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The minimal genus problem in CP 2 # CP 2

MOHAMED AIT NOUH

In this paper, we give two infinite families of counterexamples and finite positive
examples to a conjecture on the minimal genus problem in CP 2 # CP 2 proposed by
Lawson [10].
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1 Introduction

Let X be a smooth, closed, oriented, simply connected 4–manifold, and let bC
2
.X /

(resp. b�
2
.X /) be the rank of the positive (resp. negative) part of the intersection form

of X . The minimal genus problem is concerned with finding the genus function GX

defined on H2.X IZ/ as follows: For ˛ 2H2.X IZ/, consider

GX .˛/Dminfgenus.†/ j†�X represents ˛; ie, Œ†�D ˛g;

where † ranges over closed, connected, oriented surfaces smoothly embedded in the
4–manifold X . Note that GX .�˛/D GX .˛/ and GX .˛/ � 0 for all ˛ 2H2.X IZ/
(cf Gompf and Stipsicz [5]).

The minimal genus problem has been solved for the 4–manifolds CP2 , S2 �S2 and
CP2 # CP2 ; see Kronheimer and Mrowka [8] and Ruberman [15]. For more results of
this kind, we refer to Lawson’s expository paper [10]. The minimal genus problem in
the case of CP2 is well known. In this paper, we treat CP2 # CP2 , which has bC

2
D 2

and admits no algebraic structure since a simple characteristic class argument shows
that its tangent bundle admits no complex structure (cf Gompf and Stipsicz [5]).

Conjecture 1.1 (Lawson [10]) The minimal genus of .m; n/ 2H2.CP2 # CP2/D

H2.CP2/˚H2.CP2/ is given by
�
m�1

2

�
C

�
n�1

2

�
, and it is the genus realized by the

connected sum of the complex projective curves in each factor.
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Taking the connected sum of the complex projective curves in each factor represent-
ing respectively m
1 2 H2.CP2IZ/ and n
2 2 H2.CP2IZ/, where 
1 and 
2 are
the standard generators of H2.CP2 # CP2/, yields a surface representing .m; n/ 2
H2.CP2 # CP2IZ/. Then, for any .m; n/ 2H2.CP2 # CP2IZ/, the minimal genus
problem function satisfies

GCP2#CP2..m; n//�GCP2.m/CGCP2.n/:

The minimal genus of .m; n/2H2.CP2#CP2IZ/ is bounded above by
�
m�1

2

�
C

�
n�1

2

�
,

by the positive answer to Thom’s conjecture; see Kronheimer and Mrowka [7]. This
bound is sharp if jmj � 2 and jnj � 2 since each class can be represented by a sphere in
CP2#CP2 . The simplest remaining case is the class .3; 2/2H2.CP2#CP2/, which is
still unresolved. This class can be represented by an embedded torus, but it is unknown
whether it can be represented by an embedded sphere [10]. Surprisingly enough, even
if Conjecture 1.1 seems to be far from being true, there are some nontrivial positive
examples of it. Therefore, it would be rather interesting to find the complex projective
curves in CP2 # CP2 for which Lawson’s conjecture holds.

In Section 2, we prove Theorem 1.2 which exhibits two infinite families of counterex-
amples.

Theorem 1.2 Conjecture 1.1 fails for the following infinite families:

(1) .2p; d/ 2 H2.CP2 # CP2IZ/, where d is a possible degree of T .p; 4p � 1/

in CP2 , for any p � 2, and T .p; 4p� 1/ denotes the .p; 4p� 1/–torus knot.

(2) .m; 0/ 2H2.CP2 # CP2IZ/ for any m� 3.

In Section 3, we prove Proposition 1.1 that exhibits two nontrivial positive examples.

Proposition 1.1 The minimal genera of the pairs .3; 3/ and .6; 6/ 2H2.CP2 # CP2/

are respectively 2 and 20.

