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Coherence for invertible objects
and multigraded homotopy rings

DANIEL DUGGER

We prove a coherence theorem for invertible objects in a symmetric monoidal category
(or equivalently, a coherence theorem for symmetric categorical groups). This is
used to deduce associativity, skew-commutativity, and related results for multigraded
morphism rings, generalizing the well-known versions for stable homotopy groups.

18D10; 55Q05, 55U99

1 Introduction

In algebraic topology a classical object of study is the stable homotopy ring ��.S/,
which is Z–graded and graded commutative. For any topological space (or spectrum) X

the stable homotopy groups ��.X / give a bimodule over ��.S/. The motivation for the
present paper comes from wanting to generalize this basic setup to more sophisticated
homotopy theories, where the homotopy rings and modules have a more elaborate
grading. Standard examples are the categories of G –equivariant spectra and the category
of motivic spectra. In these settings it has long been realized that it can be advantageous
to use a grading by an index having to do with the invertible objects, rather than a
grading by integers (which correspond to integral suspensions/desuspensions of the unit
object). This paper deals with some fundamental questions that arise in this general
situation.

As we explain below, for general grading schema one must take some care over whether
the analog of ��.S/ is indeed associative, and whether the analogs of ��.X / are
indeed bimodules. Care is also needed in the treatment of graded commutativity. At an
even deeper level than these issues, the ring structure on ��.S/ is not exactly canonical:
different choices in the basic setup can result in different isomorphism classes of rings.
We approach these issues by proving a general coherence theorem for invertible objects
in a symmetric monoidal category; this is the main result of the paper, and is spread
across Theorems 1.6, 1.10, 1.13 and 1.14 below. After establishing the coherence result
we deduce the basic facts about Zn –graded homotopy rings as consequences.
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1.1 Introduction to the problem

Let .C;˝/ be a symmetric monoidal category, and let S denote the unit. Given objects
x1; : : : ;xn in C, we write x1˝ � � �˝xn as an abbreviation for

x1˝ .x2˝ .x3˝ � � � .xn�1˝xn///:

We also use xk as an abbreviation for x ˝ x ˝ � � � ˝ x (k factors). So note that
x2 ˝ y3 ˝ z is an abbreviation for .x ˝ x/ ˝ ..y ˝ .y ˝ y// ˝ z/, and that by
convention x0 D S . Finally, for each tuple aD .a1; : : : ; an/ 2Nn , write

xa
D x

a1

1
˝ � � �˝xan

n :

An object X of C is called invertible if there is an object Y and an isomorphism
�W S ! Y ˝X. We will say that .Y; �/ is an inverse for X. In this situation there is a
unique map y�W X ˝Y ! S such that the two evident maps from .X ˝Y /˝X to X

are the same, and this y� is an isomorphism (see Proposition 4.11 below). If a 2 Z,
define

X a
D

�
X a .as already defined/ if a� 0;

Y �a if a< 0.

Note that given an invertible object X, the isomorphism type of Y is uniquely deter-
mined; but given a specific choice of Y , the map � is not uniquely determined; it can
be varied by an arbitrary element of Aut.S/.

Let X1; : : : ;Xn be a collection of invertible objects in C, with chosen inverses
.Y1; �1/; : : : ; .Yn; �n/. For a 2 Zn , define

X a
DX

a1

1
˝ � � �˝X an

n :

Assume now that C is an additive category and the tensor product is an additive functor in
each variable. Let ��.S/ be the Zn –graded abelian group given by �a.S/DC.X a;S/.
More generally, if W is a fixed object in C let ��.W / be the Zn –graded abelian group
given by �a.W /D C.X a;W /. One of the goals of this paper is the following.

1.2 Proposition (1) ��.S/ is a Zn –graded ring.

(2) ��.W / is a Zn –graded bimodule over ��.S/.

(3) There exist elements �1; : : : ; �n 2 �.0;:::;0/.S/ satisfying �2
i D 1 such that for

all f 2 �a.S/ and g 2 �b.S/, where a; b 2 Zn , one has

fg D gf � Œ�
.a1b1/
1

� � � � .anbn/
n �:

In fact, �i is the trace of the identity map on Xi (see Section 3 for the definition
of trace).
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1.3 Remark The groups ��.W / depend on the choice of objects X1; : : : ;Xn , and
therefore we should probably write �X

� .W /. We will always regard the sequence X as
being understood, however. Unfortunately, the ring structure from (1) depends on even
more than this: it depends on the choices of �1; : : : ; �n . Given only the sequence X,
the number of isomorphism types of different ring structures is parameterized by the
set Aut.S/n ; see Proposition 7.2 below.

To see the difficulty in (1), assume that f W X a! S and gW X b! S are two maps.
Of course we may tensor them together to form f ˝ gW X a ˝X b ! S ˝ S Š S .
However, this only yields an element in �aCb.S/ after choosing an isomorphism
X a˝X bŠX aCb . The trouble is that there are many such isomorphisms, and we cannot
just choose one at random. To ensure that ��.S/ is associative these isomorphisms
must be compatible in the sense that some evident pentagons all commute.

Both (1) and (2) follow from the fact that one can choose such isomorphisms in a
compatible way. This is not a particularly hard result, but it does require some care.
The skew-commutativity in (3) is more difficult, and when exploring this one quickly
realizes the desirability of a general coherence theory for invertible objects. This paper
develops such a theory.

Let us say a little more about skew-commutativity. Given an invertible object X and a
self-map f W X !X, there is a well-defined invariant tr.f / 2 End.S/ called the trace
(see Section 3). Define �X D tr.idX / and call this the basic commuter for the object X.
One can prove in this generality that �X 2 Aut.S/ and satisfies �2

X
D idS . In fact �

gives a homomorphism Pic.C/! 2Aut.S/, where Pic.C/ is the group of isomorphism
classes of invertible objects and 2Aut.S/ denotes the 2–torsion elements in Aut.S/.
This homomorphism is a basic invariant of the symmetric monoidal category, and
governs all commutativity issues; see Section 4 for more information.

