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Rational analogs of projective planes

ZHIXU SU

In this paper, we study the existence of high-dimensional, closed, smooth manifolds
whose rational homotopy type resembles that of a projective plane. Applying rational
surgery, the problem can be reduced to finding possible Pontryagin numbers satisfying
the Hirzebruch signature formula and a set of congruence relations, which turns out
to be equivalent to finding solutions to a system of Diophantine equations.

57R20; 57R65, 57R67

1 Introduction

There are four kinds of projective planes, the well-known real, complex, quaternionic
and octonionic projective planes. There does not exist any higher-dimensional closed
manifold having the topological structure of a projective plane. More precisely, for
n> 8, there does not exist any simply-connected 2n–dimensional closed manifold M

such that

H�.M IZ/D

�
Z � D 0; n; 2n;

0 otherwise:

This fact is a consequence of the well-known Hopf invariant 1 theorem. If there were
such a manifold M 2n for n> 8, then there would have to exist a Morse function with
minimal number of critical points, giving a CW complex X D e0[ en[� e2n that is
homotopy equivalent to M . This would require the existence of a Hopf invariant 1
attaching map �W S2n�1! Sn . But the only such maps are homotopic to the Hopf
fibrations S2k�1! Sk for k D 1; 2; 4; 8.

Ignoring torsion, we ask if any rational analogs of projective planes exist in higher
dimension. This paper proves the following result.

Theorem 1.1 After dimension 4, 8, and 16, which are the dimensions of CP2 , HP2

and OP2 respectively, the next smallest dimension where a rational analog of projective
plane exists is 32, ie, there exist 32–dimensional, simply-connected, closed, smooth
manifolds M such that

H�.M IQ/D

�
Q � D 0; 16; 32;

0 otherwise;

and there are infinitely many homeomorphism types of such manifolds.
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From the desired intersection form, it is immediate that such a manifold exists only in
dimension 4k . We will first show that for k¤1, there is no such manifold in dimension
4k , where k is odd. Then, as we study the candidate dimensions, 24 also turns out to
give a negative answer. In dimension 32, we can find infinitely many homeomorphism
types of rational projective planes in terms of their Pontryagin numbers.

The main tool to prove the results is the rational surgery realization theorem, which
was first introduced by Barge [2, Theorem 1] and Sullivan [10]; equivalent statements
can be found in Taylor and Williams [11]. The theorem gives a constructive answer to
the existence question by finding pairings of 4i –dimensional cohomology classes and
a choice of fundamental class that act like Pontryagin numbers. In Section 2, we state
the rational surgery realization theorem, which will be phrased in a form that is ready
for application to our problem. To make the theorem more accessible, a variant of the
proof will be given. In Section 3, we will prove Theorem 1.1.
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2 Rational surgery

Given a rational homotopy type, a natural question is whether there exists a closed
manifold realizing the rational homotopy data. Compared to its integral version, the
existence question in rational setting has a more explicit solution. Philosophically, this is
due to the much simpler rational homotopy groups of spheres. Initiated by Barge [2] and
Sullivan [10], rational surgery constructs closed manifolds, that are rational homotopy
equivalent to a proposed Q–local space X n, which is a CW complex whose homotopy
groups are Q–vector spaces. To get any positive answer, it is clearly necessary to
start with a local space X that satisfies Poincaré duality in rational coefficients. The
ingredients for constructing a realizing manifold include choices of cohomology classes
in H 4i.X IQ/, which play the role of Pontryagin classes, and correspondingly, a
suitable choice of fundamental class in Hn.X IQ/ŠHn.X IZ/ŠQ.

Theorem 2.1 (Barge [2], Sullivan [10]) Let X be an nD 4k–dimensional simply-
connected, Q–local, Q–Poincaré complex, where k ¤ 1. There exists a simply-
connected 4k–dimensional, closed, smooth manifold M and a Q–homotopy equiva-
lence f W M !X if and only if there exist cohomology classes pi 2H 4i.X IQ/ for
i D 1; : : : ; k , and a fundamental class � 2H4k.X IQ/ŠQ such that:
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(i) The pairing of the k th L–polynomial of pi and � is equal to the signature of
X , ie hLk.p1; : : : ;pk/; �i D �.X /.

(ii) The intersection form �W H 2k.X IQ/�H 2k.X IQ/!Q defined as h � [ � ; �i
is isomorphic to a direct sum of copies of h1i and h�1i.

