starting on the proof, let us remark that in the setup of the lemma
the set of associated primes of M over R is finite, even though M may not be finitely
generated over R; see Matsumura [23, Exercise 6.7]. Indeed, one sees this by taking a
primary decomposition of M over S , which is also a primary decomposition over R,
since the R–annihilator of an S –module is the preimage of the annihilator in S (and
the inverse image of a primary ideal is primary).

Proof of Lemma 4.7 Suppose that x 2 AnnR.N / is M–regular. Then for any
 2 HomR.N;M /, we have

x .n/D  .xn/D  .0/D 0 for all n 2N:

Since x is M–regular, we have  .n/D 0.

Now assume that AnnR.N / does not contain an M–regular element. That is, all
elements of AnnR.N / are zero divisors on M . As mentioned in Remark 4.8, the set
of associated primes of M over R is finite. Since AnnR.N / consists of zero divisors,
it is contained in the (finite) union of all associated primes of M . Therefore, we can
apply the Prime Avoidance Lemma to get AnnR.N /� p for some associated prime p

of M over R. We then have the nontrivial map

Np�Np=pNp� k.p/ ,!Mp;

where k.p/ denotes the residue field Rp=pRp . Note that the first map is the canonical
projection, the second is projection onto a one-dimensional subspace of Np=pNp , and
the inclusion comes from localizing the inclusion R=p ,!M (which exists because p

is an associated prime of M ) at p. Thus, since N is finitely generated over R,
HomR.N;M /p D HomRp

.Np;Mp/ 6D 0, which gives HomR.N;M / 6D 0.

We also record without proof a basic fact from the homological algebra of commutative
rings.
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Lemma 4.9 [4, Lemma 1.2.4] Let 'W R! S be a homomorphism of Noetherian
rings, M a finitely generated S –module and N a finitely generated R–module. If
.x1; : : : ;xr / is a regular sequence in AnnR.N / for M , then

HomR.N;M=.x1; : : : ;xr /M /D ExtrR.N;M /:

Proof of Proposition 4.6 Let .x1; : : : ;xr / be a maximal M–regular sequence in I .
By Lemma 4.9,

ExtiR.R=I;M /Š HomR.R=I;M=.x1; : : : ;xi/M /:

If i < r , then xiC1 is M=.x1; : : : ;xi/M–regular. Therefore ExtiR.R=I;M /D 0 by
Lemma 4.7. Since .x1; : : : ;xr / is maximal, I doesn’t contain any M=.x1; : : : ;xr /M–
regular elements. Thus ExtrR.R=I;M / 6D 0. This proves the claim.

One has the following well known characterization of (k4) in terms of M–regular
sequences due to Serre [27, Chapter IV.A].

Proposition 4.10 Let u1; : : : ;un be a homogeneous minimal generating set of RC .
Suppose that R and M satisfy the hypotheses of Proposition 4.5. Then the following
properties are equivalent:

(a) Hp.u;M /D 0 for p � 1.

(b) H1.u;M /D 0.

(c) The sequence u1; : : : ;un is M–regular.

Here, Hp.u;M / denotes the pth Koszul homology of the sequence u1; : : : ;un with
coefficients in M .

Proof The proof that appears in Serre [27, Chapter IV.A] uses standard techniques
of the Koszul complex which hold even for modules which are not finitely generated
over R, together with Nakayama’s lemma for finitely generated modules over a Noe-
therian local ring. Since a version of Nakayama’s lemma holds for graded modules
that satisfy our hypothesis, Serre’s original argument remains valid.

Corollary 4.11 Let u1; : : : ;un be a homogeneous minimal generating set of RC , and
suppose that R and M satisfy the hypothesis of Proposition 4.6. Then TorR

1 .M; k/D 0

if and only if .u1; : : : ;un/ is a regular sequence for M .

Proof The Koszul complex on u1; : : : ;un resolves k over R, and hence one can use
its homology to compute the Tor modules. Now appeal to the previous proposition.
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Propositions 4.11 and 4.5 show that in the setup of Proposition 4.5, big Cohen–
Macaulayness of M has the usual meaning in terms of the maximal length of an
M–regular sequence.

