
msp
Algebraic & Geometric Topology 14 (2014) 853–861

On compact hyperbolic manifolds
of Euler characteristic two

VINCENT EMERY

We prove that for n > 4 there is no compact arithmetic hyperbolic n–manifold
whose Euler characteristic has absolute value equal to 2 . In particular, this shows
the nonexistence of arithmetically defined hyperbolic rational homology n–spheres
with n even and different than 4 .

22E40; 55C35, 51M25

Dedicated to the memory of Colin Maclachlan

1 Main result and discussion

1.1 Smallest hyperbolic manifolds

Let Hn be the hyperbolic n–space. By a hyperbolic n–manifold we mean an orientable
manifold M D �nHn , where � is a torsion free discrete subgroup � � IsomC.Hn/.
The set of volumes of hyperbolic n–manifolds being well ordered, it is natural to try
to determine for each dimension n the hyperbolic manifolds of smallest volume. For
nD 3 this problem has recently been solved by Gabai, Meyerhoff and Milley in [15],
the smallest volume being achieved by a unique compact manifold, the Weeks manifold.
When n is even the volume is proportional to the Euler characteristic, and this allows us
to formulate the problem in terms of finding the hyperbolic manifolds M with smallest
j�.M /j. In particular this observation solves the problem in the case of surfaces. For
n> 3, noncompact hyperbolic n–manifolds M with j�.M /j D 1 have been found for
nD 4; 6; see Everitt, Ratcliffe and Tschantz [13].

In the present paper we consider the case of compact manifolds of even dimen-
sion. In particular, such manifolds have even Euler characteristic (see Kellerhals
and Zehrt [17, Theorem 1.2]). We restrict ourselves to the case of arithmetic manifolds,
where Prasad’s formula [20] can be used to study volumes. We complete the proof of
the following result.

Theorem 1 Let n > 5. There is no compact arithmetic manifold M D �nHn with
j�.M /j D 2.
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The result for n> 10 already follows from the work of Belolipetsky [2; 3], also based
on Prasad’s volume formula. More precisely, Belolipetsky determined the smallest
Euler characteristic j�.�/j for arithmetic orbifold quotients �nHn (n even). This
smallest value grows fast with the dimension n, and for compact quotients we have
j�.�/j > 2 for n > 10. That the result of nonexistence holds for n high enough is
already a consequence of Borel and Prasad’s general finiteness result [7], which was
the first application of Prasad’s formula. The proof of Theorem 1 for n D 6; 8; 10

requires a more precise analysis of the Euler characteristic of arithmetic subgroups
� � PO.n; 1/, and in particular of the special values of Dedekind zeta functions that
appear as factors of �.�/.

For nD 4, the corresponding problem is not solved, but there is the following result [3].

Theorem 2 (Belolipetsky) If M D �nH4 is a compact arithmetic manifold with
�.M / � 16, then � arises as a (torsion free) subgroup of the following hyperbolic
Coxeter group:

(1) W1 D�
5
� � � �

An arithmetic (orientable) hyperbolic 4–manifold of Euler characteristic 16 was first
constructed by Conder and Maclachlan in [11], using the presentation of W1 to obtain
a torsion free subgroup with the help of a computer. Further examples with �.M /D 16

have been obtained by Long in [18] by considering a homomorphism from W1 onto
the finite simple group PSp4.4/.

1.2 Hyperbolic homology spheres

Our original motivation for Theorem 1 was the problem of existence of hyperbolic
homology spheres. A homology n–sphere (resp. rational homology n–sphere) is
a n–manifold M that possesses the same integral (resp. rational) homology as the
n–sphere Sn . This forces M to be compact and orientable.

