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Spin structures on 3–manifolds
via arbitrary triangulations

RICCARDO BENEDETTI

CARLO PETRONIO

Let M be an oriented compact 3–manifold and let T be a (loose) triangulation of M

with ideal vertices at the components of @M and possibly internal vertices. We show
that any spin structure s on M can be encoded by extra combinatorial structures on
T . We then analyze how to change these extra structures on T , and T itself, without
changing s , thereby getting a combinatorial realization, in the usual “objects/moves”
sense, of the set of all pairs .M; s/ . Our moves have a local nature, except one, that
has a global flavour but is explicitly described anyway. We also provide an alternative
approach where the global move is replaced by simultaneous local ones.

57R15; 57N10, 57M20

Combinatorial presentations of 3–dimensional topological categories, such as the
description of closed oriented 3–manifolds via surgery on framed links in S3 , and
many more, are among the main themes of geometric topology, and in particular have
proved crucial for the theory of quantum invariants, initiated by Reshetikhin and Turaev
in [18] and Turaev and Viro in [20].

A combinatorial presentation of the set of all pairs .M; s/, with M a closed oriented 3–
manifold and s a spin structure on M, was already contained in [6] by the authors. This
presentation was realized by selecting the triangulations of M having only one vertex
and supporting a �–complex structure (see Hatcher [10]), also called a branching. (Here
triangulations are meant in a loose sense, namely the faces of each dimension are only
required to have embedded interior, not embedded closure; and a loose triangulation
supports a �–complex structure if its edges can be oriented so that on each abstract
tetrahedron the orientations are induced by an ordering of the vertices.) The viewpoint
adopted in [6] was actually that of special spines, equivalent to that of triangulations
via duality (see Matveev [16] and below). For the special spine dual to a triangulation,
a branching is precisely a structure of oriented branched surface (see Williams [21]),
and this structure was used in [6] to define a trivialization of the tangent bundle of M

along the 1–skeleton of the spine, whence a spin structure on M, using constructions
already proposed by Ishii [11] and Christy [9].
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The construction just described easily extends to pairs .M; s/ with M a compact
oriented 3–manifold with nonempty boundary and s a spin structure on M, by using
branchable triangulations of M with ideal vertices at the components of @M, and
possibly internal vertices. Recall that a triangulation of M with ideal vertices is a
triangulation of the space obtained from M by collapsing each component of @M to a
point, so that each collapsed component of @M is a vertex, which is called the ideal
vertex associated to the component. A triangulation of M is ideal if it has ideal vertices
only, and in this case the interior of M is the triangulation space minus the ideal vertices.
However, this approach suffers from the drawback that not all triangulations of M are
branchable: for instance, the canonical triangulation by two regular hyperbolic ideal
tetrahedra of the hyperbolic one-cusped manifold called the “figure-eight-knot-sister”
is not branchable. On the one hand, one easily sees that any triangulation of M has
branchable subdivisions (for example, take a regular subdivision and define a branching
by choosing a total ordering of the vertices). On the other hand, in many circumstances
one is interested in sticking to a given triangulation of M, or to consider the class of
all vertex-efficient triangulations of M (namely, the purely ideal triangulations for
nonempty @M, and the 1–vertex triangulations for closed M ).

Recently, generalized versions of the notion of branching (see the definitions below),
with the nice property of existing on every triangulation, have emerged as useful devices
to deal with simplicial formulas defined over triangulations equipped with solutions
of Thurston’s PSL.2;C/ consistency equations (or variations of them; see Luo and
Schlenker [13] and Luo Tillmann and Yang [14]). For instance, motivated by his
work in progress on the entropy of solutions of the homogeneous PSL.2;R/ Thurston
equations, Luo introduced the notion of Z=2Z–taut structure on a triangulation, and it
turns out that a certain notion of weak branching, widely employed below together with
the underlying notion of prebranching, easily allows us to show that every triangulation
admits Z=2Z–taut structures (see Remark 1.2). As another example, the same notions
of weak branching and prebranching were exploited by Baseilhac and the first author
in [2] to extend the construction of quantum hyperbolic invariants [4; 3] to an arbitrary
hyperbolic one-cusped manifold, over a canonical Zariski-open set of the geometric
component of its character variety.

In several instances Luo [12] suggested that a combinatorial encoding of spin structures
based on arbitrary triangulations might be of use for the construction of spin-refined
invariants obtained from simplicial formulas as those mentioned in the previous para-
graph. In this note we provide such a presentation, using the notion of weak branching
already alluded to.

The results established in this paper provide an “objects/moves” combinatorial presen-
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tation of the set of all pairs .M; s/, with M a compact oriented 3–manifold and s a
spin structure on M, in the following sense:
� given any (loose) triangulation T of M, with ideal vertices at the components

of @M and possibly internal vertices, and any s , we encode s by decorating T
with certain extra combinatorial structures;

� we exhibit combinatorial moves on decorated triangulations relating to each
other any two that encode the same .M; s/.

We note that all our moves are explicitly described, but one of them has an intrinsically
global nature. On the other hand, in the second part of the paper we will show that
this move can actually be replaced, in a suitable sense, by a combination of local ones.
This last result is subtle and technically quite demanding, it is based on some nontrivial
algebraic constructions, and it unveils unexpected coherence properties of the graphic
calculus we use to encode weakly branched triangulations.

A first application of the technology developed in the present note appears in [2],
where our results are used to solve a sign indeterminacy in the phase anomaly of
the quantum hyperbolic invariants (see Remark 2.9). We also note that adapting the
arguments of [6, Chapter 8], the results of this article can be used to provide an effective
construction of the Roberts spin-refined Turaev–Viro invariants [19], and of the related
Blanchet spin-refined Reshetikhin–Turaev invariants [8] of the double of a manifold.

We conclude this introduction by mentioning that a notion related to that of spin
structure, namely that of Spinc (or, equivalently, Euler) structure, has also been to
some extent combinatorially treated by means of triangulations and special spines; see
the authors [6; 7; 1]. However, even in the context of branched spines, a complete
objects/moves encoding of Spinc structures, in the strict sense of the present paper, has
not been fully developed yet. More precisely, sticking for simplicity to the case of a
closed manifold M, by combining [6; 7; 1] one has the following:
� every branched triangulation T of M with only one vertex carries an Euler

structure eT on M and a distinguished Euler 1–chain cT with respect to T , so
that cT encodes eT ;

� the “sliding” moves of [6] preserve eT but in general they do not suffice to relate
to each other any two triangulations T and T 0 such that eT D eT 0 ;

� for every branched move from T to T 0 one can effectively modify cT to an
Euler 1–chain ycT with respect to T 0 so that ycT encodes eT as well, and hence
establish a posteriori whether eT 0 coincides with eT by checking that cT 0 � ycT
is homologically null.

We expect the treatment of Spinc structures by means of arbitrary triangulations and
weak branchings to be even more complicated than just described.
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1 Statements for triangulations

In this section we state some results that provide in terms of arbitrary triangulations
a combinatorial encoding of spin structures on oriented 3–manifolds. The geometric
construction underlying this encoding actually employs certain objects called special
spines, and will be fully described in Sections 2 and 3. As a matter of fact, triangulations
and special spines are equivalent to each other via duality, but perhaps the majority
of topologists are more familiar with the language of triangulations, which is why we
are anticipating our statements in this section. On the other hand the direct description
in terms of triangulations of the vector fields on which our constructions and results
are based would be rather awkward, therefore, starting from Section 2, we will always
employ special spines.

1.1 Triangulations, prebranchings and weak branchings

In this note M will always be a connected, compact and oriented 3–manifold, with
or without boundary. We also assume that @M has no S2 component (otherwise we
canonically cap it with D3 ). We begin with several definitions. A triangulation of M

is the datum T of

� a finite number of oriented abstract tetrahedra,

� an orientation-reversing simplicial pairing of the 2–faces of these tetrahedra,

such that the space obtained by first gluing the tetrahedra along the pairings and then
removing open stars of the vertices is orientation-preservingly homeomorphic to M

with some punctures (open balls removed). Any number of punctures, including zero,
is allowed (but a closed M must be punctured at least once).

A branching on an abstract oriented tetrahedron � is an orientation of its edges such
that no face of � is a cycle. Equivalently, one vertex of � should be a source and one
should be a sink, as illustrated in Figure 1(left). Note that the figure shows the only
two possible branched tetrahedra up to oriented isomorphism. They are characterized
by an index ˙1, to define which one denotes by vj the vertex of � towards which j

edges of � point, and one checks whether the ordering .v0; v1; v2; v3/ defines the
orientation of � or not. Each face of a branched abstract tetrahedron is endowed with
the prevailing orientation induced by its edges.
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v1

v2 v3

v0

v0

v2 v3

v1

Figure 1: Left: a branched tetrahedron of index C1 and one of index �1

Right: a weak branching compatible with a prebranching

A0 A00 A0 A00 A0 A00

0/ C1 �1

C 0 C 00 C 0 C 00 C 0 C 00

B0 B00 B0 B00 B0 B00

Figure 2: The three types of face pairings in a weakly branched triangulation

A prebranching on a triangulation T is an orientation ! of the edges of the gluing
graph � of T (a 4–valent graph) such at each vertex two edges are incoming and two
are outgoing. Given such an ! , a weak branching b compatible with ! is the choice
of an abstract branching for each tetrahedron in T such that � with its orientation !
is positively transversal to each face of each tetrahedron in T , as in Figure 1(right).
Note that for such a b , when two faces are glued in T , two things can happen:

� all three edge orientations are matched, as in Figure 2(left); to this situation we
assign a label 0/ used below;

� only one edge orientation is matched, as in Figure 2(center/right); moreover, in
both the glued faces, the edge whose orientation is matched has the prevailing
orientation of the face; taking into account the ambient orientation, this situation
arises in two different ways, to which we assign the labels ˙1 used below.

1.2 Spin structure from a weak branching and a 1–chain

All the constructions and results of the rest of this section will be explained and proved
in Sections 2 and 3 in the dual context of special spines. Let a triangulation T with
prebranching ! and compatible weak branching b be given. We will now define a
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chain x̨.P; !; b/D
P

e ˛.e/�e 2C1.T IZ=2Z/, where e runs over all edges of T . The
value of ˛.e/ is the sum of a fixed initial contribution 1 plus certain contributions of
two different types; both contribution types are computed in the group GD .1

2
�Z/=2Z,

but for each of them the sum is in Z=2Z; here is the description of the two types:

� endow e with an arbitrary orientation and in the abstract tetrahedra of T , consider
the collection of all the edges projecting to e and of type v0v2 or v1v3 ; for each
such abstract edge ze take a contribution C1

2
or �1

2
depending on whether the

projection from ze to e preserves or reverses the orientation;

� consider all the face gluings as in Figure 2 in which e is involved (with multi-
plicity) and take a contribution depending as follows on the type t of the gluing
and on the position of e within it:
F 0 if t D 0/ , regardless of the position of e ;
F 1 if t D˙1 and the orientation of e is matched by the gluing;
F �

1
2

if t D˙1 and the orientation of e is not matched by the gluing.

