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The connective real K–theory of
Brown–Gitler spectra

PAUL THOMAS PEARSON

We calculate the connective real K–theory homology of the mod 2 Brown–Gitler
spectra. We use this calculation and the theory of Dieudonné rings and Hopf rings
to determine the mod 2 homology of the spaces in the connective �–spectrum for
topological real K–theory.

55T25; 55P42

1 Introduction

Suppose E is a ring spectrum, and let Ek D �1†kE denote the k th space in its
�–spectrum. The mod p homology H�.E�/ is a Hopf ring; a ring object in the
category of coalgebras over Fp . In [9], Goerss defined a category of Dieudonné
rings over the p–adic integers yZp . He showed that the Dieudonné functor D�.�/
from Hopf rings to Dieudonné rings was symmetric monoidal, thereby establishing an
equivalence of categories and, consequently, an isomorphism between any Hopf ring
H�.E�/ and its associated Dieudonné ring D�.H�.E�//. Building on his earlier work
with Lannes and Morel [11], Goerss also showed there is a surjective map from the
E–homology of Brown–Gitler spectra E�.B.�// to the Dieudonné ring D�.H�.E�//
that is periodically an isomorphism. When the mod p (co)homology of the spectrum E

is known, the E–homology of the Brown–Gitler spectra E�.B.�// can be calculated
via an Adams spectral sequence. Thus, it is often possible to calculate the Hopf ring
H�.E�/ via the Adams spectral sequence for E�.B.�//.
Calculating the Hopf ring H�.E�/ using an Adams spectral sequence for E�.B.�//
is remarkable for several reasons. First, this method for calculating the homology
of the spaces E� is done using only the (co)homology of the spectrum E and the
Brown–Gitler spectra B.�/ as input to the Adams spectral sequence. Second, this
approach can be used even when the spaces E� have not been identified in terms
of already-known spaces. Third, unlike the bar spectral sequence, which computes
H�.Ek/ inductively on k (ie, one space Ek at a time), this method computes Hn.E�/
inductively on n (ie, across all spaces E� at once), and as a result it does well
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at identifying natural generators for the Hopf ring coming from the homotopy and
homology of the spectrum E .

Every Hopf ring H�.E�/ has a unique suspension class e 2H1.E1/ such that

e ı .�/W Hd .Ek/!HdC1.EkC1/;(1-1)

e1.�/W HdCk.Ek/!Hd .E/;(1-2)

are the homology suspension and stabilization (ie, infinitely iterated homology suspen-
sion) homomorphisms, respectively. We call an element in a Hopf ring unstable if it is
in the kernel of the stabilization homomorphism, and stable if it is not. There is also a
destabilization function

(1-3) e�1.�/W Hd .E/!HdCk.Ek/

that takes a stable homology class back to its space of origin, ie, for each x 2Hd .E/

it finds the smallest k such that e�1.x/ is nonzero in HdCk.Ek/.

a
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b
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b00
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d

˛.n/

.2n�/4b 0 �4 �8

Bidegree .t � s; s/:
aD .2n; ˛.n//

b D .2n; ˛.n/C �.2n//

c D .2nC 4; ˛.n/C 3/ if �.n/� 1

d D .2nC 4; ˛.n/C �.4n// if �.n/� 1

c and d do not exist if �.n/D 0

Figure 1: The chart C s;t .2n/ . Height of gray vertical towers varies with n ,
and the tower connecting c to d does not exist when �.n/D 0 .

In this paper we calculate the ko homology of the mod 2 Brown–Gitler spectra via an
Adams spectral sequence. Recall from Ravenel [20] that

(1-4) H�.ko/D P .�4
1 ; �

2
2 ; �i j i � 3/;

where �n D �.�n/ is the conjugate of the Milnor generator in the dual of the Steenrod
algebra, and P .x;y; : : : / denotes a polynomial algebra over F2 . Define the � weight
of a monomial to be

wt�
�
�

i1

1
�

i2

2
� � � �i`

`

�D X̀
jD1

ij 2j�1;

and define the weight on sums by taking the maximum weight among all terms, ie,
wt�.

P
�I /DmaxI fwt�.�

I /g. If
P
�J DP �I under change of basis, set wt�.

P
�J /

equal to wt�.
P
�I /.
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The connective real K–theory of Brown–Gitler spectra 599

Let A1 denote the sub-Hopf algebra of the mod 2 Steenrod algebra generated by Sq1

and Sq2 . Let C �;�.0/DExt�;�
A1
.F2;F2/, and define C �;�.2n/ for n� 1 by the chart in

Figure 1 extended to the left and to the right by .8; 4/D .t � s; s/ real Bott periodicity,
deleting everything below Adams filtration s D 0. Let ˛.n/ be the number of ones in
the 2–adic expansion of n, and let �.n/ be the number of times that 2 divides n.

Our main result is the calculation of ko�.B.2n//, the connective real K–theory of a
mod 2 Brown–Gitler spectrum B.2n/.

Theorem 1.1 Consider the Adams spectral sequence

Exts;t
A1
.H�.B.2n//;F2/H) kot�s.B.2n//:

(1) For s D 0, there is a bijection

Ext0;�
A1
.H�.B.2n//;F2/$

˚P
�I 2H�.ko/ j wt�.

P
�I /� n

	
:

(2) There is a map

C s;t .2n/! Exts;t
A1
.H�.B.2n//;F2/

that is injective if s D 0 and an isomorphism if s � 1.

(3) Finally, the Adams spectral sequence for ko�.B.2n// collapses, ie, E2 ŠE1 .

Part (1) of this theorem is presented in Theorem 7.10, while parts (2) and (3) are
presented in Theorem 8.2. The mod 2 Hopf ring for ko was calculated by Morton
using the bar spectral sequence [18; 19]. However, the results are so lengthy and
detailed that discerning the global structure of the Hopf ring for ko is difficult. In
contrast, part (1) of Theorem 1.1 determines all of the stable classes in this Dieudonné
ring by name and part (2) reveals a “lightning bolt and tower” pattern that describes the
unstable classes and the relations among them in the Dieudonné ring D�.H�.ko�//.
One limitation of our approach is that the map ko�.B.n// ! Hn.ko�/, given in
Equation (5-3), is an isomorphism when n is even, but only a surjection when n is
odd. However, since B.2n/ ' B.2nC 1/ and ko�.B.2nC 1//! H2nC1.ko�/ is
surjective, every generator in H2nC1.ko�/ is a homology suspension of a generator in
H2n.ko�/. Consequently, the results of Theorem 1.1 calculate H2n.ko�/ completely,
and H2nC1.ko�/ up to determination of elements in the kernel of the homology
suspension e ı .�/W H2n.kok/!H2nC1.kokC1/.

The organization of this paper is as follows. In Section 2 we define categories of
Hopf rings and Dieudonné rings and recall their equivalence. In Section 3, we define
a trigrading on the dual of the mod 2 Steenrod algebra and recall the action of the
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Steenrod algebra on its dual. In Section 4 we recall the Lambda algebra and the Adams
spectral sequence. In Section 5 we give the connection between Brown–Gitler spectra
and Dieudonné rings. In Section 6 we recall the Dieudonné ring and Hopf ring for
the mod 2 Eilenberg–Mac Lane spectrum. In Section 7 we calculate s D 0 line of
the Adams spectral sequence for ko homology, thereby determining the stable classes
in the Dieudonné ring for ko. In Section 8 we calculate the E2 term of the Adams
spectral sequence for the ko homology of B.2n/ up to stable isomorphism, thereby
determining the unstable classes in the Dieudonné ring for ko.
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2 Hopf rings and Dieudonné rings

Fix a prime p > 0. Let Fp be the finite field of p elements, and let C be the category
of graded connected cocommutative, coassociative coalgebras with counit over Fp .
Graded abelian group and ring objects in C comprise the categories of Hopf algebras
HA and Hopf rings HR over Fp , respectively. A Hopf algebra (or coalgebraic group)
is an algebra with addition C, multiplication �, conjugation �, and coproduct  . Its
multiplication � is a categorical addition with inverse � and zero element Œ0�D 1. A
Hopf ring (or coalgebraic ring) has an additional product ı, which is a categorical
multiplication with unit element Œ1�. For detailed information about Hopf rings and
coalgebraic algebra, please see Ravenel and Wilson [21], Strickland [24], Hunton and
Turner [12] and Wilson [25].

