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Geodesic systems of tunnels in
hyperbolic 3–manifolds

STEPHAN D BURTON

JESSICA S PURCELL

It is unknown whether an unknotting tunnel is always isotopic to a geodesic in a
finite-volume hyperbolic 3–manifold. In this paper, we address the generalization
of this question to hyperbolic 3–manifolds admitting tunnel systems. We show that
there exist finite-volume hyperbolic 3–manifolds with a single cusp, with a system
of n tunnels, n� 1 of which come arbitrarily close to self-intersecting. This gives
evidence that systems of unknotting tunnels may not be isotopic to geodesics in tunnel
number n manifolds. In order to show this result, we prove there is a geometrically
finite hyperbolic structure on a .1I n/–compression body with a system of n core
tunnels, n� 1 of which self-intersect.

57M50; 57M27, 30F40

1 Introduction

One major task in the study of 3–manifolds is to relate topological invariants to
geometric ones, for example, to identify arcs with a topological description as geodesics
in a hyperbolic manifold. One particular class of arcs that has earned interest is that of
unknotting tunnels.

An unknotting tunnel in a 3–manifold M with torus boundary is an embedded arc
with endpoints on @M whose complement is homeomorphic to a handlebody. A
manifold that admits a single unknotting tunnel (and is not a solid torus) is called a
tunnel number 1 manifold. A system of unknotting tunnels for a 3–manifold M with
torus boundary is a collection of arcs �1; : : : ; �n , each with endpoints on @M such
that M n .

Sn
iD1 N.�i// is a handlebody, where N. � / denotes a regular neighborhood.

Manifolds that admit a tunnel system of n arcs but not a tunnel system of .n� 1/

arcs are called tunnel number n. Recall that every 3–manifold with torus boundary is
tunnel number n for some n, because the tunnel number of the manifold encodes the
genus of a minimal genus Heegaard splitting, and every 3–manifold admits a Heegaard
splitting.
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Now, unknotting tunnels are defined by topology; they are described by embedded arcs
and homeomorphisms. Adams was the first to investigate their geometry in the case
that the 3–manifold is hyperbolic [1]. He showed that when M is a tunnel number
1 manifold with two boundary components, then an unknotting tunnel will always
be isotopic to a geodesic. He asked if this is true for more general tunnel number 1
manifolds. Soon after, Adams and Reid showed that an unknotting tunnel in a 2–bridge
knot complement is always isotopic to a geodesic [2]. Recently, Cooper, Futer and
Purcell [8] showed that in an appropriate sense, an unknotting tunnel in a tunnel number
1 manifold is isotopic to a geodesic generically.

In this paper, we investigate the generalization of Adams’ question to systems of
unknotting tunnels, or tunnel systems, in tunnel number n manifolds and give evidence
that the answer to the question is no in this setting. That is, we show that there are
tunnel number n manifolds, and a system of n tunnels, such that .n� 1/ of those
tunnels are homotopic to geodesics arbitrarily close to having self-intersections. This is
the content of Theorem 1.2, below. Because the geodesics homotopic to these tunnels
come within distance � of self-intersecting, they either must pass through themselves
in an attempted isotopy to the tunnel system, or they lie within distance � of homotopic
arcs that pass through themselves under the natural homotopy to the tunnel system.
Thus it seems unlikely that all such tunnels will be isotopic to geodesics. Hence this
result gives evidence that not all tunnels of all possible tunnel systems for a tunnel
number n manifold will be isotopic to geodesics. See below for further discussion.

In order to understand the geometry of tunnel number n manifolds, we study the geom-
etry of compression bodies with genus 1 negative boundary and genus .nC1/ positive
boundary. We denote these compression bodies as .1I nC 1/–compression bodies.
Notice that any tunnel number n manifold with a single torus boundary component is
obtained by attaching a genus .nC 1/ handlebody to a .1I nC 1/–compression body
along their common genus .nC 1/ boundaries. A system of unknotting tunnels in the
resulting manifold will consist of a system of arcs in the .1I nC 1/–compression body,
which we call core tunnels. In the case of the .1I 2/–compression body, Lackenby and
Purcell investigated the natural extension of Adams’ question to geometrically finite
hyperbolic structures on such compression bodies [15]. They conjectured that in the
.1I 2/–compression body, core tunnels are always isotopic to geodesics.

Another main result of this paper is that the natural generalization of Lackenby and
Purcell’s conjecture to .1I 1C n/–compression bodies is false.

Theorem 1.1 There exist geometrically finite hyperbolic structures on the .1I nC1/–
compression body for n� 2, for which .n� 1/ of the n core tunnels are homotopic to
self-intersecting geodesics. Hence these tunnels cannot be isotopic to simple geodesics.

Algebraic & Geometric Topology, Volume 14 (2014)



Geodesic systems of tunnels in hyperbolic 3–manifolds 927

Theorem 1.1 is obtained by studying Ford domains of geometrically finite structures
on such compression bodies. Ford domains have proven useful for the study of geo-
metrically finite structures on manifolds in the past. For example, Jørgensen studied
Ford domains of once-punctured torus groups [14] and cyclic groups [13]. Akiyoshi,
Sakuma, Wada and Yamashita extended Jørgensen’s work [3], and Wada [27] developed
an algorithm to determine Ford domains of these manifolds. Lackenby and Purcell
also studied Ford domains on .1I 2/–compression bodies [15], and Ford domains play
a role in identifying long tunnels in the work of Cooper, Lackenby and Purcell [9].

Using the Ford domains for geometrically finite hyperbolic structures on .1I nC 1/–
compression bodies as well as geometric techniques to attach handlebodies to such
structures as in [9], we show the following.

Theorem 1.2 For any �>0, there exist finite-volume one-cusped hyperbolic manifolds
with a system of n tunnels for which .n� 1/ of the tunnels are homotopic to geodesics
that come within distance � of self-intersecting.

The proof of this theorem does not guarantee that the geodesics will self-intersect.
However, the proof involves constructing a sequence of hyperbolic manifolds with
geodesics that are close to self-intersecting. In particular, we start with a self-intersecting
geodesic and modify the geometry slightly to obtain the new hyperbolic manifold. If
the geodesic does not remain self-intersecting under the geometric modification, then
it will move in one of two directions, only one of which is in the direction of isotopy
of the tunnel. In the other direction, the obvious homotopy to the unknotting tunnel
passes through the point of self-intersection, and so is not an isotopy. (In fact, there
may still be a non-obvious isotopy even in this case, but the homotopy moving the arc
the shortest distance in an �–ball about the nearest points on the geodesic will pass
through the geodesic so it will not be an isotopy.) In any case, the geodesic in the
homotopy class of the tunnel lies within distance � of an arc that must pass through a
self-intersection in a natural homotopy to the unknotting tunnel. Hence we say these
tunnels are “within �” of not being isotopic to geodesics. This gives evidence that these
tunnels are not isotopic to a geodesic, although not a proof of the fact. Moreover, as
there are many choices involved in the proof of Theorem 1.2, it is plausible that some
choice will produce a hyperbolic manifold with a tunnel system that may have to pass
through itself when homotoped to a nearly self-intersecting geodesic. Consequently, it
is likely that there are finite-volume tunnel number n manifolds for which .n� 1/ of
the tunnels are not isotopic to a geodesic.

Finally, we note that the proof of this theorem relies upon a specific choice of the spine
of a compression body C. However, there are countably many choices for any tunnel
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system for tunnel number n manifolds, provided n� 2. In fact, we will see below that
our choice of tunnel systems for Theorem 1.2 is not a natural choice for the geometric
structure we start with. In each of our examples, there is a more obvious choice of
tunnel systems from a geometric point of view, which leads to a geodesic tunnel system.
Therefore, we ask the following.