(iii) The pairings hpI ; �i D hpi1
� � �pir

; �i over all the partitions I D .i1; : : : ; ir /

of k form a set of Pontryagin numbers of a genuine closed smooth manifold, ie
there exists a 4k–dimensional closed smooth manifold N such that

hpI .�N /; ŒN �i D hpI ; �i

for all partitions I of k .

If the choice of pi and � satisfies all the conditions above, surgery theory will construct
a Q–homotopy equivalence f W M !X such that f�ŒM �D� and f �.pi/D pi.�M /,
where pi.�M / is the ith Pontryagin class of the tangent bundle of M . As a consequence,
the Pontryagin numbers pI ŒM �D hpI ; �i for all partitions I of k .

Remark 2.2 For the dimensions n 6� 0 .mod 4/, the answer to the existence question
in Theorem 2.1 is always yes. Any choice of cohomology classes pi will construct a
rational nonzero degree normal map f W M !X such that f �.pi/D pi.�M /. Since
Ln.Q/D 0 in such dimensions, the surgery obstruction always vanishes, and therefore
a rational homotopy equivalence can be obtained.

Proof We will claim that Condition (iii) guarantees a degree-1 normal map from a
candidate manifold M to X so that the fundamental class of M is sent to the chosen
class �. Conditions (i) and (ii) ensure the vanishing surgery obstruction.

Consider any choice of cohomology classes

pW X
.p1;:::;pk/
�������!

Y
K.Q; 4i/' BSO.0/:

For m� n, let m denote the universal plane bundle over BSO.m/, define the map

p.m/W BSO.m/
.p1.m/;:::;pi .m/;:::;/
����������������!

Y
K.Q; 4i/;

where the total class p.m/D1Cp1.m/C� � �Cpi.m/C� � �2
Q

H 4i.BSO.m/IQ/ is
the unique class such that p.m/p.m/D 1. Let PB be the homotopy pull-back space
of p and p.m/, and �m the pullback bundle of m over PB. We have constructed the
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two right-hand columns of the following diagram. Note that p.m/ and the projection
map pr1 are localization maps by construction.

�M

��

// �

��

// m

��
M

f ""

g // PB

pr1

��

pr2 // BSO.m/

p.m/
��

X
p //

Q
K.Q; 4i/

For any homotopy class ˛ 2 �nCm.T �
m/, the corresponding map gW SmCn! T �m

yields a candidate manifold M D ˛�1.PB/ by Thom–Pontryagin construction. More-
over, gjM W M ! PB is covered by a bundle map from the normal bundle of M to � .
Chasing through the diagram, one can check that the input classes pi are pulled back to
the Pontryagin classes pi.�M / through the composition map f WD pr1 ıgW M !X .

To construct a degree-1 normal map so that f�ŒM � D �, we need a particular class
˛ 2�nCm.T �

m/ that maps to � under the composition of the Hurewicz map, the Thom
isomorphism, and the projection pr1�W Hn.PBIZ/!Hn.X IZ/, which is shown the
following diagram:

˛ 2 �nCm.T �
m/

T pr1�

��

((

T pr2� // �nCm.T 
m/ 3 ˇ

uu

T p.m/�

��

Hn.PB/

pr1�

��

pr2� // Hn.BSO.m//

p.m/�
��

� 2Hn.X /
p� // Hn.BSO.m/.0//

cX 2 �nCm.T z�X /

Š

66

Tp� // �nCm.T 
m
.0/
/

Š
hh

In the lower right-hand corner of the diagram, T m
.0/

is the Thom space associated to
the rational spherical fibration

Sm�1
.0/ ! Sm

.0/! BSO.m/.0/;

which is the localization of the sphere bundle Sm�1 ! Sm ! BSO.m/. The
Hurewicz–Thom map

�nCm.T 
m
.0// �!HnCm.T 

m
.0/IZ/ �!Hn.BSO.m/.0/IZ/
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is an isomorphism since both the Thom space and the base space are Q–local, and
the Hurewicz map is a rational isomorphism for m � n; Milnor and Stasheff [6,
Theorem 18.3]. In the lower left corner, the rational spherical fibration e�X Dp�.Sm

.0/
/

and the associated Thom space Te�X are Q–local, and the Hurewicz–Thom map
�nCm.Te�X /!Hn.X IZ/ is also an isomorphism. Thus, for any fundamental class
�, there is a class cX 2 �nCm.Te�X / mapping to �. Moreover, it can be shown
that the outer square of Thom spaces is a homotopy cartesian square (see Taylor
and Williams [11, Lemma 6.1] or Su [9, Lemma 3.2.3] for more details). All these
observations together imply that if there exists a class ˇ 2 �nCm.T 

m/ in the upper
right corner mapping to p�� 2Hn.BSO.m/.0//, then ˇ and cX would guarantee the
existence of a desired class ˛ that maps to �.