Throughout this paper, we work in the smooth category. All orientable manifolds
will be assumed to be oriented unless otherwise stated. In particular, all knots are
oriented. Recall that CP2 is the closed 4–manifold obtained by the free action of
C�DC�f0g on C3�f.0; 0; 0/g defined by �.x;y; z/D .�x; �y; �z/, where �2C� ,
ie CP2 D .C3�f.0; 0; 0/g/=C� . An element of CP2 is denoted by its homogeneous
coordinates Œx W y W z�, which are defined up to the multiplication by � 2 C� . The
fundamental class of the submanifold H D fŒx W y W z� 2 CP2 j x D 0g .H Š CP1/

generates the second homology group H2.CP2IZ/ (cf [5]). Since H ŠCP1 , then the
standard generator of H2.CP2IZ/ is denoted, from now on, by 
 D ŒCP1�. Therefore,

Algebraic & Geometric Topology, Volume 14 (2014)



The minimal genus problem in CP 2 # CP 2 673

the standard generator of H2.CP2 � B4IZ/ is CP1 � B2 � CP2 � B4 with the
complex orientations. A class � 2H2.CP2�B4; @.CP2�B4/IZ/ is identified with
its image by the homomorphism

H2.CP2
�B4; @.CP2

�B4/IZ/ŠH2.CP2
� int.B4/IZ/ �!H2.CP2

IZ/:

Let d be an integer, then the degree d smooth slice genus of a knot K in CP2 is
defined as

gCP2.d;K/

Dminfgenus.†/ j @†DK and Œ†; @†�D d
 2H2.CP2
�B4; @.CP2

�B4/IZ/g;

where † ranges over connected, oriented, smooth surfaces properly embedded in
CP2�B4 .

If such a surface exists, then we call d a possible degree of K in CP2 . By the above
identification, we also have Œ†�D d
 2H2.CP2�B4IZ/. Then the CP2 –genus of a
knot K is defined as

gCP2.K/DminfgCP2.d;K/ j d is a possible degree of Kg:

A similar definition could be made for any 4–manifold and that this is a generalization
of the 4–ball genus; see the author [13].

Acknowledgements The author would like to thank heartily the referee for his insight
and helpful comments and the editor, Professor Akio Kawauchi, for his patience,
throughout the accomplishment of this paper. He also wants to thank the Departments
of Mathematics at the University of California, Riverside and the University of Texas
at El Paso for their hospitality.

2 Proof of Theorem 1.2

Our counterexamples to Conjecture 1.1 are based on twisting operations of knots
defined as follows.

n

n–twisting n–full
twistings

Figure 1
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�1

�1

T .1;p/

�1

�1

�1

T .�p; 4p� 1/

Figure 2: T .1;p/Š U
.�1;2p/
�����! T .�p; 4p� 1/

Let K be a knot in the 3–sphere S3 , and D2 a disk intersecting K in its interior.
Let n be an integer. A .�1

n
/–Dehn surgery along @D2 changes K into a new knot Kn

in S3 . Let ! D lk.@D2;K/. We say that Kn is obtained from K by .n; !/–twisting
(or simply twisting). Then we write

K
.n;!/
���!Kn:

We say that Kn is n-twisted if K is the trivial knot (see Figure 1). An example of
interest is illustrated in Figure 2, where T .p; q/ .0< p < q and p and q are coprime)
denotes the .p; q/–torus knot; see Burde and Zieschang [3].

The 4–ball genus (resp. 3–genus) of a knot k in S3 , denoted by g�.k/ (resp. g.k/), is
the minimum genus of all smooth compact connected and orientable surfaces bounded
by k � @B4 D S3 in B4 (resp. S3 ). A knot is called positive if it has a positive
diagram, ie a diagram with all crossings positive. To deny Conjecture 1.1, we need the
following four lemmas.

Lemma 2.1 Let K0 be a knot in S3 with 4–ball genus g� .

(a) If K is a knot obtained by a .�1; !/–twisting from the knot K0 , then K bounds
a properly embedded genus g� surface in CP2 with possible degree ! .

(b) If K0

.�1;m/
�����!Km

.�1;n/
����!K , then K bounds a properly embedded genus g� in

CP2 # CP2�B4 representing Œ†g� �Dm
1C n
2 2H2.CP2 # CP2;S3IZ/.