Question 1.3 For any finite-volume tunnel number n manifold with a single cusp, is
there a choice of a system of unknotting tunnels for the manifold such that each tunnel
is isotopic to a geodesic?
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2 Background

In this section, we define notation and review background material on Ford domains of
compression bodies. We also prove a few lemmas that will be important later in the
paper.

2.1 The topology of compression bodies

Here we review topological facts concerning compression bodies. The details are
standard and may be found, for example, in Scharlemann’s survey article [24]. Complete
details on many of the results may be found, among other places, in Burton [6].

Definition 2.1 Let S be a (possibly disconnected) closed, orientable surface with
genus at least 1. A compression body is the result of attaching a finite collection of
1–handles to S � Œ0; 1� on the boundary component S � f1g, in a piecewise linear
manner; we require that our compression bodies be connected.

If C is a compression body, the negative boundary @�C is S � f0g. The positive
boundary @CC is @C n @�C.

Note that @�C will consist of a disjoint union of surfaces of genus m1; : : : ;mk , and
@CC will be a genus n surface with n�

P
mi . We will call such a compression body

an .m1; : : : ;mk I n/–compression body.
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In this paper we will only consider examples with S connected, hence we are interested
in .mI n/–compression bodies, with n�m. Usually we will set mD 1.

Any two .mI n/–compression bodies are homeomorphic [6]. Hence, for fixed m; n,
we will usually refer to the .mI n/–compression body.

Definition 2.2 A system of disks for a compression body C is a collection of properly
embedded essential disks fD1; : : : ;Dng such that the complement of a regular neigh-
borhood of

Sn
iD1 Di in C is homeomorphic to the disjoint union of a collection of

balls and the manifold @�C � Œ0; 1�. A system of disks is minimal if the complement
of a regular neighborhood of

Sn
iD1 Di in C is homeomorphic to @�C � Œ0; 1�.

Each .mI n/–compression body admits a minimal system of disks, and such a system
of disks will contain exactly n�m disks [6]. In fact, provided n�m� 2, the .mI n/–
compression body will actually admit countably many systems of disks, each related
by some sequence of disk slides as in the following definition.

Definition 2.3 Let C be an .mI n/–compression body with n�m� 2 and let D D

fD1; : : : ;Dn�mg be a minimal system of disks for C. Let N be a regular neighborhood
of D . Then C nN is homeomorphic to @�C � Œ0; 1�, with the (positive) boundary
component @�C �f1g containing pairs of disks, denoted Ei and E0i , which are parallel
to Di .

Let ˛ be an arc in @�C � f1g with one endpoint on one disk, say Ei , and the other
endpoint on another disk, say Ej , and otherwise disjoint from all the disks Ek [E0

k
.

Let N 0 be a regular neighborhood in C of Ei [ ˛ [ Ej . Then N 0 is a closed
ball that intersects @CC in a thrice-punctured sphere. The set @N 0n@C consists of
three disks: one parallel to Di , one parallel to Dj and another disk Di �˛ Dj . Let
D0 D fD1; : : : ; yDi ; : : : ;Dn;Di �˛ Dj g, where as usual yDi means remove Di from
the collection. Then D0 is also a minimal system of disks. It is said to be a disk slide
of D . See Figure 1.

D1

˛
D2

D1 �˛ D2

D2

Figure 1: A disk slide in a .1I 3/–compression body

Associated to a minimal system of disks for C is a system of arcs as follows.
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Definition 2.4 Let K be a graph embedded in a compression body C whose only
vertices are valence one, embedded in @�C. If C deformation retracts to @�C [K ,
then we say K is a spine for C. A spine K is dual to a minimal system of disks D

if each edge of K intersects a single disk of D exactly once, and each disk in D

intersects an edge of K .

Given any minimal system of disks D for a compression body C there is always a
spine dual to D and the spine is unique up to isotopy [6].

Definition 2.5 Let C be a compression body and let K be a spine dual to a minimal
system of disks D for C. The edges of K are arcs running from @�C to @�C. We
call such an arc a core tunnel for C and we say the spine K is a core tunnel system, or
simply a tunnel system, for C.

Just as there are countably many minimal systems of disks D for a compression body
C, there are also countably many tunnel systems. However, we will work frequently
with one particular system, given by the following lemma.

Lemma 2.6 Recall that the .mI n/–compression body C is obtained by attaching
.n�m/ 1–handles to the S �f1g component of S � I , where S is a genus m surface.
For each i D 1; : : : ; n�m, let ei be an edge at the core of the corresponding 1–handle,
extended vertically through S � Œ0; 1� to have boundary on S � f0g. Then

Sn�m
iD1 ei

forms a tunnel system for C and each ei is a core tunnel.

Proof We need to show that K D
Sn�m

iD1 ei is a spine for C that is dual to a minimal
system of disks. Note that if we let Di be a cross-sectional disk in a 1–handle, then
the collection fD1; : : : ;Dn�mg forms a minimal disk system dual to K . Moreover,
the i th 1–handle deformation retracts to the ei at its core. Extending this to all of C,
we see that C deformation retracts to @�C [K . Hence each ei is a core tunnel for C

and the collection of the ei forms a tunnel system.

Definition 2.7 Inside the .mI n/–compression body C, for each core tunnel ei of
Lemma 2.6, connect the endpoints of ei by an arc in S � f0g. The result is a loop i

in C. In fact, if we let ˛1; ˇ1; : : : ; ˛2m�2; ˇ2m�2 be loops generating �1.S/, then the
loops j̨ ; ǰ ; i for j D 1; : : : ; 2m� 2 and i D 1; : : : ; n�m generate �1.C / (after
we extend the i to meet a common basepoint on S � f0g). We call such a collection
of generators standard generators for �1.C /.

Hereafter, we will primarily work with the .1I nC 1/–compression body. Standard
generators will be written as ˛; ˇ; 1; : : : ; n .
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2.2 Hyperbolic geometry of compression bodies

We are interested in relating the topology of a compression body C to hyperbolic
geometry on C. Specifically, we wish to understand the behavior of geodesic arcs
homotopic or isotopic to a core tunnel in a hyperbolic structure on the interior of
C. We obtain a hyperbolic structure by taking a discrete, faithful representation
�W �1.C /! PSL.2;C/ and considering the manifold H3=�.�1.C //.

Recall that a discrete subgroup � < PSL.2;C/ is geometrically finite if H3=� admits
a finite-sided, convex fundamental domain. In this case, we will also say that the
manifold H3=� is geometrically finite.

A discrete subgroup � < PSL.2;C/ is minimally parabolic if it has no rank one
parabolic subgroups. In other words, a discrete, faithful representation �W �1.M /!

PSL.2;C/ will be minimally parabolic if and only if whenever �.g/ is parabolic, g is
conjugate to an element of the fundamental group of a torus boundary component.

Definition 2.8 A discrete, faithful representation �W �1.M /! PSL.2;C/ is a mini-
mally parabolic geometrically finite uniformization of M if �.�1.M // is minimally
parabolic and geometrically finite, and H3=�.�1.M // is homeomorphic to the interior
of M .

For any minimally parabolic geometrically finite uniformization � of a .1I nC 1/–
compression body, we must describe the Ford domain.

Definition 2.9 Let A 2 PSL.2;C/ be loxodromic and let H be any horosphere about
infinity in upper half space H3. Then the isometric sphere corresponding to A, which
we write I.A/, is the set of points in H3 equidistant from H and A�1.H /.

