
msp
Algebraic & Geometric Topology 14 (2014) 795–803

Aspherical manifolds that cannot be triangulated

MICHAEL W DAVIS

JIM FOWLER

JEAN-FRANÇOIS LAFONT

By a result of Manolescu [14] there are topological closed n–manifolds that cannot
be triangulated for each n � 5 . We show here that for n � 6 we can choose such
manifolds to be aspherical.

57Q15; 20F65, 57Q25, 57R58

1 Introduction

Although Kirby and Siebenmann [13] showed that there are manifolds which do not
admit PL structures, the possibility remained that all manifolds could be triangulated.
In the late seventies Galewski and Stern [10] constructed a closed 5–manifold M 5

so that every n–manifold, with n � 5, can be triangulated if and only if M 5 can
be triangulated. Moreover, M 5 admits a triangulation if and only if the Rokhlin �–
invariant homomorphism, �W �H

3 ! Z=2, is split. In 2013 Manolescu [14] showed
that the �–homomorphism does not split. Consequently, there exist Galewski–Stern
manifolds M n that are not triangulable for each n� 5.

In 1982 Freedman [8] proved that there exists a topological 4–manifold with even
intersection form of signature 8. It followed from later work of Casson that such
4–manifolds could not be triangulated. In 1991 Davis and Januszkiewicz [5] applied
Gromov’s hyperbolization procedure to Freedman’s E8 –manifold to show that there
exist closed aspherical 4–manifolds that cannot be triangulated.

In this paper we apply hyperbolization techniques to the Galewski–Stern manifolds
to show that there exist closed aspherical n–manifolds that cannot be triangulated for
each n� 6. The question remains open in dimension 5.

Any 3–dimensional homology sphere H 3 bounds a PL 4–manifold W 4 with vanish-
ing first and second Stiefel–Whitney classes. The intersection form of W 4 is then
unimodular and even; so, its signature �.W 4/ is divisible by 8. If H 3 bounds an
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acyclic 4–manifold (eg if H 3D S3 ), then, by Rokhlin’s Theorem, �.W 4/ is divisible
by 16. So, one defines the �–invariant of H 3 by

�.H 3/D
�.W 4/

8
mod 2:

Let �H
3 be the abelian group (under connected sum) of homology cobordism classes

of oriented PL homology 3–spheres. The �–invariant defines a homomorphism
�W �H

3 ! Z=2. (For background about this material, see Saveliev [17].)

In [13] Kirby and Siebenmann proved that for any topological manifold M n there is an
obstruction � 2H 4.M nIZ=2/ which, for n� 5, vanishes if and only if M n admits
a PL structure. An important point here is that the Kirby–Siebenmann obstruction
can be defined for any polyhedral homology manifold M n as follows. First, there is
obstruction in H 4.M nI �H

3 / to finding an acyclic resolution of M by a PL manifold.
This is the class of the cocycle that associates to each 4–dimensional “dual cell” in M n

the class of its boundary in �H
3 . The Kirby–Siebenmann obstruction � is the image of

this element from H 4.M nI �H
3 / under the coefficient homomorphism �W �H

3 !Z=2.

After the proof by Edwards and Cannon of the double suspension theorem, it seemed
possible that every topological manifold could still be homeomorphic to some simplicial
complex even if it did not have a PL structure. Galewski and Stern [11; 9] and
independently Matumoto [15] proved that the following statements are equivalent.

(a) Every manifold of dimension � 5 can be triangulated.

(b) There exists a homology 3–sphere H 3 with �.H 3/D 1 and ŒH 3� of order 2

in �H
3 .

Galewski and Stern also showed that, for n � 5, the obstruction for a manifold to
have a simplicial triangulation was the Bockstein of its Kirby–Siebenmann obstruction,
ˇ.�/ 2 H 5.M nIKer�/, where ˇW H 4.M nIZ=2/ ! H 5.M nIKer�/ denotes the
Bockstein homomorphism associated to the short exact sequence of coefficients

0�! Ker��! �H
3

�
�!Z=2�! 0:

In fact, as was shown by Galewski and Stern [10], one can focus instead on a simpler
Bockstein associated to the short exact sequence of coefficients

(1) 0�!Z=2
�2
�! Z=4�!Z=2�! 0:

It is well-known that the Bockstein associated to (1) is the first Steenrod square, Sq1 .
So, henceforth we will use Sq1 instead of a more general Bockstein ˇ . The reduction
to the case of Sq1 goes as follows. Suppose N n is a manifold with Sq1.�/ ¤ 0.
By [10, Theorem 2.1], if one such N n can be triangulated, then every manifold of
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dimension � 5 can be triangulated (this is statement (a) above). In [10] Galewski and
Stern also constructed n–manifolds, for each n� 5, with Sq1.�/¤ 0.

