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On compact hyperbolic manifolds
of Euler characteristic two

VINCENT EMERY

We prove that for n > 4 there is no compact arithmetic hyperbolic n—manifold
whose Euler characteristic has absolute value equal to 2. In particular, this shows
the nonexistence of arithmetically defined hyperbolic rational homology n—spheres
with 7 even and different than 4.

22E40; 55C35, 51M25

Dedicated to the memory of Colin Maclachlan

1 Main result and discussion

1.1 Smallest hyperbolic manifolds

Let H” be the hyperbolic n—space. By a hyperbolic n—manifold we mean an orientable
manifold M = I'\H”, where T is a torsion free discrete subgroup I" C Isom™ (H").
The set of volumes of hyperbolic #—manifolds being well ordered, it is natural to try
to determine for each dimension n the hyperbolic manifolds of smallest volume. For
n = 3 this problem has recently been solved by Gabai, Meyerhoff and Milley in [15],
the smallest volume being achieved by a unique compact manifold, the Weeks manifold.
When 7 is even the volume is proportional to the Euler characteristic, and this allows us
to formulate the problem in terms of finding the hyperbolic manifolds M with smallest
|x(M)]. In particular this observation solves the problem in the case of surfaces. For
n > 3, noncompact hyperbolic #—manifolds M with |x(M)| = 1 have been found for
n =4, 6; see Everitt, Ratcliffe and Tschantz [13].

In the present paper we consider the case of compact manifolds of even dimen-
sion. In particular, such manifolds have even Euler characteristic (see Kellerhals
and Zehrt [17, Theorem 1.2]). We restrict ourselves to the case of arithmetic manifolds,
where Prasad’s formula [20] can be used to study volumes. We complete the proof of
the following result.

Theorem 1 Let n > 5. There is no compact arithmetic manifold M = I'\H" with
Ix(M)] =2.
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The result for n > 10 already follows from the work of Belolipetsky [2; 3], also based
on Prasad’s volume formula. More precisely, Belolipetsky determined the smallest
Euler characteristic |x(I")| for arithmetic orbifold quotients I'\H" (n even). This
smallest value grows fast with the dimension 7, and for compact quotients we have
|x(T")| > 2 for n > 10. That the result of nonexistence holds for 7 high enough is
already a consequence of Borel and Prasad’s general finiteness result [7], which was
the first application of Prasad’s formula. The proof of Theorem 1 for n = 6, 8, 10
requires a more precise analysis of the Euler characteristic of arithmetic subgroups
I' C PO(n, 1), and in particular of the special values of Dedekind zeta functions that
appear as factors of x(I").

For n = 4, the corresponding problem is not solved, but there is the following result [3].

Theorem 2 (Belolipetsky) If M = I'\H* is a compact arithmetic manifold with
x(M) < 16, then I arises as a (torsion free) subgroup of the following hyperbolic
Coxeter group:

(1) W= o o o o

An arithmetic (orientable) hyperbolic 4—manifold of Euler characteristic 16 was first
constructed by Conder and Maclachlan in [11], using the presentation of W; to obtain
a torsion free subgroup with the help of a computer. Further examples with x(M) =16
have been obtained by Long in [18] by considering a homomorphism from W; onto
the finite simple group PSp,(4).

1.2 Hyperbolic homology spheres

Our original motivation for Theorem 1 was the problem of existence of hyperbolic
homology spheres. A homology n—sphere (resp. rational homology n—sphere) is
a n—manifold M that possesses the same integral (resp. rational) homology as the
n—sphere S™. This forces M to be compact and orientable.

Rational homology n—spheres M have x(M) = 2 if n is even. On the other hand,
for M = T'\H" with n = 4k 4+ 2 we have (M) < 0 (cf Serre [25, Proposition 23]),
and this excludes the possibility of hyperbolic rational homology spheres for those
dimensions. For n even, Wang’s finiteness theorem [28] implies that there is only
a finite number of hyperbolic rational homology n—spheres. Theorem 1 shows the
nonexistence of arithmetic rational homology spheres for n > 5 even.
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For odd dimensions, x(M) = 0 and a priori the volume is not a limitation for the
existence of hyperbolic (rational) homology spheres. In fact, an infinite tower of covers
by hyperbolic integral homology 3—spheres has been constructed by Baker, Boileau and
Wang in [1]. In [8] Calegari and Dunfield constructed an infinite tower of hyperbolic
rational homology 3—spheres that are arithmetic and obtained by congruence subgroups.
Note that a recent conjecture of Bergeron and Venkatesh predicts a lot of torsion in
the homology groups of such a “congruence tower” of arithmetic #—manifolds with n
odd [5].

1.3 Locally symmetric homology spheres

Instead of considering hyperbolic homology spheres, one can more generally look for
homology spheres that are locally isometric to a given symmetric space of nonpositive
nonflat sectional curvature. Such a symmetric space X is said to be of noncompact
type, and it is classical that X can be written as G/ K, where G is a connected real
semisimple Lie group with trivial center with K C G a maximal compact subgroup.
Moreover, G identifies as a finite index subgroup in the group of isometries of X (of
index two if G is simple).