Proof (a) As shown in Figure 3, let D be a disk on which the .�1; !/–twisting is
performed. Note that the .C1/–Dehn surgery on @D changes K0 to K . Regard K0

and D as contained in the boundary of a 4–dimensional handle h0 . Then attach a
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2–handle h2 , to h0 along @D with framing C1. The resulting 4–manifold h0[h2 is
CP2�B4 (see Figure 3). Let .†g� ; @†g�/� .B4; @B4 Š S3/ be the orientable and
compact surface with @†g� D K0 . Since lk.K0; @D/ D ! , then we can check that
Œ†g� �D !
 2H2.CP2�B4;S3IZ/.

K0

�1

D

� @h0 Š B4

K

� @.h0[ h2/

ŠCP 2�B4

.�1/–full
twisting

Figure 3

(b) As shown in Figure 4, let D1 and D2 be the disks on which the .�1;m/–twisting
and .�1; n/–twisting are respectively performed. Note that the .C1/–Dehn surgery on
respectively @D1 and @D2 changes K0 to K . Regard K0;D1 and D2 as contained
in the boundary of a 4–dimensional handle h0 . Then attach the 2–handles h2

1
and h2

2

along @D1[@D2 with the same respective framing C1. The 4–manifold h0[h2
1
[h2

2

is CP2 # CP2 � B4 . Let .†g� ; @†g�/ � .B4; @B4 Š S3/ be the orientable and
compact surface with @†g� D K0 . Since lk.@D1;K0/ D m and lk.@D2;K0/ D n,
then Œ†g� �Dm
1C n
2 2H2.CP2 # CP2�B4;S3IZ/.

K0

�1

D1

�1

D2

� @h0

Š B4

K

� @.h0[ h2
1[ h2

2/

ŠCP 2 # CP 2�B4
.�1/–full
twisting

.�1/–full
twisting

Figure 4

This completes the proof.

Lemma 2.2 T .�p; 4p˙1/ for p� 2 is smoothly slice in CP2 with a possible degree
d D 2p .

Proof Figure 2 proves that T .�p; 4p�1/ is obtained from the trivial knot T .�1;p/

by a single .�1; 2p/–twisting. Then, the proof of Lemma 2.2 is a straightforward
consequence of Lemma 2.1.

Algebraic & Geometric Topology, Volume 14 (2014)



676 M Ait Nouh

r strands

s full twists
.p;q/–torus knot braid

T .p; q; r; s/

Figure 5: Twisted torus knot T .p; q; r; s/

Lemma 2.3 We have gCP2.T .p; q//� 1
2
.p� 1/.q� 1/� 1.

Proof Note that T .p; q/ is obtained from T .2; 3/ by adding .p � 1/.q � 1/ � 2

half-twisted bands. Since T .2; 3/ is .�1/–twisted (cf [13]), then T .2; 3/ is smoothly
slice in CP2 . This implies that there is a genus .p � 1/.q � 1/=2� 1 concordance
between T .2; 3/ and T .p; q/, which proves Lemma 2.3.

This let us make progress on the following problem (cf [13]).

Problem 2.4 Show that gCP2.T .p; q//D 1
2
.p� 1/.q� 1/� 1.

We gave positive examples of this problem for a finite family of .˙2; q/–torus knots
in [13].

To prove Lemma 2.5, recall that a knot in the 3–sphere obtained from the torus knot
T .p; q/ by performing s–times full twists on adjacent r –strands of the parallel p–
strings of T .p; q/ is called a twisted torus knot, denoted by T .p; q; r; s/ as depicted
in Figure 5 (we refer the reader to Callahan, Dean and Weeks [4] for more details).

Algebraic & Geometric Topology, Volume 14 (2014)
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We have:

(1) u.Ki/D u� i , 0� i � u (in particular, Ku is the trivial knot).

(2) Two succeeding knots of the sequence are related by one crossing change.

(3) uD u.K/ is the unknotting number of K .

Furthermore, the set of respective crossings positions fC1;C2; : : : ;Cu�1;Cug at which
these crossing changes are performed in the following order:

K0

C1
��!K1

C2
��!K2 � � �

Cu
��!Ku;

where uD u.K/, is called a minimal U–crossing data for the knot K . An example
can be found in Vikas and Madeti [18] for the case of torus knots (see Figure 6 in the
case of a .5; 4/–torus knot).