Manolescu [14, Corollary 1.2] recently established that homology 3–spheres as in (b)
do not exist. It follows that any manifold with Sq1.�/¤ 0 is not homeomorphic to a
simplicial complex. So, Galewski–Stern manifolds cannot be triangulated.

By work of Freedman and Casson nontriangulable manifolds exist in dimension 4;
cf Akbulut and McCarthy [1]. First, Freedman [8] showed that any homology 3–
sphere bounds a contractible (topological) 4–manifold. One defines the E8 –homology
manifold X 4 as follows. Start with the plumbing Q.E8/ defined by the E8 diagram.
It is a smooth, parallelizable 4–manifold with boundary; its boundary being Poincaré’s
homology 3–sphere, H 3 . The signature of Q.E8/ is 8. X 4 is defined to be the
union of this plumbing with c.H 3/ (the cone on H 3 ). It is a polyhedral homology 4–
manifold with one nonmanifold point. By Freedman [8] we can topologically “resolve
the singularity” of X 4 by replacing c.H 3/ with a contractible 4–manifold bounded
by H 3 to obtain a topological 4–manifold M 4 with nontrivial Kirby–Siebenmann
invariant. In fact, any triangulation of a 4–manifold is automatically PL. (Proof: The
link of a simplex of dimension > 0 is a homology sphere of dimension � 2, hence, a
sphere; similarly, the link of a vertex is a simply connected homology 3–sphere, hence,
by the Poincaré Conjecture, a 3–sphere.) So, if a 4–dimensional manifold does not
admit a PL structure, then it cannot be triangulated.

A variation of this idea was used in Davis and Januszkiewicz [5] to produce an aspherical
4–manifold that cannot be triangulated. Start with a triangulation of X 4 . Apply the
“hyperbolization” technique of Gromov [12] to X 4 to get h.X 4/. It is a locally
CAT.0/, polyhedral homology manifold with one nonmanifold point, the link of
which is H 3 . Resolve the conical singularity to obtain a closed aspherical topological
manifold N 4 with �.N 4/¤ 0. By the previous argument, N 4 cannot be triangulated.
(However, N 4 �S1 can be triangulated since, by the double suspension theorem, it is
homeomorphic to the triangulated manifold h.X 4/�S1 .)

The idea of this paper is to apply hyperbolization techniques to the Galewski–Stern
manifolds to obtain aspherical manifolds N n that cannot be triangulated. We do not
know how to make our techniques work in dimension 5; however, they do work in any
dimension � 6. So, we get the following.

Main Theorem For each n� 6 there is a closed aspherical manifold N n that cannot
be triangulated.

Acknowledgements Our thanks go to Ron Stern and to the referee for helpful com-
ments.
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2 The construction

The Galewski–Stern 5–manifold We recall the Galewski–Stern construction in [10]
of a 5–manifold, N 5 , now known to be nontriangulable. Start with X 4�I , where X 4

is the E8 –homology manifold. Attach an orientation-reversing 1–handle, D3 � I ,
connecting the two copies of c.H 3/ along their boundary. The two copies of Q.E8/

become the boundary connected sum Q.E8/ #b Q.E8/; it is a 4–manifold with
boundary, the boundary being H 3 # H 3 (not H 3 # .�H 3/). Consider c.H 3/ [

.D3 � I/[ c.H 3/. It is a contractible polyhedral homology 4–manifold; its boundary
is H 3 # H 3 . Fill in the boundary with c.H 3 # H 3/ to obtain a polyhedral homology
manifold T with the homology of S4 (ie a “generalized homology 4–sphere”). Next
fill in T with c.T /. The result is the polyhedral 5–manifold with boundary

(2) P5
WD .X 4

� I/[ c.T /:

Roughly speaking, after ignoring the differences between homology spheres and spheres,
we have attached an orientation-reversing 1–handle D4 � I to X 4 � I (the 1–handle
is actually c.T /). So, P5 is a nonorientable, polyhedral homology 5–manifold with
boundary; it is homotopy equivalent to S1_X 4 . The boundary of P5 is c.H 3 #H 3/[

Q.E8/ #b Q.E8/; so, @P5 contains a single nonmanifold point (the cone point of
c.H 3 # H 3/). By Edwards’ polyhedral–topological manifold characterization theorem
[7, page 119], the interior of P5 is a topological manifold. Its Kirby–Siebenmann
invariant, �.P5/, is the image of ŒX 4� in H 4.P5IZ=2/. Thus, P5 is polyhedral
homology manifold with boundary and its interior is a topological manifold which does
not admit a PL structure. Since the Kirby–Siebenmann obstruction of @P is 0, �.P /
is the image of a (unique) class �.P; @P / 2H 4.P; @P IZ=2/; moreover, one sees that
the image Sq1.�.P; @P // under Sq1 is the nonzero class in H 5.P; @P IZ=2/.

