

On compact hyperbolic manifolds of Euler characteristic two

VINCENT EMERY

We prove that for n > 4 there is no compact arithmetic hyperbolic *n*-manifold whose Euler characteristic has absolute value equal to 2. In particular, this shows the nonexistence of arithmetically defined hyperbolic rational homology *n*-spheres with *n* even and different than 4.

22E40; 55C35, 51M25

Dedicated to the memory of Colin Maclachlan

1 Main result and discussion

1.1 Smallest hyperbolic manifolds

Let \mathbb{H}^n be the hyperbolic *n*-space. By a *hyperbolic n-manifold* we mean an orientable manifold $M = \Gamma \setminus \mathbb{H}^n$, where Γ is a torsion free discrete subgroup $\Gamma \subset \text{Isom}^+(\mathbb{H}^n)$. The set of volumes of hyperbolic *n*-manifolds being well ordered, it is natural to try to determine for each dimension *n* the hyperbolic manifolds of smallest volume. For n = 3 this problem has recently been solved by Gabai, Meyerhoff and Milley in [15], the smallest volume being achieved by a unique compact manifold, the Weeks manifold. When *n* is even the volume is proportional to the Euler characteristic, and this allows us to formulate the problem in terms of finding the hyperbolic manifolds *M* with smallest $|\chi(M)|$. In particular this observation solves the problem in the case of surfaces. For n > 3, noncompact hyperbolic *n*-manifolds *M* with $|\chi(M)| = 1$ have been found for n = 4, 6; see Everitt, Ratcliffe and Tschantz [13].

In the present paper we consider the case of compact manifolds of even dimension. In particular, such manifolds have even Euler characteristic (see Kellerhals and Zehrt [17, Theorem 1.2]). We restrict ourselves to the case of *arithmetic* manifolds, where Prasad's formula [20] can be used to study volumes. We complete the proof of the following result.

Theorem 1 Let n > 5. There is no compact arithmetic manifold $M = \Gamma \setminus \mathbb{H}^n$ with $|\chi(M)| = 2$.

The result for n > 10 already follows from the work of Belolipetsky [2; 3], also based on Prasad's volume formula. More precisely, Belolipetsky determined the smallest Euler characteristic $|\chi(\Gamma)|$ for arithmetic orbifold quotients $\Gamma \setminus \mathbb{H}^n$ (*n* even). This smallest value grows fast with the dimension *n*, and for compact quotients we have $|\chi(\Gamma)| > 2$ for n > 10. That the result of nonexistence holds for *n* high enough is already a consequence of Borel and Prasad's general finiteness result [7], which was the first application of Prasad's formula. The proof of Theorem 1 for n = 6, 8, 10requires a more precise analysis of the Euler characteristic of arithmetic subgroups $\Gamma \subset PO(n, 1)$, and in particular of the special values of Dedekind zeta functions that appear as factors of $\chi(\Gamma)$.

For n = 4, the corresponding problem is not solved, but there is the following result [3].

Theorem 2 (Belolipetsky) If $M = \Gamma \setminus \mathbb{H}^4$ is a compact arithmetic manifold with $\chi(M) \leq 16$, then Γ arises as a (torsion free) subgroup of the following hyperbolic Coxeter group:

(1)
$$W_1 = \bullet \underbrace{5}{\bullet} \bullet \bullet \bullet \bullet \bullet$$

An arithmetic (orientable) hyperbolic 4–manifold of Euler characteristic 16 was first constructed by Conder and Maclachlan in [11], using the presentation of W_1 to obtain a torsion free subgroup with the help of a computer. Further examples with $\chi(M) = 16$ have been obtained by Long in [18] by considering a homomorphism from W_1 onto the finite simple group PSp₄(4).

1.2 Hyperbolic homology spheres

Our original motivation for Theorem 1 was the problem of existence of hyperbolic homology spheres. A homology n-sphere (resp. rational homology n-sphere) is a n-manifold M that possesses the same integral (resp. rational) homology as the n-sphere S^n . This forces M to be compact and orientable.