Example 2.1 Let E be a ring spectrum and let Ek D�1†kE be the k th space in
its �–spectrum. Write Hn;k for Hn.Ek/. Then H�;k DH�.Ek/ is a Hopf algebra
over Fp for each k , and H�;� D H�.E�/ is a Hopf ring over Fp . Three sub-Hopf
rings of H�;� are H0;� , H�;0 and fHn;kg.n;k/2N�N .

Every Hopf algebra H DH�;k over Fp has Frobenius and Verschiebung maps. Let
H_ D HomFp–mod.H;Fp/ denote the Fp –linear dual of H .

Definition 2.2 Fix k2Z. The Frobenius F W Hn;k!Hpn;k is defined by F.x/Dx�p .
The Verschiebung V W Hn;k ! Hn=p;k is the Fp –linear dual of the pth power map
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The connective real K–theory of Brown–Gitler spectra 601

f W H_!H_ , f W x 7! xp , and V is zero when p − n. If H is of finite type, it is
equivalent to define the Verschiebung by V .x/D ax0 if the iterated coproduct is

 .p�1/.x/D a x0˝x0˝ � � �˝x0„ ƒ‚ …
p factors

C (other terms),

where each of the other terms have at least one tensor factor different from the others.

The Verschiebung is a homomorphism of Hopf rings (2-1), but the Frobenius is not.
Instead, these maps satisfy the Frobenius reciprocity relations (2-2) and (2-3):

V .x ıy/D V .x/ ıV .y/(2-1)

F.x ıV .y//D F.x/ ıy(2-2)

F.V .x/ ıy/D x ıF.y/(2-3)

The following Hopf algebras are used to define the Dieudonné functor.

Definition 2.3 Let CW.0/ D yZp ŒZ� be the Hopf algebra over yZp concentrated in
degree 0 with coproduct  .Œr �/ D Œr � ˝ Œr �. For n > 0, write n D pab , where
gcd.p; b/ D 1, and let CW.n/ D yZp Œx0; : : : ;xa�. For 0 � i � a, give CW.n/ the
grading jxi j D pib and the unique coproduct such that the Witt polynomials

wi D x
�pi

0
Cpx

�pi�1

1
Cp2x

�pi�2

2
C � � �Cpixi

are primitive.

Let H.n/ be the Hopf algebra over Fp that is the mod p reduction of CW.n/. Let
vW H.n/!H.pn/ be the identity map if nD 0 and the inclusion vW xi 7! xi if n> 0.
Let f W H.pn/!H.n/ be f .Œr �/D Œrp� if nD 0 and the map f W xi 7! .xi�1/

p if
n> 0, where x�1 D 0.

We now define the categories DM and DR of graded Dieudonné modules and rings
over yZp , respectively. Then, we show that the Dieudonné functor D establishes an
equivalence between the categories of Hopf rings over Fp and Dieudonné rings over
yZp . For more details on Dieudonné rings, please see Goerss [9], and Buchstaber and
Lazarev [6].

Definition 2.4 Fix k 2 Z. A graded Dieudonné module M D M�;k over yZp is
a non-negatively graded abelian group with a Frobenius map F W Mn;k ! Mpn;k

and a Verschiebung map V W Mn;k !Mn=p;k , which is zero when p − n, such that
F.V .x// D V .F.x// D px , V is the identity on M0;k , and paC1Mpab;k D 0 if
gcd.p; b/D 1.
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Definition 2.5 Fix k 2Z. Let H DH�;k be a Hopf algebra over Fp . The Dieudonné
module D�.H / is the graded abelian group fDn.H�;k/gn2N with

Dn.H�;k/D HomHA.H.n/;H�;k/:

The Frobenius and Verschiebung

F D f �W Dn.H�;k/!Dpn.H�;k/;
V D v�W Dpn.H�;k/!Dn.H�;k/

are induced by the maps f and v of Definition 2.3.

Remark 2.6 The fixed integer k 2 Z in Definitions 2.4 and 2.5 plays no role for an
individual Dieudonné module and could be omitted from these definitions. The index
k 2Z was inserted into Definitions 2.4 and 2.5 because it will be used later to assemble
an indexed collection of Dieudonné modules into a Dieudonné ring.

Theorem 2.7 (Schoeller’s Theorem [22; 9, Theorem 4.7]) The Dieudonné functor
D has a right adjoint U , and the pair .D;U / is an equivalence between the category
HA of Hopf algebras and DM of Dieudonné modules.

We now define the category DR of Dieudonné rings.

Definition 2.8 A graded commutative Dieudonné ring over yZp is a collection of
Dieudonné modules fM�;kgk2Z together with bilinear maps

ıW Mm;j ˝yZp
Mn;k !MmCn;jCk

such that equations (2-1)–(2-3) are satisfied. Graded commutativity is expressed by
x ıy D .�1/mnCjky ıx for x 2Mm;j and y 2Mn;k .

In [9], Goerss constructed symmetric monoidal products �HA and �DM for the
categories of Hopf algebras and Dieudonné modules. He showed that the Dieudonné
functor was symmetric monoidal, and thus established an equivalence between the
category of Hopf rings over Fp that are group rings in degree zero and Dieudonné
rings over yZp .

Theorem 2.9 (Goerss’s Theorem [9, Theorem 7.7]) For any H;K 2HA such that
H0;k and K0;k are group rings for every integer k , there is a natural isomorphism of
Dieudonné modules

D�.H /�DM D�.K/!D�.H �HA K/:
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Example 2.10 Let E be a ring spectrum. Then

H0.Ek/D Fp Œ�0.Ek/�D Fp Œ�
S
�k.E/�

is a group ring for each k . By Theorem 2.9, the Hopf ring H�.E�/ over Fp is
equivalent to the Dieudonné ring D�.H�.E�// over yZp , and under this equivalence
Hn.Ek/ corresponds to Dn.H�.Ek//.

3 The dual of the Steenrod algebra

In this section, we recall the dual of the Steenrod algebra at the prime 2 as a trigraded
object. In this section and the remainder of the paper, denote the mod 2 Eilenberg–Mac
Lane spectrum by HF . Recall from Milnor [17] that the F2 –linear dual of the mod 2
Steenrod algebra is A_ DH�.HF/D F2Œ�i j i � 0�=.�0 D 1/. Let �i D �.�i/, where
� is the canonical antiautomorphism. Then A_ D F2Œ�i j i � 1�, and � is a change of
basis. For I D .i1; : : : ; in/, let �I D �i1

1
� � � �in

n .

Definition 3.1 The degree function degW A_ ! N is given by deg.1/ D 0 and
deg.�n/ D deg.�n/ D 2n � 1 and satisfies deg.xy/ D deg.x/ C deg.y/. Sums of
monomials in A_ must have homogeneous degree.

Definition 3.2 The � weight function wt� W A_ ! N is given by wt�.1/ D 0 and
wt�.�n/D 2.n�1/ and satisfies wt�.xy/D wt�.x/Cwt�.y/. If

P
�I DP �J under

change of basis, then the value of wt�.
P
�J / is set equal to wt�.

P
�I /.

Definition 3.3 The � weight function wt� W A_ ! N is given by wt�.1/ D 0 and
wt�.�n/D 2.n�1/ and satisfies wt�.xy/D wt�.x/Cwt�.y/. If

P
�I DP �J under

change of basis, then the value of wt�.
P
�I / is set equal to wt�.

P
�J /.

Definition 3.4 Define the � factors function fact� W A_!N is given by fact�.1/D 0

and fact�.�n/ D 1 and satisfies fact�.xy/ D fact�.x/C fact�.y/. If
P
�J DP

�I

under change of basis, then the value of fact�.
P
�J / is set equal to fact�.

P
�I /.

The degree, � weight, and � factors satisfy a linear dependence relation.

Lemma 3.5 Given
P
�I 2 Hd .HF/, the degree d D deg.