If AD
�

a b
c d

�
, then it is well known that the isometric sphere I.A/ is the Euclidean

hemisphere with center �d=c and radius 1=jcj (see, for example [15]).

Definition 2.10 Let � be a discrete subgroup of PSL.2;C/, with �1 < � the sub-
group fixing the point at infinity in H3. For g 2 � n�1 , let Bg denote the open half
ball bounded by I.g/ and define the equivariant Ford domain F to be the set

F DH3
n

� [
g2�n�1

Bg

�
:

A vertical fundamental domain for a parabolic group �1 fixing the point at infinity in
H3 is a choice of (connected) fundamental domain for the action of �1 that is cut out
by finitely many vertical geodesic planes in H3.
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The Ford domain of � is defined to be the intersection of F with a vertical fundamental
domain for the action of �1 .

The Ford domain is not canonical, because there is a choice of vertical fundamental
domain. However, the region F is canonical.

Bowditch showed that if � < PSL.2;C/ is geometrically finite, then every convex fun-
damental domain for H3=� has finitely many faces [4, Proposition 5.7]. In particular,
when � is geometrically finite there will only be finitely many faces in a Ford domain.
This means that for all but finitely many elements g 2 � n�1 the isometric sphere
I.g/ is completely covered by some other isometric sphere. We formalize this in a
definition.

Definition 2.11 An isometric sphere I.g/ is said to be visible if there exists an open
set U �H3 such that U \ I.g/¤∅, and the hyperbolic distances satisfy

d.x; h�1.H //� d.x;H /D d.x;g�1H /

for every x 2 U \ I.g/ and h 2 �n�1 , where H is some horosphere about infinity.

A proof of the following fact may be found in [15].

Lemma 2.12 For � discrete, the following are equivalent.

(1) The isometric sphere I.g/ is visible.

(2) There exists a two dimensional cell of the cell structure on F contained in I.g/.

(3) I.g/ is not contained in
S

h2�n.�1[�1g/
xBh .

We will mainly be considering uniformizations of a .1I nC1/–compression body where
the Ford domain is of a particularly simple type, which occurs in the following example.

Example 2.13 Let C be a .1I 3/–compression body. Then �1.C /Š .Z�Z/�Z�Z.
We will choose generators ˛; ˇ;  and ı for �1.C /, where ˛ and ˇ generate the Z�Z
subgroup. Consider the representation

�.˛/D

�
1 100

0 1

�
; �.ˇ/D

�
1 100i

0 1

�
;

�. /D

�
0 1

�1 �5i

�
; �.ı/D

�
�5� 5i �26� 25i

1 5

�
:

Let �1D h�.˛/; �.ˇ/i< PSL.2;C/. Here we have chosen �.˛/ and �.ˇ/ somewhat
arbitrarily so that they give a very large parabolic translation length. Drawing the
isometric spheres corresponding to �.˙1/ and �.ı˙1/ gives us the picture in Figure 2.
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0:5

0
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�4

�3

�2

�1

0
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�5

�4

�3

�2

�1

0

1

I.�. ı�1//

I.�. //

I.�.ı//

I.�.ı�1//

I.�.ı�1//

1

0

�1

�2

�3

�4

�5

�6

�7

�6 �4 �2 0 2

I.�.�1//

Figure 2: Isometric spheres from Example 2.13 are shown in 3–dimensions
at the top and their 2–dimensional intersections with C at the bottom

We will see that other isometric spheres, besides the translates under �1 of I.�.˙1//

and I.�.ı˙1//, will be invisible, hidden underneath these isometric spheres. For
example, the isometric spheres I.�. ı�1// and I.�.ı�1// shown in Figure 2 are
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invisible. Hence � will give a minimally parabolic geometrically finite uniformization
of C whose Ford domain is as in Figure 2.

We now generalize Example 2.13. To do so, set up the following notation.

Let Cn denote the .1I nC1/–compression body. Hence �1.Cn/Š .Z�Z/�Fn , where
Fn denotes the free group on n letters Z� � � � �Z. Let ˛; ˇ; 1; : : : ; n be generators
of �1.Cn/, with ˛ and ˇ generating the .Z�Z/ subgroup and 1; : : : ; n standard
as in Definition 2.7, coming from a tunnel system of Cn as in Lemma 2.6. Finally, let
�W �1.Cn/! PSL.2;C/ be a discrete representation, taking ˛ and ˇ to parabolics
fixing infinity, generating the subgroup �1 D h�.˛/; �.ˇ/i< PSL.2;C/.

Definition 2.14 With notation as above, suppose the isometric spheres corresponding
to �.˙1

1
/; : : : ; �.˙1

n / and their translates under �1 are all pairwise disjoint, with
none properly contained in a half-ball bounded by one of the others. Then we say that
� gives a simple Ford domain for Cn .

Note that Example 2.13 is an example of a simple Ford domain. The use of the words
“Ford domain” in Definition 2.14 is justified by the following lemma.

Lemma 2.15 Suppose �W �1.Cn/! PSL.2;C/ gives a simple Ford domain for Cn .
Then � gives a minimally parabolic, geometrically finite uniformization of Cn . More-
over, after possibly replacing the i by multiples of i with elements in the .Z�Z/
subgroup of �1.Cn/, the isometric spheres corresponding to �.˙1

1
/; : : : ; �.˙1

n /,
along with a choice of vertical fundamental domain for �1 , cut out a Ford domain.

Proof Choose a vertical fundamental domain for �1 . Recall that the center of the
isometric sphere I.�.i// lies at the point �.�1

i /.1/. We may multiply each i ,
i D 1; : : : ; n, on the right by some wi 2 .Z�Z/ so that the center �.w�1

i �1
i /.1/

of the isometric sphere I.�.iwi// lies inside the chosen vertical fundamental domain.
Note that wi is a word in ˛ and ˇ , and so ˛; ˇ; 1w1; : : : ; nwn still generate �1.Cn/,
and the iwi still give isometric spheres whose translates under �1 are pairwise
disjoint as in Definition 2.14. Thus without loss of generality, we may assume that the
centers of the I.�.i// are all contained in our chosen vertical fundamental domain.

Next, consider the isometric spheres corresponding to �.�1
i / for i D 1; : : : ; n. We

may multiply each i , i D 1; : : : ; n, on the left by some xi 2 .Z�Z/ so that the center
�.x�1

i i/.1/ of the isometric sphere I.�.�1
i xi// lies inside the chosen vertical

fundamental domain. Note also that the center �.�1
i xi/.1/ of I.�.x�1

i i// is the
same as the center �.�1

i /.1/ of I.�.i//, because �.xi/ fixes 1, so when we

Algebraic & Geometric Topology, Volume 14 (2014)
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replace each i by x�1
i i we obtain generators of �1.Cn/ such that the corresponding

isometric spheres I.�.˙1
i // all have centers within our chosen vertical fundamental

domain. Moreover, note that these isometric spheres still satisfy the definition of a
simple Ford domain.

Now, let P be the intersection of the chosen vertical fundamental domain with the
exterior of the isometric spheres corresponding to �.˙1

i /. Because none of these
isometric spheres is contained inside another and because they do not intersect, P

is homeomorphic to a 3–ball, marked with simply connected faces, and these faces
correspond to the faces of the vertical fundamental domain and to each isometric sphere
I.�.˙1//.