Rational homology *n*-spheres *M* have $\chi(M) = 2$ if *n* is even. On the other hand, for $M = \Gamma \setminus \mathbb{H}^n$ with n = 4k + 2 we have $\chi(M) < 0$ (cf Serre [25, Proposition 23]), and this excludes the possibility of hyperbolic rational homology spheres for those dimensions. For *n* even, Wang's finiteness theorem [28] implies that there is only a finite number of hyperbolic rational homology *n*-spheres. Theorem 1 shows the nonexistence of arithmetic rational homology spheres for n > 5 even.

For odd dimensions, $\chi(M) = 0$ and *a priori* the volume is not a limitation for the existence of hyperbolic (rational) homology spheres. In fact, an infinite tower of covers by hyperbolic integral homology 3-spheres has been constructed by Baker, Boileau and Wang in [1]. In [8] Calegari and Dunfield constructed an infinite tower of hyperbolic rational homology 3-spheres that are arithmetic and obtained by congruence subgroups. Note that a recent conjecture of Bergeron and Venkatesh predicts a lot of torsion in the homology groups of such a "congruence tower" of arithmetic *n*-manifolds with *n* odd [5].

1.3 Locally symmetric homology spheres

Instead of considering hyperbolic homology spheres, one can more generally look for homology spheres that are locally isometric to a given symmetric space of nonpositive nonflat sectional curvature. Such a symmetric space X is said to be of noncompact type, and it is classical that X can be written as G/K, where G is a connected real semisimple Lie group with trivial center with $K \subset G$ a maximal compact subgroup. Moreover, G identifies as a finite index subgroup in the group of isometries of X (of index two if G is simple).

Let us explain why the case $X = \mathbb{H}^n$ is the main source of locally symmetric rational homology spheres (among X of noncompact type). Let M be a compact orientable manifold locally isometric to X. Then M can be written as $\Gamma \setminus X$, where $\Gamma \cong \pi_1(M)$ is a discrete subgroup of isometries of X. We will suppose that $\Gamma \subset G$, for G as above. Let X_u be the compact dual of X. We have the following general result (see Borel [6, Sections 3.2 and 10.2]).

Proposition 3 There is an injective homomorphism $H^j(X_u, \mathbb{C}) \to H^j(\Gamma \setminus X, \mathbb{C})$, for each *j*.

In particular, if $\Gamma \setminus X$ is a rational homology sphere, then so is X_u . Note that the compact dual of $X = \mathbb{H}^n$ is the genuine sphere S^n . By looking at the classification of compact symmetric spaces, Johnson showed the following in [16, Theorem 7].

Corollary 4 If $M = \Gamma \setminus X$ is a rational homology *n*-sphere with $\Gamma \subset G$, then *X* is either the hyperbolic *n*-space \mathbb{H}^n (with $n \neq 4k + 2$), or $X = \text{PSL}_3(\mathbb{R})/\text{PSO}(3)$ (which has dimension 5).

Proposition 3 shows that the correct problem to look at — rather than homology spheres — is the existence of locally symmetric spaces $\Gamma \setminus X$ with the same (rational) homology as the compact dual X_u . When X is the complex hyperbolic plane $\mathbb{H}^2_{\mathbb{C}}$, the

compact dual is the projective plane $\mathbb{P}^2_{\mathbb{C}}$, and the quotients $\Gamma \setminus X$ are compact complex surfaces called *fake projective planes*. Their classification was recently obtained by the work of Prasad and Yeung [21], together with Cartwright and Steger [9] who performed the necessary computer search. Later, Prasad and Yeung also considered the problem of the existence of more general arithmetic fake Hermitian spaces [22; 23].

The present paper uses the same methodology as in Prasad and Yeung's work, the main ingredient being the volume formula.

Acknowledgements It is a pleasure to thank Gopal Prasad, who suggested this research project. This work was supported by the Swiss National Science Foundation, project number PA00P2-139672.