The motivating examples for C one may wish to keep in mind throughout the paper
are the following.

� The G–equivariant stable homotopy category, where G is a finite group (or
even a compact Lie group). In this case let V1; : : : ;Vn be a collection of
finite-dimensional, irreducible, real representations for G that represent every
isomorphism type. Let Xi D SVi be the suspension spectra of the one-point
compactifications.

� The motivic stable homotopy category over some chosen ground ring. Here
X1 D S1;0 and X2 D S1;1 are the two basic motivic spheres.
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1.4 Remark The product on ��.S/ defined above might look different from the stan-
dard composition product that is used for stable homotopy groups. An easy argument
shows that the products are, in fact, the same; see Remark 2.2.

1.5 Coherence results

Fix an invertible object X with inverse .Y; �/. Let w be a tensor word in X and Y .
As a specific example, let us look at the word wD .X ˝ .X ˝Y //˝ .Y ˝X /. Clearly
w ŠX, but there are different ways to construct such an isomorphism. We might use
the chain

w Š .X ˝S/˝ .Y ˝X /Š .X ˝S/˝S ŠX;

where we used y� in the first isomorphism and � in the second. Or we might use the
chain

w Š .X ˝S/˝ .Y ˝X /ŠX ˝ .Y ˝X /Š .X ˝Y /˝X Š S ˝X ŠX;

where we have used y� in both the first isomorphism and in the fourth. Are these two
composite isomorphisms the same? Are all composite isomorphisms the same?

The answer to the second question depends on how careful we are. If we allow ourselves
to use the twist isomorphism t W X ˝X !X ˝X then it is not necessarily true that all
composite isomorphisms will be the same. However, if we agree not to use the twist
then we obtain the following result.

1.6 Theorem (Coherence without twists) Let w1 and w2 be two tensor words
in the formal variables x and y . Suppose we are given two “formal composites”
f;gW w1! w2 , by which we mean composable sequences of the following kinds of
maps:

(i) associativity isomorphisms

(ii) unital isomorphisms S ˝W ŠW ŠW ˝S

(iii) � and y�

(iv) maps obtained from the above ones by tensoring with identity maps

(v) inverses of any of the above maps

Then the maps f .C/ and g.C/, obtained by substituting X and Y for x and y and
taking the actual composite in C, are equal.

Algebraic & Geometric Topology, Volume 14 (2014)
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1.7 Example The awkwardness in the statement of the above proposition is common-
place in coherence results, because one has to eliminate certain accidental compositions
from occurring. For example, suppose the invertible object X happens to be its own
inverse: ie, suppose Y DX. Then both � and .y�/�1 are maps S !X ˝X ; however,
the theorem does not claim that they are the same map. Indeed, on a formal level �
is a map S ! yx and .y�/�1 is a map S ! xy , and so there is no choice of w2 for
which we can apply the theorem to these two maps.

1.8 Example To complement the above “nonexample” of the proposition, here is a
true application. Consider the words w1 D .x˝y/˝x and w2 D x . There are two
formal compositions w1! w2 we can construct as follows:

.x˝y/˝ .x˝y/
y�˝y�
���! S ˝S Š

�!S

.xy/.xy/ �! x.y.xy// �! x..yx/y/
1˝��1˝1
�������! x.Sy/ �! xy

y�
�! S

Note that we omitted the tensor symbols in the second composite for typographical
reasons. The proposition guarantees that the corresponding composites give the same
map in any symmetric monoidal category, for any invertible object X and inverse .Y; �/.

1.9 Remark (Canonical isomorphisms) Let X be an invertible object in C with
inverse .Y; �/. By a “tensor word” w in X and Y we can mean either a formal
expression in the symbols “X ” and “Y ” or the actual object that results when the
expression is evaluated in C. We will usually let the reader deduce the meaning from
context, but occasionally we will write w.C/ for the latter interpretation, the evaluation
of the formal word w inside of C. Formal tensor words are best thought of as functors
into C where the allowable inputs are pairs .X; .Y; �//.

Consider the following statement: given a tensor word w as above, there is a unique
a 2Z for which wŠX a . This is true for formal tensor words, but not necessarily true
for their evaluations in C. For example, if our particular object X is its own inverse
(Y DX ) then we have X ŠX 1 ŠX�1 and so the value of a is not unique. But it is
not true that the formal word “X ” is isomorphic to the formal word “X�1 ”.

Keeping this nuance of language in mind, we can apply Theorem 1.6 as follows. Given
a formal word w in X and Y , there is a unique a 2 Z for which w ŠX a (canonical
isomorphism of functors) and moreover the isomorphism can be chosen from the
class described in Theorem 1.6, in which case it is canonical. In this paper such
canonical isomorphisms will always be denoted � . The provision of these canonical
isomorphisms is one of the main uses of coherence.
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We will need a coherence theorem that is more sophisticated than Theorem 1.6. To
state this, imagine that one has formal words w1; w2; : : : ; wn in x and y together with
a string of maps

w1

f1
�! w2

f2
�! � � � �! wn�1

fn�1
���! wn:

We assume that each fi is one of the following:

(i) an associativity isomorphism

(ii) one of the unital isomorphisms S ˝W ŠW ŠW ˝S

(iii) a twist map tx;x W x˝x! x˝x , tx;y W x˝y! y˝x , ty;x W y˝x! x˝y ,
ty;y W y˝y! y˝y

(iv) either � or y�

(v) a map obtained from the above ones by tensoring with identity maps

(vi) an inverse of any of the above maps

Let .w; f / denote the tuple of wi ’s and fi ’s. Define the parity of .w; f / to be the
total number of times tx;x , ty;y , tx;y and ty;x appear; that is, the number of i ’s for
which one of these maps appears as a tensor factor in fi .