P
�I /, the maximum

number of factors k D fact�.
P
�I /, and the maximum weight nD wt�.

P
�I / satisfy

d C k D 2n.
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Proof Let
P
�I 2Hd .HF/. For any monomial �I , we have

d D deg.�i1

1
�

i2

2
� � � �i`

`
/

D
X̀
jD1

ij .2
j � 1/D 2

�X̀
jD1

ij 2j�1

�
�
X̀
jD1

ij D 2 wt�.�
I /� fact�.�

I /

and thus

(3-1) deg.�I /C fact�.�
I /D 2 wt�.�

I /:

Since every monomial in the sum
P
�I has the same fixed degree d D deg.�I /, any

monomial �J in the sum that has the maximum number of �–factors must also have
the maximum �–weight by Equation (3-1). Thus, d C k D 2n.

We recall the action of the Steenrod algebra on its dual, which will be used in Adams
spectral sequence computations.

Lemma 3.6 [16, Theorem 6.17; 5, Lemma 6.1] Let Sq DP
i�0 Sqi be the total

Steenrod square. The canonical right action of the Steenrod algebra on its dual A_ is

�n �SqD �nC �n�1; �n �SqD
nX

iD0

�2i

n�i :

4 The Lambda algebra and the Adams spectral sequence

We recall the Lambda algebra, the Araki–Kudo (or Dyer–Lashof) algebra, and the
Adams spectral sequence at the prime p D 2.

Definition 4.1 The Lambda algebra ƒ is the associative bigraded differential algebra
over F2 with generators �a , a � �1, of bidegree .1; aC 1/ D .s; t/ modulo the
two-sided ideal generated by the relations

(4-1) �a�b D
X

d.b�2a/=2e�c<b�2a

�
c � 1

2c � bC 2a

�
�aCc�b�c ; if 0� 2a< b;

and the left ideal ƒf��1g. Its differential d1.�b/D ��1�b is a derivation.

If I D .i1; : : : ; is/ is an s–tuple of nonnegative integers, set �I D �i1
� � ��is

and
�. / D 1. We say that �I is admissible if 2ij � ijC1 for 1 � j < s . The admissible
monomials form a basis for ƒ.
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The Lambda algebra provides an E1 –term for the Adams spectral sequence (Bousfield,
Curtis, Kan, Quillen, Rector and Schlesinger [3]). Let A denote the mod 2 Steenrod
algebra.

Theorem 4.2 (Adams spectral sequence [2; 3]) Let X be a complex or spectrum of
finite type, and let E be a spectrum. The E1 –term of the Adams spectral sequence for
E homology is the differential right .ƒ; d1/–module

(4-2) E
�;�
1
.A;E ^X /DH�.E ^X /˝F2

ƒ

with differential d1.z˝�I /D
P

i�0 z �Sqi ˝�i�1.�I /. Its E2 –term is

(4-3) E
s;t
2
.A;E ^X /D Exts;t

A
.H�.E ^X /;F2/D) �S

t�s.E ^X /DEt�s.X /:

If H�.E/ is a Hopf algebra quotient of the Steenrod algebra, the Adams spectral
sequence for calculating E�.X / can be simplified by a change of rings theorem.

Theorem 4.3 (Change of rings [2]) If E is a ring spectrum such that H�.E/ D
A==C D A˝C F2 for some sub-Hopf algebra C � A, then there is an isomorphism,
natural in X ,

Exts;t
C
.H�.X /;F2/Š Exts;t

A
.H�.E ^X /;F2/:

Define a sub-Hopf algebra Ah � A by Ah D hSq2i j 0 � i � hi and set A�1 D F2 .
Then when E D eoh , we may use the change of rings theorem since H�.eoh/ D
A==Ah DA˝Ah

F2 DA=AfSq2i j 0� i � hg.

5 Brown–Gitler spectra and Dieudonné rings

Brown and Gitler constructed a family of spectra at the prime 2 in [4]. Analogues of
these spectra at odd primes were later constructed by R Cohen [7]. In this section we
specialize to the prime 2, although analogous results also exist for odd primes [9].

The nth mod 2 Brown–Gitler spectrum, which was originally denoted B.n/ and indexed
by n 2 1

2
N in [4], will be denoted B.2n/ and indexed by N . There is a homotopy

equivalence B.2n/'B.2nC1/ for all n2N , and B.0/ and B.2/ are the 2 complete
sphere spectrum and mod 2 Moore spectrum, respectively. The Brown–Gitler spectra
realize certain cyclic modules over the Steenrod algebra. They are characterized up to
homotopy 2–equivalence by the following theorem.
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Theorem 5.1 [4] For each n 2N there is a 2–complete spectrum B.2n/ satisfying:

(1) H�.B.2n//DA=Af�.Sqi/ j i > ng as left A modules.

(2) If �W B.2n/!HF classifies the element 1 2H 0.B.2n//, then the induced map
of reduced homology theories ��W B.2n/i.X /!Hi.X / is an epimorphism for
all complexes X and 0� i � 2nC 1.

The homology of Brown–Gitler spectra can be described as a right A submodule of
A_ using the � weight function. This weight function is induced by the May filtration
of �2S3 by identifying the Thom spectrum of the canonical bundle on �2S3 with
HF (Mahowald [14]).

Lemma 5.2 [14] There is an isomorphism of right A–modules

H�.B.2n//Š F2f�I 2A_ j wt�.�
I /� ng:

Remark 5.3 The right A–module structure of A_DH�.HF/ is given in Lemma 3.6.

The following Mahowald cofiber sequence is very useful for computations.

Lemma 5.4 [9] For each integer n� 1, there is a cofiber sequence of spectra

(5-1) B.2n� 2/ �! B.2n/
v�!†nB.n/;

which induces a short exact sequence of left A–modules

(5-2) 0 �H�.B.2n� 2// �H�.B.2n//
v� �†nH�.B.n// � 0

in which v�.†n1/D �.Sqn/.

We now show that E�.B.�// is a Dieudonné ring.

Example 5.5 Let E�.�/ be a generalized homology theory. There are pairings
B.m/^B.n/!B.mCn/ that make B.�/D fB.n/gn2N a graded commutative ring
spectrum, and B.�/�.E/ a graded commutative ring. Additionally, there are maps
f W †nB.n/!B.2n/ and vW B.2n/!†nB.n/ so that f v and vf are multiplication
by 2. The map v is the map in the Mahowald cofiber sequence of Equation (5-1). The
maps f and v induce the Frobenius and Verschiebung maps in the Dieudonné ring
E�.B.�//. For more details, please see [9].

The next theorem states that Brown–Gitler spectra are, in some sense, the representing
objects for the Dieudonné functor.

Algebraic & Geometric Topology, Volume 14 (2014)



The connective real K–theory of Brown–Gitler spectra 607

Theorem 5.6 [9, Proposition 11.3] For any ring spectrum E and all .n; k/ 2N �Z,
the map

T W En�k.B.n//!Dn.H�.Ek//

is a surjective homomorphism of Dieudonné rings that respects the Frobenius and
Verschiebung, and is an isomorphism when n is even.

To calculate Dieudonné ring and Hopf ring for a ring spectrum E , we use the composite

(5-3) E
�;�
2
.A;E ^B.�//D)E�.B.�// T�!D�.H�.E�//

U�!H�.E�/

of the Adams spectral sequence, the canonical antiautomorphism � induced by the
transposition map, the surjective map T which is an isomorphism half of the time, and
the right adjoint U of the Dieudonné functor D .

We also need integral versions of Brown–Gitler spectra for our later calculations. The
nth integral Brown–Gitler spectrum, which was originally denoted B1.n/ and indexed
by n 2 1

2
N in Shimamoto [23], and Goerss, Jones and Mahowald [10], will be denoted

B0.4n/. For all n 2 N and 1 � i � 3, set B0.4n/ D B0.4nC i/ and then index
B0.n/ by n 2 N . The integral Brown–Gitler spectra realize certain cyclic modules
over the Steenrod algebra, and are characterized up to homotopy 2–equivalence by the
following theorem.