Note that the Hurewicz–Thom map in the upper right-hand corner can be viewed as
�W �nCm.T 

m/ Š �SO
n ! Hn.BSOIQ/, where �.M / D �M �ŒM � and �M is the

classifying map of the normal bundle of a manifold M . Thus there is a ˇ mapping to
p�� if and only if p.m/

�1

� .p��/ lies in the image of such map � .

If the input classes fpig and � together satisfy Condition (iii), ie there exists a closed
smooth manifold N such that hpI .�N /; ŒN �i D hpI ; �i, chasing through the diagram,
we have

hpI .�N /; ŒN �i D hpI ; �i D hpI .
m/;p��i D hp.m/I ;p.m/

�1

� .p��/i:

Since p.�N /p.�N / D 1, and p.m/p.m/ D 1, the identity above implies that
hpI .�N /; ŒN �i D hpI .

m/;p.m/
�1

� .p��/i. Equivalently, p.m/
�1

� .p��/ is the
image of a manifold N under the homomorphism �W �SO

n ! Hn.BSOIQ/. This
implies that �nCm.T 

m/ possesses the desired class ˇ and thus ensures the existence
of ˛ , which finishes the proof that Condition (iii) guarantees that there exists a degree-1
normal map such that f�ŒM �D �.

Now surgery can be applied to alter the normal map to a rational homotopy equivalence
if and only if the map has a vanishing surgery obstruction, which lives in the L group

Ln.Q/Š Z˚
M
1

Z2˚

M
1

Z4I

see Milnor–Husmoller [5]. The obstruction vanishes in its Z–summand if and only if
the signature �.M /D �.X /, which is equivalent to Condition (i), since

hLk.p1; : : : ;pk/; �i D hLk.p1; : : : ;pk/; f�ŒM �i

D hLk.f
�p1; : : : ; f

�pk/; ŒM �i

D hLk.p1.�M /; : : : ;pk.�M //; ŒM �i D �.M /:
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Condition (ii) requires the rational intersection form of X to be a direct sum of h1i
and h�1i, which guarantees the obstruction vanishes in the Z2 and Z4 summands of
Ln.Q/. This finishes the outline of the proof of Theorem 2.1.

Remark 2.3 One can also ask about the existence of a closed topological or piecewise-
linear manifold realizing the rational homotopy type of projective planes. The realization
Theorem 2.1 still works for the PL or TOP category by changing the word “smooth” in
Condition (iii) to PL or topological.

3 Rational projective planes

In this section, we study the dimensions of rational projective planes. Recall that we
are seeking the smallest dimension 4k .> 16/ for which a simply-connected, closed,
smooth manifold M exists with

H�.M IQ/D

�
Q � D 0; 2k; 4k;

0 otherwise:

Equivalently, we determine the dimensions of simply-connected closed smooth mani-
folds that are rational homotopy equivalent to a 4k–dimensional Q–local, Q–Poincaré
complex X where

H�.X IQ/Š

�
Q � D 0; 2k; 4k;

0 otherwise:

3.1 The target Q–local space

First we construct X from a Postnikov tower of rational principal fibrations. Let
X !K.Q; 2k/ be the principal fibration with fiber K.Q; 6k�1/ and k–invariant �3

2k
:

K.Q; 6k � 1/

��

// K.Q; 6k � 1/

��
X

��

// �

��
K.Q; 2k/

�3
2k // K.Q; 6k/

Computing the spectral sequence, it is easy to check that X has the desired rational
cohomology ring H�.X IQ/ŠQŒx�=hx3i with jxj D 2k . Notice that the signature
�.X /D˙1 by our construction.
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3.2 Existence of rational projective planes

Since H�.X IQ/ŠQŒx�=hx3i, the input classes pi 2H 4i.X IQ/ are zero for all i ex-
cept pk=2 and pk . Plugging the constructed local space X into realization Theorem 2.1,
the existence question of rational projective planes can then be answered as follows:

Theorem 3.1 For k > 4, let X be a 4k–dimensional simply-connected Q–local,
Q–Poincaré complex such that H�.X IQ/ Š QŒx�=hx3i. There exists a simply-
connected 4k–dimensional, closed, smooth manifold M with a Q–homotopy equiva-
lence f W M !X if and only if there exists a choice of cohomology classes

p k
2
2H 2k.X IQ/ and pk 2H 4k.X IQ/

together with a nonzero fundamental class � 2H4k.X IZ/ŠQ such that:

(i) hLk.0; : : : ; 0;pk=2; 0; : : : ; 0;pk/; �i D ˙1.