Corollary 4.12 In the setup of Proposition 4.5, one has that TorR
1 .M; k/D 0 if and

only if depthR.M /D n.

5 Properties of ZŒK � as an algebra over ZŒR��

In this section, we start with the characterization of big Cohen–Macaulayness (k4), and
then discuss freeness (k1) and torsion-freeness (k3), of ZŒK� as a ring over ZŒR��. In
the rest of the paper, we use Notation 3.1 unless otherwise specified.

5.1 Big Cohen–Macaulayness

The following theorem is a variant of Franz and Puppe [15, Theorem 1.1] and Franz [14,
Lemma 5.1]. The differences are that the T–CW complex EG�G ZK is not finite and
that we consider the cohomology of the quotient stack ŒZK=G� instead of the one of
the underlying topological space ZK=G.

Theorem 5.1 Let �RW ET�GZK !ET�TZK be the quotient map by the R–action.
The following are equivalent:

(i) ZŒK� is big Cohen–Macaulay over ZŒR��, ie TorZŒR��
1

.ZŒK�;Z/D 0

(ii) ��RW H
�
T .ZK IZ/!H�G .ZK IZ/ is surjective

(iii) H odd
G .ZK IZ/D 0

Proof Since TorZŒR��
0

.ZŒK�;Z/D ZŒK�=hu1; : : : ;uni, the commutative diagram (3)
in Theorem 3.3 implies that (ii) is equivalent to the vanishing of TorZŒR��

i>0 .ZŒK�;Z/,
which is actually equivalent to (i) by [15, Proposition 2.3]. (ii) implies (iii) because
H�T .ZK IZ/ has only even degree classes. Now (iii) implies that the Serre spectral
sequence for the Borel construction for the residual R–action for ET �G ZK de-
generates at E2 level and hence the pullback of the fiber inclusion ET �G ZK ,!

ER�R .ET�GZK / is surjective. This pullback can be identified as ��R and thus (iii)
implies (ii); see also [14, Lemma 5.1] and its proof.

Again it is worth noting that Theorem 5.1 holds for any T–space X that satisfies the
formality hypothesis in Remark 3.4, as well as H odd

T .X IZ/.
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Remark 5.2 By Theorem 3.3, ��R is surjective if and only if

‚W H�G .ZK ;Z/Š ZŒK�=hu1; : : : ;uni:

Remark 5.3 Theorem 5.1 holds after replacing Z by Q.

Corollary 5.4 If X D ŒZK=G� is a quasitoric orbifold or effective toric Deligne–
Mumford stack, then the following are equivalent:

(i) TorZŒR��
1

.ZŒK�;Z/D 0

(ii) H�.X IZ/ is the quotient of ZŒK� by u1; : : : ;un

(iii) H odd.X IZ/D 0

5.2 Freeness

The following theorem is analogous to [14, Lemma 6.1].

Proposition 5.5 ZŒK� is free over ZŒR�� if and only if H�G .ZK IZ/ has no Z–torison
and is concentrated in even degree.

Proof If H�G .ZK IZ/ is concentrated in even degree, then by Theorem 5.1 we have that
��RW H

�
T .ZK IZ/!H�G .ZK IZ/ is surjective. The surjectivity implies that H r

G.ZK IZ/
has finite rank for each r and is a finitely generated free Z–module if it has no Z–torison.
The Leray–Hirsch theorem (cf Hatcher [16, Theorem 4D.1]) can be applied to the fiber
bundle ER�R.ET�GZK /!BR where the pullback along the fiber ET�GZK can be
identified with ��R and therefore we have an isomorphism ZŒR��˝ZH�G .ZK IZ/ŠZŒK�
of ZŒR��–modules. Since H�G .ZK IZ/ is a free Z–module, ZŒK� is a free ZŒR��–
module.