Rational homology n–spheres M have �.M /D 2 if n is even. On the other hand,
for M D �nHn with nD 4kC 2 we have �.M / < 0 (cf Serre [25, Proposition 23]),
and this excludes the possibility of hyperbolic rational homology spheres for those
dimensions. For n even, Wang’s finiteness theorem [28] implies that there is only
a finite number of hyperbolic rational homology n–spheres. Theorem 1 shows the
nonexistence of arithmetic rational homology spheres for n> 5 even.
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For odd dimensions, �.M / D 0 and a priori the volume is not a limitation for the
existence of hyperbolic (rational) homology spheres. In fact, an infinite tower of covers
by hyperbolic integral homology 3–spheres has been constructed by Baker, Boileau and
Wang in [1]. In [8] Calegari and Dunfield constructed an infinite tower of hyperbolic
rational homology 3–spheres that are arithmetic and obtained by congruence subgroups.
Note that a recent conjecture of Bergeron and Venkatesh predicts a lot of torsion in
the homology groups of such a “congruence tower” of arithmetic n–manifolds with n

odd [5].

1.3 Locally symmetric homology spheres

Instead of considering hyperbolic homology spheres, one can more generally look for
homology spheres that are locally isometric to a given symmetric space of nonpositive
nonflat sectional curvature. Such a symmetric space X is said to be of noncompact
type, and it is classical that X can be written as G=K , where G is a connected real
semisimple Lie group with trivial center with K �G a maximal compact subgroup.
Moreover, G identifies as a finite index subgroup in the group of isometries of X (of
index two if G is simple).

Let us explain why the case X DHn is the main source of locally symmetric rational
homology spheres (among X of noncompact type). Let M be a compact orientable
manifold locally isometric to X . Then M can be written as �nX , where � Š �1.M /

is a discrete subgroup of isometries of X . We will suppose that � � G , for G as
above. Let Xu be the compact dual of X . We have the following general result (see
Borel [6, Sections 3.2 and 10.2]).

Proposition 3 There is an injective homomorphism H j .Xu;C/!H j .�nX;C/, for
each j .

In particular, if �nX is a rational homology sphere, then so is Xu . Note that the
compact dual of X DHn is the genuine sphere Sn . By looking at the classification of
compact symmetric spaces, Johnson showed the following in [16, Theorem 7].

Corollary 4 If M D �nX is a rational homology n–sphere with � � G , then X

is either the hyperbolic n–space Hn (with n ¤ 4k C 2), or X D PSL3.R/=PSO.3/
(which has dimension 5).

Proposition 3 shows that the correct problem to look at — rather than homology
spheres — is the existence of locally symmetric spaces �nX with the same (rational)
homology as the compact dual Xu . When X is the complex hyperbolic plane H2

C , the

Algebraic & Geometric Topology, Volume 14 (2014)



856 Vincent Emery

compact dual is the projective plane P2
C , and the quotients �nX are compact complex

surfaces called fake projective planes. Their classification was recently obtained by the
work of Prasad and Yeung [21], together with Cartwright and Steger [9] who performed
the necessary computer search. Later, Prasad and Yeung also considered the problem
of the existence of more general arithmetic fake Hermitian spaces [22; 23].

The present paper uses the same methodology as in Prasad and Yeung’s work, the main
ingredient being the volume formula.

Acknowledgements It is a pleasure to thank Gopal Prasad, who suggested this re-
search project. This work was supported by the Swiss National Science Foundation,
project number PA00P2-139672.

2 Proof of Theorem 1

Let GDPO.n;1/ıŠ IsomC.Hn/ and consider the universal covering �W Spin.n;1/!G .
For our purpose it will be easier to work with lattices in Spin.n; 1/. A lattice x� �G is
arithmetic exactly when � D ��1.x�/ is an arithmetic subgroup of Spin.n; 1/. Since
the covering � is twofold, we have �.�/D 1

2
�.x�/, where � is the Euler characteristic

in the sense of Wall. In particular, if M D x�nHn is a manifold with j�.M /j D 2, then
j�.�/j D 1. Thus, Theorem 1 is an obvious consequence of the following proposition.
The proof relies on the description of arithmetic subgroups with the help of Bruhat–Tits
theory, as done for instance in [7; 20]. An introduction can be found in the author’s
work [12]. We also refer to [27] for the needed facts from Bruhat–Tits theory.