Proposition 1.1 The chain x̨.P; !; b/ is a boundary, and to every x̌ 2 C2.T IZ=2Z/
such that @ x̌ D x̨.P; !; b/ there corresponds a spin structure s.T ; !; b; x̌/ on M.
Moreover s.T ; !; b; x̌0/D s.T ; !; b; x̌1/ if and only if x̌0C x̌1 is 0 in H2.T IZ=2Z/.

Remark 1.2 Let b be a weak branching compatible with a prebranching ! on a
triangulation T of a manifold M. If in each abstract tetrahedron of T we choose
the pair of opposite edges of types v0v2 and v1v3 with respect to b , then the choice
actually depends on ! only, not on b . Moreover one sees that for all edges e of T
in M there is always an even number of abstract edges of types v0v2 or v1v3 projecting
to e (this corresponds to the fact that the contributions to x̨.P; !; b/ of the first type
described above are in Z=2Z, and it is established in Proposition 2.7 below). It follows
that, giving sign �1 to all the abstract edges v0v2 and v1v3 , and sign C1 to the other
edges, we get a Z=2Z–taut structure on T , as mentioned in the introduction.

1.3 Triangulation moves preserving the spin structure

The next results provide the combinatorial encoding of spin structures announced in
the title of the paper. From now on all chains x̌ 2 C2.T IZ=2Z/ will be viewed up to
2–boundaries, without explicit mention.

Proposition 1.3 We have s.T ; !; b0; x̌0/ D s.T ; !; b1; x̌1/ if and only if we have
that .b0; x̌0/ and .b1; x̌1/ are related by the moves of Figure 3 (and their compositions
and inverses).
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1

1

Figure 3: Moves preserving the prebranching and the associated spin struc-
ture. In both moves the “1” means that 1 must be added to the coefficient
in x̌ of the triangle to which “1” is attached; note that in both moves it is the
only one whose three edges all retain their orientation under the move.

Proposition 1.4 We have s.T ; !0; b0; x̌0/D s.T ; !1; b1; x̌1/ if and only if we have
that .!0; b0; x̌0/ and .!1; b1; x̌1/ are related by the moves of Proposition 1.3 and
additional moves .T ; !; b; x̌/ 7! .T ; !0; b0; x̌0/ described as follows:

� in the gluing graph of T (which is oriented by ! ) take an oriented simple
circuit  such that, for each tetrahedron it visits, the two faces it visits share the
edge v2v3 with respect to b , as in Figure 4;

Figure 4: A circuit  in the gluing graph that in each tetrahedron visits faces
sharing the edge v2v3 . The gluing encoded by an edge of  need not match
edges of type v2v3 to each other.

� define !0 by reversing  , define b0 by reversing each edge v2v3 in each tetrahe-
dron visited by  , and define x̌0 by adding 1 to the coefficient of each face of T
visited by  and incident to tetrahedra of distinct indices.

Proposition 1.5 We have s.T0; !0; b0; x̌0/ D s.T1; !1; b1; x̌1/ if and only if the
quadruples .T0; !0; b0; x̌0/ and .T1; !1; b1; x̌1/ are related by the moves of Proposi-
tions 1.3 and 1.4 and those shown in Figures 5 and 6.

Remark 1.6 In this result one can avoid the move of Figure 6 if T0 and T1 have the
same number of internal vertices and both consist of at least two tetrahedra.
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1

1

Figure 5: Moves preserving the spin structure. Note that in the central
move the coefficients 1 are given to one internal and to one external face;
coefficients 0 are never shown.

C C C 0 C 00

B B B0
V V 0

B00

1

0

0

A A A0 A00

Figure 6: A move increasing by one the number of punctures and preserving
the spin structure. The coefficients of ABV , ACV and BCV in the 2–chain
after the move are 0 , 0 and 1 .

2 Spin structures from weakly branched spines

We will now explain how the spin structure s.T ; !; b; x̌/ mentioned in the previous
section is constructed. As announced, this employs the viewpoint of special spines,
which is dual to that of triangulations.

To a triangulation T of M we can associate the dual special spine P of M minus
some balls, as suggested in Figure 7. The polyhedron P is a compact 2–dimensional
one onto which M minus some balls collapses. Every point of P has a neighbourhood
homeomorphic to the cone over a circle, or over a circle with a diameter (in which
case the point is said to belong to a singular edge), or over a circle with three radii (in
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which case the point is called a singular vertex, and the neighbourhood itself is called a
butterfly). Moreover P has vertices, its singular set S.P / is a 4–valent graph (actually,
it is the gluing graph of T ) and the components of P minus S.P /, that we call regions,
are homeomorphic to open discs. Any such P is called a special polyhedron, and it is
known that there can exist at most one thickening of P, namely a punctured manifold M

collapsing onto P, in which case P dually defines a triangulation of M. Moreover
one can add to P an easy extra combinatorial structure, called a screw-orientation (see
the authors [5]) ensuring that P is thickenable and that its thickening is oriented. A
screw-orientation for P is an orientation of each edge e of P and a cyclic ordering
of the three germs of regions incident to e , up to simultaneous reversal of both, with
obvious compatibility at vertices. All the special polyhedra we will consider will be
embedded in an oriented 3–manifold or locally embedded in 3–space, and we stipulate
from now on that the screw-orientation will always be the induced one, which allows
us to avoid discussing screw-orientation and orientation altogether.

Figure 7: Duality between a tetrahedron and a butterfly (the regular neigh-
bourhood of a vertex in a special spine)

2.1 Branched spines

If an oriented tetrahedron � is branched, one can endow each wing of the dual
butterfly Y with the orientation such that the edge of � dual to the wing is positively
transversal to the wing. (Note that the ambient orientation is used here.) One can
moreover smoothen Y along its singular set so that the positive transversal directions
to the wings match, as shown in Figure 8, where we show the butterflies dual to the
branched tetrahedra of Figure 1(left). We can further define along the singular set of Y

two vector fields � (the positive transversal to the wings) and �0 (the descending
vector field), and an orientation of the 4 singular edges of the butterfly, as shown in
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Figure 9. Note that the orientation of an edge e of a butterfly is always given by the
wedge of � and �0 along e , and it is the prevailing orientation of the three induced by
the wings incident to e .

R23
R12 R13

R01

R03R02

R23 R02 R03

R13

R01

R12

Figure 8: Smoothing of a butterfly carried by a branching of its dual tetra-
hedron � . Here Rij denotes the wing of the butterfly dual to the edge vivj
of � .

Figure 9: The fields � (vertical) and �0 (horizontal) along the singular set
of a smooth butterfly, and the orientation of its edges

2.2 Weakly branched triangulations and the induced frame along the
dual 1–skeleton

Let us fix in this subsection a triangulation T of an oriented manifold M and the special
spine P dual to T . If T carries a global branching, namely if each tetrahedron in T is
endowed with a branching so that all face pairings match the edge orientations, then the
frame .�; �0/ extends to S.P /, as in Figure 10 below. However, a global branching
does not always exist, and we explain here how the structure of weak branching still
allows to globally define a frame along S.P /.

Remark 2.1 We will call frame on a subset X of M a pair of linearly independent
sections defined on X of the tangent bundle TM of M ; since M is oriented, this
uniquely induces a trivialization of TM on X.
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Let us then take a prebranching ! of T , viewed as an orientation of S.P / with two
incoming and two outgoing edges at each vertex, and a weak branching b compatible
with ! . For an edge e of P the following three possibilities (corresponding to those
in Figure 2) occur.

� The edge e can be a branched edge (type 0/ ), namely one along which the
branchings defined at the ends are compatible, as in Figure 10; the same figure
shows how to (obviously) extend the frame .�; �0/ along such an e .

� If e is not branched there is only one region A incident to e lying on the two-fold
side (namely, to the left of e ) at both ends of e , and we say that
F e is a positive unbranched edge (type C1) if A is under at the beginning

of e and over at the end of e , as in Figure 11(top/left),
F e is a negative unbranched edge (type �1) if A is over at the beginning

of e and under at the end of e , as in Figure 11(top/right).

In both cases we can again coherently define � along e , by letting the transverse
orientation of A prevail on the other two, and accordingly define �0 , as illustrated
in Figure 11(bottom).

Figure 10: A branched edge and the extension of .�; �0/ along it

For a technical but important reason, to a spine P with prebranching ! and compatible
weak branching b we actually associate a frame ' D .�; �/ that is obtained from
the above described .�; �0/ by adding to �0 a full rotation around � along each
unbranched edge of P, as shown in Figure 12. We summarize the main points of our
construction in the following.

Definition 2.2 Let T be a triangulation of a compact oriented 3–manifold M, and
let P be the dual spine of M minus some balls. A prebranching on P is an orienta-
tion ! of its edges such that at each vertex two germs of edges are incoming and two
are outgoing. A weak branching on T compatible with ! is a choice b of a branching
for each tetrahedron of T , such that b induces ! at each vertex of P according to
Figure 9. The frame '.P; !; b/ D .�; �/ defined along S.P / is given by the pair
.�; �0/ at the vertices of P as in Figure 9, with extension .�; �0/ along the edges
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B A

C

A

B C

A

B

C

A

B

C

Figure 11: Top left: a positive unbranched edge Top right: a negative one
Bottom: the corresponding extensions of .�; �0/

A A

B B

C C

Figure 12: The field � obtained by adding a full rotation to �0 along each
(positive or negative) unbranched edge of P

of P as in Figures 10 (branched edges) and 11 (unbranched edges), and correction
from .�; �0/ to .�; �/ along the unbranched edges as in Figure 12.

Remark 2.3 For every triangulation T the dual spine P always admits some pre-
branching ! . Given ! , for a compatible weak branching b there are 4 independent
choices at each tetrahedron of T . The frame '.P; !; b/ is well-defined up to homotopy
on S.P /.

2.3 Graphs representing weakly branched triangulations

In this subsection we introduce a convenient graphic encoding for weakly branched
triangulations that we will later use to prove (the dual version of) Proposition 1.1.
Let N be the set of finite 4–valent graphs � with the following extra structures:

Algebraic & Geometric Topology, Volume 14 (2014)
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Figure 13: Planar structure of index C1 (left) or �1 (right) at a vertex of a
graph in N

� each edge of � is oriented and bears a color 0/ , C1 or �1;

� at each vertex of � a planar structure as in Figure 13 left/right is given.

Let T be a weakly branched triangulation of an oriented 3–manifold M, and let P

be the dual spine of M minus some balls. We can turn S.P / into a graph �.T / 2N
by associating to a branched tetrahedron of T as in Figure 1(left) (or to a smoothed
vertex of the dual spine P as in Figure 9) a vertex as in Figure 13, and giving color
0/ ;C1;�1 to each edge depending on its type.