(ii) The intersection form on H 2k.X IQ/ with respect to � is isomorphic to h1i
or h�1i.

(iii) There exists a 4k–dimensional, closed, smooth manifold N such that

hpI .�N /; ŒN �i D hpI ; �i

for all partitions I of k .

3.3 Signature formula

In Theorem 3.1, the signature Condition (i) means that

sk=2;k=2hp
2
k=2; �iC skhpk ; �i D ˙1;

where sk denotes the coefficient of pk and sk=2;k=2 denotes the coefficient of p2
k=2

in the k th L–polynomial.

Coefficient sk can be calculated by the formula

(3.3.1) sk D
22k.22k�1� 1/jB2k j

.2k/!

(Milnor and Stasheff [6, Problem 19-B]), where B2k is the 2k th Bernoulli number.1

1Here B2k denotes the even Bernoulli sequence B2 D
1
6
;B4 D�

1
30
;B6 D

1
42
: : : .
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As mentioned in Anderson [1, Lemma 1.5], coefficient sk=2;k=2 can be calculated as

(3.3.2) sk=2;k=2 D
1
2
.s2

k=2� sk/

D
1
2

��
2k.2k�1� 1/jBk j

k!

�2

�
22k.22k�1� 1/jB2k j

.2k/!

�
:

From Conditions (i) and (iii), we can narrow down the candidate dimensions to 4k

with k even.

Lemma 3.2 For k ¤ 1, there does not exist any rational projective plane in dimension
4k when k is odd.

Proof When k is odd, the input Pontryagin class pi is nonzero only when i D k .
Then Condition (i) requires that

hLk.0; : : : ; 0;pk/; �i D skhpk ; �i D ˙1:

On the other hand, Condition (iii) requires hpk ; �i to be a Pontryagin number of a closed
smooth manifold, which must be an integer. Let numer.sk/=denom .sk/ denote the irre-
ducible form of sk , then skhpk ; �iD .numer.sk/= denom .sk//hpk ; �iD˙1 requires
that the numerator numer.sk/D 1. But we will show that for k ¤ 1, numer.sk/ > 1.
We write

sk D
22k.22k�1� 1/jB2k j

.2k/!
D

22k.22k�1� 1/ j numer.B2k/j

.2k/! j denom.B2k/j
;

where numer.B2k/=denom .B2k/ is the irreducible form of B2k . It is a fact that
denom.B2k/ is given by the product of all primes p for which p�1 divides 2k . Also,
these denominators are square-free and divisible by 6; see Milnor and Stasheff [6,
page 284]. Therefore the 2–adic order �2.denom.B2k//D 1, ie numer.B2k/ is odd.
Since k is odd and k ¤ 1, the base-2 expansion 2k D

Pm
iD1 2ni has m> 1. Thus the

2–adic order �2..2k/!/D 2k �m< 2k � 1, and so

�2.sk/D �2.2
2k/� �2..2k/!/� �2.denom.B2k//D 2k � .2k �m/� 1> 0;

which implies that numer.sk/ is divisible by 2, hence is greater than 1.

3.4 Dimension 24

Lemma 3.2 indicates that nD 24 is the next candidate. It turns out that the signature
formula can never be satisfied in this dimension.

Lemma 3.3 There does not exist any rational projective plane in dimension 24.
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Proof Condition (i) requires existence of cohomology classes p3 2H 12.X IQ/ŠQ,
p6 2H 24.X IQ/ŠQ and a choice of fundamental class � 2H24.X IZ/ŠQ such
that

s3;3hp
2
3 ; �iC s6hp6; �i D ˙1:

Let ˛ be any nonzero class in H 12.X;Q/ŠQ. One can write

p3 D a˛; p2
3 D a2˛2; p6 D b˛2

for some nonzero rational number a and b . Correspondingly, let ŒX �2H24.X;Z/ŠQ
be the fundamental class such that h˛[˛; ŒX �i D 1.

In order to have a rational intersection form isomorphic to a direct sum of h1i and h�1i,
we need to choose a fundamental class � such that �D ˙r2ŒX � for some nonzero
rational number r .