Proposition 5 Let n > 4. There is no cocompact arithmetic lattice � � Spin.n; 1/
such that �.�/ is a reciprocal integer, ie, such that �.�/D 1=q for some q 2 Z.

Proof We can assume that n is even. Let � � Spin.n; 1/ be a cocompact lattice.
Clearly, it suffices to prove the proposition for � maximal. In this case, � can be
written as the normalizer � DNSpin.n;1/.ƒ/ of some principal arithmetic subgroup ƒ
(see [7, Proposition 1.4]). By definition, there exists a number field k � R and a
k –group G with G .R/ Š Spin.n; 1/ such that ƒ D G .k/ \

Q
v2Vf

Pv , for some
coherent collection .Pv/v2Vf of parahoric subgroups Pv � G .kv/ (indexed by the
set Vf of finite places of k ). It follows from the classification of algebraic groups (cf
Tits [26]) that G is of type Br with r D n=2 .> 2/, the field k is totally real, and
(using Godement’s criterion) k ¤Q. Let us denote by d the degree Œk WQ�.
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Let T � Vf be the set of places where Pv is not hyperspecial. By Prasad’s volume
formula (see [20] and [7, Section 4.2]), we have

(2) j�.ƒ/j D 2jDk j
r2Cr=2C.r/d

rY
jD1

�k.2j /
Y
v2T

�v;

with Dk (resp. �k ) the discriminant (resp. Dedekind zeta function) of k ; the constant
C.r/ is given by

(3) C.r/D

rY
jD1

.2j � 1/!

.2�/2j
;

and each �v is given by the formula

(4) �v D
1

.qv/.dimMv�dim Mv/=2

jM.fv/j

jMv.fv/j
;

where fv is the residue field of kv , of size qv , and the reductive fv –groups Mv and Mv

associated with Pv are those described in [20]. By definition Mv is semisimple of
type Br .

G =kv isogeny type of Mv �v

split Br�1 � .split GL1/
q2r�1
q�1

Di �Br�i (i D 2; : : : ; r � 1) .qiC1/
Qr

kDiC1.q
2k�1/Qr�i

kD1.q
2k�1/

1Dr qr C 1

nonsplit Br�1 � .nonsplit GL1/
q2r�1
qC1

2DiC1 �Br�i�1 (i D 1; : : : ; r � 2) .qiC1�1/
Qr

kDiC2.q
2k�1/Qr�i�1

kD1 .q2k�1/

2Dr qr � 1

Table 1: �v for Pv of maximal type

A necessary condition for � DNG.R/.ƒ/ to be maximal is that each Pv defining ƒ
has maximal type in the sense of Ryzhkov and Chernousov [24]. We list in Table 1 the
factors �v corresponding to parahoric subgroups Pv of maximal types (to improve the
readability we set qv D q in the formulas). This list of maximal type and the formulas
for �v are essentially the same as in [2, Table 1]: the only difference is a factor of 2 in
the denominator of some �v , which can be explained from the fact that Belolipetsky
did not work with G simply connected.
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From [7, Section 5] (cf also [12, Chapter 12]) we can deduce that the index Œ� W ƒ�
of ƒ in its normalizer has the following property:

(5) Œ� Wƒ� divides hk2d4#T

Moreover, a case by case analysis of the possible factor �v shows that �v > 4, so
that 4�#T

Q
v2T �v � 1 (with equality exactly when T is empty). We thus have the

following lower bound for the Euler characteristic of any maximal arithmetic subgroup
� � Spin.n; 1/:

(6) j�.�/j �
2

hk

�
C.r/

2

�d

jDk j
r2Cr=2�k.2/ � � � �k.2r/

We make use of the following upper bound for the class number (see for instance
Belolipetsky and the author [4, Section 7.2]):

(7) hk � 16. �
12
/d jDk j

which together with the basic inequality �k.2j / > 1 transforms (6) into

(8) j�.�/j>
1

8

�
6 �C.r/

�

�d

jDk j
r2Cr=2�1:

Moreover, according to Odlyzko [19, Table 4], we have that for a degree d � 5 the
discriminant of k is larger than .6:5/d . With this estimates we can check that for
r � 3 and d � 5 we have j�.�/j > 1. For the lower degrees, if we suppose that
j�.�/j � 1, we obtain upper bounds for jDk j from Equation (8). This upper bounds
exclude the existence of such a � for r � 6 (which is already clear from the work of
Belolipetsky [2]). For r D 3 (where the bounds are the worst) we obtain:

d D 2 W jDk j � 28

d D 3 W jDk j � 134

d D 4 W jDk j � 640

From the existing tables of number fields (eg, [10; 14]) we can list the possibilities
this leaves us for k . We find that no field with d D 4 can appear, and for d D 2; 3

all possibilities have class number hk D 1. Using Equation (7) with hk D 1 we then
improve the upper bounds for jDk j and thus shorten the list of possible fields. For
r D 5 only jDk j D 5 arises, and for r D 4 we have jDk j � 11 (the possibility d D 3

is excluded here). For r D 3, we are left with jDk j � 20 when d D 2, and jDk j D 49

or 81 when d D 3.
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With hk D 1, using the functional equation for �k and the property (5) for the index
Œ� Wƒ�, we can express the Euler characteristic of � as

(9) j�.�/j D
1

2a

Y
v2T

�v

rY
jD1

j�k.1� 2j /j

for some integer a. The special values �k.1� 2j /, which are rational by the Klingen–
Siegel theorem, can be computed with the software Pari/GP (cf Remark 6). We list in
Table 2 the values we need. We check that for every field k under consideration a prime
factor greater than 2 appear in the numerator of the product

Qr
jD1 j�k.1� 2j /j. A

direct computation for r D 3; 4; 5 shows that the formula in Table 1 for each factor �v
is actually given by a polynomial in q (this seems to hold for any r ). In particular,
we always have �v 2 Z, and we conclude from (9) that j�.�/j cannot be a reciprocal
integer.

degree jDk j �k.�1/ �k.�3/ �k.�5/ �k.�7/ �k.�9/

d D 2 5 1/30 1/60 67/630 361/120 412751/1650

8 1/12 11/120 361/252 24611/240

12 1/6 23/60 1681/126

13 1/6 29/60 33463/1638

17 1/3 41/30 5791/63

d D 3 49 �1=21 79/210 �7393=63

81 �1=9 199/90 �50353=27

Table 2: Special values of �k

This completes the proof.

Remark 6 The function zetak in Pari/GP allows us to obtain approximate val-
ues for �k.1 � 2j /. On the other hand the size of the denominator of the productQm

jD1 �k.1� 2j / can be bounded by the method described in [25, Section 3.7]. By
recursion on m, this allows to ascertain that the values �k.1� 2j / correspond exactly
to the fractions given in Table 2.

Remark 7 The fact that for jDk j D 5 the value �k.�1/�k.�3/ has trivial numerator
explains why the proof fails for nD 4 (ie, r D 2). And indeed there is a principal arith-
metic subgroup � � Spin.4; 1/ with j�.�/j D 1

14400
and whose image in IsomC.H4/

is contained as an index-2 subgroup of the Coxeter group W1 . On the other hand, for
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jDk j> 5 the appearance of a nontrivial numerator in �k.�3/ shows — at least for the
fields considered in Table 2 — the impossibility of a � defined over k with �.�/ a
reciprocal integer. This is the first step in Belolipetsky’s proof of Theorem 2.
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