The procedure just described can of course be reversed, namely to a graph � 2 N
we can associate a weakly branched triangulation T .�/ of an oriented manifold M.
Some examples of how to explicitly construct the spine P dual to T .�/ along the
edges of � are illustrated in Figure 14. (Recall that P is determined by the attaching

0/

C1

�1

Figure 14: Reconstruction of a weakly branched spine from a graph in N

circles of its regions to S.P /, which is what we show in Figure 14(centre), and that
the screw-orientation of P is induced by the local embedding in 3–space, shown in
Figure 14(right).) We summarize our construction as follows.

Algebraic & Geometric Topology, Volume 14 (2014)
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Proposition 2.4 The set N of decorated graphs corresponds bijectively to the set of
triples .P; !; b/ with P an oriented special spine, ! a prebranching on P and b a
weak branching compatible with ! .

For later purpose we now need to extend the set of graphs N to some �N , by allowing
2–valent vertices besides the 4–valent (decorated) ones, and insisting that the edge
orientations should match through the 2–valent vertices. By interpreting each 2–valent
vertex as or we can then associate as above to each element z� of �N a weakly
branched special spine. On the other hand we can define the fusion of two edges
separated by a valence-2 vertex by interpreting the set of colors f0/ ;C1;�1g as Z=3Z
and postulating that colors sum up under fusion. Applying fusion as long as possible
to z� 2 �N we then get some � 2N . The following result can be easily verified; see
Figure 15.

= =

C1 �1 0/ C1 C1 �1

Figure 15: To each z� 2 �N one can uniquely associate a weakly branched
special spine, also given by the graph � 2N obtained from z� by fusing the
edges through valence-2 vertices.

Proposition 2.5 The weakly branched special spine associated to z� 2 �N is inde-
pendent of the interpretation of the 2–valent vertices, and it coincides with the spine
corresponding to the graph � 2N obtained from z� by edge-fusion.

We conclude this subsection by explaining why have defined '.P; !; b/D .�; �/ not
simply as .�; �0/, but adding instead a full twist to �0 along unbranched edges.

Proposition 2.6 Take z� 2 �N and let � 2 N be obtained from z� by fusing edges
through valence-2 vertices. Then the frames .z�; z�/ and .�; �/ carried by z� and by �
are homotopic to each other.

Proof We have to show that when we fuse two colored edges into one the frame
.�; �/ defined by the fusion is homotopic to the concatenation of the frames defined
by the two edges. Recall that the color of the combination is the sum of the colors,
and note that the conclusion is obvious when one of the edge colors is 0/ . When the
two edge colors are opposite to each other one can examine Figure 11 and see that the
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concatenation of the two frames .�; �0/ is homotopic to a constant frame; at the level
of .�; �/ we would have to add two full twists to �0 , which amounts to nothing, and
the conclusion follows. We are left to deal with the sum of two edges with identical
color. We deal with the case C1C 1, since �1� 1 is similar. The frames .�; �0/

corresponding to C1C 1 and to �1 are shown in Figure 16, and recognized to differ
by a full twist. When passing to .�; �/ we have to add two full twists to � (that is,
nothing) in the C1C 1 configuration, and one full twist in the �1 configuration, thus
getting homotopic frames.

B C B C

A A

A A

B
C

B
C

Figure 16: The frames .�; �0/ corresponding to C1C 1 and to �1

2.4 Obstruction computation

We now denote by ˛.P; !; b/2C 2.P IZ=2Z/ the obstruction to extending '.P; !; b/
to a frame defined on P. To define ˛.P; !; b/, note that TM can always be trivialized
as GLC.3IR/�R on each open region R of P, and ˛.P; !; b/.R/ is the element of
�1.GLC.3IR//DZ=2Z represented by the restriction of '.P; !; b/ to (a loop parallel
to) @R. The next result shows that the chain x̨.P; !; b/D

P
e ˛.e/ �e 2C1.T IZ=2Z/

introduced in Section 1 is dual to ˛.P; !; b/, namely that ˛.e/D ˛.P; !; b/.R/ if R

is the region of P dual to an edge e of T .

Proposition 2.7 Given � 2 N decorate the attaching circles of the regions of the
special spine P defined by � as follows:

� at each vertex of � put arrows as in Figure 17(top);
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C1 1

�
1
2
�

1
2

�1
1

C
1
2
C

1
2

Figure 17: Decoration of the attaching circles of the regions near vertices and edges

� at each edge e of �, if the edge color is 0/ , put nothing, while if the edge color
is ˙1 put a weight 1 on the region that lies to the left of e at both ends of e ,
and �1

2
on the two other regions (see two examples in Figure 17(bottom)).

Then ˛.P; !; b/.R/ 2 Z=2Z is computed as 1 plus the sum of the numerical con-
tributions along @R plus the sum of contributions from arrows, turned numerical as
follows: choose for @R an arbitrary orientation and give each arrow value C1

2
or �1

2

depending on whether it agrees or not with the orientation. Moreover, both the sum of
the numerical contributions and that of the contributions from arrows turned numerical
belong to Z=2Z.

Proof Recall first that '.P; !; b/D .�; �/ is obtained from .�; �0/ by adding a full
twist to �0 along the edges of P having color ˙1. It is then sufficient to show that
the obstruction ˛0 to extending .�; �0/ is computed by decorating the regions of P

as in Figure 17(top) near the vertices and as in Figure 18 near the edges.

C1

C
1
2
C

1
2

�1

�
1
2 �

1
2

Figure 18: Reduced decoration near edges, used to compute ˛0

Let us now pick a region R, give it some orientation, and compute ˛0.R/. Thanks to
the orientation of R and of the ambient manifold M, for a vector at some point of @R
the positions shown in Figure 19 are well-defined. We now analyze how the positions
of � and �0 change as @R travels near a vertex or edge of P.

From Figure 9 one sees that .�; �0/ does not change at a vertex except if @R is in one
of the two positions indicated by arrows in Figure 17(top) (the sink and the source
quadrants of the vertex); for these, we have 4 different possibilities, two as follows:
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R R R R R R

up down in out for(ward) back(ward)

Figure 19: Positions of a vector on the boundary of an oriented region

position of R position of R

V1 sink quadrant of vertex V2 source quadrant of the vertex

with @R oriented as the arrow in Figure 17(top), and two more xV1 and xV2 with opposite
orientation of @R; the corresponding changes of � and �0 are

�� ��0 �� ��0

V1 up!up!up out!back!in xV1 down!down!down in!for!out

V2 up!up!up in!for!out xV2 down!down!down out!back!in

and this description applies whatever the index of the vertex.

Turning to �.�; �0/ along an edge e , of course nothing happens if e is branched or e

is unbranched but R is in position A in Figure 11; otherwise we have 8 possibilities, 4

with @R concordant with e and R in the following position:

position of R position of R

E1 B in Figure 11(left) E2 C in Figure 11(left)
E3 B in Figure 11(right) E4 C in Figure 11(right)

and 4 more xEj with @R discordant with e ; the corresponding �.�; �0/ is:

�� ��0 �� ��0

E1 up!in!down out!up!in xE1 up!in!down in!down!out

E2 down!out!up in!down!out xE2 down!out!up out!up!in

E3 down!in!up in!up!out xE3 down!in!up out!down!in

E4 up!out!down out!down!in xE4 up!out!down in!up!out

The value of ˛0.R/ will be given in �1.GLC.3IR//DZ=2ZDf0; 1g by 1 plus some
contribution of each configuration Vi ; xVi ;Ej ; xEj , but

� the Vi ; xVi ;Ej ; xEj cannot appear in arbitrary order: only some concatenations
are possible;
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� the individual Vi ; xVi ;Ej ; xEj do not make sense in �1.GLC.3IR// but some
of their concatenations do, when .�; �0/ is the same at the two ends of the
configuration.

The idea of the proof is then to assign to each Vi ; xVi ;Ej ; xEj a value ˙1
2

so that,
whatever concatenation is possible and makes sense in �1.GLC.3IR//, its geometri-
cally correct value in �1.GLC.3IR// is the sum of the values of the Vi ; xVi ;Ej ; xEj

appearing in it. Turning to the details, the possible concatenations are

(1)
fV1; xE2; xE3gC fV2; xE1; xE4g; fV2;E2;E3gC fV1;E1;E4g;

f xV1; xE1; xE4gC f
xV2; xE2; xE3g; f xV2;E1;E4gC f

xV1;E2;E3g;

and some concatenations that readily make sense in �1.GLC.3IR// are

V1CV2 D V2CV1 D 1; xV1C
xV2 D

xV2C
xV1 D 1;

E1CE2 DE2CE1 D 1; xE1C
xE2 D

xE2C
xE1 D 1;

E1CE3 DE3CE1 D 0; xE1C
xE3 D

xE3C
xE1 D 0;

E2CE4 DE4CE2 D 0; xE2C
xE4 D

xE4C
xE2 D 0;

E3CE4 DE4CE3 D 1; xE3C
xE4 D

xE4C
xE3 D 1I

see for instance Figure 20 for E1CE2 D 1, where the concatenation is shown on the
left and then homotoped to 1 2 �1.GLC.3IR//.

Figure 20: Proof that E1CE2 D 1

These relations (subject to the condition that all Vi ; xVi ;Ej ; xEj should be assigned ˙1
2

as a value) are equivalent to

(2)
V1 D V2; xV1 D

xV2;

E1 DE2 D�E3 D�E4; xE1 D
xE2 D�

xE3 D�
xE4;
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(note that the relations E4 D�E1 , E3 D�E2 , xE4 D�
xE1 , xE3 D�

xE2 come from
the algebra but they are also geometrically clear). We now claim that

E1C
xV1C

xE2CV2 D 1;

which is proved in Figure 21. Taking into account (2) the last condition is equivalent to

Figure 21: A concatenation giving 1 2 �1.GLC.3IR//

any one of the following:

(3)
V1 DE1 D

xE1 D�
xV1; V1 DE1 D

xV1 D�
xE1;

xV1 DE1 D
xE1 D�V1; V1 D

xE1 D
xV1 D�E1:

Choosing one of the relations (3) and combining it with (2) one can now compute
the correct value of any possible concatenation according to (1). Let us now choose
V1 DE1 D

xE1 DC
1
2

and xV1 D�
1
2

, and note that the concatenation rules (1) imply
that the total number of V1;V2; xV1; xV2 found along @R is even (see also below). The
desired computation rule and the last assertion of the statement easily follow.