Lemma 2.5 Let K be a knot such that u.K/D g�.K/, then g�.K1/� g�.K/� 1.

Proof By the unknotting inequality we have g�.K1/�u.K1/. Since g�.K/Du.K/,
and by the above construction u.K1/D u.K/� 1, then g�.K1/� g�.K/� 1.

Remark 2.6 It is well-known that if K is a positive knot, then u.K/D g�.K/ (see
Nakamura [12], Shibuya [16] and Przytycki [14] for proofs). Also, Baader classified
quasipositive knots for which this equality holds (cf [1]).

C1 C4 C6

C2
C5

C3

Figure 6: Minimal U–crossing data for T .5; 4/
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†g �CP 2�B4

T .p; 4p� 1/

T .�p; 4p� 1/

��CP 2�B4

Figure 7: Gluing of surfaces technique

Proof of Theorem 1.2 By Lemma 2.2, T .�p; 4p � 1/ for p � 2 is smoothly slice
in CP2 with degree d D 2p . Then, there is a smooth disk .�; @�/� .CP2�B4;S3/

such that @�DT .�p; 4p�1/ and Œ��D 2p
 in H2.CP2�B4;S3IZ/. On the other
hand, there is a surface .†g; @†g/� .CP2�B4;S3/ such that @†gDT .�p; 4p�1/

and Œ†g� D d
 2 H2.CP2 �B4;S3IZ/, where g D gCP2.T .p; 4p � 1//. Let 
1

and 
2 be the standard generators of H2.CP2 # CP2IZ/. Then, the genus g closed
surface †D�[†g in CP2 #CP2 satisfies Œ†�D 2p
1Cd
2 in H2.CP2 #CP2IZ/
(see Figure 7). If Conjecture 1.1 were true, then the genus of † which is equal to
gCP2.T .p; 4p� 1// would satisfy

.2p� 1/.2p� 2/

2
C
.jd j � 1/.jd j � 2/

2
� gCP2.T .p; 4p� 1//:

By Lemma 2.3, we have

.2p� 1/.2p� 2/

2
C
.jd j � 1/.jd j � 2/

2
�
.p� 1/.4p� 2/

2
� 1:

Or equivalently,

.2p� 1/.p� 1/C
.jd j � 1/.jd j � 2/

2
� .p� 1/.2p� 1/� 1;

and this contradicts the positivity of .jd j � 1/.jd j � 2/=2� 0 for d 2 Z.
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To prove that Conjecture 1.1 fails for .m; 0/ 2H2.CP2 # CP2IZ/ for any m� 3, we
have to treat two cases.

�1

T .2; 2n� 1/

�1

T .�.2n� 1/; 2nC 1/

T .�.2n� 1/; 2nC 1; 2;�1/.�1; 0/–twisting

.�1; 2nC 1/–twisting

2–strands

.2n�1/–strands

.�1/–full
twisting

.�1/–full
twisting

Figure 8: T .2; 2n � 1/
.�1;2nC1/
�������! T .�.2n � 1/; 2n C 1; 2;�1/

.�1;0/
����!

T .�.2n� 1/; 2nC 1/

Case 1: mD 2nC 1 for n� 1 The proof of this case is based on Figure 8 showing
that

T .2; 2n� 1/
.�1;2nC1/
�������! T .�.2n� 1/; 2nC 1; 2;�1/

.�1;0/
����! T .�.2n� 1/; 2nC 1/:

By the positive answer to Milnor’s Conjecture (cf Kronheimer and Mrowka [7]), the
4–ball genera of T .2; 2n � 1/ and T .2n � 1; 2nC 1/ are respectively n � 1 and
2n.n� 1/. As depicted in Figure 9, Lemma 2.1 yields the existence of a compact
surface .†n�1; @†n�1/� .B

4; @B4 Š S3/ with @†n�1 D T .�.2n� 1/; 2nC 1/. As
depicted in Figure 9, and by Lemma 2.1, we have