On the other hand, freeness of ZŒK� over ZŒR�� implies TorZŒR��
1

.ZŒK�;Z/D 0 and
so ��R is surjective by Theorem 5.1. Thus H�G .ZK ;Z/ Š H�T .ZK ;Z/˝ZŒR�� Z. By
freeness, we can write H�T .ZK IZ/Š

L
e2E ZŒR��e as a free ZŒR��–module, where

the e are even degree classes. Then H�T .ZK IZ/˝ZŒR��ZŠ
L

e2E Ze . Thus there is
no Z–torison and no odd degree classes.

The same proof as above proves the following theorem; see also Remark 5.3.

Proposition 5.6 QŒK� is free over QŒR�� if and only if H�G .ZK IQ/ has no odd
degree classes.
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With this proposition, together with the local freeness of the G–action, we can also
prove the following lemma.

Lemma 5.7 Suppose that the G–action on ZK is locally free. If H�G .ZK IQ/ is
concentrated in even degree, then QŒK� is finitely generated over QŒR��.

Proof Since the G–action on the smooth variety X†K
defined in Section 2.5 is

locally free, we have the differentiable orbifold ŒX†K
=G�. By the construction of

de Rham cohomology for differentiable orbifolds, cf Adem, Leida and Ruan [1, Sec-
tion 2.1], H�.ŒX†K

=G�IR/ is finite-dimensional. Since ZK ,!X†K
is a T–equivariant

deformation retract, H�G .ZK IQ/ is also finite-dimensional. On the other hand, by
Proposition 5.6, if H�G .ZK IQ/ has no odd degree, then QŒK� is free over QŒR��.
Since H�G .ZK IQ/ Š H�T .ZK IQ/˝QŒR�� Q, the finiteness of H�G .ZK IQ/ implies
that H�T .ZK IQ/ is finitely generated over QŒR��.

5.3 Torsion-freeness

First we observe the following equivalence.

Lemma 5.8 ZŒK� is torsion-free over ZŒR�� if and only if ZŒK�˝Q is torsion-free
over QŒR��.

Proof Suppose that f 6D 0 is a torsion element in ZŒK� over ZŒR��, ie there is a
nonzero element g 2 ZŒR�� such that fg D 0 in ZŒK�. Since ZŒK� is free over Z,
f 6D 0 in QŒK�. Therefore f is also a torsion in QŒK� over QŒR��. On the other hand,
suppose that f 6D 0 is a torsion element of QŒK� over QŒR��. Let g 2 QŒR�� be a
nonzero element such that fg D 0 in QŒK�. Let a be the product of denominators of
the coefficients of f and b be the product of denominator of coefficients of g . Then
the pair of af 2ZŒK� and bg 2ZŒR�� gives a torsion element of ZŒK� over ZŒR��.

Theorem 5.9 If H�G .ZK IQ/ is concentrated in even degree, then ZŒK� is torsion-free
over ZŒR��.

Proof By Proposition 5.6, QŒK� is free over QŒR��, therefore it is torsion-free over
QŒR��. We conclude that ZŒK� is torsion-free over ZŒR�� by Lemma 5.8.

If ŒZK=G� is a quasitoric orbifold or a complete toric DM stack (Section 2), H�G .ZK IQ/
is concentrated in even degree by Theorems 2.6 and 2.11. Thus we have the following:

Corollary 5.10 If ŒZK=G� is a quasitoric orbifold or a complete toric DM stack, then
ZŒK� is torsion-free over ZŒR��.
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Remark 5.11 The converse of Theorem 5.9 is not true. The direct product of weighted
projective spaces is a complete toric DM stack and its cohomology has odd degree
classes. See Example 6.2.

The following proposition shows that the vanishing of odd classes in H�G .ZK IQ/
implies that the size of G is maximal and it is analogous to [14, Proposition 5.2].