2.5 Remarks on the computation of the obstruction

At the end of the proof of Proposition 2.7 one can also choose V1 D
xV1 DE1 DC

1
2

and xE1 D�
1
2

, which implies that ˛.P; !; b/ can be also computed by decorating the
attaching circles of the regions as in Figure 22. More generally, if we indicate by ci ; xci
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C
1
2

C
1
2

C
1
2

C
1
2

C1 1 �1
1

Figure 22: Alternative method to compute ˛.P; !; b/

the number of configurations Ci ; xCi along @R, we have that ˛0.R/ is equal to 1 plus

1
2
.C.v1C v2/C .xv1Cxv2/C .e1C e2� e3� e4/� .xe1Cxe2�xe3�xe4//

D
1
2
.C.v1C v2/C .xv1Cxv2/� .e1C e2� e3� e4/C .xe1Cxe2�xe3�xe4//

D
1
2
.C.v1C v2/� .xv1Cxv2/C .e1C e2� e3� e4/C .xe1Cxe2�xe3�xe4//

D
1
2
.�.v1C v2/C .xv1Cxv2/C .e1C e2� e3� e4/C .xe1Cxe2�xe3�xe4//

and these expressions are recognized to be equivalent to each other because

v1C v2Cxe1Cxe2Cxe3Cxe4; v1C v2C e1C e2C e3C e4;

xv1Cxv2Cxe1Cxe2Cxe3Cxe4; xv1Cxv2C e1C e2C e3C e4;

are all even numbers, thanks to (1). This implies that v1C v2Cxv1Cxv2 is also even
(as noted above), and e1C e2C e3C e4Cxe1Cxe2Cxe3Cxe4 is even as well (which is
clear, since it counts the number of up/down switches of � ).

Remark 2.8 The main reason why we have defined '.P; !; b/D .�; �/ not as .�; �0/,
but rather adding a full twist to �0 along unbranched edges, was to have additivity of
the frames with respect to edge-fusion, as explained in Proposition 2.6. Coherently
with this we now have that the obstruction ˛.P; !; b/ is also additive, namely it can
be computed at the level of the graphs in �N , which would be false for ˛0 . Two
examples of additivity (that again holds independently of the interpretation of the
2–valent vertices) are shown in Figure 23.

Remark 2.9 Extending results of [4; 3], in [2] certain quantum hyperbolic invariants
HN .P/ have been constructed for a variety of patterns P , with N � 3 an odd integer.
A pattern consists of an oriented compact 3–manifold M with (possibly empty)
toric boundary, and an elaborated extra structure on M, which includes a PSL.2;C/–
character. Each invariant is computed as a state sum over a suitably decorated weakly
branched triangulation of M with some number k of punctures, and it is well-defined
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1 1 1

�
1
2
�

1
2
�

1
2
�

1
2

C
1
2
C

1
2

Figure 23: Additivity of the computation of ˛

up to a phase anomaly. Namely, for N � 1 .mod 4/ up to multiplication by an N th

root of unity, while for N � 3 .mod 4/ up to multiplication by an N th root of unity
and a sign. And it turns our that in the latter case the sign ambiguity can be removed
by multiplying the state sum by .�1/k�˛.P;!;b/.ŒP �/ , where .P; !; b/ is the weakly
branched spine dual to the triangulation, and ŒP � 2 C2.P IZ=2Z/ is the sum of all the
regions of P.

2.6 Spin structures from cochains

We close this section with a result that dualizes to Proposition 1.1.

Proposition 2.10 The class of ˛ D ˛.P; !; b/ vanishes in H 2.P IZ=2Z/. For every
ˇ 2 C 1.P IZ=2Z/ such that ıˇ D ˛ a spin structure s.P; !; b; ˇ/ is well-defined
as the homotopy class of the frame .�; ˇ.�// on S.P /, where .�; �/ D '.P; !; b/
and ˇ.�/ is obtained by giving a full twist to � along all the edges e of P such that
ˇ.e/D 1. Moreover s.P; !; b; ˇ0/D s.P; !; b; ˇ1/ if and only if ˇ0Cˇ1 vanishes
in H 1.P IZ=2Z/.

Proof All three assertions are general topological facts. To prove the first one, let
.x�; x�/ be any given spin structure on M, namely a frame on S.P / that extends to P and
is viewed up to homotopy on S.P /. Homotoping .x�; x�/ we can suppose it coincides
with .�; �/ at the vertices of P, so we can define ˇ 2 C 1.P IZ=2Z/ where ˇ.e/ is
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the difference between .�; �/ and .x�; x�/ along e . Since the obstruction to extending
.x�; x�/ to a region R of P vanishes, we see that the obstruction ˛.R/ to extending
.�; �/ to R is the sum of ˇ.e/ for all the edges e of P contained in @R, namely
ıˇ D ˛ .

The second assertion is now easy: if ıˇD˛ then the obstruction to extending .�; ˇ.�//
to P vanishes.

Turning to the third assertion, it is first of all evident that if v is a vertex of P and
yv 2C 0.P IZ=2Z/ is its dual then the frames on S.P / carried by some ˇ with ıˇD ˛
and by ˇC ıyv are homotopic on S.P /, with homotopy supported near v . Conversely,
suppose ˇ0; ˇ1 with ıˇ0 D ıˇ1 D ˛ give frames .�.0/; �.0// and .�.1/; �.1// that
are homotopic on S.P / via .�.t/; �.t//t2Œ0;1� . If v is a vertex of P, by construction
.�.0/; �.0// equals .�.1/; �.1// at v , so we can view .�.t/; �.t//t2Œ0;1� at v as an
element  .v/ of �1.GLC.3IR// D Z=2Z. We then have  2 C 0.P IZ=2Z/ and
ˇ1 D ˇ0C ı , whence the conclusion.

Note that the previous result is coherent with the known fact that the set of spin
structures on M is an affine space over H 1.P IZ=2Z/DH 1.M IZ=2Z/.

3 Spine moves preserving the spin structure

We will establish in this section the dual versions of Propositions 1.3 to 1.5. From now
on we will regard any ˇ 2C 1.P IZ=2Z/ such that ıˇD˛.P; !; b/ up to coboundaries.
To discuss when two quadruples .P; !; b; ˇ/ define the same s.P; !; b; ˇ/ we can
then describe right to left how the quadruple must change, and we have already dealt
with the change of ˇ .

Before proceeding further we introduce a convenient graphic encoding for the quadru-
ples .P; !; b; ˇ/. Namely we define Nw as the set of all graphs � as in N , with
the extra structure of a weight in Z=2Z attached to each edge of �. A natural cor-
respondence between Nw and the set of all quadruples .P; !; b; ˇ/, with .P; !; b/
as in Proposition 2.4 and ˇ 2 C 1.P IZ=2Z/, is obtained by interpreting the weight
of an edge as the value of ˇ on it. Note that for � 2 Nw the edge colors belong to
Z=3Z D f0/ ;C1;�1g and the weights to Z=2Z D f0; 1g, so no confusion between
colors and weights is possible. Colors 0/ and weights 0 will often be omitted. We can
similarly define �Nw as the set of graphs in �N with weights in Z=2Z attached to the
edges, stipulating that weights sum up in Z=2Z when two edges are fused together.
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3.1 The vertex moves

The next result dualizes to Proposition 1.3.

Proposition 3.1 Two graphs in Nw define quadruples .Pj ; !j ; bj ; ǰ / for j D 0; 1

with P1 D P0 , !1 D !0 and s.P0; !0; b0; ˇ0/ D s.P1; !1; b1; ˇ1/ if and only if
they are obtained from each other by repeated applications of the moves I and II of
Figure 24 (and their inverses, followed by the reduction from �N to N ).

I II III_C1

�1

1
C1

�1
C1

C1

1

C1 1
C1

�11

�1

Figure 24: Moves that change the weak branching while preserving the
prebranching and the spin structure. Recall that ˙1 are colors in Z=3Z
while 1 is a weight in Z=2Z .

Proof We must prove that the moves I and II generate all possible changes at a
vertex V of a weak branching compatible with a given prebranching and, taking weights
into account, that the associated spin structure is preserved. For both indices "D˙1

of V there are 3 such possible changes; for "D�1 they are given by the moves I , II
and III� (already shown in Figure 24), which can be realized as III� D I � II D II � I ,
with I and II the inverses of I and II , and products written with the move applied first
on the left; for "DC1 the 3 possible changes are given by I , II and IIICD II �I D I �II .

It is then sufficient to show that the moves I and II correctly represent one change of
weak branching and preserve the spin structure, which we will do explicitly only for I .
Ignoring the frame, the proof that I preserves the prebranched spine is contained in
Figure 25(left). Turning to the frames, thanks to Proposition 2.6, we can carry out a
completely local analysis. Moreover we note that locally before the move the frame
.�; ˇ.�// coincides with .�; �0/, while after the move the frame .�; ˇ.�// is obtained
from .�; �0/ by giving a full twist to �0 along each of the 4 involved edges (three edges
have color ˙1 and weight 0, the fourth edge has color 0/ and weight 1). These four
twists are induced by a homotopy, so it will be enough to show that the frames .�; �0/

before and after the move coincide up to homotopy. Showing this on a single global
picture is too complicated, so we confine ourselves to proving that .�; �0/ is unchanged
up to homotopy separately on the boundary of each of the regions A;B;C;D;E;F

of Figure 25(left). This is very easy for all the regions except A; see for instance
Figure 25(right) for D . In Figure 26 we treat instead the case of the region A.
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ADF

F
B
E

EDC

C
B
A

ADF

F
B
E

EDC

C
B
A

Figure 25: Left: move I preserves the prebranched spine Right: the frame
.�; �0/ is unchanged under move I on the region D

Figure 26: The frame .�; �0/ is unchanged up to homotopy on A . Left: be-
fore the move Right: after the move Top: locally embedded configuration
Bottom: abstract configuration

Remark 3.2 Let the change of weak branching on the prebranched spine .P; !/ in
move I be given by b 7! b0 . The difference �˛ D ˛.P; !; b/C ˛.P; !; b0/ is then
computed locally, and Proposition 3.1 implies that �˛ D ıye , with e as in Figure 27.
This fact can actually be checked directly, as in the rest of Figure 27, since the picture
shows that �˛ is 0 on A;B;F and 1 on C;D;E .
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Figure 27: Variation of ˛ with move I

3.2 The circuit move

The next result dualizes to Proposition 1.4.

Proposition 3.3 Two graphs in Nw define quadruples .Pj ; !j ; bj ; ǰ / for j D 0; 1

with P1DP0 and s.P0; !0; b0; ˇ0/D s.P1; !1; b1; ˇ1/ if and only if they are related
by the moves of Proposition 3.1 plus moves of the form � 7! � 0 , where

� � contains a simple oriented circuit  that at all its vertices is an overarc,

� � 0 is obtained from � by reversing the orientation of the edges in  and adding 1

to the weights of the edges of  whose ends have distinct indices.