Identify vertical sides of P by elements of �1 and glue I.�.i// to I.�.�1
i // via

�.�1
i / for each i D 1; : : : ; n. This glues faces of P by isometry and since the

intersections of faces (edges of P ) are only on the vertical fundamental domain, the
Poincaré polyhedron theorem (cf Lackenby and Purcell [15, Theorem 2.21] and Epstein
and Petronio [11]) implies that the result of applying these gluings to P is a smooth
manifold M , with �1.M /Š �1.Cn/ generated by face pairings. Moreover, by [15,
Theorem 2.22], P must be a Ford domain for M ŠH3=� and by [15, Lemma 2.18],
it is minimally parabolic.

Hence, to show that this gives a minimally parabolic geometrically finite uniformization
of Cn , it remains only to show that M is homeomorphic to Cn . We show this by
considering gluing faces of P one at a time.

First, glue faces corresponding to the vertical fundamental domain. Since �1 is a rank-
2 parabolic group, the result is homeomorphic to T 2�R, where T 2 is the torus. Now,
notice that when we glue the face I.�.i// to I.�.�1

i //, the result is topologically
equivalent to attaching a 1–handle. Hence, when performing the gluing one by one for
each i D 1; : : : ; n, we obtain a manifold homeomorphic to Cn .

2.3 Tunnel systems and hyperbolic geometry

We are interested in studying a tunnel system for a manifold, and we need to identify a
tunnel system in a geometrically finite minimally parabolic uniformization.

For  2 PSL.2;C/ that does not fix the point at infinity in H3 , there is a geodesic
e running from �1.1/ to 1 in H3 . This geodesic e will meet the center of the
Euclidean hemisphere I. /. We say that e is the geometric dual of the isometric
sphere I. /. We also refer to e as the geodesic dual to the isometric sphere I. /.

Algebraic & Geometric Topology, Volume 14 (2014)
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Lemma 2.16 Let C denote the .1I n C 1/–compression body, where �1.C / Š

.Z�Z/ �Fn has generators ˛; ˇ; 1; : : : ; n , with ˛ and ˇ generating the .Z�Z/
subgroup and 1; : : : ; n standard, coming from a tunnel system as in Definition 2.7. Let
�W �1.C /! PSL.2;C/ be a minimally parabolic, geometrically finite uniformization
of C, normalized such that �.˛/ and �.ˇ/ fix the point of infinity of H3. Finally, let
zdi be the geodesic dual to the isometric sphere I.�.�1

i //. Then under the quotient
action of � , the images of the dual edges zdi are homotopic to a spine of C. Hence
these geometric edges are homotopic to a tunnel system.

Proof We will show that the images of the geodesics zdi are homotopic to the core
tunnels ei of Lemma 2.6, and this will be enough to prove the lemma.

In the topological manifold C, take a regular neighborhood N of @�C so that the
closure N is homeomorphic to @�C � Œ0; 1�. Choose p D .p0; 1/ 2 @�C �f1g and let
q D .p0; 0/ 2 @�C � f0g. Let f W Œ0; 1�! C be the straight line from p to q .

In H3, choose a vertical fundamental domain D for �1 D h�.˛/; �.ˇ/i. As in the
proof of Lemma 2.15, we may replace the i by products wi � i � vi , where wi ; vi are
in �1 , and thereby assume that D contains �.˙1

i /.1/ for all i D 1; 2; : : : ; n (or
rather, these points are contained in the closure of D in H3[C[f1g). Note that the
replacement doesn’t affect the argument, since under these translations dual geodesics
zdi still map to the same geodesic in H3=�.�1.C //.

The lift zp of p into D is a point on a horoball H about 1. For each loxodromic
�.i/, define zpi D �.i/. zp/. The point zpi lies on a horosphere centered at �.i/.1/.
For each i D 1; 2; : : : ; n, let zgi be a geodesic arc in D from zp to zpi . Under the action
of � , the arc zgi becomes a loop in the homotopy class of i in C.

Let zfi be a geodesic arc in D from zpi to i.1/ and let zf 0i be a geodesic arc from 1
to zp . Under the action of � , the arcs zfi and zf 0i are mapped to arcs in C from p to
points on @�C, these arcs are homotopic to f rel p , and the homotopy may be taken
to keep an endpoint of each of the arcs on @�C.

Set zhi to be the arc zf 0i followed by zgi followed by zfi . Then zhi runs from 1 to
i.1/. Therefore zhi is homotopic to zdi .

On the other hand, under the action of � , zhi is mapped to a loop with endpoints on
@�C in the homotopy class of i . Allowing the endpoints of this loop to move on @�C,
we may homotope to the arc ei , which is a core tunnel from Lemma 2.6, corresponding
to the standard generator i coming from Definition 2.7.

Lemma 2.16 shows only that the geodesic duals to isometric spheres corresponding
to a set of generators gives a set homotopic to a tunnel system. We are interested in
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examples of when these geodesics are isotopic to a tunnel system. One example of
when this will occur comes from the following lemma.

Lemma 2.17 With notation as in Lemma 2.16, if the Ford domain is simple and the
isometric sphere corresponding to each �.i/ is visible, then in the quotient manifold
C Š H3=�.�1.C // the images of the zdi are isotopic to a spine of C. Hence these
edges form a geodesic tunnel system.

Proof Let F be the equivariant Ford domain. Let H � F be an embedded horoball
about infinity. As in [15, Lemma 3.11], we construct an equivariant deformation retract
of F nH onto the union of the geodesic arcs �1. zdi \ .F nH // and @H . We do so
in two steps.

First, by Lemma 2.15, we may assume that the isometric spheres corresponding to
�.˙1

i /, i D 1; : : : ; n, along with a vertical fundamental domain for �1 cut out a Ford
domain. The boundaries of the isometric spheres give embedded circles on C which
bound disjoint disks D1;D

0
1
;D2;D

0
2
; : : : ;Dn;D

0
n on C , with Di corresponding to

�.i/ and D0i corresponding to �.�1
i /. Now, choose a value of � > 0 such that for

the disks Ei and E0i , which are the � neighborhoods of Di and D0i , respectively,
the collection E1;E

0
1
;E2;E

0
2
; : : : ;En;E

0
n on C still consists of disjoint disks. Take

the vertical projection of these Ei ;E
0
i onto the boundary of the horoball H ; we will

continue to denote these disks on @H by E1;E
0
1
; : : : ;En;E

0
n . For each iD1; 2; : : : ; n,

consider the frustum Ci of the solid (Euclidean) cone in H3 that intersects @H in
the disk Ei and intersects C in the disk Di . Similarly, we have the frustum C 0i
meeting @H in E0i and meeting C in D0i . By choice of � , the sets C1 \ .F nH /;

C 0
1
\ .F nH /; : : : ;Cn\ .F nH /;C 0n\ .F nH /, as well as their translates under �1 ,

are disjoint in F nH . Let

C D �1

� n[
iD1

.Ci [C 0i /\ .F nH /

�
� .F nH /:

The first step of the homotopy is to map F n .C [H / onto @.C [H / via the vertical
line homotopy. That is, each point x in F n .C [H / lies on a vertical line through 1,
and this line will meet @.C [H / exactly once. Let Lt .x/ be the point on this vertical
line, so that L0.x/ is the identity and L1.x/ lies on @.C [H /. Note the map Lt is
continuous, equivariant under the action of �.�1.C //, and descends to a continuous
map in the quotient H3=�.�1.C //.