Let us explain why the case X = H" is the main source of locally symmetric rational
homology spheres (among X of noncompact type). Let M be a compact orientable
manifold locally isometric to X'. Then M can be written as I'\ X', where I = 7y (M)
is a discrete subgroup of isometries of X. We will suppose that I' C G, for G as
above. Let X}, be the compact dual of X. We have the following general result (see
Borel [6, Sections 3.2 and 10.2]).

Proposition 3 There is an injective homomorphism H/ (X,,C) — H’(I'\ X, C), for
each j.

In particular, if '\ X" is a rational homology sphere, then so is Xj;,. Note that the
compact dual of X = H" is the genuine sphere S”. By looking at the classification of
compact symmetric spaces, Johnson showed the following in [16, Theorem 7].

Corollary 4 If M = I'\X is a rational homology n—sphere with I' C G, then X
is either the hyperbolic n—space H" (with n # 4k 4+ 2), or X = PSL3(R)/PSO(3)
(which has dimension 5).

Proposition 3 shows that the correct problem to look at—rather than homology

spheres —is the existence of locally symmetric spaces I'\ X with the same (rational)
homology as the compact dual X,,. When X is the complex hyperbolic plane H(ZC , the
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compact dual is the projective plane P2, and the quotients I'"\ X" are compact complex
surfaces called fake projective planes. Their classification was recently obtained by the
work of Prasad and Yeung [21], together with Cartwright and Steger [9] who performed
the necessary computer search. Later, Prasad and Yeung also considered the problem
of the existence of more general arithmetic fake Hermitian spaces [22; 23].

The present paper uses the same methodology as in Prasad and Yeung’s work, the main
ingredient being the volume formula.

Acknowledgements It is a pleasure to thank Gopal Prasad, who suggested this re-
search project. This work was supported by the Swiss National Science Foundation,
project number PAOOP2-139672.

2 Proof of Theorem 1

Let G =PO(n, 1)° = Isom™* (H") and consider the universal covering ¢: Spin(n, 1) — G .
For our purpose it will be easier to work with lattices in Spin(n, 1). A lattice I' C G is
arithmetic exactly when I' = ¢~!(T') is an arithmetic subgroup of Spin(#, 1). Since
the covering ¢ is twofold, we have y(I") = % x(I'), where  is the Euler characteristic
in the sense of Wall. In particular, if M = T'\H” is a manifold with |x(M)| = 2, then
|x(')| = 1. Thus, Theorem 1 is an obvious consequence of the following proposition.
The proof relies on the description of arithmetic subgroups with the help of Bruhat-Tits
theory, as done for instance in [7; 20]. An introduction can be found in the author’s
work [12]. We also refer to [27] for the needed facts from Bruhat-Tits theory.

Proposition 5 Let n > 4. There is no cocompact arithmetic lattice T' C Spin(n, 1)
such that x(T") is a reciprocal integer, ie, such that x(I') = 1/¢ for some q € Z..

Proof We can assume that # is even. Let I' C Spin(n, 1) be a cocompact lattice.
Clearly, it suffices to prove the proposition for I' maximal. In this case, I can be
written as the normalizer I' = Ngyin(n,1)(A) of some principal arithmetic subgroup A
(see [7, Proposition 1.4]). By definition, there exists a number field ¥ C R and a
k—group G with G (R) = Spin(n, 1) such that A = G (k) N [],¢p, Pv, for some
coherent collection (Py)yey; of parahoric subgroups P, C G (ky) (indexed by the
set V¢ of finite places of k). It follows from the classification of algebraic groups (cf
Tits [26]) that G is of type B, with r =n/2 (> 2), the field k is totally real, and
(using Godement’s criterion) k& % Q. Let us denote by d the degree [k : Q].
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Let T C V; be the set of places where P, is not hyperspecial. By Prasad’s volume
formula (see [20] and [7, Section 4.2]), we have

) (M) = 20D 2y [T ee@i) [T to.

j=1 veT
with Dy (resp. ¢ ) the discriminant (resp. Dedekind zeta function) of k ; the constant
C(r) is given by

r

(3) C(r)= 1_[ @j =t

j=1 @m)2

and each A, is given by the formula

_ 1 | M(5v)|
- (qv)(dim My—dim My)/2 | M, ()| ’

where f, is the residue field of k,, of size ¢, and the reductive f,—groups M, and M,
associated with P, are those described in [20]. By definition M, is semisimple of
type B;.