1.10 Theorem (Coherence with twists) Let .w; f / and .w0; f 0/ be two strings as
above, and let k be the length of the first and l the length of the second. Assume
that w1 D w

0
1

and wk D w
0
l
. If .w; f / and .w0; f 0/ have the same parity, then the

composite of the fi ’s is equal to the composite of the f 0j ’s in any symmetric monoidal
category, when x and y are replaced with an invertible object X and an inverse .Y; �/.

1.11 Example Consider the composites

S
�
�! Y ˝X

tY;X

���!X ˝Y
y�
�! S;

S
�
�! .Y ˝Y /˝ .X ˝X /

id˝tX
����! .Y ˝Y /˝ .X ˝X /

��1

���! S;

where � is the canonical isomorphism provided by Theorem 1.6. Then Theorem 1.10
states that these two composites are the same. An attempt to prove this directly will
quickly demonstrate the nontriviality of Theorem 1.10.

Now we turn to coherence theorems involving several different invertible objects. Sup-
pose again that X1; : : : ;Xn are invertible objects in C. For each i , let .X�1

i ; �i/ denote
a chosen inverse for Xi . Let w be a tensor word in X1; : : : ;Xn and X�1

1
; : : : ;X�1

n .
It is clear that w is formally isomorphic to X a for a uniquely determined a 2 Zn . We
want a result which says that different ways of constructing such an isomorphism yield
the same result.
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1.12 Remark In our statements of the next two results we dispense with the phrasing
about formal compositions and their instances inside of a given symmetric monoidal
category. However, this language should be taken as implicit in the statements.

1.13 Theorem (Coherence without self-twists, multiobject case) Let w be a tensor
word in the symbols Xi and X�1

i , 1� i � n. There is an isomorphism w ŠX a con-
structed as a composite of the following kinds of maps, and moreover this isomorphism
is unique. The maps we are allowed to use are:

(i) associativity isomorphisms

(ii) unital isomorphisms

(iii) commutativity isomorphisms Xi˝Xj !Xj ˝Xi and Xi˝X�1
j !X�1

j ˝Xi

for i ¤ j

(iv) the maps �i and y�i

(v) maps obtained from (i)–(iv) by tensoring with identities

(vi) all inverses of maps in (i)–(v)

We also have a more general version involving parity checks. Suppose w1; w2; : : : ; wk

are tensor words in the Xi ’s and X�1
i ’s, and consider a composite

w1

f1
�! w2

f2
�! � � � �! wk�1

fk�1
���! wk :

We assume that each fi is one of the following:

(i) an associativity isomorphism

(ii) one of the unital isomorphisms S ˝W ŠW ŠW ˝S

(iii) a twist map tXi ;Xj
W Xi ˝Xj ! Xj ˝Xi , tXi ;X

�1
j
W Xi ˝X�1

j ! X�1
j ˝Xi ,

tX�1
i
;Xj
W X�1

i ˝Xj ! Xj ˝X�1
i or tX�1

i
;X�1

j
W X�1

i ˝X�1
j ! X�1

j ˝X�1
i ,

where possibly i D j

(iv) one of the �i ’s or y�i ’s

(v) a map obtained from the above ones by tensoring with identity maps

(vi) an inverse of any of the above maps

Define the i –parity of the string .w; f / to be the total number of times tXi ;Xi
, tXi ;X

�1
i

,
tX�1

i
;Xi

, and tX�1
i
;X�1

i
appear in the fj ’s. We have the following.

1.14 Theorem (Coherence with self-twists, multiobject case) Let .w;f / and .w0;f 0/
be two strings as above, where the length of the first is k and the length of the second
is l . Assume w1 D w

0
1

and wk D w
0
l
. If .w; f / and .w0; f 0/ have the same i –parity

for all 1� i � n, then the composites of the two strings are the same map.
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1.15 Applications

The first application answers the question raised at the beginning of the paper. If
f 2 �a.S/ and g 2 �b.S/, then form the tensor product f ˝ gW X a ˝ X b !

S ˝ S Š S . Theorem 1.13 supplies a canonical isomorphism X a˝X b ! X aCb ,
and using this we obtain an element f � g 2 �aCb.S/. Similarly, one obtains maps
�a.S/˝�b.W /! �aCb.W / and so forth. Coherence guarantees that these pairings
all have the desired associativity (see Section 2 for details).

Given a map f W X a ! X b there are two evident ways to recover an element of
�a�b.S/. We can tensor on the left with X�b and then use the canonical isomorphisms
from Theorem 1.13, or we can tensor on the right and use canonical isomorphisms.
We call the associated elements Œf �r and Œf �l , respectively. Another application of
coherence is to relate these two elements:

.1:16/ Œf �r D Œf �l �
Y

�
bi .ai�bi /
i ;

where the �i ’s are the basic commuters of the Xi ’s. This and many related formulas
are developed in Section 6.

Let us very briefly indicate the idea behind skew-commutativity. If f W X a! S and
gW X b! S then we may form the diagram:

X a˝X b

ta;b

��

f˝g // S ˝S S

X b˝X a

g˝f

99

A little work gives that inside ��.S/ we have f � g D g � f � Œta;b �r (note that by
(1.16) one has Œta;b �r D Œta;b �l ). The content of Proposition 1.2(3) is the identification
of Œta;b �r as a product of basic commuters; this is a direct consequence of Theorem 1.14,
which says that the associated composite S ! S is determined purely by the parities
involved; see Section 6 for complete details.

1.17 The stable motivic homotopy ring

We close this long introduction with a very specific example. In the stable mo-
tivic homotopy category (over a chosen ground field) there are two basic spheres
denoted S1;0 and S1;1 . These are invertible objects. More generally one sets
Sp;q D .S1;0/^.p�q/ ^ .S1;1/^.q/ for any p; q 2 Z. The bigraded stable homotopy
ring ��;�.S/ is an instance of the general situation considered in this paper, although
unfortunately the bigrading is different from the generic bigrading we adopted for
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Proposition 1.2: the motivic group �a;b.S/ corresponds to what we have been calling
�.a�b;b/.S/.