Condition (iii) requires the pairings hp2
3
; �i and hp6; �i to be integers. We may let x

and y be the integers such that x2 D a2r2 , y D b r2 , and so

hp2
3 ; �i D ˙x2; hp6; �i D ˙y:

Altogether, Conditions (i) and (ii), and the integrality part of Condition (iii) require the
existence of integers x and y such that

(3.4.1) s3;3x2
C s6y D˙1;

where the coefficients can be computed using formulas (3.3.1) and (3.3.2) giving

s3;3 D�
40247

638512875
; s6 D

2828954
638512875

:

The Diophantine equation (3.4.1) is equivalent to the quadratic residue problem of
finding an integer x such that

�40247x2
�˙638512875 .mod 2828954/(3.4.2)

x2
�˙.�40247/�1

� 638512875 .mod 2828954/

x2
�˙.�296623/ � 638512875 .mod 2828954/

x2
�˙118951 .mod 2828954/:

Consider the prime factorization 2828954D 2 �23 �89 �691 and the following two cases.

Case 1 x2 � 118951 .mod 2828954/ The Jacobi symbol with modulus the prime
factor 691 can be calculated as follows.�

118951
691

�
D
�

99
691

�
D�

�
691
99

�
D�

�
97
99

�
D�

�
99
97

�
D�

�
2

97

�
D�1;
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which implies that
�

118951
2828954

�
D�1.

Case 2 x2 ��118951 .mod 2828954/ The Jacobi symbol with modulus the prime
factor 23 can be calculated as follows.�

�118951
23

�
D
�
�1
23

��
118951

23

�
D .�1/

�
18
23

�
D .�1/

�
2

23

��
32

23

�
D .�1/.1/.1/D�1;

which implies that
�
�118951
2828954

�
D�1.

Therefore the congruence (3.4.2) has no solution. Hence Equation (3.4.1) turns out to
have no solution.

In order to continue the analysis on the higher candidate dimensions, we need to give
Condition (iii) of the rational surgery realization Theorem 2.1 an explicit interpretation.

3.5 Congruence relations among Pontryagin numbers

Condition (iii) requires the set of pairings hpI ; �i to be Pontryagin numbers of a
genuine closed smooth manifold. These integers form a sublattice in Zp.n/ which can
be classified by a set of congruence relations. The following Hattori–Stong Theorem
says that the Riemann–Roch Theorem and the integrality of Pontryagin numbers
completely determine all the relations among the Pontryagin numbers of closed smooth
manifolds.

Prior to restating the Hattori–Stong Theorem, we provide the definition of the KO–
theoretic Pontryagin character ei. / of the universal bundle  over BSO. The total
Pontryagin class of the universal vector bundle  can be formally expressed as p. /DQ
.1 C x2

j / by the splitting principle. The class ei. / 2 H�.BSOIQ/ is the i th

elementary symmetric polynomial of the variables exj C e�xj � 2, ie

ei. /D �i.e
x1 C e�x1 � 2; ex2 C e�x2 � 2; : : :/:

Note that each class ei. / can be written as a polynomial in the Pontryagin classes
pi. /. This is because ei can be expanded as a symmetric polynomials of the vari-
ables x2

j , but any symmetric polynomial can be expressed in terms of the elementary
symmetric polynomials in the variables, which in our case are exactly the Pontryagin
classes pi. /, since the total class p. /D

Q
.1Cx2

j /.

Theorem 3.4 (Smooth Hattori–Stong Theorem; Stong [7, page 207, Theorem (c)],
Madsen and Milgram [3, Theorem 11.19, 11.20, 11.21]) For closed smooth manifolds,
the stable tangent bundle �N W N ! BSO induces a homomorphism

� W �SO
� =tor �!H�.BSOIQ/:
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The image of the homomorphism � is a lattice consisting of exactly the elements
x 2H�.BSOIQ/ such that

(3.5.1)

(
hZŒe1. /; e2. /; : : :� �L.pi. //; xi 2 ZŒ1

2
�;

hZŒp1. /;p2. /; : : :�; xi 2 Z;

where L.pi. // is the total L–polynomial of the Pontryagin classes pi. /.

Applying the smooth Hattori–Stong Theorem in our problem, we get the following
results.

Lemma 3.5 Condition (iii) in the rational surgery realization Theorem 2.1 is equivalent
to the following statement.

Given a local space X , there exist cohomology classes pi 2H 4i.X IQ/ and a funda-
mental class � 2H4k.X IQ/ŠQ such that

(3.5.2)

(
hZŒe1; e2; : : :� �L.pi/; �i 2 ZŒ1

2
�;

hZŒp1;p2; : : :�; �i 2 Z;

where each class ei 2H�.X IQ/ can be expressed as a polynomial of pi in the same
way that ei. / is expressed in terms of pi. / in the Hattori–Stong Theorem 3.4. Here
L.pi/ denotes the total L–polynomial of the classes pi .