2 Proof of Theorem 1

Let $G = PO(n, 1)^{\circ} \cong Isom^+(\mathbb{H}^n)$ and consider the universal covering ϕ : Spin $(n, 1) \to G$. For our purpose it will be easier to work with lattices in Spin(n, 1). A lattice $\overline{\Gamma} \subset G$ is arithmetic exactly when $\Gamma = \phi^{-1}(\overline{\Gamma})$ is an arithmetic subgroup of Spin(n, 1). Since the covering ϕ is twofold, we have $\chi(\Gamma) = \frac{1}{2}\chi(\overline{\Gamma})$, where χ is the Euler characteristic in the sense of Wall. In particular, if $M = \overline{\Gamma} \setminus \mathbb{H}^n$ is a manifold with $|\chi(M)| = 2$, then $|\chi(\Gamma)| = 1$. Thus, Theorem 1 is an obvious consequence of the following proposition. The proof relies on the description of arithmetic subgroups with the help of Bruhat–Tits theory, as done for instance in [7; 20]. An introduction can be found in the author's work [12]. We also refer to [27] for the needed facts from Bruhat–Tits theory.

Proposition 5 Let n > 4. There is no cocompact arithmetic lattice $\Gamma \subset \text{Spin}(n, 1)$ such that $\chi(\Gamma)$ is a reciprocal integer, ie, such that $\chi(\Gamma) = 1/q$ for some $q \in \mathbb{Z}$.

Proof We can assume that *n* is even. Let $\Gamma \subset \text{Spin}(n, 1)$ be a cocompact lattice. Clearly, it suffices to prove the proposition for Γ maximal. In this case, Γ can be written as the normalizer $\Gamma = N_{\text{Spin}(n,1)}(\Lambda)$ of some *principal* arithmetic subgroup Λ (see [7, Proposition 1.4]). By definition, there exists a number field $k \subset \mathbb{R}$ and a k-group G with $G(\mathbb{R}) \cong \text{Spin}(n, 1)$ such that $\Lambda = G(k) \cap \prod_{v \in V_f} P_v$, for some coherent collection $(P_v)_{v \in V_f}$ of parahoric subgroups $P_v \subset G(k_v)$ (indexed by the set V_f of finite places of k). It follows from the classification of algebraic groups (cf Tits [26]) that G is of type B_r with r = n/2 (> 2), the field k is totally real, and (using Godement's criterion) $k \neq \mathbb{Q}$. Let us denote by d the degree $[k : \mathbb{Q}]$. Let $T \subset V_f$ be the set of places where P_v is not hyperspecial. By Prasad's volume formula (see [20] and [7, Section 4.2]), we have

(2)
$$|\chi(\Lambda)| = 2|D_k|^{r^2 + r/2} C(r)^d \prod_{j=1}^r \zeta_k(2j) \prod_{v \in T} \lambda_v$$

with D_k (resp. ζ_k) the discriminant (resp. Dedekind zeta function) of k; the constant C(r) is given by

(3)
$$C(r) = \prod_{j=1}^{r} \frac{(2j-1)!}{(2\pi)^{2j}},$$

and each λ_v is given by the formula

(4)
$$\lambda_{v} = \frac{1}{(q_{v})^{(\dim \mathcal{M}_{v} - \dim \mathcal{M}_{v})/2}} \frac{|\mathcal{M}(\mathfrak{f}_{v})|}{|\mathcal{M}_{v}(\mathfrak{f}_{v})|}$$

where f_v is the residue field of k_v , of size q_v , and the reductive f_v -groups M_v and \mathcal{M}_v associated with P_v are those described in [20]. By definition \mathcal{M}_v is semisimple of type B_r .