The second step is to deformation retract C \ .F nH / onto the set�
@H [

� n[
iD1

�1. zdi [ �.i/. zdi//

��
\ .F nH /:
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Since Ci and C 0i form regular neighborhoods of zdi and �.i/. zdi/, respectively, there
is a deformation retract sending each Ci \ .F nH / and C 0i \ .F nH /, i D 1; : : : ; n,
onto the geodesic at its core. Note by choice of � , we may perform these deformation
retracts simultaneously and equivariantly, since none of these cones intersect in F nH .
It is clear that we can modify this deformation retract to a deformation retract onto
zdi[.@H \Ci/ or �.i/ zdi[.@H \C 0i / for i D 1; : : : ; n. We let ft be the deformation
retract of the second step. Then the deformation retract Lt followed by ft is the
desired equivariant deformation retract.

3 Tunnel systems in compression bodies

In this section we show that the geodesic duals in the Ford domain may be made to
intersect while retaining a geometrically finite structure.

Lemma 3.1 Let  and ı be loxodromic generators of a .1I n/–compression body C.
Suppose that under some geometrically finite uniformization �W �1.C /! PSL.2;C/
of C, the faces of the Ford domain corresponding to �.ı˙1/ and �..ı�1/˙1/ are
visible, and that the isometric sphere I.�. // is contained in the Euclidean half-ball
bounded by the isometric sphere I.�.ı//. Then the geometric dual zg to I.�. // in H3

is mapped to a geodesic g under the quotient H3!H3=�.�1.C // with the property
that g lifts to geodesics in H3 containing the arcs:

(1) ˛1 , running from 1 to a point on I.�.ı// (a subarc of the geodesic dual to
I.�. //),

(2) ˛2 , running from a point on I.�.ı�1// to a point on I.�. ı�1// (a subarc of
the geodesic from the center of I.�.ı�1// to the center of I.�. ı�1//) and

(3) ˛3 , running from 1 to a point on I.�.ı�1// (a subarc of the geodesic dual to
I.�.�1//).

Lemma 3.1 is illustrated in Figure 3.

Proof Since the uniformization �W �1.C / ! PSL.2;C/ is applied to each group
element in the proof we will suppress it for ease of notation, writing  , for example,
rather than �. /.

Choose a horosphere H about 1. Let S be the set of points in H3 equidistant from
ı�1.H / and �1.H /. Let p1 be the intersection of I.ı/ and zg , and let p2 be the
intersection of S and zg . Note that p2 is contained inside the Euclidean half-ball
bounded by I.ı/, since I. / is contained inside that half-ball.
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 .1/
C

H

˛3

˛2

˛1

ı�1.1/ �1.1/ ı.1/ ı�1.1/  ı�1.1/

Figure 3: Lifts of g consists of the arcs ˛1 , ˛2 , and ˛3

Now apply ı to this picture. Under ı , the horosphere ı�1.H / is mapped to H and H

is mapped to ı.H /, and so the isometric sphere is I.ı/ mapped to I.ı�1/ isometrically.
Likewise, S gets mapped isometrically to I. ı�1/. The geodesic dual zg is mapped
to the geodesic running from ı.1/ to ı�1.1/. These are exactly the centers of
the isometric spheres I.ı�1/ and I. ı�1/, respectively. Now ı.zg/ is a geodesic that
passes through ı.p1/ 2 I.ı�1/ and ı.p2/ 2 I. ı�1/.

In a similar manner as above, apply  . The isometric sphere I. / is mapped to I.�1/

and S is mapped to I.ı�1/. The geodesic dual zg gets mapped to the geodesic dual
to I.�1/. Therefore zg gets mapped to an arc containing the vertical line from a point
on I.�1/ to 1.

Now  .zg/, ı.zg/ and zg are all mapped to the same geodesic g in the quotient
H3=�.�1.C //. The arcs ˛1 , ˛2 and ˛3 are just the portions of these geodesics
that lie above I.ı˙1/ and I..ı�1/˙1/.

Proposition 3.2 There exists a geometrically finite, minimally parabolic uniformiza-
tion � of a .1I 3/–compression body C, and a generator � of the free part of �1.C /

such that the image of the geometric dual to I.�.�// under the action of �.�1.C // has
a self-intersection.

Proof We prove this by giving a specific example. Recall that �1.C /Š .Z�Z/�Z�Z.
We will let ˛ , ˇ , 1 and 2 generate �1.C /, such that ˛ and ˇ generate the Z�Z
subgroup.

We will consider a family of representations �t W �1.C /! PSL.2;C/ for which �t .˛/,
�t .ˇ/ and �t .1/ are constant and �t .2/ varies. For this example,

�t .˛/D

�
1 20

0 1

�
; �t .ˇ/D

�
20i 1

0 1

�
:
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These values of �t .˛/ and �t .ˇ/ are chosen so that the translation distances are large,
basically so that we can ignore the effect of these two elements on the changing Ford
domain.

We let B be the translation matrix B D
�

1 10
0 1

�
.

We obtain �t .1/ by conjugation by B and we set �t .2/ to vary with t :

�.1/D B

�
0 1

�1 5� 2i

�
B�1; �t .2/D

�
0 1

�1 5C .t � 2/i

�
Note that the isometric spheres corresponding to �t .1/, �t .

�1
1
/, �t .2/ and �t .

�1
2
/

all have radius 1 and centers at 10, 15�2i , 0 and 5C.t�2/i , respectively. Hence for
all t 2 Œ0; 4�, none of these isometric spheres intersect. Similarly, since the translation
distances of �t .˛/ and �t .ˇ/ are large, no translates of these isometric spheres under
�1 D h�t .˛/; �t .ˇ/i will intersect. So a vertical fundamental domain as well as
isometric spheres corresponding to �t .

˙1
1
/ and �t .

˙1
2
/ cut out a simple Ford domain,

and by Lemma 2.15, this is a minimally parabolic geometrically finite uniformization
for C.

Now set ı1 D 1 and ı2 D �1
2
1 . Then ˛; ˇ; ı1; ı2 generate �1.C /. Moreover, the

isometric sphere corresponding to �t .ı2/ will be contained in the Euclidean half-ball
bounded by the isometric sphere corresponding to �t .ı1/. See Figure 4.

16

�2

�4

�6

0 2 4 6 8 10 12 14

4

2

0

�2

�4

�6

0 2 4 6 8 10 12 14 16

4

2

0

Figure 4: When t D 0 , the Ford domain is as pictured on the left. When
t D 4 , the Ford domain is as pictured on the right.

Hence we have exactly the setup of Lemma 3.1, with ı1 playing the role of ı and ı2
playing the role of  . Thus under the action of �t .�1.C //, a portion of the geodesic
dual to the isometric sphere of �.ı2/ is mapped to a geodesic running from a point
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p1.t/ on the isometric sphere of �t .ı
�1
1
/D �.�1

1
/ to a point p2.t/ on the isometric

sphere of �t .ı2ı
�1
1
/D �t .

�1
2
/.

Define p3.t/ to be the intersection of the geodesic dual to the isometric sphere of
�t .ı

�1
2
/ with the isometric sphere of �t .2/. For each t define a Euclidean triangle

Tt whose vertices are the projections of p1.t/, p2.t/ and p3.t/ onto C .

Let the function AW Œ0; 4�!R give the signed area of Tt . Carefully,

A.t/D 1
2
..p1.t/�p3.t//� .p2.t/�p3.t///;

where pi.t/�pj .t/ is understood to be the 3–dimensional Euclidean vector whose first
two coordinates come from the 2–dimensional subtraction and whose 3rd coordinate
is zero, and � denotes the usual Euclidean cross product on R3 . Because the points
p1.t/;p2.t/ and p3.t/ vary continuously with t , A.t/ is a continuous function.