When it comes to applying hyperbolization, it is at this point where the Galewski–
Stern construction becomes problematic. Galewski and Stern get rid of the singular
point of @P5 as follows: (1) attach an external collar @P � Œ0; 1� to P , (2) find a PL
manifold V 4 embedded in @P �.0; 1/, (3) define U to be the part of the external collar
between @P � 0 and V 4 , (4) argue that V 4 bounds a PL 5–manifold W (necessarily
nonorientable) and finally, (5) glue in W to get the desired manifold,

N 5
WD P [U [W:

Galewski–Stern manifolds of dimension > 5 In dimensions > 5 there are versions
of these manifolds to which it is easier to apply hyperbolization. To fix ideas, suppose the
dimension is 6. Let P 0 WDP5�S1 , where P5 is the polyhedral homology 5–manifold
with boundary which was constructed previously. Then �.P 0/ is the nontrivial element
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in H 4.P IZ=2/˝H 0.S1IZ=2/, a summand of H 4.P 0IZ=2/. It is the image of the
unique nontrivial element �.P 0; @P 0/ of H 4.P; @P IZ=2/˝H 0.S1IZ=2/. Its image
under Sq1 is denoted Sq1.�.P 0; @P 0// 2 H 5.P; @P IZ=2/˝H 0.S1IZ=2/ Š Z=2.
By Edwards’ Theorem, @P 0 is a topological 5–manifold. Since �.@P 0/ is zero, @P 0

is actually homeomorphic to a PL 5–manifold V 0 . It is easy to see that V 0 bounds
a PL 6–manifold W 0 . Put

N 0 WD P 0[U [W 0;

where U is the mapping cylinder of a homeomorphism between @P 0 and V 0 D @W 0 .
Since �.N 0/ restricts to �.P 0/, we have �.N 0/ ¤ 0 and one sees as before that
�.N 0/ is the image of

�.P 0; @P 0/ 2H 4.P 0; @P 0IZ=2/ŠH 4.N 0;U [W 0IZ=2/:

By Wu’s formula, Sq1.�.P 0; @P 0// D w1.P
0/ [ �.P 0; @P 0/ ¤ 0. (This argument

is from the final paragraph of Galewski and Stern [10].) Hence, Sq1.�.N 0// is the
nonzero image of Sq1.�.P 0; @P 0//.

Hyperbolization A hyperbolization technique of Gromov [12, pages 114–117] is
explained in Davis and Januszkiewicz [5]: given a simplicial complex K , one can
construct a new space h.K/ and a map f W h.K/!K with the following properties.

(a) The space h.K/ is a locally CAT.0/ cubical complex; in particular, it is aspher-
ical.

(b) The inverse image in h.K/ of any simplex of K is a “hyperbolized simplex.”
So, the inverse image of each vertex in K is a point in h.K/.

(c) The map f W h.K/!K induces a split injection on cohomology; cf Davis and
Januszkiewicz [5, page 355].

(d) Hyperbolization preserves local structure: for any simplex � in K the link of
f �1.�/ is isomorphic to a subdivision of the link of � in K ; cf [5, page 356].
So, if K is a polyhedral homology manifold, then so is h.K/.

(e) If K is a polyhedral homology manifold, then f W h.K/! K pulls back the
Stiefel–Whitney classes of K to those of h.K/.

In Davis, Januszkiewicz and Weinberger [6] the above version of hyperbolization
is used to define a “relative hyperbolization procedure” (an idea also due to Gro-
mov [12, page 117]). Given .K; @K/, a triangulated manifold with boundary, form
K[ c.@K/ and then define H.K; @K/ to be the complement of an open neighborhood
of the cone point in h.K [ c.@K//. Then H.K; @K/ is a manifold with boundary; its
boundary is homeomorphic to @K . The main result of [6] is that if each component
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of @K is aspherical, then so is H.K; @K/; moreover, the inclusion @K!H.K; @K/

induces an injection on fundamental groups for each component of @K . In other words,
if an aspherical manifold bounds a triangulable manifold, then it bounds a triangulable
aspherical manifold.

Proof of the Main Theorem Our nontriangulable 6–manifold N 6 will be the union
of three pieces, N 6 D P1 [U [P2 , where P1 and P2 are triangulable, aspherical
6–manifolds with boundary, and where U is the mapping cylinder of a homeomorphism
@P1! @P2 . P1 will be defined via hyperbolization and P2 via relative hyperbolization.
Put P1 WD h.P 0/; where P 0 D P5 �S1 is the simplicially triangulated 6–manifold
with boundary discussed above. Then P1 is a topological 6–manifold with boundary
and @P1 D h.@P 0/ is homeomorphic to a PL 5–manifold V . (Note the PL structure on
V is incompatible with the triangulation of @P1 as a subcomplex of P1 .) Let U be
the mapping cylinder of a homeomorphism h.@P 0/! V . Let W be a PL manifold
bounded by V . Equip W with a PL triangulation. Applying relative hyperbolization,
we get an aspherical 6–manifold with boundary P2 WDH.W;V /; its boundary being V .
Then N 6 D P1[U [P2 is aspherical. By properties (c) and (d) of hyperbolization,
�.P1; @P1/D f