$\boldsymbol{G}/k_{\boldsymbol{v}}$	isogeny type of M_v	λ_v
split	$B_{r-1} \times (\text{split } GL_1)$	$\frac{q^{2r}-1}{q-1}$
	$\mathbf{D}_i \times \mathbf{B}_{r-i} \ (i=2,\ldots,r-1)$	$\frac{(q^{i}+1)\prod_{k=i+1}^{r}(q^{2k}-1)}{\prod_{k=1}^{r-i}(q^{2k}-1)}$
	$^{1}\mathrm{D}_{r}$	$q^{r} + 1$
nonsplit	$B_{r-1} \times (nonsplit GL_1)$	$\frac{q^{2r}-1}{q+1}$
	² D _{<i>i</i>+1} ×B _{<i>r</i>-<i>i</i>-1} (<i>i</i> = 1,, <i>r</i> -2)	$\frac{(q^{i+1}-1)\prod_{k=i+2}^{r}(q^{2k}-1)}{\prod_{k=1}^{r-i-1}(q^{2k}-1)}$
	$^{2}D_{r}$	$q^{r} - 1$

Table 1: λ_v for P_v of maximal type

A necessary condition for $\Gamma = N_{G(\mathbb{R})}(\Lambda)$ to be maximal is that each P_v defining Λ has maximal type in the sense of Ryzhkov and Chernousov [24]. We list in Table 1 the factors λ_v corresponding to parahoric subgroups P_v of maximal types (to improve the readability we set $q_v = q$ in the formulas). This list of maximal type and the formulas for λ_v are essentially the same as in [2, Table 1]: the only difference is a factor of 2 in the denominator of some λ_v , which can be explained from the fact that Belolipetsky did not work with G simply connected.

From [7, Section 5] (cf also [12, Chapter 12]) we can deduce that the index $[\Gamma : \Lambda]$ of Λ in its normalizer has the following property:

(5)
$$[\Gamma : \Lambda]$$
 divides $h_k 2^d 4^{\#T}$

Moreover, a case by case analysis of the possible factor λ_v shows that $\lambda_v > 4$, so that $4^{-\#T} \prod_{v \in T} \lambda_v \ge 1$ (with equality exactly when *T* is empty). We thus have the following lower bound for the Euler characteristic of any maximal arithmetic subgroup $\Gamma \subset \text{Spin}(n, 1)$:

(6)
$$|\chi(\Gamma)| \ge \frac{2}{h_k} \left(\frac{C(r)}{2}\right)^d |D_k|^{r^2 + r/2} \zeta_k(2) \cdots \zeta_k(2r)$$

We make use of the following upper bound for the class number (see for instance Belolipetsky and the author [4, Section 7.2]):

(7)
$$h_k \le 16(\frac{\pi}{12})^d |D_k|$$

which together with the basic inequality $\zeta_k(2j) > 1$ transforms (6) into

(8)
$$|\chi(\Gamma)| > \frac{1}{8} \left(\frac{6 \cdot C(r)}{\pi}\right)^d |D_k|^{r^2 + r/2 - 1}$$

Moreover, according to Odlyzko [19, Table 4], we have that for a degree $d \ge 5$ the discriminant of k is larger than $(6.5)^d$. With this estimates we can check that for $r \ge 3$ and $d \ge 5$ we have $|\chi(\Gamma)| > 1$. For the lower degrees, if we suppose that $|\chi(\Gamma)| \le 1$, we obtain upper bounds for $|D_k|$ from Equation (8). This upper bounds exclude the existence of such a Γ for $r \ge 6$ (which is already clear from the work of Belolipetsky [2]). For r = 3 (where the bounds are the worst) we obtain:

$$d = 2 : |D_k| \le 28$$
$$d = 3 : |D_k| \le 134$$
$$d = 4 : |D_k| \le 640$$

From the existing tables of number fields (eg, [10; 14]) we can list the possibilities this leaves us for k. We find that no field with d = 4 can appear, and for d = 2, 3 all possibilities have class number $h_k = 1$. Using Equation (7) with $h_k = 1$ we then improve the upper bounds for $|D_k|$ and thus shorten the list of possible fields. For r = 5 only $|D_k| = 5$ arises, and for r = 4 we have $|D_k| \le 11$ (the possibility d = 3 is excluded here). For r = 3, we are left with $|D_k| \le 20$ when d = 2, and $|D_k| = 49$ or 81 when d = 3.