Proof Suppose that !0 and !1 are distinct prebranchings on the same spine P. The
union of the edges of P on which !0 and !1 disagree can be expressed as a disjoint
union of simple circuits oriented by !0 . It is then sufficient to consider the situation of
two weak branchings !;!0 that differ only on a simple circuit  oriented by ! , and
then iterate the procedure. Moreover, having already described how to obtain from each
other any two pairs .b; ˇ/ yielding the same spin structure on a given .P; !/, it is now
sufficient to find one specific weak branching b on .P; !/ and one b0 on .P; !0/ and
to describe a move ˇ 7! ˇ0 such that s.P; !; b; ˇ/D s.P; !0; b0; ˇ0/. This move will
be that of the statement, implying the conclusion. To describe the move we note that
indeed via Proposition 3.1 we can arrange so that  contains overarcs only in a graph
� 2N giving a weak branching b on .P; !/. Examining Figures 1(left) and 13 one
readily sees that the weak branching b0 obtained by reversing  is derived from b by
switching the orientation of the edge v2v3 in the tetrahedra dual to the edges in  . We
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are only left to show that the move ˇ 7! ˇ0 such that s.P; !; b; ˇ/D s.P; !0; b0; ˇ0/

consists in adding to ˇ the 1–cochain �ˇ given by the duals of the edges in  having
endpoints with distinct indices. We will prove this in a slightly indirect way, in the
spirit of Remark 3.2, by computing �˛ D ˛.P; !; b/C˛.P; !0; b0/ and showing that
�˛ D ı.�ˇ/.

0/ C1 �1

0/ -in-out-left C1-in �1-in-out �1-out

0/ -along

0/ -in-out-right C1-in-out C1-out �1-in

Figure 28: The edges in the circuit  and the corresponding regions of P

We begin by noting that there are nine possible positions of a region R with respect
to an edge e of  , as shown in Figure 28. One can now check that the contributions
carried by e to .�˛/.R/, depending on the indices ˙1=˙ 1 of the ends of e , are as
given in the following table (with @R oriented as in Figure 28):

C1=C 1 �1=� 1 C1=� 1 �1=C 1

0/–in-out-right 0 0 1 1

0/–along 0 0 0 0

0/–in-out-left 0 0 1 1

C1–in-out 0 0 1 1

C1–in 1 0 1 0

C1–out 1 0 0 1

�1–in-out 0 0 1 1

�1–in 1 0 1 0

�1–out 1 0 0 1

See Figure 29 for the explicit computation of some of these values.

To conclude we must now show that the total .�˛/.R/ obtained by summing the
contributions given by the various edges of  equals (mod 2) the number of edges in 
visited by @R and having ends with distinct indices. If @R visits only one edge, ie, if
it is of type in-out, the conclusion is evident from the values in the table. Otherwise
.�˛/.R/ is the sum of only two possibly nonzero contributions, one from the edge
of  , where @R enters and one from the edge of  where it leaves. More precisely, as

Algebraic & Geometric Topology, Volume 14 (2014)



Spin structures on 3–manifolds via arbitrary triangulations 1031

0/
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C1 �1
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Figure 29: Three computations of the contribution of an edge e in  to
.�˛/.R/ . The color 0/=C 1=� 1 of e (unchanged by the switch of  ) is
shown in the middle. On the left we see the indices of the ends of e before
the switch, and the local computation of ˛.R/; on the right the computation
of ˛0.R/ after the switch.

one sees from the table, there is an “in” contribution depending only on the index of
the vertex of  where @R enters (contribution 1 for index C1 and contribution 0 for
index �1), and an “out” contribution depending only on the index of the vertex of 
where @R leaves (again, contribution 1 for index C1 and contribution 0 for index �1).
This implies that indeed .�˛/.R/ has the desired value, and the proof is complete.

3.3 The bubble and the 2–3 move

The next result dualizes to Proposition 1.5.

Proposition 3.4 Two graphs in Nw define quadruples .Pj ; !j ; bj ; ǰ / for j D 0; 1

with s.P0; !0; b0; ˇ0/D s.P1; !1; b1; ˇ1/ if and only if they are obtained from each
other by the moves of Propositions 3.1 and 3.3 and those shown in Figure 30.

Proof Two special polyhedra are spines (in the punctured sense) of the same manifold
without boundary spheres if and only if they are related by bubble and 2–3 moves; see
Matveev [15] and Piergallini [17]. It is then sufficient to prove the following:

� using the moves I and II any edge e with distinct ends V0;V1 of a graph in Nw

can be transformed into one to which a move in Figure 30 applies;
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1

1
1

Figure 30: Moves on �Nw preserving the associated spin structure; the edges
entirely contained in the picture have color 0/ and weight 0 .

� at the level of spines the moves in Figure 30 translate the bubble and the 2–3

move, and at the level of quadruples .P; !; b; ˇ/ represented by graphs in Nw

the associated spin structure is unchanged under these moves.

With " being the index of a vertex, the following steps establish the first assertion:

(1) if e is an underpass at some Vj , apply to each such Vj the move III".Vj /

(with IIIC the analogue of III� for a vertex of index C1); this allows us to
assume that e is an overpass at V0 and V1 ;

(2) if the color of e is now C1, act as follows:

(a) if ".V0/D ".V1/D�1, apply I to V0 and II to V1 ;
(b) if ".V0/D�1 and ".V1/DC1, apply II to V1 ;
(c) if ".V0/DC1, apply I to V0 ;

(3) if the color of e is now �1, act as follows:

(a) if ".V0/D ".V1/DC1, apply I to V0 and II to V1 ;
(b) if ".V0/DC1 and ".V1/D�1, apply II to V1 ;
(c) if ".V0/D�1, apply I to V0 ;

(4) the color of e is now 0/ , and we want to exclude the case ".V0/ D C1 and
".V1/D�1, for which we apply I to V0 and II to V1 ;

(5) up to coboundaries we turn the weight of e to 0.
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A B C

D

H G
F

I E

D

A B C

H

I

A

N

B

G
F

E

D

C

Figure 31: Proof that under the moves of Figure 30 the change in the ob-
struction ˛ is compensated by the weights on the edges. For the two moves
on the right this is easy: on all the regions that survive ˛ keeps the same
value, and on the newborn region it has value 0 . For the top left move �˛
is 1 on A;B;C and 0 on D , while for the bottom left move �˛ is 0

on A;B;C;E;F;G and 1 on D;H; I;N , and indeed for both cases these
values are given by the weights in the moves.

For the second assertion, once again we start by an indirect argument in the spirit
of Remark 3.2, showing that the weights appearing in the moves compensate for the
variation of the obstruction ˛ 2 C 2.P IZ=2Z/, which is done in Figure 31. A more
direct argument for the move of Figure 30(top/left) is carried out in Figure 32; for the
other moves the argument follows from [6].

4 Arbitrarily branched graphs and the corresponding moves

In this section we show that the global move of Proposition 3.3 can be replaced, in a
suitable sense, by a simultaneous combination of local ones.

4.1 Graphs representing arbitrarily branched triangulations

We introduce now a set A of decorated graphs via which we can encode an arbitrarily
branched triangulation, namely a triangulation in which each tetrahedron is endowed
with a branching, without any compatibility whatsoever. Each vertex of a graph � in A
will be given a planar structure as in Figure 13, which corresponds to giving the dual
tetrahedron a branching. Note that each edge of � then has an orientation defined at
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Figure 32: Top: the branched bubble move. Middle: frames carrying the
same spin structure before and after the move. Bottom: the frame carried by
the spine after the move, that becomes the previous one taking into account
the weight 1 appearing in the move of Figure 30(left).

each of its ends. We are left to choose colors for the edges of � in order to encode the
face pairings, or equivalently the attaching circles to S.P /D � of the regions of the
dual spine P. To do so we note that dual to a germ e of edge of S.P / at some vertex
there is a branched triangle. We can now label by 0; 1; 2 the vertices of this triangle
according to the number of incoming edges, and dually the germs of regions incident
to e . We show in Figure 33(left) (in a cross section) this abstract labeling rule, and in
Figure 33(right) its concrete consequences. One can now easily check the following.

0 2

1

02

1

2
0
1

0

2
1

2
0
1

0

2
1

Figure 33: Labels for the germs of region near a (branched) vertex

Lemma 4.1 Let e be an edge of � and let n.e/ be the number of regions incident
to e having the same label at both ends of e .
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� If the two ends of e are consistently oriented then n.e/D 0 or n.e/D 3.

� If the two ends of e are inconsistently oriented then n.e/D 1.

This implies that we can give an edge e of � the following colors in S3 (see Figure 34
for some examples):

� if the two ends of e are consistently oriented, color

� 2SC
3
D f0/ ; .0 1 2/; .0 2 1/g

if region j at the first end of e is matched to region �.j / at the second end;

� if the two ends of e are inconsistently oriented, color

� 2S�3 D f.0 1/; .0 2/; .1 2/g

if region j at one end is matched to region �.j / at the other end.

.0 1 2/

.0 2 1/

0/

.0 1/

.1 2/

.0 2/

0

2

1

2

0

1

2

0

1

2

0

1

2

0

1

0

2

1

0

2

1

1

0

2

2

0

1

1

0

2

2

0

1

1

2

0

Figure 34: Meaning of the edge colors for a graph in A

Remark 4.2 A graph � in A defines a weakly branched triangulation if and only
if all the edges are consistently oriented. In this case � is converted into a graph
in N representing the same weakly branched triangulation by the color-replacements
.0 1 2/ 7! C1 and .0 2 1/ 7! �1.

From now on we will call even (respectively, odd) an edge of a graph in A with
color in SC

3
(respectively, in S�

3
), or, equivalently, with consistently (respectively,

inconsistently) oriented ends.
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4.2 Graphs with multiply colored edges

As we did for N , to define moves on A it is convenient to enlarge it to some zA by
allowing valence-2 vertices; edges are again decorated by an orientation at each of
their ends and a color (in SC

3
if the orientations match, in S�

3
if they do not), but we

also insist that orientations should match across the valence-2 vertices. Note that if
we choose for each 2–valent vertex of z� 2 zA an interpretation as or as we can
associate to z� an arbitrarily branched special spine.

�1 �2 �2 ı �1 �1 �2 �2 ı �1

� � ��1 ı � � � � ı ��1

Figure 35: How to fuse together two edges of a graph in zA

We now define a projection zA! A by illustrating in Figure 35 how fuse together
two edges sharing a valence-2 vertex; note that �; �1; �2 2 S

C

3
and �; �1; �2 2 S

�
3

;
moreover ��1 ı � D � ı � and � ı ��1 D � ı � , which gives alternative ways of
expressing the fusion rules. We have the following.

Proposition 4.3 The fusion rules of Figure 35 are associative, so each graph z� 2 zA
defines a unique � 2 A. Moreover the arbitrarily branched spine associated to z� is
well-defined regardless of the interpretation of the valence-2 vertices as or , and it
coincides with the arbitrarily branched spine associated to �.

The first assertion of this result follows from the second one, that can be established
with some patience; see some examples in Figure 36.