Proposition 5.12 Let n0 be the largest cardinality of a face of K . Suppose that G acts
on ZK locally freely. If H�G .ZK IQ/ is concentrated in even degree, then dimRD n0 .
Furthermore for a closed subgroup G1 � G such that dimG1 < dimGDm� n, QŒK�
has a torsion over QŒR�

1
�, where R1 WD T=G1 .

Proof By Lemma 5.7, QŒK� is finitely generated over QŒR�� and hence over QŒR�
1
�.

Moreover QŒK� is free over QŒR�� by Proposition 5.6 and so AnnQŒR��QŒK� D 0.
Thus we have

n0 D dim QŒK�D dim QŒR��D dim
QŒR�

1
�

AnnQŒR�
1
�QŒK�

:

Thus dimR D dim QŒR�� D n0 and dim QŒR�
1
� D dimR1 > dimR, which implies

AnnQŒR�
1
�QŒK� 6D 0.

Example 5.13 Let � be a n–dimensional rational bounded simple polytope in
RnD r� , where r is the Lie algebra of R and K� the corresponding simplicial complex.
Let �1; : : : ; �m 2 r be the inward primitive normal vectors of the facets H1; : : : ;Hm

of � and let B D Œ�1 � � � �m� be an integral n�m matrix. Adopt the notation from
Notation 3.1. The GKM description of the rational equivariant cohomology of the
corresponding toric orbifold is essentially the description of the piecewise polynomial
functions on the corresponding normal fan: Let v1; : : : ; vr be the vertices of � and
denote the edge between vi and vj by .i; j /. Then there is an isomorphism of
QŒu1; : : : ;un�–modules

ˆ WQŒK��Šf.f1; : : : ; fr / j�ij divides fi�fj for all edges .i; j / of �g�
rM

iD1

QŒu�;

where QŒu� WDQŒu1; : : : ;un� and �ij 2 r
� is a vector generating the edge .i; j / of �.

It is well-known that ˆ.xi/k D 0 unless vk lies on Hi . Therefore, for each vertex
vk D Hi1

\ � � � \Hin
, ˆ.xi1

� � �xin
/l D 0 unless k D l . Now suppose that we take

a subgroup G1 � G with dimG1 < m� n and let R1 WD T=G1 . Let r1 be the Lie
algebra of R1 and u 2 r�

1
a rational element such that u 62 r� . Let ˆ.u/k D

Pn
iD1 aiui

so that ˆ.u �
Pn

iD1 aiui/k D 0 and u �
Pn

iD1 aiui 6D 0 since u 62 r� . Therefore
.u�

Pn
iD1 aiui/ � xi1

� � �xin
D 0, ie xi1

� � �xin
is a torsion element of QŒK�� as a

module over QŒR�
1
�.
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5.4 An injectivity theorem and freeness

Suppose that a subtorus G of T acts on ZK locally freely and consider a torus W such
that G�W � T and m0 WD dimW . Let F � ZK be the set of .m� n/–dimensional
W–orbits, where dimG D m � n. We have the following injectivity result for the
W–action on ZK when ŒZK=G� is a symplectic compact toric orbifold.

Theorem 5.14 Suppose that ŒZK=G� is a symplectic compact toric orbifold corre-
sponding to a labeled polytope .�; b/. Suppose that the stabilizer of any point x 2 ZK

in W is connected. Then the pullback H�W.ZK IZ/ ! H�W.F IZ/ is injective. In
particular, H�T .ZK IZ/ is free over ZŒ.T=W/��.

Proof Let fH1; : : : ;Hmg be the set of all facets of �. The simplicial complex K is
the one associated to � and � 2K if and only if �� WD \i2�Hi 6D ¿. Let Fa be a
connected component of F . Then by Holm and the second author [18, Lemma 3.4]
and our assumption of connected isotropy groups, the stabilizers of every x 2Fa in W

coincide. Let Wa be the stabilizer of points in Fa . Let �W ZK !� be the moment
map. Note that this is the quotient map by the action of T. First we show the following
lemma.

Lemma 5.15 Fa D �
�1.�� / for some � 2 K . In particular, the stabilizer of each

point x 2 Fa is W� WDW\T� .