As can be seen in Figure 4, when t D 0 we have A.0/ > 0 since p3.0/ must be below
the line segment from p1.0/ to p2.0/. When t D 4 we obtain A.4/ < 0, since p3.4/

must be above the line segment. The intermediate value theorem guarantees that there
is some t0 2 Œ0; 4� for which A.t0/ D 0, ie p1.t0/, p2.t0/ and p3.t0/ are collinear.
Hence when t D t0 , two of the geodesic arcs guaranteed by Lemma 3.1 will intersect.
Thus the image of the geometric dual to the isometric sphere of �t0

.ı2/, under the
action of �t0

.�1.C //, will have a self-intersection.

We may generalize Proposition 3.2 to .1I nC 1/–compression bodies. The following
result is Theorem 1.1 from the introduction, restated.

Theorem 3.3 There exists a geometrically finite, minimally parabolic uniformization
� of a .1I nC 1/–compression body Cn and a choice of free generators ı1; : : : ; ın of
�1.Cn/ such that the geodesics �1; : : : ; �n�1 obtained from the geometric duals to iso-
metric spheres corresponding to �.ı1/; : : : ; �.ın�1/, respectively, each self-intersect.

Proof As above, let ˛; ˇ; 1; : : : ; n generate �1.Cn/ with ˛ and ˇ generating the
Z�Z subgroup. Set AD

�
1 10
0 1

�
.

Let t D .t1; : : : ; tn/ 2 Œ0; 4�� � � � � Œ0; 4�� f2g and consider the n–parameter family of
representations

�t .k/DAk�1

�
0 1

�1 5C .tk � 2/i

�
A�.k�1/ for 1� k � n;

�t .˛/D

�
1 11n

0 1

�
; �t .ˇ/D

�
1 10i

0 1

�
:
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Note the isometric sphere corresponding to �t .
�1
k
/ has radius 1 and center 10.k�1/.

The isometric sphere corresponding to �t .k/ also has radius 1 and center

5C 10.k � 1/C .tk � 2/i:

Hence for t 2 Œ0; 4��� � �� Œ0; 4��f2g, all these isometric spheres are disjoint. Moreover,
�t .˛/ and �t .ˇ/ are chosen to be large enough so that the parabolic translates of these
isometric spheres do not intersect. Thus a vertical fundamental domain as well as the
isometric spheres corresponding to �g.

˙1
k
/ cut out a simple Ford domain, and this is

a minimally parabolic geometrically finite uniformization for Cn .

Set ık D �1
k
n for 1 � k < n and ın D n . The elements ı1 , : : :, ın , ˛ , ˇ still

generate �1.C /, but for 1 � k < n the isometric sphere corresponding to ı�1
k

is
not visible: it is contained in the Euclidean half-ball bounded by the isometric sphere
corresponding to k . Similarly, for 1�k <n, the isometric sphere corresponding to ık
is contained in the Euclidean half-ball bounded by the isometric sphere corresponding to
n . Thus Lemma 3.1 implies that the geodesic running from the center of I.�t .

�1
k
//

to the center of I.�t .
�1
n // maps to the image of the geodesic dual to I.�t .ık//.

Now apply a similar argument to that in the previous proof. The intermediate value
theorem implies that for each k , 1� k < n, there must be a tk 2 Œ0; 4� such that the
geodesic dual to I.�t .ık// has self-intersecting image. Because for i ¤ k , varying tk
has no effect on isometric spheres corresponding to ı˙1

k
, we may perform the above

procedure for each k one at a time to obtain the desired uniformization.

4 Finite-volume tunnel number n manifolds

In this section, we use the results of the previous section to give evidence that there
exist tunnel number n manifolds with finite volume and tunnel systems that come
arbitrarily close to self-intersecting.

The rough idea of the proof is to take the compression body of Theorem 3.3 and attach
a handlebody to it in such a way that the geometry of the compression body after
attaching is “close” to the geometry before attaching. This is accomplished in a manner
similar to that of Cooper, Lackenby and Purcell in [9].

4.1 Maximally cusped structures

We recall definitions and results on maximally cusped geometrically finite structures,
because we will use these structures to build manifolds with nearly self-intersecting
tunnels.
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Definition 4.1 A maximally cusped structure for C is a geometrically finite uni-
formization �W �1.C /! PSL.2;C/ of C such that every component of the boundary
of the convex core of H3=�.�1.C // is a 3–punctured sphere.

In a maximally cusped structure for C, a full pants decomposition of @CC is pinched
to parabolic elements. A theorem of Canary, Culler, Hersonsky and Shalen [7], extend-
ing work of McMullen [21], shows that the conjugacy classes of maximally cusped
structures for C are dense on the boundary of all geometrically finite structures on C.
To make this statement more precise, we review the following definitions.

Definition 4.2 The representation variety V .C / of a compression body C is the
space of conjugacy classes of representations �W �1.C /! PSL.2;C/, where � sends
elements of �1.@�C / to parabolics. (This definition is similar to one given by Marden
in [19] and is more restrictive than one found in Culler and Shalen [10].) Convergence in
V .C / is defined by algebraic convergence. We denote the subset of conjugacy classes
of minimally parabolic geometrically finite uniformizations of C by GF0.C /� V .C /.
We will give GF0.C / the algebraic topology. Marden [18] showed that GF0.C / is
open in V .C /.

By [7], conjugacy classes of maximally cusped structures are dense in the boundary of
GF0.C / in V .C /.

Now, we need to recognize indiscrete representations �W �1.C /! PSL.2;C/. The
following lemma, which is essentially the Shimizu–Leutbecher lemma (Maskit [20,
Proposition II.C.5]), allows us to do so. A proof using the notation of this paper can be
found in [9].

Lemma 4.3 Let � be a discrete torsion free subgroup of PSL.2;C/ such that M D

H3=� has a rank two cusp. Suppose the point at 1 projects to the cusp and �1 � �
is the subgroup of parabolics fixing1. Then for every  2�n�1 the isometric sphere
I. / has radius at most T , where T is the minimal Euclidean translation length of all
elements of �1 .

Using the above lemma, we can show the following.

Lemma 4.4 For any � > 0, there exists a maximally cusped structure on the .1; nC1/–
compression body C, a system of core tunnels �1; : : : ; �n for C and balls of radius � ,
B1.�/; : : : ;Bn�1.�/ such that for i D 1; : : : ; n� 1, the tunnel �i intersects the ball
Bi.�/ in two distinct arcs. Hence n� 1 of the n tunnels come within distance at most
� of self-intersecting.
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Proof Let �0 be the geometrically finite representation of the .1; nC1/–compression
body constructed in Theorem 3.3, with generators ˛; ˇ; ı1; : : : ; ın for �1.C / and where
the geodesic duals to the isometric spheres corresponding to �0.ı1/; : : : ; �0.ın�1/ glue
up to have self-intersections. We need to recall a bit more detail about where the
intersection occurs. Recall from the proof of Theorem 3.3 that in the universal cover
H3, for i D 1; : : : ; n�1, the geodesic dual to the isometric sphere I.�0.ıi// intersects
the geodesic running from the center of the isometric sphere I.�0.ıiı

�1
n // to the center

of the isometric sphere I.�0.ı
�1
n //, and that these two geodesics have the same image

in H3=�0.�1.C //.

Now, the translation lengths of �0.˛/ and �0.ˇ/ are bounded by some number L. We
can consider �0 as an element of V .C /. Let R be the set of all representations � of
�1.C / where �.˛/; �.ˇ/ are parabolics fixing infinity with translation length bounded
by L and �.ıi/D �0.ıi/. By suitably normalizing �.˛/; �.ˇ/ to avoid conjugation,
we can view R as a subset of V .C /. Note that �0 2R.