4.3 A new move

Let us consider the move on graphs in zA described in Figure 37(left). In Figure 37(right)
we show that the move preserves the spine (or triangulation) encoded by the graph,
while of course changing the arbitrary branching. The following result (that will also
follow from the rest of this section) is not difficult to show:

Proposition 4.4 Any two arbitrary branchings on the same triangulations are related
by compositions of the moves I and II (ignoring weights), that of Figure 37, and their
inverses.

Since for a single tetrahedron there are 24 different branchings, this result means that
at each vertex using the moves I and II and that of Figure 37 one can create all 24
possible configurations; see for instance Figure 38.

Algebraic & Geometric Topology, Volume 14 (2014)



Spin structures on 3–manifolds via arbitrary triangulations 1037

= =

= =

.0 1/ .1 2/ .0 2 1/ .0 2 1/ .0 2/ .1 2/

2
0
1

1
2
0

2
0
1

2
0
1

2
0
1

0
2
1

2
0
1

1
2
0

0
2
1

1
2
0

.0 2/ .0 1 2/ .1 2/ .1 2/ .0 1/ .0 1 2/

1
0
2

2
0
1

0
2
1

1
0
2

0
2
1

2
0
1

1
2
0

0
2
1

2
0
1

0
2
1

Figure 36: To each z� 2 zA one can uniquely associate an arbitrarily branched
special spine, also given by the graph � 2A obtained from z� by fusing the
edges through valence-2 vertices.

.1 2/

.1 2/

2 0 1

1 0 2

1 0 2

2 0 1

Figure 37: A move on zA

.1 2/

.1 2/

.0 1/ .0 1/

Figure 38: The inverse of the move of Figure 37 and one generated by those
in Figures 37 and 24
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4.4 Weighted graphs and weighted fusion

We define zAw as the set of graphs in zA with weights attached to the edges. The weight
of an edge e is given by an internal orientation and by a numerical weight in the group
G D .1

2
�Z/=2Z, with the following restrictions:

� if e is even then its internal orientation matches those at its ends (so it is not
shown in the pictures) and the numerical weight is 0 or 1;

� if e is odd the numerical weight is ˙1
2

.

Note that there is a natural inclusion �Nw � zAw . The numerical part of a system
of weights will be viewed up to 1–coboundaries with values in Z=2Z, namely the
numerical weights of all 4 edges incident to a vertex can simultaneously change by 1.
We next define the weighted fusion rules of Figure 39.

�1
w1

�1
a1

�1
a1

�1
a1

�2
w2

�2
a2

�2
a1

�2
a2

�2 ı �1

w1Cw2

�2 ı �1
a1C a2

�2 ı �1
a1 � a2

�2 ı �1
a1 � a2

�
w

�
w

�

a

�
a

�
a

�
a

�
w

�
w

��1 ı �

wC a

��1 ı �

wC 1

� ı ��1

aCw

� ı ��1

aCw

Figure 39: Edge fusion rules for graphs in zAw

�1
a1

�2
a2

�3
a3

�2 ı �1
a1C a2

�1
a1

�3
a3

�2 ı �3
a2 � a3

.�2 ı �1/
�1 ı �3

a1C a2C a3

.�2 ı �3/
�1 ı �1

a1C a2 � a3

Figure 40: The fusion rules for graphs in zAw are not associative. In this
example both the internal orientation and the numerical weight ˙1

2
depend on

the order in which fusions are performed; note however that .�2ı�1/
�1ı�3D

.�2 ı �3/
�1 ı �1 , coherently with the fact that the fusion rules for unweighted

graphs are associative.

Remark 4.5 The fusion rules do not cover the case of two odd edges with internal
orientations both opposite to the external orientation after fusion, because this case will
never occur for us. For the fusion of two odd edges with discordant internal orientations,
we note that a1; a2 are ˙1

2
, so a1� a2 D a2� a1 in Z=2Z.
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The following fact, proved in Figure 40, must be taken into account.

Proposition 4.6 The weighted fusion rules of Figure 39 are not associative.

4.5 Moves on weighted graphs

We now introduce certain moves on Nw , to define which we also use zAw . To begin
we call elementary move on zAw one of I; I ; II; II;M; SM from Figures 41 and 42.

I

II
III_

.0 1 2/
.0 2 1/

.0 1 2/
1

.0 2 1/
.0 1 2/

.0 1 2/
1

.0 1 2/
1 .0 1 2/

.0 2 1/1
.0 2 1/

I

II
IIIC

.0 2 1/

.0 2 1/

.0 1 2/

1

1

.0 1 2/
.0 2 1/

.0 2 1/
1 .0 1 2/

.0 2 1/
1.0 2 1/

.0 1 2/

Figure 41: Moves on zAw derived from those on �Nw

M SM

N xN

.1 2/ C1
2

.1 2/ �1
2

.1 2/ �1
2

.1 2/ C1
2

.0 1/

C
1
2

.0 1/

�
1
2

.0 1/

C
1
2

.0 1/

�
1
2

Figure 42: More moves on weighted graphs

The pictures contain more moves whose role will be explained soon.
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Remark 4.7 � In the symbols denoting the moves, overlining and subscripts are
used to indicate the type of index transition ˙1 7! ˙1.

� The moves I and II are those of Figure 24 and at the level of Nw , namely under
the associative fusion rules for �Nw , we have I D I�1 and II D II�1 ; moreover
III� D I � II D II � I and IIIC D I � II D II � I .

� In the product of two moves, the move to the left applies first; moreover, not all
products make sense.

We now establish some results concerning relations between moves.

Proposition 4.8 Consider a vertex as in Figure 13, apply to it one of the following
combination of weighted moves, and locally apply near the vertex the weighted fusion
rules of Figure 39; then the result is the same as indicated:

M � SM D id�; N � xN D id�; SM �M D idC; xN �N D idC
III� �M DN � IIIC; IIIC � SM D xN � III�; M � xN DN � SM ; SM �N D xN �M

Remark 4.9 Since the fusion rules in zAw are not associative, these equalities do not
imply that at the level Aw we have the relations

SM DM�1; xN DN�1; N D III� �M � IIIC;

but these relations do make sense and hold in a restricted context; see below.

The proofs of some of the equalities in Proposition 4.8 are given in Figures 43–45;
they all crucially use the weighted fusion rules of Figure 39 and the convention that
weights are viewed up to Z=2Z–coboundaries; the other proofs are similar.

We now call weighted move on a vertex as in Figure 13 any sequence of elementary
weighted moves (not followed by any fusion). We first have the following.

Proposition 4.10 Take � 2 Nw and apply to each of its vertices a weighted move
to get z� 2 zA. Suppose that by applying (in some order) the weighted fusion rules
of Figure 39 one gets ‚ 2 Nw . Then the system of weights on ‚ is well-defined
independently of the order of application of the weighted fusion rules.
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=M SM

.1 2/ C1
2

.1 2/ �1
2

.1 2/ C1
2

.1 2/ C1
2

.1 2/ �1
2

.1 2/ �1
2

Figure 43: Proof that M � SM D id� under local application of weighted fusion

=

=

=
III_

M

N

IIIC

.0 1 2/

.0 1 2/

1
.0 2 1/
.0 2 1/

1

.0 1 2/

.0 2 1/ 1

.12/ C1
2

.12/ �1
2

.0 2 1/

1
.0 1 2/

.0 1 2/

.0 2/

C
1
2

.0 2 1/

�
1
2

.0 2/

.0 1/

C
1
2

.0 1/

�
1
2

.0 1/

C
1
2

.0 1 2/
1 .0 1 2/

.0 2 1/

.0 1/

�
1
2

.0 2 1/ 1

1 .0 1 2/
�

1
2

.0 2/

.0 2 1/ 1

.0 2/

C
1
2

Figure 44: Proof that III� �M DN � IIIC under local application of weighted fusion

Proof The statement contains the implicit claim that the rules of Figure 39 suffice to
go from z� to some ‚, namely that no situation as in Remark 4.5 occurs.

We prove the proposition ignoring the colors in S3 , because we already know that
fusion is associative at the S3 level. We concentrate on a single edge of � and
we imagine e is initially drawn in front of us with orientation from left to right and
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=

N

M SM

xN

.0 1/

C
1
2

.0 1/

�
1
2

.1 2/ C1
2

.1 2/ �1
2

.1 2/ C1
2
.0 1/

C
1
2

.1 2/ �1
2

.0 1/

�
1
2

.1 2/ �1
2

.0 1/

�
1
2

.1 2/ C1
2

.0 1/

C
1
2

Figure 45: Proof that M � xN DN � SM under local application of weighted fusion

weight w 2 f0; 1g. Replacing external orientations of edges by letters r=` and internal
orientations by R=L we then have in � an initial edge rr

w
that gets replaced in z� by

a concatenation ze of edges of the form

rr
u
; ``

u
; rR`

a
; rL`

a
; `Rr

a
; `Lr

a
:

A careful examination of the elementary weighted moves actually shows that the
possibilities for ze are only as follows:��

rr
u

��
�

rR`
a
�
�
``
u

��
�
`Lr

a

��
�
�

rr
u

��
�

rr
w
�
�

rr
u

��
�
�

rL`
a
�
�
``
u

��
�
`Rr

a
�
�

rr
u

����(4) �
``
u

��
�
`Lr

a
� (4) � rL`

a
�
�
``
u

��(5)

where y� means any number (including 0) of repetitions of a string y , and the weight u

(resp. a) can have a different value in f0; 1g (resp. ˙1
2

) each time it appears. It is then
clear that we never get any of the adjacencies rL`

a
�
`Lr

a
or `Rr

a
�

rR`
a

not contemplated
by the weighted fusion rules of Figure 39. Moreover these rules can be expressed as

rr
u1
�

rr
u2
D

rr
u1Cu2

; rr
u
�

rD`
a
D

rD`
uCa

; `Dr
a
�

rr
u
D
`Dr
aCu

;

``
u1
�
``
u2
D

``
u1Cu2

; ``
u
�
`Dr

a
D
`Dr
uCa

; rD`
a
�
``
u
D

rD`
aCu

;

`Lr
a1
�

rL`
a2
D

``
a1Ca2

; rR`
a1
�
`Rr
a2
D

rr
a1Ca2

;

`Lr
a1
�

rR`
a2
D

``
a1�a2

; `Rr
a1
�

rL`
a2
D

``
a1�a2

; rR`
a1
�
`Lr
a2
D

rr
a1�a2

; rL`
a1
�
`Rr
a2
D

rr
a1�a2

:

We must show that by applying them as long as possible to (4) or (5) we get a well-
defined result. Note first that each edge ``

u
or rr

u
can be ignored; in fact, its contribution

is independent of the time it is involved in weighted fusions, because
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� on the internal orientation it acts identically to the right and to the left,

� its numerical weight is in f0; 1g, so it is insensitive to later sign change.