The basic commuter for S1;0 is the element �1 2 �0;0.S/. The basic commuter
for S1;1 is represented by the twist map S1;1 ^ S1;1 ! S1;1 ^ S1;1 ; in motivic
homotopy theory it is usually denoted � 2 �0;0.S/. The skew-commutativity result
for the motivic stable homotopy ring is the following, obtained as a direct corollary of
Proposition 1.2.

1.18 Proposition For f 2 �a;b.S/ and g 2 �c;d .S/ one has

fg D gf � .�1/.a�b/.c�d/
� �bd :

Now assume that the ground field is C , so that there is a realization map  from the sta-
ble motivic homotopy category to the classical stable homotopy category of topological
spaces. This induces a collection of group homomorphisms  p;qW �p;q.S/! �p.S/.
One’s first guess might be that these maps assemble into a ring homomorphism
 W ��;�.S/! ��.S/, but this is not quite right. Instead there is the following identity.

1.19 Proposition For f 2 �a;b.S/ and g 2 �c;d .S/ one has

 .fg/D  .f / � .g/ � .�1/b.c�d/:

This result was one of the motivations for the work in this paper; we include the proof
as a brief appendix.

1.20 Remark It is satisfying to check that Propositions 1.18 and 1.19 are (taken
together) compatible with the graded commutativity of the classical stable homotopy
ring. This uses that  .�/D�1.

1.21 Generalizations

Let Pic.C/ be the group of isomorphism classes of invertible objects in C. Let A be
an abelian group and let hW A! Pic.C/ be a homomorphism (the case AD Pic.C/ is
the main one of interest, but it is useful to work in slightly greater generality). The
question we pose is whether �.S/ can be regarded as an A–graded ring. We can
certainly choose, for each a 2A, an object Xa in the isomorphism class h.a/. We can
then define an A–graded abelian group by

�A
a .S/D C.Xa;S/:
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To give a pairing on this graded group one should start by choosing isomorphisms
�a;bW XaCb!Xa˝Xb , and for the pairing to be associative these isomorphisms must
satisfy a certain compatibility condition (a unital condition should also be imposed).
Our coherence results show that when A is finitely-generated and free this can be
accomplished, although it is important to realize that the method for doing so is not
quite canonical, depending both on a choice of basis for A and a choice of the �i maps
we encountered earlier. What about other values of A? We will show that

(1) for any abelian group A, the isomorphisms �a;b can be chosen so that �A
� .S/

is an associative and unital ring;

(2) however, the choices involved in (1) are not canonical and the different isomor-
phism classes of rings one can obtain are in bijective correspondence with the
elements of the group cohomology H 2.AIAut.S//.

In homotopy theory one often hears the slogan “one should grade things by the invertible
objects”; point (2) above suggests that this is a little more dicey than one might wish.
These results are in Section 7.

The methods of Section 7 are obstruction-theoretic, and it is interesting that these seem
to be very different than the approach via coherence theorems used earlier in the paper
for the case where A is free. The following diagram summarizes the situation:

coherence theorems

free A **

obstruction approach

general Att
ring structure on �A

� .S/

It is natural to wonder if there is some closer connection between the two approaches,
but we have been unable to uncover one.

1.22 Some background and an apology

From a certain perspective this paper is entirely on the subject of getting signs correct,
although the “signs” are not just ˙1 but rather elements in the 2–torsion of Aut.S/,
where .C;˝;S/ is a symmetric monoidal category. Many of the results are undoubtedly
folklore, but just lacking a convenient reference. Since this is a subject where it seems
particularly important to have a convenient reference — no one likes to think about
signs — we have included quite a bit of exposition (perhaps overdoing it on occasion).

Associativity and commutativity for RO.G/–graded stable homotopy rings have typi-
cally been dealt with in a different way than what we describe here. In essence, the
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various choices for isomorphisms are built into the framework from the very beginning,
and one is tasked with keeping track of them. We refer the reader to May [14, Chapter 13,
Section 1] and May and Sigurdsson [15, Section 21.1] for detailed discussions. After
the present paper was released, Mike Mandell kindly informed us that these issues for
RO.G/–graded rings are also treated in the appendix of Lewis and Mandell [12], by a
method that is essentially the same as what we do in Section 7. Finally, it is informative
to have a look at Adams [1, Section 6], which shows that these questions go back to
the very early days of equivariant topology.

Certainly Proposition 1.2 and related results are if not well known then at least not
surprising, although I wonder if the sign in the multiplicativity of the forgetful map (see
Proposition 1.19) has been noticed before, either in the motivic or equivariant context.
I have also been unable to find a reference in the literature similar to Proposition 6.11,
even though the sign questions dealt with by that result are ubiquitous.

Invertible objects are well studied in the literature (for example, in Fröhlich and Wall [6]),
but in somewhat sporadic places, and there seem to be some gaps. For example, given
a self-map f W X !X where X is invertible there are two ways to obtain an element
of End.S/. One is called the trace of f , and the other is something that does not have
a standard name; in this paper we call it the D–invariant. These two invariants can be
different, although they sometimes get confused. We attempt to give a careful treatment
in Section 4.