Proof In Theorem 3.4, since each ei. / can be written as a polynomial in the Pon-
tryagin classes pi. /, both lines of the congruence relations in (3.5.1) are equivalent
to a set of integrality conditions on the Pontryagin numbers hpI . /;xi.

For any 4k–dimensional closed smooth manifold N 2�SO
4k

, let x D ��ŒN �. Since

hpI .�N /; ŒN �i D hpI . /; ��ŒN �i D hpI . /;xi;

the relations on hpI . /;xi in (3.5.1) simultaneously determine a set of integrality
conditions on the Pontryagin numbers hpI .�N /; ŒN �i. Therefore (3.5.1) characterizes
all the possible Pontryagin numbers of a closed smooth manifold.

Condition (iii) of Theorem 2.1 requires that the numbers hpI ; �i equal the Pontryagin
numbers hpI .�N /; ŒN �i for a certain genuine 4k–dimensional closed smooth mani-
fold N . Hence the numbers hpI ; �i must satisfy the same set of congruence relations
that the Pontryagin numbers of a closed smooth manifold should satisfy. These relations
are then expressed as (3.5.2).
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In our case, since all the Pontryagin classes are zero except in dimensions 2k and 4k ,
we may express the ei classes solely in terms of pk=2 and pk .

The following example in dimension 16 illustrates how such expressions can be calcu-
lated explicitly in high dimensions.

Example 3.6 Suppose we want to find the explicit congruence relations in dimen-
sion 16. The first thing we need to do is to express the 16–dimensional summand of
ZŒe1; e2; : : :� �L in terms of the Pontryagin classes pi . Since ei consists of classes of
dimension no less than 4i , the 16–dimensional classes live in

(3.5.3)
�
Z˚Ze1˚Ze2

1 ˚Ze2˚Ze1e2˚Ze3˚Ze2
2 ˚Ze1e3˚Ze4

�
�L:

As we assume that the classes pi D 0 for all i except p2 and p4 , the total L–class is

LD 1C s2p2C s2;2p2
2 C s4p4 D 1C 7

45
p2�

19
14175

p2
2 C

381
14175

p4;

as each of the ei classes can be written as a linear combination of p2;p
2
2

and p4 .

Taking e2 for example, we first expand exj C e�xj � 2 as a power series

exj C e�xj � 2D x2
C

x4

12
C

x6

360
C

x8

20160
CO.x9/:

Then analyze the symmetric polynomial as follows:

e2 D �2.e
x1 C e�x1 � 2; ex2 C e�x2 � 2; : : :/

D

X
j ;k

.exj C e�xj � 2/.exk C e�xk � 2/

D

X
j ;k

�
x2

j C
x4

j

12
C

x6
j

360
C

x8
j

20160
CO.x9

j /

�
�

�
x2

k C
x4

k

12
C

x6
k

360
C

x8
k

20160
CO.x9

k/

�
D

X
j ;k

�
x2

j x2
k C

x4
j x4

k

144
C

x2
j x6

k

360
C

x6
j x2

k

360

�
C terms of degree other than 8 and 16

D p2C
�
�
���

0

p2
1
p2

360
C

p2
2

720
�
�
�
��>

0
p1p3

60
C

p4

40
C terms of degree other than 8 and 16

The condition from the summand Ze2 �L is then

hZe2 �L; �i D Z

��
p2C

p2
2

720
C

p4

40

�
�

�
1C

7p2

45
�

19p2
2

14175
C

381p4

14175

�
; �

�
D Z

�
113p2

2

720
C

p4

40
; �

�
2 ZŒ1

2
�:
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Since we also require that hp2
2
; �i; hp4; �i 2 Z, the condition is equivalent to the

congruence relation

113hp2
2 ; �iC 18hp4; �i � 0 .mod 45/:

To find the complete set of congruence relations in dimension 16, one applies the same
process to each of the summands in (3.5.3).

Alternatively, one may use the approach that will be mentioned in Remark 3.9 to express
the explicit congruence relations (3.5.2) in terms of the Pontryagin classes. We will
continue using the Hattori–Stong Theorem and the method discussed in the example
above in dimension 32 in the following section.

3.6 Dimension 32

In this dimension, we ask about the existence of a simply-connected, closed, smooth
manifold that is rational homotopy equivalent to a Q–local space X where

H�.X IQ/Š

�
Q � D 0; 16; 32;

0 otherwise:

Applying the realization Theorem 2.1, we look for cohomology classes p4 and p8

in H�.X IQ/, together with a choice of fundamental class � 2H32.X IZ/, such that
Conditions (i), (ii) and (iii) are satisfied. We can convert the problem to solving a
system of diophantine equations.