“ Ay

G /ky, |isogeny type of M, Ay
1 : 2r
split B,_1 x (split GLy) qq—ll
. (i — _ (@' + D) Tk=i1@* 1)
DixB,—;i i=2,...,r—1) TRAPETa
'D, q" +1
. . 2r
nonsplit | B,_; x (nonsplit GL1) qull
M. ) . _ (@' =D Tk=it2(@* -1
Dit1 xBy—jm1 (G =1,...,1r=2) M= (@2 —1)
2Dr (]r —1

Table 1: A, for P, of maximal type

A necessary condition for I' = Ng r)(A) to be maximal is that each P, defining A
has maximal type in the sense of Ryzhkov and Chernousov [24]. We list in Table 1 the
factors A, corresponding to parahoric subgroups P, of maximal types (to improve the
readability we set ¢, = ¢ in the formulas). This list of maximal type and the formulas
for A, are essentially the same as in [2, Table 1]: the only difference is a factor of 2 in
the denominator of some A, , which can be explained from the fact that Belolipetsky
did not work with G simply connected.
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From [7, Section 5] (cf also [12, Chapter 12]) we can deduce that the index [I" : A]
of A in its normalizer has the following property:

(5) [[:A] divides hg2944*T

Moreover, a case by case analysis of the possible factor A, shows that A, > 4, so
that 47T [I,e7 Av =1 (with equality exactly when T is empty). We thus have the
following lower bound for the Euler characteristic of any maximal arithmetic subgroup
I' C Spin(n, 1):

C d 2
© X012 2 (S2) 106200 uon

We make use of the following upper bound for the class number (see for instance
Belolipetsky and the author [4, Section 7.2]):

) hi < 16(5)%| Dy |

which together with the basic inequality ¢z (2/) > 1 transforms (6) into

6-C(r)\?¢
®) O (S50 il
T

Moreover, according to Odlyzko [19, Table 4], we have that for a degree d > 5 the
discriminant of k is larger than (6.5)d. With this estimates we can check that for
r >3 and d > 5 we have |x(I")| > 1. For the lower degrees, if we suppose that
|x(I')| <1, we obtain upper bounds for | Dy | from Equation (8). This upper bounds
exclude the existence of such a I' for r > 6 (which is already clear from the work of
Belolipetsky [2]). For r = 3 (where the bounds are the worst) we obtain:

d=2:|Dg| <28
d=3:|Dg| <134
d =4:|Dg| < 640

From the existing tables of number fields (eg, [10; 14]) we can list the possibilities
this leaves us for k. We find that no field with d = 4 can appear, and for d = 2,3
all possibilities have class number /; = 1. Using Equation (7) with sz = 1 we then
improve the upper bounds for |Dy| and thus shorten the list of possible fields. For
r =5 only |Dy| =5 arises, and for r =4 we have |Dy| < 11 (the possibility d = 3
is excluded here). For » = 3, we are left with | Dy | <20 when d = 2, and | Dy | = 49
or 81 when d = 3.
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With &y = 1, using the functional equation for {; and the property (5) for the index
[[" : A], we can express the Euler characteristic of I" as

©) () = 5 [T [T 160 =2))]

veT j=1

for some integer a. The special values {z (1 —2j), which are rational by the Klingen—
Siegel theorem, can be computed with the software Pari/GP (cf Remark 6). We list in
Table 2 the values we need. We check that for every field & under consideration a prime
factor greater than 2 appear in the numerator of the product er_=1 [C(1=2/)]. A
direct computation for r = 3,4, 5 shows that the formula in Table 1 for each factor A,
is actually given by a polynomial in ¢ (this seems to hold for any r). In particular,
we always have A, € Z, and we conclude from (9) that |x(I")| cannot be a reciprocal
integer.

degree | [Dg| | Sx(=1) | Sk (=3) | Tk (=5) Sk (=T7) §k(—9)
d=2 5 1/30 1/60 67/630 361/120 | 412751/1650
8 1/12 11/120 361/252 24611/240
12 1/6 23/60 1681/126
13 1/6 29/60 | 33463/1638
17 1/3 41/30 5791/63
d=3| 49 | —1/21 | 79/210 | —7393/63
81 —1/9 | 199/90 | —50353/27

Table 2: Special values of i

This completes the proof. a

Remark 6 The function zetak in Pari/GP allows us to obtain approximate val-
ues for £z (1 —2j). On the other hand the size of the denominator of the product
]_[;-n=1 {r (1 —2j) can be bounded by the method described in [25, Section 3.7]. By
recursion on m1, this allows to ascertain that the values {; (1 —2j) correspond exactly
to the fractions given in Table 2.

Remark 7 The fact that for | Dy | = 5 the value {;(—1){;(—3) has trivial numerator
explains why the proof fails for » =4 (ie, r = 2). And indeed there is a principal arith-
metic subgroup I' C Spin(4, 1) with |x([")| = m and whose image in Isom™ (H#*)
is contained as an index-2 subgroup of the Coxeter group W;. On the other hand, for
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| D | > 5 the appearance of a nontrivial numerator in {z(—3) shows — at least for the
fields considered in Table 2 — the impossibility of a I" defined over & with x(I') a
reciprocal integer. This is the first step in Belolipetsky’s proof of Theorem 2.
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