As far as the coherence statements are concerned, the earliest result along these lines
seems to be [3, Lemma 1.4.3], due to Deligne. However, Deligne’s result (stated
without proof) only applied to symmetric monoidal categories where the self-twists
X ˝ X ! X ˝ X are all equal to the identity; as is clear from the results listed
above, this omits the important and nontrivial phenomena that occur in the general
case. Symmetric monoidal categories in which all objects are invertible are treated
again in [6]. A classification theorem is given (see [6, Corollary 6.6]), from which
coherence results are easily deducible, but again only in the case where the self-twists
are all equal to the identity. Another sort of classification theorem for such categories
is given in the unpublished PhD thesis [7, Chapter II, Section 2, Proposition 5]; but
although Hoàng’s Theorem allows for nonidentity self-twists the classification is of a
different nature and does not seem to yield any coherence results. The excellent and
influential paper [9] by Joyal and Street has coherence results in the braided context,
but not for invertible objects; it gives a classification theorem for braided monoidal
categories where all objects are invertible, but again not yielding coherence results in
any evident way. The literature contains many more sophisticated coherence results
than the ones presented here, and so it seems to be merely an unfortunate accident that
there is no convenient reference for them.
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Symmetric monoidal categories in which all maps are isomorphisms and all objects
are invertible are nowadays often called symmetric categorical groups (or Picard
groupoids, in older literature). Our “coherence with twists” may be interpreted in
this context (whereas the one-object case of “coherence without twists” is really a
coherence theorem for nonsymmetric categorical groups). The coherence theorems
are tantamount to determining the “free symmetric categorical group”, or “free Picard
groupoid”, on a given set of objects. After writing this paper it was pointed out to us
by Nick Gurski that a different proof, in the case of one object, is given by Johnson
and Osorno in [8, Section 3]; see also Remark 4.21 below.

1.23 Organization of the paper

In Section 2 we give a brief review of Mac Lane’s coherence theorem for monoidal
categories, and explain how it gives rise to associativity results for N –graded morphism
groups. Section 3 then reviews the deeper coherence theorem of Kelly–Laplaza, which
applies to symmetric monoidal categories with left duals. Section 4 develops the basic
theory of invertible objects, in particular establishing that the trace of the identity map
on such an object has order at most two; this is a key result used throughout the paper.
In Section 5 we prove the coherence theorems for invertible objects, and in Section 6
we give the applications to Zn –graded morphism rings. Finally, Section 7 deals with
the topic of grading morphism rings by nonfree abelian groups.

Acknowledgements The author is grateful to Nick Gurski, Sharon Hollander, Peter
May, Victor Ostrik and Vadim Vologodsky for helpful conversations, and to the anony-
mous referee for both a careful reading and thoughtful suggestions. This research was
partially supported by NSF grant DMS-0905888.

2 Review of Mac Lane’s coherence

Here we recall how Mac Lane’s classical coherence theorem for symmetric monoidal
categories gives rise to an associativity result for Nn –graded morphism rings.

Let .C;˝;S/ be a symmetric monoidal category. Where needed, we will denote
the associativity isomorphism .x ˝ y/˝ z Š x ˝ .y ˝ z/ by a and the symmetry
isomorphism x˝y Š y˝x by t .

Let w be any tensor word made up of formal variables xi ; for instance, the word
..x1˝ x2/˝ x1/˝ .x2˝ x3/ is one example. Such tensor words can be identified
with certain kinds of functors Cn! C, where n is the number of letters in the word.
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Precisely, these are the functors that can be built up from ˝W C2!C using composition
and the operation of cartesian product with identity maps.

Using the associativity and commutativity isomorphisms, there is a “formal isomor-
phism” (or natural isomorphism) between w and some word xa , for a uniquely
determined a 2 Nn . To fix such an isomorphism, here is what we do. First, relabel
the x1 ’s in w as x1a;x1b;x1c , etc, with the indices appearing alphabetically from left
to right in the word. Do the same for all the other xi ’s. Let w0 denote the new word
thus constructed. Regard w0 as a functor CN ! C, where N is the total number of
variables in w0 . Using the associativity, commutativity, and unital isomorphisms one
can construct a natural isomorphism between the functor corresponding to w0 and the
functor corresponding to the word

.x1a˝x1b˝ � � � /˝ .x2a˝x2b˝ � � � /˝ � � �˝ .xna˝xnb˝ � � � /:

Moreover, Mac Lane’s coherence theorem [13, Theorem XI.1.1] says that this natural
isomorphism is uniquely determined. The exact choices of associativity and commuta-
tivity isomorphisms used to construct it are definitely not unique, but the composite
isomorphism itself is unique. Now evaluate this natural isomorphism in the case where
all the x1;� objects are equal to x1 , all the x2;� objects are equal to x2 , etc. This is
our definition of �W w Š

�!xa .

Using the observation of the last paragraph, for a; b 2Nn we obtain canonical isomor-
phisms

�a;bW x
a
˝xb Š

�! xaCb

such that the following diagram commutes:

.2:1/

.xa˝xb/˝xc Š //

�a;b˝id
��

xa˝ .xb˝xc/

id˝�b;c

��

xaCb˝xc

�aCb;c ''

xa˝xbCc

�a;bCcww

xaCbCc

The reason it commutes is again by the coherence theorem. Both ways of moving
around the diagram are instances of a natural transformation made up of the associativity
and commutativity isomorphisms, where one relabels the x1 ’s appearing as x1a;x1b ,
etc, and the same for the other variables. Mac Lane’s Theorem says that there is a
unique such natural transformation, and so the two ways of moving around the diagram
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must be the same. (Note also that when a or b is the zero vector then �a;b is the unital
isomorphism from the symmetric monoidal structure).

Now assume that C is also an additive category, and that the tensor product is an
additive functor in each variable. Let X1; : : : ;Xn be fixed objects in C. Consider the
Nn –graded abelian group

RD
M

a2Nn

C.X a;S/:

We will also write Ra for C.X a;S/. We claim that R has the structure of an Nn –
graded ring. The product is defined as follows. If f 2 Ra and g 2 Rb , define
fg 2RaCb to be the composition

X aCb
��1

a;b

���!X a
˝X b f˝g

���! S ˝S Š S:

2.2 Remark Note that the above product can also be described as the composition

X aCb
ŠX a

˝X b id˝g
���!X a

˝S
f˝id
���! S ˝S Š S:

In this way the product in R can be thought of as induced by the composition in the
category C: fg comes from composing f with an appropriately “suspended” version
of g .