Œ†n�1�D .2nC 1/
1 2H2.CP2 # CP2
�B4;S3

IZ/:

Algebraic & Geometric Topology, Volume 14 (2014)
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T .�.2n�1/; 2nC1/

T .2n�1; 2nC1/

B4

†n�1 �CP2 # CP2 �B4

†2n.n�1/ � B4

Figure 9: Gluing of surfaces technique

Let now .†2n.n�1/; @†2n.n�1//� .B
4; @B4 Š S3/ be a compact surface with

@†2n.n�1/ D T .2n� 1; 2nC 1/:

Gluing †n�1 and †2n.n�1/ along their boundaries yield a closed surface

†D†n�1[†2n.n�1/ �CP2 # CP2

representing .2nC1/
1 2H2.CP2 #CP2/. If Conjecture 1.1 were true, then the genus
of †, which is equal to n� 1C 2n.n� 1/, would satisfy

.2nC 1� 1/.2nC 1� 2/

2
� n� 1C 2n.n� 1/;

or equivalently, 2n2� n� 2n2� n� 1, an obvious contradiction.

Case 2: mD 2p for p � 2 Figure 2 shows that T .�p; 4p � 1/ is obtained from
the trivial knot T .�1;p/ by a single .�1; 2p/–twisting. Let fC1;C2; : : : ;Cu�1;Cug

be a U –crossing data for T .�p; 4p � 1/. Changing the crossing C1 from negative
to positive is equivalent to performing a .�1; 0/–twisting along the crossing C1 (see
Figure 10) and this yields that

T .�1;p/
.�1;p/
����! T .�p; 4p� 1/

.�1;0/
����! T .�p; 4p� 1; 2;C1/;

where T .�p; 4p � 1; 2;C1/ is a twisted torus knot, as shown in Figure 10. By
Lemma 2.5, we have that the 4–ball genus of T .�p; 4p � 1; 2;C1/ satisfies the
inequality g� � .p� 1/.4p� 2/=2� 1. Therefore, by a similar argument as in Case 1
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above, if Conjecture 1.1 were true for .2p; 0/ 2 H2.CP2 # CP2IZ/ for any p � 2,
then we would have .2p� 1/.2p� 2/=2� g� , which yields that

.2p� 1/.2p� 2/

2
�
.p� 1/.4p� 2/

2
� 1;

or equivalently, .2p� 1/.p� 1/� .p� 1/.2p� 1/� 1, an obvious contradiction.

C1

�1

Figure 10

Corollary 2.7 The class .3; 0/ 2H2.CP2 #CP2/ can be represented by a sphere, and
therefore, it is the smallest counterexample to Conjecture 1.1.

Proof This follows immediately from Case 1 if nD 1.

3 Proof of Proposition 1.1

To prove Proposition 1.1, we need Lemma 3.1, Theorem 3.2 and Lemma 3.3 as well as
Lemma 3.5. For this purpose, we recall some basic definitions. In what follows, let X

be a smooth, closed, oriented, simply connected 4–manifold, then the second homology
group H2.X IZ/ is finitely generated (we refer to Spanier’s book [17] for the details).
The ordinary form qX W H2.X IZ/�H2.X IZ/! Z given by the intersection pairing
for 2–cycles such that qX .˛; ˇ/D ˛ �ˇ is a symmetric, unimodular bilinear form. The
signature of this form, denoted �.X /, is the difference between the number of positive
and negative eigenvalues of a matrix representing qX . Let bC

2
.X / (resp. b�

2
.X /) be

the rank of the positive (resp. negative) part of the intersection form of X . The second
Betti number b2 D bC

2
C b�

2
and the signature is �.X /D bC

2
� b�

2
.

A second homology class � 2H2.X IZ/ is said to be characteristic provided that � is
dual to the second Stiefel–Whitney class w2.X /, or equivalently

(1) � �x � x �x .mod 2/

for any x 2H2.X IZ/ (we refer to Milnor and Stasheff’s book [11] for the details).
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Lemma 3.1 .a; b/ 2H2.CP2 # CP2IZ/ is characteristic if and only if a and b are
both odd.