Theorem 3.7 There exist rational projective planes in dimension 32.

Proof The signature Condition (i) says

(3.6.1) s4;4p2
4 C s8p8 D˙1;

where the coefficients can be computed by the formulas (3.3.1) and (3.3.2) giving

s4;4 D�
444721

162820783125
; s8 D

118518239
162820783125

:

Similar to the analysis on dimension 24, Condition (ii) and the integrality of Pontryagin
numbers ensure that we may let

hp2
4 ; �i D ˙x2; hp8; �i D ˙y;

where x and y are integers. The signature condition requires the existence of integers
x and y such that

(3.6.2) �444721x2
C 118518239y D˙162820783125:
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To get the congruence relations in Condition (iii)

(3.6.3) hZŒe1; e2; : : :� �L; �i 2 ZŒ1
2
�;

we expand each basis class of ZŒe1; e2; : : :� as a power series in p4 and p8 , since we
care only about the cohomology classes in dimension 32, higher-degree classes in the
representations having been discarded. The ei classes are calculated as follows:

e1 D�
1

5040
p4C

1
2615348736000

p2
4 �

1
1307674368000

p8

e2 D
1

40
p4C

3119
435891456000

p2
4 C

5461
217945728000

p8; e1e1 D
1

25401600
p2

4

e3 D�
1
3
p4C

19
39916800

p2
4 �

31
2851200

p8; e1e2 D�
1

201600
p2

4 ; e3
1 D 0

e4 D p4C
1

1209600
p2

4 C
457

604800
p8; e1e3 D

1
15120

p2
4 ; e2e2 D

1
1600

p2
4

e5 D�
43

2520
p8; e1e7 D 0; e1e4 D�

1
5040

p2
4 ; e2e3 D

�1
120

p2
4

e6 D
29

180
p8; e2e4 D

1
40

p2
4 ; e3e3 D

1
9
p2

4 ; e1e5 D 0

e7 D�
2
3
p8; e3e4 D�

1
3
p2

4 ; e2e5 D 0; e1e6 D 0

e8 D p8; e4e4 D p2
4 ; e3e5 D 0; e2e6 D 0

Multiplying the nonzero basis class on ei with the total L class

LD 1CL4CL8 D 1C 381
14175

p4�
444721

162820783125
p2

4 C
118518239

162820783125
p8;

we obtain a basis for ZŒe1; e2; : : :� �L consisting of linear combinations of p2
4

and p8

in dimension 32.

1 �LD� 444721
162820783125

p2
4 C

118518239
162820783125

p8

e1 �LD�
1992521

373621248000
p2

4 �
1

1307674368000
p8

e2 �LD
292903727

435891456000
p2

4 C
5461

217945728000
p8; e1e1 �LD

1
25401600

p2
4

e3 �LD�
357613

39916800
p2

4 �
31

2851200
p8; e1e2 �LD�

1
201600

p2
4

e4 �LD
32513

1209600
p2

4 C
457

604800
p8; e1e3 �LD

1
15120

p2
4

e5 �LD�
43

2520
p8; e1e4 �LD�

1
5040

p2
4 ; e2e3 �LD�

1
120

p2
4

e6 �LD
29

180
p8; e2e4 �LD

1
40

p2
4 ; e3e3 �LD

1
9
p2

4

e7 �LD�
2
3
p8; e3e4 �LD�

1
3
p2

4 ; e2e2 �LD
1

1600
p2

4

e8 �LD p8; e4e4 �LD p2
4

Algebraic & Geometric Topology, Volume 14 (2014)



Rational analogs of projective planes 435

Thus the integrality condition (3.6.3) holds true if and only if each basis class satisfies
the relation

(3.6.4) h�; �i 2 ZŒ1
2
�:

We have set up integers x and y so that hp2
4
; �i D ˙x2 and hp8; �i D ˙y . As we

simplify the coefficients and throw away the redundant relations, (3.6.4) is equivalent
to the following set of congruence relations on integers x and y .