Also note that for any geometrically finite structure � in R and for all i D 1; : : : ; n�1,
the geodesic arc dual to the isometric sphere I.�.ıi// will intersect the geodesic running
from the center of I.�.ıiı

�1
n // to the center of I.�.ı�1

n //, and again these geodesics
have the same image in H3=�.�1.C //, giving self-intersecting tunnels in each of these
structures.

Now, there exists a path in R from �0 to some indiscrete representation. Such a path is
obtained by decreasing the minimal translation length of �.˛/ or �.ˇ/ until it becomes
smaller than the radius of an isometric sphere. This gives an indiscrete structure by
Lemma 4.3. Hence this path intersects @GF0.C / at some point, say �1 .

Maximally cusped structures are dense in @GF0.C / [7]. Hence there exists a sequence
of geometrically finite representations �k of �1.C / such that the conformal boundaries
of the manifolds Ck DH3=�k.�1.C // are maximally cusped genus .nC 1/ surfaces,
each Ck is homeomorphic to the interior of C and the algebraic limit of the �k is �1 .

Now, for each ıi , i D 1; : : : ; n, �k.ıi/ converges to �1.ıi/, hence the center of
the corresponding isometric sphere I.�k.ıi// converges to the center of the isomet-
ric sphere I.�1.ıi//. Similarly, the centers of the isometric spheres I.�k.ıiı

�1
n //

and I.�k.ı
�1
n // converge to the centers of the isometric spheres I.�1.ıiı

�1
n // and

I.�1.ı
�1
n //, respectively.

Hence for any � > 0, there exists K > 0 such that if k > K , the geodesic �k dual
to I.�k.ıi//, and its image �k.ı

�1
i ın/.�k/, with endpoints at the centers of isometric

spheres I.�k.ıiı
�1
n // and I.�k.ı

�1
n //, are within distance �=2 of each other. Let

pi be a point of distance at most �=4 from both geodesics. Note the two geodesics
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intersect the ball B�.pi/ of radius � in H3 . Let Bi.�/ denote the image of the ball
B�.pi/ in the quotient manifold H3=�k.�1.C //. The image of the geodesic �i runs
through Bi.�/ in two distinct arcs as desired.

Lemma 4.5 For any �>0 and any integer n�2, there exists a finite volume hyperbolic
3–manifold M with the following properties.

(1) M is obtained from a manifold �M with genus .n C 1/ Heegaard surface
S by drilling out a collection of curves on S corresponding to a full pants
decomposition of S .

(2) There exists a tunnel system �1; : : : ; �n for �M and balls B1.�/; : : : ;Bn�1.�/�

M such that for each i D 1; : : : ; n� 1, the geodesic arc in the homotopy class
of �i in M intersects Bi.�/ in at least two nontrivial arcs. Hence the arc comes
within � of self-intersecting in M .

Proof Let CD be a maximally cusped compression body of Lemma 4.4. The collection
of curves on the conformal boundary of CD forms a pants decomposition P of the
genus .nC 1/ surface.

Let H be a genus .nC1/ handlebody. We wish to take a maximally cusped hyperbolic
structure on H for which the rank-1 cusps on @H consist exactly of the curves of
P . In fact, there are infinitely many such structures, which follows as a consequence
of Thurston’s uniformization theorem (see Morgan [22]). Let HD denote one such
structure.

Now, consider the convex cores of CD and of HD . The boundaries of the convex cores
consist of 3–punctured spheres, which have a unique hyperbolic structure. Hence we
may glue @CCD to @HD via isometry on each 3–punctured sphere, and we obtain a
finite volume hyperbolic 3–manifold M with .3nC 1/ rank-2 cusps. One of these
cusps comes from the rank-2 cusp of CD . The other 3n come from gluing together
the 3n rank-1 cusps on the boundaries of the convex cores of CD and HD .

Note that if we do a trivial Dehn filling of the 3n cusps of M that came from rank-
1 cusps on @CCD and @HD , then we obtain a manifold �M with a genus .nC 1/

Heegaard splitting along a surface we denote S . This gives item (1).

The core tunnels �1; : : : ; �n of CD become a system of tunnels for �M under the gluing.
Because the gluing is by isometry and the balls Bi.�/ of Lemma 4.4 lie within the
convex core of CD for i D 1; : : : ; n� 1, the tunnels �1; : : : ; �n�1 satisfy item (2).
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4.2 Filling the manifold

In order to obtain a manifold with a tunnel system consisting of arcs arbitrarily close
to self-intersecting, we will take the cusped manifold of Lemma 4.5 and perform Dehn
filling on the 3n cusps corresponding to the pants decompositions of the surface S .

Lemma 4.6 Let M be the manifold of Lemma 4.5 and let S be the surface in item (1)
of that lemma. So M is homeomorphic to the interior of a compact manifold M with
torus boundary components T1; : : : ;T3nC1 and S \M intersects M in a surface S

with boundary on T1; : : : ;T3n . For each torus boundary component Tj , j D 1; : : : ; 3n,
we take a basis for H1.Tj / consisting of the curves �j , �j , where �j is a component
of @S \Tj and �j is any curve with intersection number 1 with �j . Then Dehn filling
M along any slope �j C k �j will yield a manifold with Heegaard surface S .

Proof Any such slope has intersection number one with the surface S . It is well
known that Dehn filling on such a slope acts as a Dehn twist on the surface S , and the
S is a Heegaard surface for every such Dehn filling (see Lickorish [16] and Rolfsen
[23]).

We are now ready to prove Theorem 1.2 from the introduction, which we restate.

Theorem 4.7 For any � > 0 and any integer n� 2, there exists a finite volume hyper-
bolic 3–manifold M with a single cusp torus such that M has the following property.
It admits a system of tunnels f�1; : : : ; �ng and a collection of balls B1.�/; : : : ;Bn�1.�/

of radius � such that for i D 1; : : : ; n� 1, the geodesic arc homotopic to �i intersects
Bi.�/ in two distinct arcs.

In other words, the tunnels �1; : : : ; �n�1 have geodesic representatives that come
arbitrarily close to self-intersecting. Although the proof does not guarantee that these
tunnels do self-intersect, it gives evidence that there exist tunnels that are not isotopic
to geodesics.

Proof Let M be the manifold of Lemma 4.5, say with � replaced by �=4 in that
lemma. By Lemma 4.6, Dehn filling the cusps of M corresponding to the pants curves
of �M along slopes �j C kj �j will yield a manifold with a genus .nC 1/ Heegaard
splitting.

By work of Thurston [26], as kj approaches infinity the Dehn filling approaches
the manifold M in the Gromov–Hausdorff topology. Even more precisely, work of
Brock and Bromberg [5] implies that for any �1 > 0, if kj is large enough, there is a
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.1C �1/–bilipschitz diffeomorphism � from the complement of a Margulis tube about
the unfilled cusp to the complement of a Margulis tube about the core of the filled solid
torus. We may take these Margulis tubes to avoid the tunnels of our tunnel system.
Moreover, � is level preserving in the unfilled cusp. Hence for large enough kj , we
obtain the desired result.

4.3 Tunnel number n

It would be nice to add to the conclusions of Theorem 4.7 that M is tunnel number n,
and not some lower tunnel number. Since for a manifold M with one torus boundary
component a system of n tunnels corresponds to a genus nC 1 Heegaard splitting,
we can prove that our manifold is tunnel number n by showing there are no lower
genus Heegaard splittings of M . If the Hempel distance of the Heegaard splitting is
high, then work of Scharlemann and Tomova [25] will imply that there are no lower
genus Heegaard splittings. Hence in this section we will review Hempel distance and
other results on the curve complex that will allow us to conclude our manifold is tunnel
number n. It should be noted that the final step in this procedure relies on announced
work of Maher and Schleimer [17], which as of yet has not appeared. Hence we include
the result in a separate section.