Proof If .a; b/ 2H2.CP2 #CP2IZ/ is characteristic, then .a; b/ � .1; 0/� 1 .mod 2/

and .a; b/ � .0; 1/ � 1 .mod 2/. This yields that both a and b are odd. Conversely,
let � D .a; b/ 2H2.CP2 # CP2IZ/ and assume that a and b are both odd. Then for
any x D .x1;x2/ 2H2.CP2 # CP2IZ/, the identity (1) is equivalent to ax1C bx2 �

x2
1
Cx2

2
.mod 2/. Since xi � x2

i .mod 2/ for i D 1; 2 and a� 1 and b � 1 .mod 2/,
then (1) holds. This proves Lemma 3.1.

Theorem 3.2 (Bryan [2]) Let X be a smooth closed oriented and simply connected
4–manifold. We suppose † is an embedded surface in X of genus g and Œ†� is
divisible by 2. We assume that 1

2
† is characteristic, bC

2
> 1, and 1

4
† �†� �.X /� 0.

Then

g �
5

4

�
† �†

4
� �.X /

�
C 2� b2.X /:

A proof of the following lemma can be found in [10, page 401].

Lemma 3.3 (Kronheimer and Mrowka [9]) Let X be a smooth closed, connected and
oriented 4–manifold. Let a.†/D 2g.†/� 2�† �†. If � 2H2.X IZ/ is a homology
class with � � � � 0 and †� is a surface representing � and g � 1 when †� �†� D 0,
then for any r > 0, the class r� can be represented by an embedded surface †r� with

a.†r�/D ra.†�/:

Remark 3.4 Note that in particular, if X D CP2 # CP2 , then a.†2�/D 2a.†�/ is
equivalent to

g.†2�/D 2g.†�/C†� �†� � 1:

Proof The computation

a.†2�/D 2a.†�/” 2g.†2�/� 2�†2� �†2� D 2.2g� 2�†� �†�/

” 2g.†2�/� 2� 4†� �†� D 2.2g� 2�†� �†�/

” g.†2�/D 2g.†�/C†� �†� � 1

achieves the proof.

Recall that the knot obtained from k by inverting the orientation is called the inverted
knot and denoted �k . The mirror image of k or mirrored knot is denoted by k� ; it is
obtained by a reflection of k in a plane [3, page 15]. In what follows, we let xk D�k�

denote the inverse of the mirror image of k .
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Lemma 3.5 (1) The 4–ball genus of positive knots in S3 is additive under con-
nected sums.

(2) For any knot k in S3 , g�.k/D g�.xk/.

Proof It is well-known that g�.k/ D g.k/ for any positive knot [12]. Since the
3–ball genus of knots is additive under connected sums [3], and g.k/D g.xk/ then the
statements of the lemma are easily proven.

Proof of Proposition 1.1 To prove Proposition 1.1 for .3; 3/ 2H2.CP2 # CP2IZ/,
let † be a genus g surface such that Œ†�D 3
1C3
2 2H2.CP2 #CP2/. Theorem 3.2
yields that g � 2. Indeed, Lemma 3.1 implies that � D Œ†� 2 H2.CP2 # CP2/ is a
characteristic class with †�†D 18. In virtue of Lemma 3.3, the class 2�D 6
1C6
2 2

H2.CP2 #CP2/ can be represented by an embedded surface †2� satisfying the identity
a.†2�/D 2a.†/. Since †2� �†2� D 4† �†, then the estimate in Theorem 3.2,

g.†2�/�
5

4

�
†2� �†2�

4
� �.CP2 # CP2/

�
C 2� b2.CP2 # CP2/;

is equivalent by Remark 2.6 to

2gC 17� 5
4
.† �†� �.CP2 # CP2//C 2� b2.CP2 # CP2/;

This implies that g � 2.