With $h_k = 1$, using the functional equation for ζ_k and the property (5) for the index $[\Gamma : \Lambda]$, we can express the Euler characteristic of Γ as

(9)
$$|\chi(\Gamma)| = \frac{1}{2^a} \prod_{v \in T} \lambda_v \prod_{j=1}^r |\zeta_k(1-2j)|$$

for some integer *a*. The special values $\zeta_k(1-2j)$, which are rational by the Klingen– Siegel theorem, can be computed with the software Pari/GP (cf Remark 6). We list in Table 2 the values we need. We check that for every field *k* under consideration a prime factor greater than 2 appear in the numerator of the product $\prod_{j=1}^r |\zeta_k(1-2j)|$. A direct computation for r = 3, 4, 5 shows that the formula in Table 1 for each factor λ_v is actually given by a polynomial in *q* (this seems to hold for any *r*). In particular, we always have $\lambda_v \in \mathbb{Z}$, and we conclude from (9) that $|\chi(\Gamma)|$ cannot be a reciprocal integer.

degree	$ D_k $	$\zeta_k(-1)$	$\zeta_k(-3)$	$\zeta_k(-5)$	$\zeta_k(-7)$	$\zeta_k(-9)$
d = 2	5	1/30	1/60	67/630	361/120	412751/1650
	8	1/12	11/120	361/252	24611/240	
	12	1/6	23/60	1681/126		
	13	1/6	29/60	33463/1638		
	17	1/3	41/30	5791/63		
d = 3	49	-1/21	79/210	-7393/63		
	81	-1/9	199/90	-50353/27		

Table 2: Special values of ζ_k

This completes the proof.

Remark 6 The function zetak in Pari/GP allows us to obtain approximate values for $\zeta_k(1-2j)$. On the other hand the size of the denominator of the product $\prod_{j=1}^{m} \zeta_k(1-2j)$ can be bounded by the method described in [25, Section 3.7]. By recursion on *m*, this allows to ascertain that the values $\zeta_k(1-2j)$ correspond exactly to the fractions given in Table 2.

Remark 7 The fact that for $|D_k| = 5$ the value $\zeta_k(-1)\zeta_k(-3)$ has trivial numerator explains why the proof fails for n = 4 (ie, r = 2). And indeed there is a principal arithmetic subgroup $\Gamma \subset \text{Spin}(4, 1)$ with $|\chi(\Gamma)| = \frac{1}{14400}$ and whose image in $\text{Isom}^+(\mathbb{H}^4)$ is contained as an index-2 subgroup of the Coxeter group W_1 . On the other hand, for

 $|D_k| > 5$ the appearance of a nontrivial numerator in $\zeta_k(-3)$ shows—at least for the fields considered in Table 2—the impossibility of a Γ defined over k with $\chi(\Gamma)$ a reciprocal integer. This is the first step in Belolipetsky's proof of Theorem 2.