�.�.P 0; @P 0//. So, Sq1.�.P1; @P1//D f
�.Sq1.�.P 0; @P 0///. Con-

sequently, �.P1; @P1/ and Sq1.�.P1; @P1// are both nonzero. Since P2 is a PL
manifold, its obstructions vanish. As before, it follows that �.N 6/ and Sq1.�.N 6//

are both nonzero.

3 Remarks

Dimension 5 What is the situation in dimension 5? As explained in the Introduc-
tion, any polyhedral homology 4–manifold, M 4 , can be resolved to a topological
manifold M 4

res . When P5 is defined by (2), .@P5/res does not support a PL structure
(although �..@P5/res/ D 0). However, one can vary the definition of P5 so that
.@P5/res becomes homeomorphic to a PL 4–manifold. For example, we could arrange
for .@P5/res to be the K3 surface. To complete our construction we need .h.@P5//res ,
the resolution of the hyperbolization, to be PL. If this could be achieved, we could
finish by finding a PL 5–manifold bounded by .h.@P5//res and then applying relative
hyperbolization as before.

Word hyperbolicity We will show below that by using the strict hyperbolization
technique of Charney and Davis [4], one can arrange for nontriangulable aspherical
manifolds of dimension � 6 to have word hyperbolic fundamental groups. So, in
this paragraph h.K/ is the strict hyperbolization functor of [4] and H.K; @K/ is the
corresponding strict relative hyperbolization procedure. We take notation from the
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proof of the Main Theorem. Then P1 D h.P 0/ is locally CAT.�1/ and @P1 D h.@P 0/

is a totally geodesic subspace. Hence, �1.P1/ is word hyperbolic and �1.@P1/ is
a quasiconvex subgroup. Belegradek [3, Theorem 1.1] proved that the fundamental
group of H.K; @K/ is relatively hyperbolic with peripheral subgroup �1.@K/. So,
for P2 DH.W; @P1/, we have that �1.P2/ is relatively hyperbolic and its peripheral
subgroup �1.@P1/ is word hyperbolic. By Osin [16, Corollary 2.41] this implies
that �1.P2/ is word hyperbolic. Since �1.P2/ is both relatively hyperbolic and
word hyperbolic, it is a result of Bowditch that the peripheral subgroup �1.@P1/ is
quasiconvex and malnormal in �1.P2/. Finally, Alibegović [2, Theorem 2.3] has
shown that under the additional condition of “tightness” one can show that a graph of
word hyperbolic groups is word hyperbolic. (Tightness is implied by the malnormality
of the peripheral subgroup.) In the case at hand, the inclusions �1.@P1/ ,! �1.P1/

and �1.@P1/ ,! �1.P2/ are tight. Hence, the amalgamated product,

�1.N
6/D �1.P1/��1.@P1/ �1.P2/

is word hyperbolic.

Orientability The Galewski–Stern 5–manifold is nonorientable. (In fact, Sieben-
mann [18] showed that every orientable 5–manifold can be triangulated.) Since our
construction of a nontriangulable aspherical manifold N 6 starts from P5 �S1 , the
manifold N 6 is also nonorientable (by property (e) of hyperbolization). The question
arises: Do orientable examples exist? The answer is yes. To construct one, start from
the nonorientable S1 –bundle over P instead of P �S1 , where w1 of the associated
vector bundle is w1.P /. The total space E of the S1 –bundle is then a 6–dimensional,
orientable, polyhedral homology manifold with boundary. The restriction of the S1 –
bundle to @P5 is orientable so @E D @P5 �S1 remains the same. As before, we get
N 6DP1[U [P2 where P1D h.E/, V is a PL manifold homeomorphic to @P1 , W

is a PL manifold bounded by V , P2 DH.W;V / and U is the mapping cylinder of a
homeomorphism @P2! @P1 .

Bounding nontriangulable manifolds By using relative hyperbolization, Davis, Jan-
uszkiewicz and Weinberger [6] proved that if an aspherical manifold bounds a triangu-
lable manifold, then it bounds an aspherical one. Can we omit the word “triangulable?”
In other words, if an aspherical topological manifold M bounds, does it bound an
aspherical manifold? If M does not support a triangulation, then it cannot bound
a triangulated manifold, and one cannot use relative hyperbolization directly. The
specific examples of nontriangulable aspherical manifolds constructed in this paper are
boundaries, and a similar construction can be applied to produce aspherical manifolds
that they bound. However, the general question remains open.
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