T .1; 2/ �1

T .�2; 3/

Figure 11: T .1; 2/
.�1;3/
����! T .�2; 3/

To prove that g � 2, it is enough to exhibit a smooth closed genus two surface
†2 �CP2 #CP2 representing 3
1C3
2 2H2.CP2 #CP2/. Indeed, Figure 11 shows
that

T .1; 2/
.�1;3/
����! T .�2; 3/;
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and therefore,

T .1; 2/ # T .1; 2/
.�1;3/
����! T .1; 2/ # T .�2; 3/

.�1;3/
����! T .�2; 3/ # T .�2; 3/:

By Lemma 2.1, there is a disk ��CP2 #CP2�B4 so that @�DT .�2; 3/#T .�2; 3/

and Œ��D 3
1C3
2 2H2.CP2#CP2�B4;S3IZ/. Since the 4–ball genus of T .2; 3/

is one and T .2; 3/ is a positive knot (see Kawauchi [6]), then Lemma 3.5 yields that
the 4–ball genus of xk D T .2; 3/ # T .2; 3/ is two. Let .†2; @†2/� .B

4; @B4 Š S3/

be an orientable and compact surface with @†2D T .2; 3/#T .2; 3/. Gluing � and †2

along their boundaries yield a closed genus 2 surface † D �[†2 � CP2 # CP2

representing 3
1C 3
2 2H2.CP2 # CP2/ (see Figure 12).

k

xk

B4

��CP 2 # CP 2�B4

Figure 12: Gluing of surfaces technique

�1

�1

T .1;p/ # T .1; q/

�1

�1

Figure 13: T .1;p/ # T .1; q/
.�1;2p/
�����! T .�p; 4p � 1/ # T .1; q/

.�1;2q/
�����!

T .�p; 4p� 1/ # T .�q; 4q� 1/

To prove Proposition 1.1 for the pair .6; 6/ 2H2.CP2 #CP2IZ/, we first notice that if
T .p; q/ denotes the .p; q/–torus knot for 0< p < q with p and q are coprime, then

Algebraic & Geometric Topology, Volume 14 (2014)
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the knot drawn in Figure 13 is ambient isotopic to the trivial knot T .1;p/ # T .1; q/,
Thus

T .1;p/ # T .1; q/
.�1;2p/
�����! T .�p; 4p� 1/ # T .1; q/

.�1;2q/
�����! T .�p; 4p� 1/ # T .�q; 4q� 1/:

By Lemma 2.1, there exists a properly embedded disk ��CP2 # CP2�B4 such that
@�D T .�p; 4p� 1/ # T .�q; 4q� 1/ and Œ��D 2p
1C 2q
2 , where 
1 and 
2 are
the standard generators of H2.CP2 # CP2 �B4;S3IZ/. By the positive answer to
Milnor’s Conjecture by Kronheimer and Mrowka [7] and Lemma 3.5(1), the 4–ball
genus of T .p; 4p� 1/ # T .q; 4q� 1/ is .p� 1/.2p� 1/C .q� 1/.2q� 1/. Let †g�

be an oriented and compact surface properly embedded in B4 and such that

@†g� D T .p; 4p� 1/ # T .q; 4q� 1/;

and whose genus is g�D .p�1/.2p�1/C.q�1/.2q�1/. Denote †2p;2qD�[†g� ,
then it is easily checked that Œ†2p;2q �D 2p
1C 2q
2 2H2.CP2 # CP2IZ/ and the
genus of †2p;2q is .p� 1/.2p� 1/C .q� 1/.2q� 1/.

Assume now that .2p; 2q/D .6; 6/, or equivalently .p; q/D .3; 3/. By Theorem 3.2,
the genus of .6; 6/ 2H2.CP2 #CP2IZ/ can be shown to be greater or equal to twenty.
Indeed, 1

2
†D 3
1C3
2 is characteristic (cf Lemma 3.1), bC

2
.X /D b2.X /.D 2/, and

.† �†/=4� �.X /D 16, where Œ†�D 6
1C 6
2 2H2.X IZ/ and X D CP2 # CP2 .
By virtue of Theorem 3.2, the inequality g � 5

4
..† �†/=4��.X //C2�b2.X / holds.

This is equivalent to g � 20. Therefore, it is sufficient to find a genus twenty surface
representing .6; 6/ 2H2.CP2 # CP2IZ/, which is †6;6 as constructed above.
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