Theorem 5.7 [10; 23] For n 2N there is a 2–complete spectrum B0.4n/ satisfying:

(1) H�.B0.4n// D H�.B.4n//˝A0
F2 D A=Af�.Sqi/;Sq1 j i > 2ng as left A–

modules.

(2) If �W B0.4n/ ! H yZ2 classifies the element 1 2 H 0.B0.4n/I yZ2/, then the
induced map of reduced homology theories ��W B0.4n/i.X /!Hi.X I yZ2/ is an
epimorphism for all complexes X and 0� i � 4nC 1.

The following Shimamoto cofiber sequences relate the mod 2 and integral Brown–Gitler
spectra and are very useful for computations.

Lemma 5.8 [23, Theorem 2.15] There are cofiber sequences of spectra

B0.4n� 4/ �! B0.4n/ �! B.4n/; for n� 1;(5-4)

B0.4n/
�2�! B0.4n/ �! B.4nC 2/; for n� 0;(5-5)

that induce short exact sequences of left A–modules

0 �H�.B0.4n// �H�.B.4n// �†1H�.B0.4n� 4// � 0;(5-6)

0 �H�.B0.4n// �H�.B.4nC 2// �†1H�.B0.4n// � 0:(5-7)
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6 The Hopf ring H�.HF�/

In this section we recall the structure of the Hopf ring H�.HF�/, define its conjugate
generators zi and define its destabilization function.

Recall that H�.HF1/DH�.RP1/D F2fbi j i � 1g, where jbi j D i . The product is
bi � bj D

�
iCj

i

�
biCj , the Frobenius is F.bi/ D b�2i D 0, and the indecomposables

are the module �– Ind.H�.HF1//D F2fxi j i � 0g, where xi D b2i . The coproduct
is  .bn/D

P
0�i�n bn�i ˝ bi , the Verschiebung is V .b2i/D bi and V .b2iC1/D 0,

and the primitives are given by Newton polynomials, which are defined recursively by
Ni DNi.b1; : : : ; bi/D ibiC

Pi�1
jD1 bj �Ni�j .b1; : : : ; bi�j / mod 2 for i � 1 (see [2,

pages 93–94; 13, Section 3] for more details). The suspension class is e D x0 D b1 .
The stabilization homomorphism is e1.xi/D �i , and satisfies e1.xi �xj /D 0 and
e1.xi ıxj /D �i�j . Note: by definition

Hn.HF/D lim
k!1

HnCk.HFk/;

where the limit is taken by iterating the homology suspension e ı .�/W HnCk.HFk/!
HnCkC1.HFkC1/.

Theorem 6.1 [25; 16] As Hopf algebras over F2 with addition C and multiplica-
tion �,

H�.HFk/D
�

F2ŒF2� if k D 0;

E.xi1
ı � � � ıxik

j 0� i1 � � � � � ik/ if k � 1:

Further, �-Ind.H�.HF�//D Sym.xi j i � 0/, the bigraded symmetric algebra over F2

with addition C, multiplication ı, and generators xi 2H2i .HF1/.

We now define elements zn that are the destabilization of the conjugate �n D �.�n/ in
the dual of the Steenrod algebra, following the definition by Milnor [17].

Definition 6.2 An ordered partition of n of length ` is a sequence .˛1; ˛2; : : : ; ˛`/

of positive integers whose sum is n. Let Part.n/ denote the set of all 2n�1 ordered
partitions of n. Given an ordered partition .˛1; : : : ; ˛`/ 2 Part.n/, let

�.i/D
�
˛1C˛2C � � �C˛i�1 if 1� i � `;
2n� 1� .2�.1/C � � �C 2�.`// if i D 0:

Let e D x0 D z0 2H1.HF1/, and for n� 1 define zn 2H2nC1�2.HF2n�1/ by

(6-1) zn D
X

.˛1;:::;˛`/2Part.n/

x
ı�.0/
0

ıxı2�.1/˛1
ıxı2�.2/˛2

ı � � � ıxı2�.`/˛`
:
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Remark 6.3 Every term of the sum (6-1) has 2n�1Ddeg.�n/ factors because for each
.˛1; : : : ; ˛`/2Part.n/ the sum of the exponents in the term x

ı�.0/
0

ıxı2�.1/˛1
ı� � �ıx2�.`/

˛`

is 2n� 1 by construction.

We now define the destabilization function e�1W H�.HF/! H�.HF�/. It will be
constructed so that every element in the image of e�1 cannot be desuspended any
further and e�1 is a right inverse for the stabilization homomorphism e1 , ie, the
composite map

(6-2) H�.HF/
e�1���!H�.HF�/

e1��!H�.HF/

is the identity on H�.HF/. It is clear that the destabilization function ought to be
defined as follows. Since e1.Œ1�/D 1 and e1.xıI /D �I , the destabilization function
should satisfy e�1.1/ D Œ1� and e�1.�I / D xıI . Further, if a sum of monomialsP

xıI 2HdCk.HFk/ has one or more terms with no ı–product factors of e D x0 ,
then it cannot be desuspended further and the destabilization should be e�1.

P
�I /DP

xıI .

Finding an explicit formula for the destabilization function in terms of the xi and zi

remains to be done. In the next definition and lemma, we construct an explicit formula
for the destabilization e�1.

P
�I /, show that all the terms in e�1.

P
�I / have the

same bidegree, and show that the destabilization function is well-defined. From the
construction of the formula for the destabilization, it will be evident that elements in the
image of the destabilization cannot be desuspended further and that the destabilization
is a right inverse for the stabilization.

Definition 6.4 The destabilization function e�1W H�.HF/ ! H�.HF�/ is given
as follows. Set e�1.1/ D Œ1� 2 H0.HF0/ D F2ŒF2�. Suppose

P
�I DP

�J has
d D deg.

P
�I / > 0 and k D fact�.

P
�I /. Then, in terms of the basis of the xi ,

(6-3) e�1
�P

�I
�D e�1

�P
�J
� WDPx

ı.k�fact�.�I //

0
ıxıI :

In terms of the basis of the zi ,

(6-4) e�1
�P

�I
�D e�1

�P
�J
� WD z

ı�.d�k/
0

ı �P zıJ
�
:

Remark 6.5 By construction, every term in the sum (6-3) has exactly k ı–product
factors of xi . In contrast, the sum (6-4) does not necessarily have the same number of
ı–product factors of zi in each term.

Lemma 6.6 The classes defined by equations (6-3) and (6-4) are in HdCk.HFk/ and
the destabilization function is well-defined.
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Proof Suppose
P
�I DP �J 2Hd .HF/ has d > 0 and fact�.

P
�I /D k . First, we

verify that e�1.
P
�I / 2HdCk.HFk/. By construction, every term in the sum

e�1
�X

�I
�
D
X

x
ı.k�fact�.�I //

0
ıxıI

has exactly k ı–product factors of xi and therefore e�1.
P
�I / 2H�.HFk/. Also,

from Equation (6-3) it is clear that e1.e�1.
P
�I //DP �I 2Hd .HF/, and therefore

e�1.
P
�I / 2HdCk.HFk/.

Next, we show thatX
x

k�fact�.�I /

0
ıxıI D z

ı�.d�k/
0

ı
�X

zıJ
�
:

By Remark 6.3, d � k and under the change of basis
P

zıJ DPxıL , every term
xıL has d D deg.

P
�J / ı–product factors. Since d D d � fact�.�I /C fact�.�I / and

d � k � 0 and k � fact�.�I /� 0 for all terms in
P
�I , it follows thatP

zıJ DPxıL

DPx
ı.d�fact�.�I //

0
ıxıI DPx

ı.d�kCk�fact�.�I //

0
ıxıI

D x
ı.d�k/
0

ı
�P

x
ı.k�fact�.�I //

0
ıxıI

�
D x

ı.d�k/
0

ı e�1.
P
�I /:

Thus, after desuspending .d � k/ times we obtain

e�1.
P
�I /DPx

ı.k�fact�.�I //

0
ıxıI D z

ı�.d�k/
0

.
P

zıJ /:

Therefore, e�1.
P
�I /D e�1.

P
�J / and the desuspension function is well-defined.