2.3 Proposition R is a graded ring (associative and unital), and R0 is central.

Proof Distributivity follows immediately from the fact that ˝ is biadditive: for
instance, if f;g2Ra and h2Rb then the map .fCg/˝h is equal to .f˝h/C.g˝h/.
So the same remains true when we precompose both with ��1

a;b
.

Associativity follows, by an easy argument, from the fact that diagram (2.1) is commu-
tative. The fact that �a;b equals the unital isomorphism when a or b is zero implies
that the identity element idS 2R0 is a unit for R.

For the centrality of R0 , let f W S! S and let gW X a! S . The following diagram is
commutative:

X a˝S

t

��

g˝f // S ˝S

t

��

Š

%%
X a

Š 77

Š ''

S

S ˝X a

f˝g

// S ˝S
Š

99

The composition across the top is f �g , and across the bottom is g �f .
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2.4 Remark This section serves as the prototype for what will happen in the rest of
the paper. In the case where the objects Xi are invertible under the tensor product, we
wish to extend R to a Zn –graded ring. This requires extending the construction of
the �a;b ’s, which in turn depends on a more sophisticated version of coherence.

3 Kelly–Laplaza coherence

Let U be a set. Kelly and Laplaza [11] describe the “free symmetric monoidal category
with left duals” on the set U, denoted here KL.U/. In this section we review this
construction.

3.1 Preliminaries

Let .C;˝;S/ be a symmetric monoidal category, and let X be an object. Recall that a
left dual for X is an object Y together with maps �W S! Y ˝X and y�W X ˝Y ! S

such that the composites

X DX ˝S
id˝�
���!X ˝Y ˝X

y�˝id
���! S ˝X DX;

Y D S ˝Y
�˝id
���! Y ˝X ˝Y

id˝y�
���! Y ˝S D Y;

are the respective identities (we are not bothering to write the associativity isomorphisms
in the composites, even though they are there). To give an object Z the structure of a
left dual of X is the same as giving the functor Z˝ .�/ the structure of a right adjoint
to X ˝ .�/. This observation makes it clear that if .Y; �; y�/ and .Y 0; �0; y�0/ are both
left duals for X then there is a unique isomorphism Y ! Y 0 that is compatible with
the extra structure.

3.2 Definition A symmetric monoidal category with left duals is a symmetric monoidal
category .C;˝;S/ together with an assignment X 7! .X �; �X ; y�X / that equips every
object of C with a left dual. (Warning: note that .X �/� need not equal X, although
they will be isomorphic.)

In the above setting, there is a unique way of making X ! X � into a contravariant
functor. This is not included as part of the definition only to minimize the number of
things that need to be checked in applications. We will not need the functoriality of
duals.

3.3 Example Let C be the category of finitely-generated vector spaces over a given
field k , with the usual tensor product. For a vector space V let V � D Hom.V; k/ and
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let y�V W V ˝V �! k be the evaluation map. Let �V W k!V �˝V be the coevaluation
map, sending 1 to

P
i e�i ˝ ei , where feig is some choice of basis for V and fe�i g is

the dual basis. It is routine to check that �V does not depend on the choice of basis,
and that these structures make C into a symmetric monoidal category with left duals.

Suppose X has a left dual and f W X !X is a map. Then we may form the composite

S
�
�!X �˝X

id˝f
����!X �˝X

t
�!X ˝X �

y�
�! S;

and this composite is called the trace of f . The uniqueness of left duals (up to
isomorphism) shows that tr.f / is not dependent on the choice of left dual for X.
A detailed study of more abstract traces in monoidal categories (which in particular
includes the present example) can be found in Joyal, Street and Verity [10].

The trace satisfies the following properties.

3.4 Proposition Let C be a symmetric monoidal category with left duals.

(a) If there is a commutative diagram

X
q //

f
��

Z

g

��
X

q // Z

in which q is an isomorphism, then tr.f /D tr.g/.

(b) If f W X ! Y and gW Y !X then tr.fg/D tr.gf /.

Proof For part (a), observe that if .X �; �; y�/ is a left dual for X then X � is also a
left dual for Z via the maps �0 D .idX � ˝q/� and y�0 D y�.q�1˝ idX �/. Using this,
(a) is an easy exercise.

Part (b) is a little harder. While not really needed in the present paper, we include
a sketch for expository purposes; see also [11, Proposition 6.2] and Ponto and Shul-
man [16, Proposition 2.4]. The point is simply the commutativity of the following
diagram:

S
�X //

�Y

��

X �˝X
1˝f //

g�˝1
��

X �˝Y
1˝g //

g�˝1
��

X �˝X

y�X

��
Y �˝Y

1˝g
// Y �˝X

1˝f

// Y �˝Y
y�Y

// S;
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where g� is defined to be

Y �
Š //S ˝Y �

�X˝1 //X �˝X ˝Y �
1˝g˝1//X �˝Y ˝Y �

1˝y�Y //X �˝S
Š //X �:

The commutativity of the left and right rectangles are easy exercises using the definition
of left dual.

We will also need the following fundamental result, which is a form of the classic
Eckmann–Hilton argument; see also [11, Proposition 6.1].

3.5 Lemma In a monoidal category the monoid End.S/ is abelian.

Proof Suppose f;gW S ! S and consider the following commutative diagram:

S ˝S
f˝id //

��

S ˝S
id˝g //

��

S ˝S

��
S

f // S
g // S

This shows that gf is the composite

S
Š //S ˝S

f˝g //S
Š //S:

A similar diagram also shows that fg is also equal to this composite, so gf D fg .

3.6 The construction

For any category U the paper [11] constructs the free symmetric monoidal category
with left duals on U. We will only need this construction where U only has identity
maps, ie U is just a set; see Remark 3.8, however, for hints about the general case.

Note that for every element X 2 U our category must have an identity map idX and
therefore a self-map of S obtained by taking the trace. These traces will all need to
commute, since all self-maps of S commute by Lemma 3.5. So let NhUi be the free
commutative monoid on the set U. If X 2 U we think of the element ŒX � 2 NhUi
as the formal trace of the identity map on X. Our construction for KL.U/ will have
NhUi as its set of self-maps of S .