Proof of Lemma 5.15 For x 2Fa , let �x WD fi 2 Œm�;xiD 0g. Then ��1.��x
/�Fa

and the unique stabilizer for Fa is given by Wa DW\T�x
. Note that �x 6D¿ since

m> n. It suffices to show that there is an element x 2 Fa such that �x is the unique
minimal subset among the collection of subsets, f�y j y 2 Fag. Let �x and �y be
minimal for some x;y 2 Fa . Suppose that �x 6D �y and consider z 2 ��1.��x\�y

/

such that �zD�x\�y . Since WaDW\Tx\T�y
DWz , z 2F by dimension counting.

The connectivity of Fa then implies that z 2 Fa . This contradicts the assumption
that �x and �y are minimal, so �x D �y .

Now let fF�g be the set of connected components of F where F� D �
�1.�� /. For

each � , choose a splitting WDW� � .W=W� /. The target of the injectivity map is
computed as follows:

H�W.F IZ/D
M
�

H�W.F� IZ/D
M
�

H�.BW�W F� IZ/

D

M
�

H�.BW� IZ/˝H�.F�=.W=W� /IZ/
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Now we show that F�=.W=W� / is a compact toric symplectic manifold so that
H�.F�=.W=W� /IZ/ has only even degree and has no Z–torison. Since ŒF�=G�
is the suborbifold of .W=G/–fixed orbifold points, it is a symplectic orbifold (cf [21,
page 4210, Corollary 3.8]), which is compact. Since the unique stabilizer of points
of F� in G is given by G� D G\W� , the quotient F�=.G=G� / is a compact toric
manifold with the effective Hamiltonian action of .T=G/=.T�=G� /. On the other
hand, F�=.G=G� / is exactly F�=WD F�=.W=W� /. Thus H�.F�=.W=W� /IZ/ has
only even degree and has no Z–torison. Therefore, if we show the injectivity of
H�W.ZK IZ/ ! H�W.F IZ/, it follows that H�W.ZK IZ/ has no Z–torison and has
only even degree. Then we also have freeness of H�T .ZK IZ/ over ZŒ.T=W/�� by
Proposition 5.5.

To show injectivity of H�W.ZK IZ/! H�W.F IZ/, we apply [18, Theorem 4.10]. It
suffices to show that W� is connected and the weights of the action on the (negative)
normal bundle are all primitive for each connected component of F� . The former is
true by the assumption. For the latter, look at the normal bundle of F� in ZK which is
given by

L
i2� C.@=@zi/. The weights of the T� –equivariant normal bundle are the

standard Z–basis f�i ; i 2 �g of N�T� . We need to check that the induced W� –weights
z�i WDA�� .�i/2N

�
W�

are nonzero and primitive where A� WW� ,!T� is the restriction
of the natural inclusion AW W ! T. It is easy to see that z�i is nonzero, since, if
otherwise, the normal direction C.@=@zi/ is also contained in Fa . Finally the proof is
completed by the following lemma.

Lemma 5.16 A�� .�i/ 2 N
�
W�

is primitive.

Proof of Lemma 5.16 Consider the following commutative diagram of tori and its
dual for the weight lattices:

(6)

W�nfig

��

// T�nfig

��
W�

A� //

fi $$

T�

gi

��
Tfig

N�W�nfig N�T�nfig
oo

N�W�

OO

N�T�
A��oo

OO

NTfig

g�
i

OO

f�
i

dd

Here gi is the canonical projection. The map fi D gi ıA� must be surjective since Ti

is one-dimensional and z�i is nonzero. Also we have W�nfig D ker fi which must
be connected by assumption. Therefore we have a short exact sequence of tori
0!W�nfig!W�!Tfig! 0 which implies that f �i maps N �Ti

to a direct summand.
Thus z�i must be primitive since �i is a basis of N�Ti

.
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This completes the proof of Theorem 5.14.