Remark 6.7 The desuspension zı�.d�k/
0

in Equation (6-4) occurs for the following
reason. When

P
zıJ is written in terms of the basis of the xi there may be cancellation

of terms mod 2, and in the sum that remains after cancellation .
P

xıL/, the greatest
common factor of the x0 is xı.d�k/

0
.

Example 6.8 The destabilization of the element �2
3
C �2

1
�4

2
D �2

3
C �8

1
�2

2
2H14.HF/

with degree d D 14 and k D fact�
�
�2

3
C �2

1
�4

2

�D 6 is

e�1
�
�2

3 C �2
1�

4
2

�D xı40 ıxı23 Cxı21 ıxı42 2H20.HF6/;

which also equals

e�1
�
�2

3 C �8
1�

2
2

�D z
ı.�8/
0

ı �zı23 C zı81 ı zı22

� 2H20.HF6/:
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7 Stable classes in ko�.B.�//

In this section, we calculate the s D 0 line of the Adams spectral sequence

(7-1) Exts;t
A1
.H�.B.2n//;F2/H) ko�.B.2n//

for all n� 0, thereby determining the stable classes in ko�.B.�//.
We begin by defining the destabilization function ��1 for Dieudonné rings that is
equivalent to the destabilization function e�1 for Hopf rings. In this section and the
next, the destabilization function ��1 will be used to show that a permanent cycle on
the s D 0 line of the Adams spectral sequence

H 0;d .H�.ko/˝H�.B.d C k//˝ƒ; d1/

determines a nonzero element in DdCk.H�.kok// that corresponds to a stable class in
HdCk.kok/. We now define the function that induces the Dieudonné ring destabiliza-
tion function H�.E/!D�.H�.E�//.

Definition 7.1 Let E D HF . Define a function

(7-2) ��1W H�.E/!H�.E/˝H�.B.1//˝ƒ
by ��1.y/D�.�˝1. .y///˝1, where  is the coproduct, � is the antiautomorphism,
and �.x˝y/D y˝x is the graded twist map, which has no sign mod 2.

Lemma 7.2 The destabilization function ��1 is a ring homomorphism.

Proof We verify ��1.ab/ D ��1.a/��1.b/ and leave it to the reader to verify
the remaining properties of a ring homomorphism are satisfied. First, note that �
and  are ring homomorphisms and that the antiautomorphism � is also a ring
homomorphism because H�.B.1//DH�.HF/ is commutative. Let a; b 2H�.HF/
and write  .a/DPi a0i ˝ a00i and  .b/DPj b0j ˝ b00j . Then

��1.ab/D �.�˝ 1. .ab///˝ 1D �.�˝ 1. .a/ .b///˝ 1

D �.�˝ 1..
P

i a0i ˝ a00i /.
P

j b0j ˝ b00j ///˝ 1

D �.�˝ 1.
P

i;j a0ib0j ˝ a00i b00j //˝ 1DPi;j a00i b00j ˝�.a0i/�.b0j /˝ 1

D .Pi a00i ˝�.a0i/˝ 1/.
P

j b00j ˝�.b0j /˝ 1/

D .�.�˝ 1.
P

i a0i ˝ a00i //˝ 1/.�.�˝ 1.
P

j b0j ˝ b00j //˝ 1/

D .�.�˝ 1. .a///˝ 1/.�.�˝ 1. .b///˝ 1/D ��1.a/��1.b/:
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Example 7.3 On generators of H�.HF/, the destabilization ��1 is

��1.�n/D
nX

iD0

�i ˝ �2i

n�i ˝ 1 2H�.HF/˝H�.B.2n//˝ƒ;(7-3)

��1.�n/D
nX

iD0

�2i

n�i ˝ �i ˝ 1 2H�.HF/˝H�.B.2nC1� 2//˝ƒ;(7-4)

where ��1.�n/ and ��1.�n/ both have bidegree .s; t/D .0; 2n� 1/.

Remark 7.4 Later, in Lemma 7.8, the element ��1.�n/ of Equation (7-3) will be
shown to represent a Dieudonné ring generator in D2n.H�.HF1// that corresponds to
the Hopf ring generator xn in H2n.HF1/.

Lemma 7.5 For the spectrum E D HF , every element in the image of the destabiliza-
tion ��1 is a permanent cycle.

Proof We begin by showing that ��1.�n/ is a cycle for all n � 0. By the Cartan
formula .x˝y/ �SqD .x �Sq/˝ .y �Sq/, we have� X

0�i�n

�i˝�2i

n�i

�
�SqD

X
0�i�n

� X
i�j�n

�
�j˝�2j

n�jC�j�1˝�2j

n�j

��
D

X
0�i�n

�i˝�2i

n�i ;

because all terms cancel except when i D j , and thus Sq0 is nonzero but Sqk is zero
for k � 1. Since ��1 �1D 0 and

�Pn
iD0 �i˝ �2i

n�i

� �Sqk D 0 for k � 1, it follows that

d1.�
�1.�n//D

X
k�0

�� X
0�i�n

�i ˝ �2i

n�i

�
�Sqk

�
˝�k�1 � 1D 0:

Since the coproduct  and total Steenrod square Sq are ring homomorphisms, and
d1 is an F2 –module homomorphism, it follows that d1.�

�1.
P
�I //D 0 for allP

�I 2H�.HF/.

Finally, we show that ��1.
P
�I / must be a permanent cycle. By change of rings

(Theorem 4.3),

Ext�;�
A
.F2;H�.HF/˝H�.B.1///Š Ext�;�F2

.F2;H�.B.1///:
Thus, the spectral sequence is concentrated on the s D 0 line and collapses.

In the next definition and lemma, we show that ��1 preserves degree d , the maximum
number of � factors k , and the maximum weight n. Note that the antiautomorphism �

and the twist map � in the definition of ��1 have the effect of mapping the � weight
in H�.E/ to the � weight in the second tensor factor of H�.E/˝H�.B.1//˝ƒ.
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Definition 7.6 For each
P

xi ˝yi ˝ 1 2H�.E/˝H�.B.1//˝ƒ, let

fact1� .
P

xi ˝yi ˝ 1/Dmaxiffact�.xi/g;
wt2
�
.
P

xi ˝yi ˝ 1/Dmaxifwt�.yi/g;
wt2
�
.
P

xi ˝yi ˝ 1/Dmaxifwt�.yi/g:

Lemma 7.7 If
P
�I DP �J 2H�.HF/ has d D deg.

P
�I /, k D fact�.

P
�I / and

nD wt�.
P
�I /, then fact1� .�

�1.
P
�I //D k and

��1.
P
�I / 2H 0;d .H�.HF/˝H�.B.2n//˝ƒ; d1/:

Proof It is clear that ��1 preserves degree and that the lemma is true for ��1.1/D
1 ˝ 1 ˝ 1. Suppose

P
�I ¤ 1. First, we show that ��1 preserves k . From

Equation (7-3), it is clear that fact1� .�
�1.�r //D1. Since ��1 is a ring homomorphism

and ��1.
P
�I /D .P �I /˝ 1˝ 1C .other/, it follows that fact1� .�

�1.
P
�I //D k .

Second, we show that ��1 preserves n. From Equation (7-4), it is apparent that

wt2� .�
�1.�n//D wt2� .1˝ �n˝ 1/:

Since ��1 is a ring homomorphism, it follows that

wt2� .�
�1.

P
�I //D wt2

�
.1˝ .P �I /˝ 1/D wt2

�
.1˝ .P �I /˝ 1/D n:

Therefore, ��1.
P
�I / 2H 0;d .H�.HF/˝H�.B.2n//˝ƒ; d1/.

The following lemma shows that the Dieudonné ring destabilization ��1 is, in fact,
equivalent to the Hopf ring destabilization e�1 .

Lemma 7.8 Suppose P
�I DP �J 2Hd .HF/

with d D deg.
P
�I /, k D fact�.

P
�I /, and n D wt�.

P
�I /. Then under the

Dieudonné equivalence of Equation (5-3), the destabilized element

e�1.
P
�I /D e�1.

P
�J / 2HdCk.HFk/

corresponds to

��1.
P
�I /D ��1.P �J / 2E

0;d
2
.A;HF ^B.2n//ŠD2n.H�.HFk//:

In particular,
U.T .��1.