Define a signed set to be a set A together with a function � W A! fC;�g. If A is a
signed set let A� be the same set but with the signs reversed. If A and B are signed
sets then AqB denotes the disjoint union with the evident signs. A bipartition of a
signed set A is a directed graph with A as the vertex set, having the properties that
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(i) the tail of every edge is marked with � and the head of every edge is marked
with C,

(ii) every element of A is a vertex of exactly one edge.

If A and B are signed sets, then a correspondence from A to B is a bipartition of
A�qB . One can make a picture of such a thing by drawing the elements of A on
one “level”, the elements of B on a lower level, and then drawing the edges of the
bipartition. For example:

A W C

��

C

��

C AA� �

B W C C �

77

�
��
C

Note the convention for drawing edges with vertices at the same level: if the vertices
are on the top level we draw a cup [, and if the vertices are on the bottom level we
draw a cap \. Also, there is a simple technique for getting the direction of the arrows
straight: each element with sign C should be pictured as a small downward arrow #,
and elements with sign � are pictured as small upward arrows ". These small arrows
must join (compatibly) with the edges in the correspondence. Finally, note again that
the data in these pictures is really just “what connects to what”. The exact physical
paths of the arrows in the picture are irrelevant, only where the arrows begin and end.

Given a correspondence from A to B , and a correspondence from B to C, we may
compose these to get a correspondence from A to C. This is best described in terms
of the pictures: one stacks the pictures on top of each other and composes the edges
head to tail as expected. Note that there might be extra “loops” in the picture, and these
must be discarded. For example, the composition

A W C

��

C

��

C AA� �

B W C

��

C @@�

77

�
��

BBC AA�
��
C

C W C

equals the correspondence

A W C ::C

��

C AA� �

C W C
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We are ready to define the category KL.U/. An object will be a formal word made from
the set U and the special symbol S using tensors and duals: eg, w D ..X �/�˝S/˝

..X ˝ Y /� ˝ .Y � ˝ Z//. To each such word we associate its underlying set of
letters P .w/, together with a function � W P .w/ ! fC;�g. In the above example
P .w/ D fX1;X2;Y1;Y2;Zg (the indices distinguish the different occurrences of
the letters in the word) and the sign function has ��1.C/ D fX1;Zg, ��1.�/ D

fX2;Y1;Y2g. In general P is defined inductively by setting P .X /D fX g if X 2 U,
P .S/ D ∅, P .u˝ v/ D P .u/qP .v/, and P .u�/ D P .u/� . Note that there is an
evident map P .w/! U that sends each formal symbol to the corresponding element
of U.

Let w1 and w2 be two formal words. We define a map from w1 to w2 to be a
pair .�; �/ where � is a bipartition of P .w1/

�qP .w2/ for which the head and tail of
every edge are sent to the same object of U, and where � is an element of NhUi. Given
a map .�; �/W w1!w2 and .�; �/W w2!w3 , the composite is .��; �C�C

P
i ŒXi �/

where �� is the composition of correspondences and where the Xi ’s are the objects
labelling each of the loops that was discarded during the composition process. Said
differently, every loop in which the vertices were labelled by an object X 2U contributes
a factor of tr.idX /D ŒX � to the composition.

We may again depict maps in KL.U/ via pictures. For example, here is a map from
.X �/�˝ .X ˝Y /�˝ .Z˝Y / to Z :

XC ==X� Y� ZC

}}

YCgg

ZC

Note that the precise word forming the domain (or codomain) of the map is not
retrievable from the picture; that is, the picture only shows P .w/ together with a linear
ordering, not w itself. This is actually a feature rather than a bug! If two words differ
only in the placement of parentheses, for example, notice that there is a canonical
isomorphism between them. Similarly, observe that .w�/� is canonically isomorphic
to w , and .w1˝w2/

� is canonically isomorphic to w�
1
˝w�

2
.

The category KL.U/ is a symmetric monoidal category with left duals. We leave the
reader the (not difficult, but informative) exercise of checking this and identifying the
necessary structures. The main result of [11] is the following.

3.7 Theorem (Kelly–Laplaza coherence theorem) The category KL.U/ is the free
symmetric monoidal category with left duals on the set U.
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3.8 Remark The paper [11] actually describes the free symmetric monoidal category
with left duals on a category A. We have only discussed the case where A is discrete
(ie, only has identity maps) because this is all we need for our present purposes. The
general case is not very different, however. A map in KL.A/ is a correspondence
equipped with a labelling of the edges by maps in A, having the property that if an
edge has head Y and tail X then the label belongs to HomA.X;Y /. When composing
labelled correspondences one composes the labels in the evident manner. Finally, the
monoid of formal traces NhUi must be replaced by something more complex: every
self-map in A must have a formal trace, and these must satisfy the cyclic property
of Proposition 3.4(b). It is easy to write down the universal monoid having these
properties; see [11] for details.

3.9 Uses of coherence

Now let C be a symmetric monoidal category with left duals. Let U� ob.C/ be a set
of objects. The Kelly–Laplaza coherence theorem says that there is a map of symmetric
monoidal categories F W KL.U/!C sending the formal word ŒX � to X, and the formal
word ŒX �� to X � , for each X 2 U. The functor F also has the following behavior:

X�
""
XC is sent to S

�
�!X �˝X

XC X�
||

is sent to S
�
�!X �˝X

t
�!X ˝X �

XC ==X� is sent to X ˝X �
y�
�! S

X� XCaa is sent to X �˝X
t
�!X ˝X �

y�
�! S

Note: It is worth taking time to think about the second and fourth cases; these composites
are also represented by other pictures in which there is a crossing between the edges, but
in KL.fUg/ such pictures represent the same maps as what we have given; remember
that the only part of the pictures that matters is “what connects to what”.