Definition 4.8 Let S be a closed, oriented, connected surface. The curve complex
C.S/ is the simplicial complex whose vertices are isotopy classes of essential curves
in S and a collection of kC 1 vertices form a k –simplex whenever the corresponding
curves can be realized by disjoint curves on S . For ˛ , ˇ vertices in C.S/, we define
the distance dS .˛; ˇ/ to be the minimal number of edges in any path in the 1–skeleton
of C.S/ between ˛ and ˇ .

The disk set of a compression body with outer boundary homeomorphic to S is
defined to consist of vertices in C.S/ which are the boundaries of essential disks in the
compression body. Similarly, the disk set of a handlebody with boundary S consists
of vertices of C.S/ which are boundaries of essential disks in the handlebody. Note
the disk set of a compression body with outer boundary S is contained in the disk set
of a handlebody with boundary S .

Definition 4.9 A Heegaard splitting of a 3–manifold along a surface S has two disk
sets, one on either side of S . The Hempel distance of the Heegaard splitting is defined
to be the minimal distance in C.S/ between those disk sets. See Hempel [12].

More generally, we define the inner distance between sets A and B in C.S/ to be

d.A;B/D inf fdS .a; b/ j a 2A; b 2 Bg:
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Thus the Hempel distance is the inner distance between the disk sets on either side of a
Heegaard surface.

Scharlemann and Tomova showed that if the Hempel distance of a genus g Heegaard
splitting is strictly greater than 2g , then the manifold will have a unique Heegaard
splitting of genus g and no Heegaard splittings of smaller genus [25].

Definition 4.10 For any closed, oriented, connected surface S , let the handlebody
graph H.S/ be the graph that has a vertex for each handlebody with boundary S .
Since any handlebody has an associated disk set, alternately we may think of H.S/ as
having vertices corresponding to disk sets in C.S/. There is an edge in H.S/ between
two handlebodies whose disk sets intersect in the curve complex C.S/. The distance
dH .x;y/ between any two handlebodies in H.S/ is defined to be the minimal number
of edges in a path between them in H.S/.

There is a relation DW H.S/! C.S/ defined as follows. For a handlebody V 2H.S/,
D.V / consists of the disk set of V . The following lemma was pointed out to us by
S Schleimer.

Lemma 4.11 For any handlebodies V and W in H.S/,

dH .V;W /� d.D.V /;D.W //C 1:

(The right-hand side is inner distance in the curve complex.)

Proof Given handlebodies V and W , let ˛ 2D.V / and ˇ 2D.W / with dS .˛; ˇ/D

k . Take a minimal length path in C.S/ between ˛ and ˇ and denote the vertices of
the path by ˛ D ˛0; ˛1; : : : ; ˛k D ˇ . Note that for any i D 1; 2; : : : ; k , there exists a
handlebody that we denote Vi such that ˛i�1 and ˛i both bound essential disks in Vi .
Then we obtain a sequence of handlebodies V1;V2; : : : ;Vk with dH .Vi ;ViC1/D 1.
Since dH .V;V1/D 1D dH .Vk ;W /, the sequence of handlebodies V;V1; : : : ;Vk ;W

gives a path from V to W of length kC1 in H.S/. Hence dH .V;W /�dS .˛; ˇ/C1.
Since ˛ and ˇ were arbitrary,

dH .V;W /� 1� inf fdS .˛; ˇ/ j ˛ 2D.V /; ˇ 2D.W /g D d.D.V /;D.W //

as desired.

Maher and Schleimer have proved that H.S/ has infinite diameter [17]. We will use
this to prove the following strengthened version of Theorem 4.7.
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Theorem 4.12 For any � > 0 and any integer n � 2, there exists a finite volume
hyperbolic tunnel number n manifold M with a single cusp torus such that M has
the following property. It admits a system of tunnels f�1; : : : ; �ng and a collection of
balls B1.�/; : : : ;Bn�1.�/ of radius � such that for i D 1; : : : ; n� 1, the geodesic arc
homotopic to �i intersects Bi.�/ in two distinct arcs.

The difference between this theorem and Theorem 4.7 is that here we may conclude
that our manifold is tunnel number n, while there we just have a system of n tunnels.

Proof As in the proof of Theorem 4.7, we will start with the maximally cusped
compression body of Lemma 4.4, attach to it a maximally cusped handlebody and
Dehn fill in such a way that the resulting manifold is geometrically close to the original.
However, we will choose the maximally cusped structure on our handlebody more
carefully to ensure that after Dehn filling, the Hempel distance of the resulting Heegaard
splitting remains high.

We first set up notation. Let C0 be the maximally cusped structure on the .1I nC 1/–
compression body from Lemma 4.4. Let S denote the positive boundary of this
compression body. Let D.C0/ denote the disk set of C0 in C.S/. The pinched curves
on S corresponding to the rank-1 cusps of C0 form a maximal simplex P in C.S/.

Notice that there is a relation h from disk sets of a compression body with outer
boundary S to the handlebody complex H.S/ as follows. For a disk set D of a
compression body, h.D/ consists of all V 2H.S/ for which D is a subset of D.V /.
So in particular, h.D.C0// is a subset of H.S/.

Recall that a multitwist along P is a collection of Dehn twists, one along each curve
of P . Let X D fh.T .D.C0/// j T is a multitwist along Pg. That is, X is the subset
of H.S/ consisting of all handlebodies whose disk sets contain T .D.C0// for some
multitwist T .

Now for the next step of the proof, we show that X has bounded diameter in H.S/.

First, recall that a Dehn twist along any curve in P is an isometry of C.S/, fixing
P pointwise. Thus, if we let K denote the inner distance between P and D.C0/ in
C.S/ and if we let T be any multitwist along P , then T .D.C0// has inner distance
K from P .

Now, for any V;W 2 X, by definition of X there exist multitwists T1 and T2

such that T1.D.C0// � D.V / and T2.D.C0// � D.W /. Then the inner distance
d.D.V /;D.W // satisfies

d.D.V /;D.W //� d.D.V /;P /C d.P;D.W //

� d.T1.D.C0//;P /C d.P;T2.D.C0///D 2K:
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By Lemma 4.11, dH .V;W /� 2KC 1. Hence X has bounded diameter in H.S/.

We are finally ready to choose the maximally cusped structure on our handlebody.
Since the diameter of H.S/ is infinite [17], we may choose a handlebody Y in H.S/
such that inf fdH .Y;V / j V 2X gDN , where N is some number, at least 2nC3. Let
H0 be a maximally cusped structure on Y with the curves P on @Y pinched to rank-1
cusps. The fact that such a structure exists follows as a consequence of Thurston’s
uniformization theorem (see Morgan [22]).

As in the proof of Theorem 4.7, glue H0 to C0 by isometry, and then Dehn fill P

along slopes of the form �i C k �i . Any such Dehn filling along P fixes the disk set
of Y , and modifies the disk set of C0 by applying multitwist along P . By choice of
Y and Lemma 4.11, any such Dehn filling will yield a manifold with large Hempel
distance, larger than N � 1> 2nC 2. Then work of Scharlemann and Tomova implies
that the minimal genus Heegaard splitting must have genus at least .nC 1/, which
means that the manifold is tunnel number n.

On the other hand, the same proof as that of Theorem 4.7 applies to show that n� 1

tunnels are arbitrarily close to self-intersecting.
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