Remark 5.17 To give some ideas of how W can be chosen, please see Example 6.1. In
the extreme case when WDG, the assumption implies that F DZK and G acts on ZK

freely. Thus Theorem 5.14 is nothing but the fact that the equivariant cohomology of
toric manifolds (or smooth toric varieties) is free over ZŒR��.

6 Examples

Example 6.1 (Effective weighted projective spaces) Let a WD .a1; : : : ; am/ be a
sequence of positive integers with gcd.a1; : : : ; am/ D 1 and let ŒCPm�1

a � be the
corresponding effective weighed projective space. As in Section 2, H�.ŒCPm�1

a �IZ/D
H�G .ZK IZ/, where G D f.ta1 ; : : : ; tam/g � T and K the boundary of an .m� 1/–
simplex. The corresponding Stanley–Reisner ring is ZŒx1; : : : ;xm�=hx1x3 � � �xmi.
In [17], the ordinary cohomology is computed as H�G .ZK ;Z/ŠZŒy�=ha1 � � � amymi. It
has only even degree, so H�T .ZK IZ/!H�G .ZK IZ/ is surjective. However H�G .ZK IZ/
has Z–torison, and so H�T .ZK ;Z/ is not free over ZŒR��. The simplest such ex-
ample is ŒCP1

12
�. In light of Theorem 5.14, we can find a subtorus W � T such

that G � W and ZŒK� is free over ZŒ.T=W/�� as follows. Define W � T by W D

f.t1; : : : ; tm/ 2 T j ti D tj if ai D aj g. Such W contains G and the stabilizer of
any point x 2 ZK in W is connected. Therefore by Theorem 5.14, ZŒK� is free
over ZŒ.T=W/��.

Example 6.2 As we saw in the previous examples, H�G .ZK IZ/ has Z–torison (in-
finitely many) in even degree for ŒZK=G�DCPm�1

a . The direct product of such toric
orbifolds is also a toric orbifold and the Künneth theorem provides the Z–torisons in
odd degree. More concretely, take the labeled polytope

�
1

H4

1 H1

�

2H3

�
2

H2
�

which gives B D
�

1 0 �2 0
0 2 0 �1

�
. This defines the direct product ŒCP1

12 �CP1
12� which

gives odd degree elements in H�T .ZK ;Z/. Thus H�T .ZK ;Z/!H�G .ZK ;Z/ is not sur-
jective. We can also see this by determining whether .x1�2x3; 2x2�x4/ is a regular se-
quence of ZŒK�DZŒx1; : : : ;x4�=hx1x3;x2x4i as a module over ZŒx1�2x3; 2x2�x4�.
Indeed, it is not a regular sequence: x1�2x3 is a nonzero divisor in ZŒK� but 2x2�x4

is a zero divisor in ZŒK�=.x1 � 2x3/ since .2x2 � x4/x2x2
3
D 0 and x2x2

3
6D 0 in

ZŒK�=.x1� 2x3/.
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7 Algebraic Gysin sequence

Let U be a subgroup of G such that L WD G=U is a 1–dimensional torus. By choosing
an identification of L with a standard circle U.1/, we have an oriented principal
U.1/–bundle � W ET�U ZK !ET�G ZK and the corresponding Gysin sequence

� � � // H i�1
G .ZK ;Z/

[e // H iC1
G .ZK ;Z/

�� // H iC1
U .ZK ;Z/

�� // H i
G.ZK ;Z/

[e // H iC2
G .ZK ;Z/ // � � �

where e is the Euler class of the bundle, �� is the push forward map and �� is the
pullback map. In light of Theorem 3.3, it is natural to ask if there is a purely algebraic
construction of a long exact sequence of Tor’s corresponding the Gysin sequence.
It turns out that it comes from the long exact sequence associated to the iterative
construction of the commutative Koszul complex. We describe the construction in the
following.