We then have to deal with concatenations of the form

rR`
a1
�
`Lr
b1
� � �

rR`
ak
�
`Lr
bk
�

rL`
dh
�
`Rr
ch
� � �

rL`
d1
�
`Rr
c1
;(6)

`Lr
b0
�

rR`
a1
�
`Lr
b1
� � �

rR`
ak
�
`Lr
bk
�

rL`
dh
�
`Rr
ch
� � �

rL`
d1
�
`Rr
c1
�

rL`
d0
;(7)

but we also consider the following (that arise starting from an edge ``
w

in � ):

`Lr
a1
�

rR`
b1
� � �

`Lr
ak
�

rR`
bk
�
`Rr
dh
�

rL`
ch
� � �

`Rr
d1
�

rL`
c1

(8)
rR`
b0
�
`Lr
a1
�

rR`
b1
� � �

`Lr
ak
�

rR`
bk
�
`Rr
dh
�

rL`
ch
� � �

`Rr
d1
�

rL`
c1
�
`Rr
d0

(9)

We now claim that, regardless of the order in which the weighted fusion rules are
applied, the numerical edge weight on the final result isX

iD1;:::;k

ai �

X
iD1;:::;k

bi C

X
jD1;:::;h

cj �

X
jD1;:::;h

dj for (6) and (8);

X
iD1;:::;k

ai �

X
iD0;:::;k

bi C

X
jD1;:::;h

cj �

X
jD0;:::;h

dj for (7) and (9):

The claim of course implies the conclusion, and we can prove it by induction on half the
length of the concatenation. The base step of the induction is with length 0 in cases (6)
and (8), so it is empty, and with length 2 in cases (7) and (9), so it follows directly
from the weighted fusion rules (remember that �b0� d0 D b0C d0 because both b0

and d0 are ˙1
2

). For the inductive step we must analyze what happens by applying
one weighted fusion to one of (6)–(9). In all four cases we can distinguish between the
“central” fusion `Lr

bk
�

rL`
dh
!

``
bkCdh

or rR`
bk
�
`Rr
dh
!

rr
bkCdh

and any “lateral” fusion.
Dealing with lateral fusions is easier, and we make it explicit only for case (6) and for
a fusion performed to the left of the centre; this fusion will be rR`

at
�
`Lr
bt
!

rr
at�bt

or
`Lr
bt
�

rR`
atC1
!

``
bt�atC1

D
``

atC1�bt
; then we can forget the fused edge (remembering

that its weight must be added to the final one) so we are led to a shorter concatenation
of type (6); the inductive assumption then easily implies the conclusion.

Turning to the central fusion, in case (6) forgetting the fused edge we get the shorter
concatenation of type (9),

rR`
a1
�
`Lr
b1
�

rR`
a2
� � �

`Lr
bk�1
�

rR`
ak
�
`Rr
ch
�

rL`
dh�1
� � �

`Rr
c2
�

rL`
d1
�
`Rr
c1
;
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whence, by the inductive assumption, independently of the order, a final weight

(10) bk C dhC

X
iD1;:::;k�1

bi �

X
iD1;:::;k

ai C

X
jD1;:::;h�1

dj �

X
jD1;:::;h

cj

D

X
iD1;:::;k

ai �

X
iD1;:::;k

bi C

X
jD1;:::;h

cj �

X
jD1;:::;h

dj

as desired. The central fusion in (7) gives the type (8) concatenation

`Lr
b0
�

rR`
a1
� � �

`Lr
bk�1
�

rR`
ak
�
`Rr
ch
�

rL`
dh�1
� � �

`Rr
c1
�

rL`
d0
;

whence final weight precisely as in (10), as desired. The central fusion in cases (8)
and (9) is reduced in a similar way to the inductive assumption in cases (7) and (6)
respectively.

Corollary 4.11 If a sequence of elementary weighted moves is applied to a vertex
as in Figure 13 and the weighted fusions are applied as long as possible to the edges
generated by these moves, the result is independent of the order of fusions.

Proof By the argument showing Proposition 4.10 we must prove that concatenations
of the form

rR`
a1
�
`Lr
b1
� � �

rR`
ak
�
`Lr
bk
; `Lr

a1
�

rR`
b1
� � �

`Lr
ak
�

rR`
bk
;

`Lr
b0
�

rR`
a1
�
`Lr
b1
� � �

rR`
ak
�
`Lr
bk
; rR`

b0
�
`Lr
a1
�

rR`
b1
� � �

`Lr
ak
�

rR`
bk
;

give a well-defined result. By induction on the length one can indeed see that the first two
give

P
iD1;:::;k bi�

P
iD1;:::;k ai and the last two give

P
iD0;:::;k bi�

P
iD1;:::;k ai .

The two previous results imply that

� we can define a weighted move at a vertex as in Figure 13 as a sequence of
elementary weighted moves followed by weighted fusion;

� if we apply to a graph in Nw some weighted moves and after weighted fusion
we get another graph in Nw , the weights on this last graph are well-defined.

Proposition 4.12 Two weighted moves at a vertex that coincide as unweighted moves
also coincide as weighted moves.

Proof We will prove the result for moves turning a vertex of index �1 to another
vertex of index �1, the general case following by precomposition with move I and/or
postcomposition with move I . The 12 moves described form a group …� which is
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intrinsically isomorphic to the alternating group SC
4

on 4 objects. This isomorphism
is made explicit with the choice of generators and the resulting presentation as follows:

˛ D III�; ˇ D I � SM ; …� D h˛; ˇj ˛
2; ˇ3; .˛ �ˇ/3i

(with moves and relations understood without weights). To conclude it is then sufficient
to show that the three relations hold also in a weighted sense. For ˛2 this was already
implicit above and very easy anyway; the other two weighted relations are established
in Figures 46 and 47.

=

= =

=

I SM

ˇ

ˇ ˇ

.0 1 2/

.0 1 2/

.0 2 1/

1

.0 1 2/
.0 1 2/

.1 2/

�
1
2

.1 2/

C
1
2

.0 2 1/

1

.0 1/ �
1
2

.0 1 2/

.0 1/

C
1
2

1

.0 1/ �
1
2

.0 1 2/

.0 1/

C
1
21

.0 1/ �1
2

.0 1 2/

.0 1 2/ 1

.0 1/

�
1
2

.0 1/

C
1
2

.0 1/ C1
2

1

.0 1/ C1
2

.0 2 1/ 1

.0 1/ �1
2

.0 1/ C1
2

.0 1/ C1
2

.0 1/

�
1
2

1

1

.0 1 2/

.0 1/ �1
2

Figure 46: Computation of ˇ D I � SM and proof that ˇ3 D id� in a weighted sense

We are ready to establish our main result of this section.

Theorem 4.13 Two graphs in Nw represent the same spine of some manifold M and
the same spin structure s on M if and only if they can be obtained from each other by
a combination of the moves I; II;M; I ; II; SM and weighted fusion.

Proof Suppose that �1; �2 2Nw represent the same .M; s/. Then they are related by
moves I; II; I ; II and circuit moves. To get the desired conclusion it is then enough to
show that the moves M; SM generate the circuit move, which is done in Figure 48 for
an edge of a circuit with first end of index �1 (the cases with first end C1 are similar).

For the opposite implication we need two preliminary results. The proof of the first
one is an easy variation of the argument showing Proposition 3.3.
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=

=

=

II SM

˛ˇ

˛ˇ
˛ˇ

.0 2 1/

1

.0 1 2/

.0 1 2/

.0 2 1/

1

.1 2/

�
1
2

.1 2/

C
1
2

.0 1 2/ .0 1 2/

.0 2 1/

.1 2/

C
1
2

.0 1 2/

.0 2/ C1
2

.0 2 1/

.1 2/

C
1
2

.0 1 2/

.0 2/ C1
2

.0 2 1/

.1 2/ C
1
2

.1 2/

C
1
2

.0 2/

C
1
2

.021/

.0 1 2/

.0 1 2/

.0 2/ C1
2

.0 2/
C

1
2.0 1 2/

.0 2 1/

.1 2/ C1
2

.0 2/ C1
2

.0 1 2/

.0 1 2/ .0 2 1/ .0 2/

C
1
2

.0 2 1/

.1 2/ C1
2

.1 2/ C1
2

Figure 47: Computation of ˛ �ˇ D III� � I � SM D II � I � I � SM D II � SM and
proof that .˛ �ˇ/3 D id� in a weighted sense

= =

= =

�

w

�

w

MM

M SM

.1 2/

C
1
2

�
w

.1 2/

�
1
2

.1 2/

C
1
2

�
w

.1 2/

C
1
2

.1 2/

C
1
2

��1ı.12/

w� 1
2

.1 2/

C
1
2

��1ı.12/

wC 1
2

�

w

�

wC 1

Figure 48: Generation of the circuit move via the moves M; SM and weighted fusion

Proposition 4.14 Suppose that in � 2 Nw there are some (possibly intersecting)
oriented circuits 1; : : : ; n , and that each j is either an undercircuit (an underpass at
all its vertices) or an overcircuit (an overpass at all its vertices). Then the spin structure
defined by � is also defined by the graph obtained from � by reversing the orientation
of each edge e of 1[ � � � [ n and adding 1 to the weight of e if the ends if e have
different indices.

Proposition 4.15 If � 2 Nw then using the moves I; II; I ; II at the vertices of �,
followed by fusion, one can get ‚ 2Nw such that each edge of ‚ is either an overpass
at both its ends or an underpass at both its ends.

Proof To begin we note that given a vertex V of � and the choice of two germs of
edges of � at V having consistent orientation through V , the moves I; II; I ; II allow
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to put the two chosen germs of edges in the overpass position at v . It is then enough to
show that we can attach labels o (over) and u (under) to the germs of edges of � at
vertices, so that

� for each edge the labels at its ends are the same,

� at each vertex the germs having the same label have consistent orientation.

One such labeling will be termed good, and the coming argument proving its existence
is due to Federico Petronio. We choose a vertex V of � and attach any label to any of
the germs of edge at V . Then we propagate the labeling along a path in � by applying
alternatively the following rules until V is reached again:

� if an end of an edge has a label, give the other end the same label;

� if at a vertex an incoming (respectively, outgoing) germ has a label, give the
other incoming (respectively, outgoing) germ the other label.

Note that the propagation path need not be simple, but at each vertex visited twice
the labeling is good; see Figure 49(left). When V is reached again we have one of

V V

V V

u u o o u

u

uo u

o

u

uu u o o u

u u o o u

o

o
u o

u

o

o
u u o o u

Figure 49: Extension of the labeling in case of initial label u on an outgoing
germ at V

the situations in Figure 49(right); in the top one we proceed by applying the second
rule, and eventually get back to V again with a good labeling; in the bottom one we
proceed with an arbitrary choice of the label, but once more we get back to V with a
good labeling. We can now similarly start from some other vertex, until all the germs
of edges at vertices are labeled.