(3.6.5)

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

162820783125 j �444721x2
C 118518239y

638512875 j 13947647x2
C 2y

212837625 j 292903727x2
C 10922y

155925 j 357613x2
C 434y

4725 j 32513x2
C 914y

99225 j x2

315 j y

The last six congruence relations in (3.6.5) are equivalent to

(3.6.6)

(
x2
� 0 .mod 34

� 52
� 72/;

y � 312282614 x2 .mod 638512875/:

Letting A and B be integers, we may write

(3.6.7)

(
x2
D .34

� 52
� 72/A2;

y D .312282614/.34
� 52
� 72/A2

C .638512875/B:

Plugging this in the signature condition (3.6.2), we have

�444721.345272 A2/C 118518239
�
.312282614/.345272 A2/C 638512875B

�
D˙162820783125;

which simplifies to

(3.6.8) 5751543975315A2
C 118518239B D˙255;

A2
�˙.5751543975315/�1.255/ .mod 118518239/;

A2
�˙59181964 .mod 118518239/:

The Jacobi symbol �
59181964

118518239

�
D 1;
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which is a necessary condition for the integer 59181964 to be a quadratic residue
modulo .mod 118518239/. Checking the Jacobi symbol on each of the prime factors
of 118518239D 7 � 31 � 151 � 3617, we have�

59181964
7

�
D
�

59181964
31

�
D
�

59181964
151

�
D
�

59181964
3617

�
D 1:

This indicates that 59181964 is indeed a quadratic residue .mod 118518239/. Therefore
(3.6.8) has a solution. So we have shown that the system of Diophantine equations
(3.6.2) and (3.6.5), which is equivalent to Conditions (i), (ii) and (iii), has infinitely
many integer solutions. For example, the solution with the smallest positive x value is

x D 493965360; y D 915578185531275:

Remark 3.8 Recall that in the rational surgery realization Theorem 2.1, as we construct
a Q–homotopy equivalence f W M !X, Pontryagin numbers of the resulting manifold
M are realized by the input pairings hpI ; �i D hpI .�M /; ŒM �i. Therefore distinct
integer solutions x and y in dimension 32 correspond to distinct pairs of Pontryagin
numbers, which are homeomorphism invariants. So we have shown that there are
infinitely many homeomorphism types of closed smooth manifolds that are rational
analogs of projective planes. This ends the proof of our main Theorem 1.1.

Remark 3.9 There is another approach to computing the congruence relations among
Pontryagin numbers of closed smooth manifolds. The torsion-free part of the oriented
cobordism ring is a polynomial ring over Z, generated by a set of closed smooth
manifolds in dimension 4k , k � 2,

�SO
� =torŠ ZŒM 4;M 8; : : : �;

where the generator M 4k can be taken as any manifold satisfying the following
characteristic number property by Stong [8, page 207]:

sk.p1; : : : ;pk/ŒM
4k �D

�
˙q if 2kC 1 is a power of the prime q,
˙1 if 2kC 1 is not a prime power:

Pontryagin numbers are oriented cobordism invariants. If we can find a set of basis
manifold of �SO

4k
=tor and compute the Pontryagin numbers, the congruence relations

are then computable from the integer sublattice. Since sk ŒCP2k �D 2kC1, in many of
the 4k dimensions (when 2kC1D q , with q a prime), CP2k qualifies as a generator.
For example, in dimension 8,

�SO
8 Š hCP2

�CP2
i˚ hCP4

i:
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In particular, for any closed smooth 8–dimensional manifold N , the Pontryagin number
of N can be written as a linear combination(

p11ŒN �D kp1;1ŒCP2
�CP2�C `p1;1ŒCP4�D 18kC 25`;

p2ŒN �D kp2ŒCP2
�CP2�C `p2ŒCP4�D 9kC 10`;

with k; ` 2 Z. Thus, the congruence relations among Pontryagin numbers of any
8–dimensional closed smooth manifold N can be computed as:8̂̂<̂

:̂
5 j p1;1ŒN �� 2p2ŒN �

9 j 2p1;1ŒN �� 5p2ŒN �

p1;1ŒN � 2 Z; p2ŒN � 2 Z

However, in dimensions such as 4k D 16 and 4k D 28, where 2kC 1 is not a prime,
CP2k does not satisfy the characteristic number property, thus fails to qualify as
a generator. We have to construct a generating manifold from a disjoint union of
CP2k and certain complex hypersurfaces (see Milnor [4, page 250]). For example, in
dimension 4k D 16, we have

s4.p/Œ9CP8
CH3;6�D�3

and in dimension 4k D 28

s7.p/Œ�85CP14
� 16H3;12C 2H5;10�D�1;

where Hm;n is the hypersurface of degree .1; 1/ in CPm �CPn . Once we obtain the
generating manifolds, we still need to compute all the Pontryagin numbers pI for a set
of basis manifolds, which is very tedious.
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