Construction 7.1 (Algebraic Gysin sequence) Let zR WDT=U and make the identifica-
tion H�.BzR;Z/DZŒu1; : : : ;un;unC1�DZŒzR��, where ZŒu1; : : : ;un�DH�.BR;Z/.
Consider the short exact sequence of Koszul complexes (as modules over ZŒzR��)

(7) 0!KZŒzR��.�1; : : : ; �n/
��

!KZŒzR��.�1; : : : ; �n; �nC1/
��
!KZŒzR��.�1; : : : ; �n/! 0;

where the map �� is the obvious inclusion and the map �� is getting rid of �nC1^,
lowering the homological degree by 1. Note that

KZŒzR��.�1; : : : ; �n/D ZŒu1; : : : ;un;unC1�h�1; : : : ; �ni

and the differential is given by extending @�i D ui as a differential algebra, where h i
denotes the exterior algebra.

Let M be a graded ZŒx1; : : : ;xm�–module. After tensoring with M over ZŒzR��, we
obtain the long exact sequence of Tor modules over ZŒu1; : : : ;un;unC1�:

(8) � � �
ı
�! TorZŒR��

iC1
.M;Z/

��

�! TorZŒzR��
iC1

.M;Z/
��
�! TorZŒR��

i .M;Z/
ı
�! � � �

We call this the algebraic (homological) Gysin sequence.
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Proposition 7.2 The connecting map ı is a multiplication by unC1 .

Proof It follows from a diagram chase. Consider the part of the map (7) of complexes:

K
ZŒzR��
i�1

.�1; : : : ; �n/ // K
ZŒzR��
i�1

.�1; : : : ; �nC1/ // K
ZŒzR��
i .�1; : : : ; �n/

K
ZŒzR��
i .�1; : : : ; �n/

@

OO

// K
ZŒzR��
i .�1; : : : ; �nC1/

@

OO

// K
ZŒzR��
i�1

.�1; : : : ; �n/

@

OO

Let z be a cycle in K
ZŒzR��
i�1

.�1; : : : ; �n/ and lift it to top left corner:

ui � z // @.�nC1 ^ z/D ui � z // 0

�nC1 ^ z //

@

OO

z

@

OO

This concludes the proof.

Definition 7.3 (Cohomological algebraic Gysin sequence) As in Definition 2.2, we
can assign the cohomological degree and turn the sequence (8) into a cohomological
sequence:

(9) � � �
�unC1 // ToriC1

ZŒR��.M;Z/
�� // ToriC1

ZŒzR��
.M;Z/

�� // Tori
ZŒR��.M;Z/

�unC1 // � � �

We call this the cohomological algebraic Gysin sequence.

Remark 7.4 We remark here that the above sequence depends on the choice of unC1 ,
which is unique up to a sign and a choice of an element of ZŒu1; : : : ;un� D ZŒR��.
This is because the choice of unC1 is nothing more than a choice of complement of R

in zR. The choice of sign persists to (9), but the element of ZŒR�� vanishes upon taking
cohomology, since elements of ZŒR�� are boundaries in the image. On the topological
side, this choice of sign amounts to the choice of orientation needed to define the Euler
class of the U.1/–bundle � .
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Remark 7.5 In the special case when K is the simplicial complex associated to
a Delzant polytope �, the corresponding G–action on ZK is free and ZK=G is
homeomorphic to the corresponding symplectic toric manifold. We have

TorZŒR��
i .ZŒK�;Z/D 0 for all i � 1

since ZŒK� is free over ZŒR��. Thus the long exact sequence in Construction 7.1
implies that

TorZŒ zR��
i .ZŒK�;Z/D 0 for all i � 2:

Hence the only nonzero part of the long exact sequence is:

0 // TorZŒzR��
1

.ZŒK�;Z/
�� // TorZŒR��

0
.ZŒK�;Z/

ı

rr
TorZŒR��

0
.ZŒK�;Z/

��
// TorZŒzR��

0
.ZŒK�;Z/ // 0

This sequence, together with the identification of Tor algebras and cohomology rings
of toric manifolds, gives the Gysin sequence used in the first author’s paper [22] to
compute the cohomology ring of a good contact toric manifold.
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