Algebraic & Geometric Topology, Volume 14 (2014)



1048 Riccardo Benedetti and Carlo Petronio

Back to the proof of Theorem 4.13, suppose that �2 2Nw is obtained from �1 2Nw

by a combination of weighted moves I; II;M; I ; II; SM and weighted fusion. Let � be
the union of the edges of �2 having a different orientation in �1 . By Proposition 4.15
we can find weighted moves generated by I; II turning �2 into �3 2Nw in which �
appears as a union of overcircuits and undercircuits. Note that �3 carries the same
spin structure as �2 by Proposition 3.1. With pictures similar to Figure 48 one can
now see that the multiple circuit moves of Proposition 4.14 are generated by the moves
M; SM ;N; xN ;D�DM � xN DN � SM ;DCD SM �N D xN �M (the move D� is shown
in Figure 45, and DC is obtained similarly).

This shows that we can find a combination of the moves I; II;M; I ; II; SM that, after
weighted fusion, turn �2 into some �4 carrying the same spin structure as �2 and
the same prebranching as �1 . Proposition 3.1 then implies that via moves I; II; I ; II
we can turn �4 into some z�1 carrying the same spin structure as �2 and different
from �1 possibly only for the weights. We then have a sequence of weighted moves
I; II;M; I ; II; SM that under weighted fusion give

�1 �! �2 �! �3 �! �4 �!
z�1

and that ignoring weights give the identity of �1 (namely, they give the identity at
every vertex of �1 ). Proposition 4.12 then implies that z�1 coincides with �1 also
as a weighted graph (up to coboundaries). This shows that �2 carries the same spin
structure as �1 .

4.6 Obstruction computation on graphs with split edges

Even if this is not strictly necessary for our main results, we provide here two methods
for the computation of the obstruction ˛.P; !; b/ carried by a graph z� 2 zA that
after fusion becomes a graph in ‚ 2N defining a triple .P; !; b/. The first method
is general, direct and easy; the second one only applies to a z� resulting from the
application to some � 2N of the moves of Proposition 4.10 (ignoring the numerical
weights but using internal orientations), and it is more complicated, but it also shows
that some nontrivial algebra underlies the computation.

First method Take z� 2 zA that after fusion gives � 2N representing .P; !; b/. We
claim that ˛.P; !; b/ can be computed from z� by considering on the boundary of
each region of P some numerical contributions in G D .1

2
�Z/=2Z and some arrows,

as in Proposition 2.7. Contributions from vertices and from even edges are the same as
in Proposition 2.7, while those from an odd edge e are described as follows (with the
regions labeled 0,1,2 as in Figure 33 and contributions 0 not mentioned):
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e � D .0 1/ � D .0 2/ � D .1 2/

� regions 0 and 1 get C1
2

all regions get 1 regions 1 and 2 get �1
2

� regions 0 and 1 get �1
2

all regions get 1 regions 1 and 2 get C1
2

The proof that this recipe works follows from the fact that the contributions combine
consistently under fusion, which is shown on examples in Figure 50.

=

=

=

=

=

=

.0 1/ .1 2/ .0 2 1/ .0 2/ .1 2/ .0 1 2/
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C
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C
1
2
C

1
2

1 C
1
2

1 1 C
1
2

1

�
1
2 �

1
2

2
0
1

1
0
2

0
2
1

2
0
1

0
2
1

0
2
1

1
0
2

0
2
1

0
2
1

0
2
1

.1 2/ .0 2/ .0 2 1/ .1 2/ .0 1/ .0 1 2/

�
1
2 1 1

�
1
2

1

1

C
1
2
C

1
2

�
1
2

�
1
2

�
1
2

�
1
2

1

�
1
2 �

1
2

0
2
1

1
2
0

2
0
1

0
2
1

2
0
1

2
0
1

1
2
0

0
2
1

2
0
1

0
2
1

.0 2 1/ .0 2/ .1 2/ .1 2/ .0 1 2/ .0 1/

1 1 1

C
1
2
C

1
2

1

�
1
2

�
1
2

C
1
2 1

C
1
2
�

1
2
�

1
2

�
1
2

�
1
2

2
0
1

0
2
1

1
2
0

2
0
1

1
2
0

1
2
0

2
0
1

0
2
1

1
2
0

0
2
1

Figure 50: Associativity of the computation of ˛ on a graph in zA

Second method We begin with an apparently unrelated algebraic result. For any
set G we consider the right action of S3 on G given by

.g0;g1;g2/ � �D .g�.0/;g�.1/;g�.2//:

We check that indeed this is a right action on an example:

..g0;g1;g2/ � .0 1// � .1 2/D .g1;g0;g2/ � .1 2/D .g1;g2;g0/

.g0;g1;g2/ � ..0 1/ ı .1 2//D .g0;g1;g2/ � .0 1 2/D .g1;g2;g0/

If G is an abelian group of course we have

..g0;g1;g2/C .h0; h1; h2// � �D .g0;g1;g2/ � �C .h0; h1; h2/ � �
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so we can define the semidirect product S3qG3 as S3 �G3 with operation

.�; .g0;g1;g2// � .�; .h0; h1; h2//D .� ı �; .g0;g1;g2/ � � C .h0; h1; h2/:

We now specialize our choice to D .1
2
�Z/=2Z and we establish the following.

Proposition 4.16 Define sW S3!G3 by

s.0//D .0; 0; 0/; s..0 1 2//D .�1
2
;�1

2
; 1/; s..0 1//D .�1

2
;C1

2
; 0/;

s..0 2//D .1; 0; 1/; s..0 2 1//D .1;C1
2
;C1

2
/; s..1 2//D .0;�1

2
;C1

2
/:

Then ‰W S3!S3qG3 given by ‰.�/D .�; s.�// is a group homomorphism.

Proof If x D .0 1/ and y D .1 2/ we have the presentation of S3 given by

hx;yj x2; y2; .x �y/3i

with .0 1 2/D x � y , .0 2 1/D y � x , .0 2/D x � y � x . The proposition will then be a
consequence of the relations

‰.x/2 D‰.y/2 D .‰.x/ �‰.y//3 D .0/ ; .0; 0; 0//;

‰..0 2//D‰.x/ �‰.y/ �‰.x/;

‰..0 1 2//D‰.x/ �‰.y/;

‰..0 2 1//D‰.y/ �‰.x/:

We start with

‰.x/2 D ..0 1/; .�1
2
;C1

2
; 0// � ..0 1/; .�1

2
;C1

2
; 0//

D ..0 1/ ı .0 1/; .C1
2
;�1

2
; 0/C .�1

2
;C1

2
; 0//D .0/ ; .0; 0; 0//:

The computation of ‰.y/2 is similar. Before checking that ‰.x/ �‰.y/ has vanishing
cube we compute it, checking it is ‰..0 1 2//:

‰.x/ �‰.y/D ..0 1/; .�1
2
;C1

2
; 0// � ..1 2/.0;�1

2
;C1

2
//

D ..0 1/ ı .1 2/; .�1
2
; 0;C1

2
/C .0;�1

2
;C1

2
//

D ..0 1 2/; .�1
2
;�1

2
; 1//
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And now we conclude

.‰..0 1 2///3 D ..0 1 2/; .�1
2
;�1

2
; 1//3

D ..0 1 2/ ı .0 1 2/; .�1
2
; 1;�1

2
/C .�1

2
;�1

2
; 1// �‰..0 1 2//

D ..0 2 1/; .1;C1
2
;C1

2
// � ..0 1 2/; .�1

2
;�1

2
; 1//

D ..0 2 1/ ı .0 1 2/; .C1
2
;C1

2
; 1/C .�1

2
;�1

2
; 1//D .0/ ; .0; 0; 0//;

‰.y/ �‰.x/D ..1 2/; .0;�1
2
;C1

2
// � ..0 1/; .�1

2
;C1

2
; 0//

D ..1 2/ ı .0 1/; .�1
2
; 0;C1

2
/C .�1

2
;C1

2
; 0//

D ..0 2 1/; .1;C1
2
;C1

2
//;

‰.x/ �‰.y/ �‰.x/D ..0 1/; .�1
2
;C1

2
; 0// � ..0 2 1/; .1;C1

2
;C1

2
//

D ..0 1/ ı .0 2 1/; .0;�1
2
;C1

2
/C .1;C1

2
;C1

2
//

D ..0 2/; .1; 0; 1//;

thus completing the proof.

Remark 4.17 The previous result remains true, with the same proof, if the values
on s on the transpositions are redefined as

s..0 1//D .C1
2
;�1

2
; 1/; s..1 2//D .1;C1

2
;�1

2
/; s..0 2//D .0; 1; 0/:

Let us then turn to the computation of the obstruction ˛.P; !; b/. We start from � 2N ,
we apply to it some of the moves of Proposition 4.10 (but neglecting the numerical
weight) and we call z� the result. Next, we assume that applying fusion to z� we get
‚ 2N defining .P; !; b/. Note that every edge of z� carries an internal orientation
(that for an even edge we stipulate to be the same as the orientations at the ends). Let us
concentrate on an edge e of ‚, that in z� (before fusion) will be subdivided into several
edges. Since in ‚ 2N the edge e is oriented, we can speak of a global orientation
of e (that coincides with the internal orientations of the two extremal subedges of e ).
Now note that each subedge e0 of e brings three portions of strands of attaching circles
of P to S.P /, and that these strands are numbered 0; 1; 2 at both ends of e0 according
to the orientation of these. The recipe for the computation of ˛.P; !; b/ now uses the
map s of Proposition 4.16, and goes as follows:

� let � 2S3 be the permutation attached to e0 , and define .h0; h1; h2/ to be s.�/

if the internal orientation of e0 is consistent with the global one, otherwise define
.h0; h1; h2/ as s.��1/;

� at the first end of e0 with respect to the global orientation, attach to the strands
0; 1; 2 the weights h0; h1; h2 .

Algebraic & Geometric Topology, Volume 14 (2014)



1052 Riccardo Benedetti and Carlo Petronio

A formal proof that summing the contributions of the various e0 one gets the edge
contributions to ˛.P; !; b/ as in Proposition 2.7 employs Proposition 4.16, but we
confine ourselves here to some examples only; see Figures 51–56.

=

.0 1/ .0 2 1/ .1 2/ .0 1 2/

2
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1

1
0
2

1
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0
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1�1=2

C1=2

�1=2

�1=2
1
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C1=2

1

�1=2

�1=2

Figure 51: Computation of ˛ with the second method, example 1
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Figure 52: Computation of ˛ with the second method, example 2
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Figure 53: Computation of ˛ with the second method, example 3
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Figure 54: Computation of ˛ with the second method, example 4
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=
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Figure 55: Computation of ˛ with the second method, example 5
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Figure 56: Computation of ˛ with the second method, example 6
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