P
�I ///DPxıI ;

where T and U are the maps in Equation (5-3).
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Proof From Lemma 3.5, d C k D 2n and thus HdCk.HFk/DH2n.HFk/ is equiv-
alent to D2n.H�.HFk//. From Equation (5-3), it is clear that for any generator
�n 2H2n�1.HF/,

U.T .��1.�n///D xn

in the rank 1 module H2n.HF1/. The one-to-one correspondence follows for anyP
�I 2H�.HF/ since ��1 is a ring homomorphism and the right adjoint U to the

Dieudonné functor preserves C and ı.

Example 7.9 The destabilization of the element �2
3
C �8

1
�2

2
D �2

3
C �2

1
�4

2
2H14.HF/

with degree d D 14, k D f�.�2
3
C �2

1
�4

2
/ D 6, and n D wt�.�2

3
C �2

1
�4

2
/ D wt�.�2

3
C

�2
1
�4

2
/D 10 is

��1.�2
3 C �2

1�
4
2 /D .�2

3 C �2
1�

4
2 /˝ 1˝ 1C �4

2 ˝ �2
1 ˝ 1C .�2

2 C �6
1 /˝ �8

1 ˝ 1

C �4
1 ˝ �10

1 ˝ 1C 1˝ .�2
3 C �2

1�
4
2/˝ 1

D .�2
3 C �8

1�
2
2/˝ 1˝ 1C .�4

2 C �12
1 /˝ �2

1 ˝ 1C �2
2 ˝ �8

1 ˝ 1

C �4
1 ˝ �10

1 ˝ 1C 1˝ .�2
3 C �2

1�
4
2/˝ 1

2H 0;14.H�.HF/˝H�.B.20//˝ƒ; d1/

and corresponds to the class

xı40 ıxı23 Cxı21 ıxı42 D z
ı.�8/
0

ı �zı23 C zı81 ı zı22

� 2H20.HF6/:

Theorem 7.10 There is a bijection

(7-5) ��1 W ˚P �I 2H�.ko/ j wt�.
P
�I /� n

	
�!H 0;�.H�.ko/˝H�.B.2n//˝ƒ; d1/:

Proof First, we show the map ��1 in (7-5) is well-defined. Take E D ko in
Equation (7-2).

From Equation (7-4), it is clear that the elements in the first tensor factor of ��1.�n/
are in H�.ko/ when n � 3, and the same is true for ��1.�4

1
/ and ��1.�2

2
/. Since

��1 is a ring homomorphism, it follows that if
P
�I 2H�.ko/, then the first tensor

factor of ��1.
P
�I / is also in H�.ko/.

Now suppose
P
�I 2 H�.ko/ satisfies wt�.

P
�I / � n. From (7-4), ��1.�n/ D

1˝ �n˝ 1C .other/, where all of the other terms have second tensor factor of smaller
� weight than wt�.�n/D 2n� 1. Since ��1 is a ring homomorphism, it follows that
��1.

P
�I / D 1˝ .P �I /˝ 1C .other/, where all of the other terms have second

tensor factor of smaller �–weight than wt�.
P
�I /, and none of the other terms cancel
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with 1˝ .P �I /˝ 1. Since wt�.
P
�I /D wt�.

P
�I /, it follows that ��1.

P
�I / is

in H 0;�.H�.ko/˝H�.B.2n//˝ƒ; d1/.

Second, we show that ��1 in (7-5) is injective. Since ��1.
P
�I /D .P �I /˝1˝1C

.other/, where none of the other terms cancels with .
P
�I /˝ 1˝ 1, ��1 is injective.

Third and finally, we show ��1 in (7-5) is surjective. Suppose z 2H 0;�.H�.ko/˝
H�.B.2n//˝ƒ; d1/. Since H�.ko/�H�.HF/, it is clear that diagram (7-6) commutes.

(7-6)

H�.ko/� _

��

��1 // H 0;�.H�.ko/˝H�.B.1//˝ƒ; d1/� _

��
H�.HF/

�
��1

// H 0;�.H�.HF/˝H�.B.1//˝ƒ; d1/

From diagram (7-6), z can be included as an element H 0;�.H�.HF/˝H�.B.2n//˝
ƒ; d1/, which determines an element

P
�I 2 H�.HF/. Thus, z D ��1.P �I / D

.
P
�I /˝ 1˝ 1C .other/ where none of the other terms cancel with .

P
�I /˝ 1˝ 1,

and thus
P
�I 2 H�.ko/ by the definition of ��1 . Since z 2 H 0;�.H�.ko/ ˝

H�.B.2n//˝ƒ; d1/ and z D ��1.P �I /D 1˝ .P �I /˝ 1C .other/ where none
of the other terms cancel with 1˝ .P �I /˝ 1, we must have wt�.

P
�I / � n. But,

wt�.
P
�I /D wt�.

P
�I /, and therefore ��1 in Equation (7-5) is also surjective.

Corollary 7.11 The destabilization e�1W H�.ko/�H�.ko�/ is a restriction of the
destabilization e�1W H�.HF/�H�.HF�/, ie, diagram (7-7) is commutative.

(7-7)

H�.ko/� _

��

// e�1 // H�.ko�/� _

��
H�.HF/ //

e�1 // H�.HF�/

8 Unstable classes in ko�.B.�//

We now complete the calculation of the Adams spectral sequences

Exts;t
A1
.H�.B.2n//;F2/H) kot�s.B.2n//

for n� 0 begun in Section 7. We begin by calculating the ko homology of the integral
Brown–Gitler spectra, and then use the cofiber sequences of Lemma 5.8 that relate
integral and mod 2 Brown–Gitler spectra to calculate ko�.B.�//.
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The Adams spectral sequences for the ko homology of integral Brown–Gitler spectra
are stably isomorphic to truncations (Adams covers) of the spectral sequences for ko
and bsp. The spectral sequences for ko and bsp in Figure 2 collapse at E2 and have
.t �s; s/D .8; 4/ real Bott periodicity. All spectral sequence diagrams in this paper are
indexed by stem t � s along the horizontal and Adams filtration s along the vertical.
Note that ko ' ko^B0.0/ and bsp ' ko^B0.4/. Let ˛.n/ be the number of ones
in the 2–adic expansion of n, and let �.n/ be the number of times that 2 divides n.
These functions satisfy nD ˛.n/C �.n!/ and �.n!/DP1�i�n �.i/.

Lemma 8.1 [15, Theorem 2.7] For n> 0, the maps

E
sC�..4n/!/; tC�..4n/!/
2

.A1;B0.0//!E
s;t
2
.A1;B0.8n//;(8-1)

E
sC�..4n/!/; tC�..4n/!/
2

.A1;B0.4//!E
s;t
2
.A1;B0.8nC 4//:(8-2)

are injective for s D 0 and an isomorphism for s > 0. (Note: �..4n/!/D 4n�˛.n/.)

An Adams k –cover of an Ext chart is the chart obtained by deleting rows below
Adams filtration s D k and reindexing the remaining rows so that row s D k in the
original becomes row s D 0. Lemma 8.1 says that Adams �..4n/!/–covers of the Ext
charts for ko and bsp are stably isomorphic to the Ext charts for ko�.B0.8n// and
ko�.B0.8nC 4//.

Using the Mahowald and Shimamoto cofiber sequences, we determine the Ext chart
for ko�.B.2n// up to stable isomorphism.

�

˛
ˇ

0

4

8

0 4 8 12 0 4 8 12 16

Figure 2: Left: E
s;t
2
.A1;B0.0//) �S

t�s.ko/ . Right: E
s;t
2
.A1;B0.4//) �S

t�s.bsp/ .

Theorem 8.2 For n� 0, the map C s;t .2n/!E
s;t
2
.A1;B.2n// is injective for s D 0

and the identity for s > 0. For n� 0 and s � 0, E
s;t
2
.A1;B.2n//DE

s;t1 .A1;B.2n//.
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Proof We use strong induction on n � 1 to calculate E
s;t
2
.A1;B.2n// up to stable

isomorphism. Since ko� and bsp� are 8–periodic, each step of the induction falls into
one of four cases (2n� 0; 2; 4; 6 mod 8) by Lemma 8.1. Although we present case 0

first, the induction begins with case nD 1 and cycles through all of the cases thereafter.
The reason for this is to make the indexing consistent among all cases and to make
case 0 simpler to state.