References

- M Baker, M Boileau, S Wang, Towers of covers of hyperbolic 3-manifolds, Rend. Istit. Mat. Univ. Trieste 32 (2001) 35–43 MR1893391 Dedicated to the memory of Marco Reni
- M Belolipetsky, On volumes of arithmetic quotients of SO(1, n), Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (2004) 749–770 MR2124587
- [3] **M Belolipetsky**, *Addendum to: "On volumes of arithmetic quotients of* SO(1, n)", Ann. Sc. Norm. Super. Pisa Cl. Sci. 6 (2007) 263–268 MR2352518
- M Belolipetsky, V Emery, On volumes of arithmetic quotients of PO(n, 1)°, n odd, Proc. Lond. Math. Soc. 105 (2012) 541–570 MR2974199
- [5] N Bergeron, A Venkatesh, The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu 12 (2013) 391–447 MR3028790
- [6] A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235–272 MR0387496
- [7] A Borel, G Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. (1989) 119–171 MR1019963
- [8] F Calegari, NM Dunfield, Automorphic forms and rational homology 3–spheres, Geom. Topol. 10 (2006) 295–329 MR2224458
- DI Cartwright, T Steger, Enumeration of the 50 fake projective planes, C. R. Math. Acad. Sci. Paris 348 (2010) 11–13 MR2586735
- [10] H Cohen, et al., The Bordeaux database Available at megrez.math.u-bordeaux.fr
- M Conder, C Maclachlan, Compact hyperbolic 4-manifolds of small volume, Proc. Amer. Math. Soc. 133 (2005) 2469–2476 MR2138890
- [12] V Emery, Du volume des quotients arithmétiques de l'espace hyperbolique, PhD thesis, University of Fribourg (2009) Available at http://homeweb1.unifr.ch/ kellerha/pub/DissVEmery-final-09.pdf
- [13] B Everitt, J G Ratcliffe, S T Tschantz, Right-angled Coxeter polytopes, hyperbolic six-manifolds, and a problem of Siegel, Math. Ann. 354 (2012) 871–905 MR2983072
- [14] S Freundt, QaoS online database Available at http://qaos.math.tu-berlin.de
- D Gabai, R Meyerhoff, P Milley, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009) 1157–1215 MR2525782

- [16] FEA Johnson, Locally symmetric homology spheres and an application of Matsushima's formula, Math. Proc. Cambridge Philos. Soc. 91 (1982) 459–466 MR654091
- [17] R Kellerhals, T Zehrt, The Gauss–Bonnet formula for hyperbolic manifolds of finite volume, Geom. Dedicata 84 (2001) 49–62 MR1825344
- [18] C Long, Small volume closed hyperbolic 4-manifolds, Bull. Lond. Math. Soc. 40 (2008) 913–916 MR2439657
- [19] A M Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: A survey of recent results, Sém. Théor. Nombres Bordeaux 2 (1990) 119–141 MR1061762
- [20] G Prasad, Volumes of S-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. (1989) 91–117 MR1019962 With an appendix by Moshe Jarden and the author
- [21] G Prasad, S-K Yeung, Fake projective planes, Invent. Math. 168 (2007) 321–370 MR2289867
- [22] G Prasad, S-K Yeung, Arithmetic fake projective spaces and arithmetic fake Grassmannians, Amer. J. Math. 131 (2009) 379–407 MR2503987
- [23] **G Prasad, S-K Yeung**, Nonexistence of arithmetic fake compact Hermitian symmetric spaces of type other than A_n ($n \le 4$), J. Math. Soc. Japan 64 (2012) 683–731 MR2965425
- [24] A A Ryzhkov, V I Chernousov, On the classification of maximal arithmetic subgroups of simply connected groups, Mat. Sb. 188 (1997) 127–156 MR1481667 In Russian; translated in Mat. Sb. 188 (1997) 1385–1413
- [25] J-P Serre, Cohomologie des groupes discrets, from: "Prospects in mathematics", Princeton Univ. Press (1971) 77–169 MR0385006
- [26] J Tits, Classification of algebraic semisimple groups, from: "Algebraic Groups and Discontinuous Subgroups", Amer. Math. Soc. (1966) 33–62 MR0224710
- [27] J Tits, *Reductive groups over local fields*, from: "Automorphic forms, representations and *L*-functions, Part 1", (A Borel, W Casselman, editors), Proc. Sympos. Pure Math. 33, Amer. Math. Soc. (1979) 29–69 MR546588
- [28] H C Wang, Topics on totally discontinuous groups, from: "Symmetric spaces", (W M Boothby, G L Weiss, editors), Dekker, New York (1972) 459–487 MR0414787

Department of Mathematics, Stanford University Stanford, CA 94305, USA

vincent.emery@gmail.com

Received: 15 May 2013