Case 0 Case 1 Case 2 Case 3

a .8m; ˛.m// .8mC 2; ˛.m/C 1/ .8mC 4; ˛.m/C 1/ .8mC 6; ˛.m/C 2/

b .8m; ˛.m� 1/C 4/ .8mC 2; ˛.m/C 2/ .8mC 4; ˛.m/C 3/ .8mC 6; ˛.m/C 3/

c .8mC 4; ˛.m/C 3/ DNE .8mC 8; ˛.m/C 4/ DNE
d .8mC 4; ˛.m� 1/C 5/ DNE .8mC 8; ˛.m/C 4/ DNE

Table 1: Bidegrees .t � s; s/ of the elements a; b; c , and d used in the proof of Theorem 8.2

Case 0 (2nD 8m) To calculate E
s;t
2
.A1;B.8m// for s > 0 we use the Mahowald

and Shimamoto cofiber sequences

B.8m� 2/ �! B.8m/ �!†4mB.4m/;(8-3)

B0.8m/ �! B.8m/ �!†B0.8m� 4/;(8-4)

of Lemmas 5.4 and 5.8. These cofiber sequences induce the long exact sequences of
ExtA1

groups in (8-5) and the top row of (8-6):

� � � d1�!E
s;t
2
.B.8m� 2// �!E

s;t
2
.B.8m// �!E

s;t�4m
2

.B.4m//
d1�! � � �(8-5)

� � � d1 // Es;t
2
.B0.8m// //
OO

OO

E
s;t
2
.B.8m// // Es;t�1

2
.B0.8m� 4//
OO

OO

d1 // � � �

� � � d1 // EsCx;tCx
2

.B.0// // Es;t
2
.B.8m// // E

sCy;tCy�1
2

.B0.4//
d1 // � � �

(8-6)

The top and bottom rows of diagram (8-6) are equal for s > 0 by Lemma 8.1, where
x D �..4m/!/D 4m�˛.m/ and y D �..4.m� 1//!/D 4.m� 1/�˛.m� 1/.

On the top of Figure 3 we display the Mahowald long exact sequence (8-5) by super-
imposing E

s;t
2
.A1;B.8m� 2// and E

s;t�4m
2

.A1;B.4m//. Similarly, on the bottom
of Figure 3 we display the Shimamoto long exact sequence (8-6) by superimpos-
ing E

sCx;tCx
2

.A1;B.0// and E
sCy;tCy�1
2

.A1;B0.4//. The charts in Figure 3 have
.t � s; s/D .8; 4/ Bott periodicity. Consequently, there are effectively four different
possible ways that the bottom edges of these spectral sequences could be truncated,
and we have shown only one of them. The diligent reader is encouraged to verify that
nothing unexpected happens in the other three ways of truncating the bottom edges of
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a

b

c

d

a

b

c

d

.8m�/ 12 8 4 0 �4 �8

aD a8m W ˛.m/

c D c8m W ˛.m/C 3
� � � � � � � � �b D b8m W ˛.m� 1/C 4

d D d8m W ˛.m� 1/C 5

aD a8m W ˛.m/

c D c8m W ˛.m/C 3
� � � � � � � � �b D b8m W ˛.m� 1/C 4

d D d8m W ˛.m� 1/C 5

Figure 3: Case 0: Calculating E
s;t
2 .A1;B.8m// for s > 0 . Top fig-

ure: E
s;t
2 .A1;B.8m � 2// displayed using � , E

s;t
2 .A1; †

4mB.4m// dis-
played using ı . Bottom figure: E

s;t
2 .A1;B0.8m// displayed using � ,

E
s;t
2 .A1; †B0.8m�4// displayed using ı . Gray means killed by differential

d1 D- . Vertical axis label separator � � � indicates that height of towers
connecting a to b and c to d varies with m .

these charts. The bidegrees of the elements a; b; c and d in Figure 3 can be determined
using either of the long exact sequences and are given in Table 1.

Because the Mahowald long exact sequence has no infinite �0 D h0 towers, the
connecting homomorphism d1 in the Shimamoto long exact sequence must be an
isomorphism where indicated in Figure 3 on bottom. The d1 differentials in the
Mahowald long exact sequence are then forced by comparison with the Shimamoto
long exact sequence. The unsolved �0 D h0 and �1 D h1 extensions in each long
exact sequence are solved by comparison with the other long exact sequence.

It remains to show that the lightning flash containing a and b and the tower containing
c and d in E

s;t
2
.A.1/;B.8m// have the same size those as in C s;t .8m/. From

Table 1, the lightning bolts in E
s;t
2
.A.1/;B.8m// have height (that is, difference in

Adams filtration)

AF.b/�AF.a/D 4C˛.m� 1/�˛.m/D 4C Œm� 1��..m� 1/!/� .m��.m!//�

D 4C Œ�.m/� 1�D �.8m/;
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and the towers have height AF.d/�AF.c/D .˛.m�1/C5/� .˛.m/C3/D �.2m/.
For C s;t .8m/ the height of the lightning bolts is AF.b/�AF.a/D �.8m/, and the
height of the towers is AF.d/�AF.c/D �.16m/� 3D �.2m/. Thus, the two charts
are stably isomorphic.

Case 1 (2nD 8mC2) To calculate E
s;t
2
.A1;B.8mC2// we use the following long

exact sequences in ExtA1
induced by the Mahowald and Shimamoto cofiber sequences

(Lemmas 5.4 and 5.8) together with Lemma 8.1.

� � � d1�!E
s;t
2
.B.8m//!E

s;t
2
.B.8mC 2//!E

s;t�.4mC1/
2

.B.4m//
d1�! � � �(8-7)

� � � d1 // Es;t
2
.B0.8m// //
OO

OO

E
s;t
2
.B.8mC 2// // Es;t�1

2
.B0.8m//

d1 //
OO

OO

� � �

� � � d1 // EsCx;tCx
2

.B.0// // Es;t
2
.B.8mC 2// // E

sCy;tCy�1
2

.B0.0//
d1 // � � �

(8-8)

Here, x D y D �..4m/!/D 4m�˛.m/. These long exact sequences are displayed in
Figure 4, and the bidegrees of the elements a and b are given in Table 1. Comparing
the two charts stem by stem, the differentials in one chart are forced by the other chart.
The unsolved �0 and �1 extensions will be solved later in Corollary 8.4. From Table 1,
the lightning bolts in E

�;�
2
.A1;B.8mC 2// have height AF.b/�AF.a/ D 1, and

those in C �;�.8mC 2/ also have height AF.b/�AF.a/ D �.8mC 2/ D 1, so the
charts are stably isomorphic.

Case 2 (2nD 8mC4) To calculate E
s;t
2
.A1;B.8mC4// we use the following long

exact sequences in ExtA1
induced by the Mahowald and Shimamoto cofiber sequences

(Lemmas 5.4 and 5.8) together with Lemma 8.1.

(8-9) � � � d1�!E
s;t
2
.B.8mC 2// �!E

s;t
2
.B.8mC 4//

�!E
s;t�.4mC2/
2

.B.4mC 2//
d1�! � � �

(8-10)

� � � d1 // Es;t
2
.B0.8mC 4// //

OO

OO

E
s;t
2
.B.8mC 4// // Es;t�1

2
.B0.8m//

d1 //
OO

OO

� � �

� � � d1 // EsCx;tCx
2

.B.4// // Es;t
2
.B.8mC 4// // E

sCy;tCy�1
2

.B0.0//
d1 // � � �

where x D y D �..4m/!/ D 4m� ˛.m/. These long exact sequences are displayed
in Figure 5, and the bidegrees of the elements a; b; c and d are given in Table 1.
Comparing the two charts stem by stem, the differentials in one chart are forced by
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a

b

a

b

.8mC 2�/ 8 4 0 �4 �8

aD a8mC2 W ˛.m/C 1
b D b8mC2 W ˛.m/C 2

aD a8mC2 W ˛.m/C 1
b D b8mC2 W ˛.m/C 2

Figure 4: Case 1: Calculating E
s;t
2 .A1;B.8m C 2// for s > 0 . Top:

E
s;t
2 .A1;B.8m// displayed using � , E

s;t
2 .A1; †

4mC1B.4m// displayed us-
ing ı . Bottom: E

s;t
2 .A1;B0.8m// displayed using � , E

s;t
2 .A1; †B0.8m//

displayed using ı . Gray means killed by differential d1 D- .

the other chart. As in case 0, the unsolved �0 and �1 extensions can be solved by
comparing the charts. From Table 1, the lightning bolts in E

�;�
2
.A1;B.8mC 4// have

height AF.b/�AF.a/ D 2, and the towers have height AF.d/�AF.c/ D 0. In
C �;�.8mC 4/ the lightning bolt height is AF.b/�AF.a/D �.8mC 4/D 2 and the
tower height is AF.d/�AF.c/D �.16mC 8/� 3D 0. Thus, the charts are stably
isomorphic.

Case 3 (2nD 8mC6) To calculate E
s;t
2
.A1;B.8mC6// we use the following long

exact sequences in ExtA1
induced by the Mahowald and Shimamoto cofiber sequences

(Lemmas 5.4 and 5.8) together with Lemma 8.1.

(8-11) � � � d1�!E
s;t
2
.B.8mC 4// �!E

s;t
2
.B.8mC 6//

�!E
s;t�.4mC3/
2

.B.4mC 2//
d1�! � � �

(8-12)

� � � d1 // Es;t
2
.B0.8mC 4// //

OO

OO

E
s;t
2
.B.8mC 6// // Es;t�1

2
.B0.8mC 4//

d1 //
OO

OO

� � �

� � � d1 // EsCx;tCx
2

.B.4// // Es;t
2
.B.8mC 6// // E

sCy;tCy�1
2

.B0.4//
d1 // � � �
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a

b c

a
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c

Figure 5: Case 2: Calculating E
s;t
2
.A1;B.8m C 4// for s > 0 . Top:

E
s;t
2
.A1;B.8m C 2// displayed using � , E

s;t
2
.A1; †

4mC2B.4m C 2//

displayed using ı . Bottom: E
s;t
2
.A1;B0.8m C 4// displayed using � ,

E
s;t
2
.A1; †B0.8m// displayed using ı . Gray means killed by d1 D- .

where x D y D �..4m/!/ D 4m� ˛.m/. These long exact sequences are displayed
in Figure 6, and the bidegrees of the elements a; b; c and d are given in Table 1.
Comparing the two charts stem by stem, the differentials in one chart are forced by the
other chart. The unsolved �0 and �1 extensions will be solved later in Corollary 8.4.
From Table 1, the lightning bolts in E

�;�
2
.A1;B.8mC 6// have height AF.b/ �

AF.a/D1, and those in C �;�.8mC6/ have height is AF.b/�AF.a/D�.8mC6/D1.
Thus, the charts are stably isomorphic and the proof by induction is finished.

The spectral sequence E
s;t
2
.A.1/;B.2n// collapses (ie, E2 DE1 ) because any pos-

sibly nontrivial differentials are incompatible with the multiplicative structure.

In the next lemma and corollary, we determine H�.B.4nC2// as a stable A1 –module
and calculate E

s;t
2
.A1;B.4nC2// for s > 0. The purpose for this is to resolve the �0

and �1 extensions in cases 1 and 3 in the proof of Theorem 8.2.

In [8, page 50], four types of A1 –modules Qi;j , i 2Z=.4/ and j � 0, are constructed
so that Qi;j contains no free A1 –submodules and H�.B0.4n//ŠQi;j ˚F as left
A1 –modules for some i; j and some free A1 –module F . Define Qi;j by induction
on j by the nontrivial extension of left A1 –modules

0 �!W �!Qi;j �!Qi;j�1 �! 0
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Figure 6: Case 3: Calculating E
s;t
2
.A1;B.8m C 6// for s > 0 . Top:

E
s;t
2
.A1;B.8m C 4// displayed using � , E

s;t
2
.A1; †

4mC3B.4m C 2//

displayed using ı . Bottom: E
s;t
2
.A1;B0.8m C 4// displayed using � ,

E
s;t
2
.A1; †B0.8mC 4// displayed using ı . Gray means killed by d1 D- .

with W D F2f1;Sq2;Sq3;Sq2 Sq3g, and

Q0;0 D F2f1g; Q1;0 D F2f1;Sq2;Sq3g DH�.B0.4//;

Q2;0 D J D†�2F2f1;Sq1;Sq2;Sq2 Sq1;Sq3 Sq1g;
Q3;0 D†�3F2f1;Sq1;Sq2 Sq1g DH�.DB0.4//;

as shown in (8-13). Here, W is a bow-shaped module, J denotes the Adams joker,
and DX denotes the Spanier–Whitehead dual of X .

(8-13)

�3 �2 �1 0 1 2 3 4 5

W � � � �
Q0;0 �
Q1;0 � � �
Q2;0 � � � � �
Q3;0 � � �
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Lemma 8.3 H�.B.4nC2// is stably A1 isomorphic to a suspension of Ri for some
i 2 Z=.4/, where Ri is defined as in Equation (8-14).

(8-14)

0 1 2 3 4 5

R0 � �
R1 � � � � �

�
R2 � � � � �

� � � � �
�

R3 � � � � �
Note that R0 ŠH�.B.2//, R1 ŠH�.B.6//, and R3 is isomorphic to a suspension
of H�.DB.6//.

Proof From [23], B.4nC 2/' B.2/^B0.4n/ for all n. Thus, H�.B.4nC 2//Š
H�.B.2//˝H�.B0.4n// as left A–modules, and as a left A1 –module

H�.B.2//˝H�.B0.4n//ŠH�.B.2//˝ .Qi;j ˚F /

Š .H�.B.2//˝Qi;j /˚ .H�.B.2//˝F /

for some i 2Z=.4/ and j � 0. Since H�.B.2//˝F is free and H�.B.2//˝W ŠA1 ,
by direct calculation there is an isomorphism of left A1 –modules H�.B.2//˝Qi;j Š
Ri ˚F 0 for some free module F 0 .

Corollary 8.4 For n� 0, the maps

E
sC�..4n/!/; tC�..4n/!/
2

.A1;B.2//!E
s;t
2
.A1;B.8nC 2//;(8-15)

E
sC�..4n/!/; tC�..4n/!/
2

.A1;B.6//!E
s;t
2
.A1;B.8nC 6//;(8-16)

are injective for s D 0 and the identity for s > 0.

Proof By direct calculation, E
�;�
2
.A1;B.2// D C �;�.2/ and E

�;�
2
.A1;B.6// D

F2˚C �;�.6/, where F2 is in .s; t/D .0; 0/.
From [1, Theorem 5.1], since H�.B.2n// is a free left A0 –module, left multiplication
by the Bott element ˇW Es;t

2
.A1;B.2n//!E

sC4;tC12
2

.A1;B.2n// is an isomorphism
for s > 0. In particular, if

� � � �! P4

d4�! P3

d3�! P2

d2�! P1

d1�! P0
��!H�.B.2// �! 0
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is an A1 free minimal resolution of H�.B.2//, then ker.d4iCj / Š ker.dj / for all
i; j > 0. By direct calculation, up to suspension ker.di/ŠR3�i for 1� i � 4. Thus,
by Lemma 8.3, E

�;�
2
.A1;B.8nC 2// is an Adams k –cover of E

�;�
2
.A1;B.2//, and

from Case 1 in the proof of Theorem 8.2, we find k D �..4n/!/.

Similarly, if P� ! H�.B.6// ! 0 is an A1 free minimal resolution, then up to
suspension ker.di/ŠR4�i for 1� i � 4. Thus, by Lemma 8.3, E

�;�
2
.A1;B.8nC6//

is an Adams k –cover of E
�;�
2
.A1;B.6//, and from Case 3 in the proof of Theorem 8.2,

we find k D �..4n/!/.
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