As an example, suppose that X and Y are dualizable objects in C with chosen duals X �

and Y � . Consider the following two maps from X ˝Y ˝X �˝Y �˝Y to Y :

XYX �Y �Y ! YXX �Y �Y ! YSY �Y D Y Y �Y ! SY D Y.3:10/

XYX �Y �Y !XX �Y Y �Y ! SYS D Y.3:11/

(We have suppressed the tensor symbols and associativity maps; each of the displayed
maps is the evident one that uses the symmetric monoidal structure and the duality
maps.) Are the maps in (3.10) and (3.11) guaranteed to be the same in C? We work
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in KL.fX;Y g/ and note that the two composites are represented by the following
pictures:

XC

##

YC

{{

X� Y� YC

��

XC

��

YC

""

X� Y� YC

��
�

��

� CC�

OO

�

OO

�

��

� CC�

<<

�

��

�

OO

�[[

� :: �

OO

�

��

�

�

The composite pictures are clearly not the same map in KL.U/, and so there is no
guarantee that the two maps are the same in C. They might be the same, but if so this
is an “accident;” it does not follow from the basic axioms.

As one more example, let us consider the following composite:

S D SSS // X �XY �YXX � // X �Y �XXYX �
tX;X // X �Y �XXYX �

��
S D SSS X �XY �YXX �oo

Note that in the third map we have omitted the identity factors on either side of the tX ;X ,
due to limitations of space. All of the other maps are the evident ones. We claim that
the composite can be given a simpler description. Computing in KL.fX;Y g/ we get
the following picture:

X�
��
�

##

�Y
��
�

""

�

||

�X
��

�

OO

�

;;

�

$$

�

zz

�

��

�

OO

�

OO

�

OO

�

zz

�

""

�

||

�

OO

�

OO

�[[ �

dd

�[[ � CC�

OO

This picture breaks up into two loops, one where the vertices are all labelled by X and
the other where they are all labelled by Y . As a map from S to S in KL.fX;Y g/ this
composite is therefore equal to tr.idX / ı tr.idY / (note that the order of composition
does not matter, since Hom.S;S/ is commutative). Since this identity holds in the
universal example KL.fX;Y g/, it also holds in C.

3.12 Remark (Traces in Kelly–Laplaza categories) Let w be an object in KL.fUg/
and let f W w!w be a map. Then tr.f / is a map S! S in KL.fUg/. We leave it as
an easy exercise to verify that tr.f / is represented by the following picture:
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f

(where the picture representing f should be inserted into the blank box).

4 Invertible objects

In this section we review the notion of invertible object in a symmetric monoidal
category, and establish some of their properties. For every invertible object X we
define a basic commuter �X , which is an isomorphism �X W S ! S such that �2

X
D 1.

4.1 Prelude

Throughout this section .C;˝;S/ is a symmetric monoidal category. If uW S! S and
gW A! B then denote the composites

AŠ S ˝A
u˝g
���! S ˝B Š B and AŠA˝S

g˝u
���! B˝S Š B

by u y̋g and g y̋u. We will sometimes omit the carat and just write u˝g and g˝u

by abuse, but at other times it is useful to remember that u y̋g and u˝g are somewhat
different.

4.2 Lemma Let uW S ! S and gW A! B . Then

u y̋g D .u y̋ idB/ ıg D g ı .u y̋ idA/D g y̋u:

Proof This is elementary, using that u˝ g D .idS ˝g/ ı .u˝ idA/ D .u˝ idB/ ı

.idS ˝g/ and similarly for g˝u.

4.3 Remark The above lemma will often be used in the following way. Suppose that
gW A! B and f W B! C. Then multiple applications of the lemma give

.u y̋f / ıg D f ı .u y̋ idB/ ıg D f ı .u y̋g/D f ıg ı .u y̋ idA/D u y̋ .fg/:

So we can move a u y̋ .�/ from anywhere inside a composite to anywhere else, including
outside the composite.

4.4 Remark Observe that for any object V in C we obtain a map of monoids
End.S/! End.V / given by u 7! u y̋ idV .
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4.5 Invertible objects

4.6 Definition An object X in C is invertible if there exists a Y in C and an
isomorphism �W S ! Y ˝X.

It is easy to prove that if such a Y exists then it is unique up to isomorphism. But
to give an inverse for an object X, one must specify an object Y together with the
isomorphism �W S ! Y ˝X. This map � is not uniquely determined by Y , since one
can clearly get a different � by precomposing with an automorphism of S . Note that
if X and Z are invertible then clearly so is X ˝Z .

We will often use the following observation.

4.7 Proposition If X is an invertible object in C, then we have that the canonical map
End.S/! End.X / is an isomorphism of monoids. More generally, for any object V

of C the two maps End.V /! End.V ˝X / and End.V /! End.X ˝V / (obtained
by tensoring with identity maps) are both isomorphisms.

Proof Choose an inverse .Y; �/ for X. The functor TX W C!C given by Z 7!Z˝X

is an equivalence of categories, because an inverse is given by W 7!W ˝Y . Since TX

is an equivalence, for any V in C the map End.V /! End.TX .V // is an isomorphism
of monoids. A similar argument shows End.V /! End.X ˝V / to be an isomorphism
(or use the twist map X ˝V Š V ˝X ).

When V D S one has TX .S/ Š X via the unital isomorphism, and the composite
End.S/!End.TX .S//ŠEnd.X / is readily checked to be the map of Remark 4.4.

When X is invertible it will be useful to have a description of the inverse to the
isomorphism End.S/!End.X /. If .Y; �/ is a choice of inverse for X and gW X!X,
define DY .g/ to be the composite

S
�
�! Y ˝X

id˝g
���! Y ˝X

��1

��! S:

An easy diagram chase shows that DY .u y̋ idX / D u for u 2 End.S/. Since the
map End.S/! End.X / is an isomorphism this verifies that DY is the inverse, and
so in particular does not depend on the choice of .Y; �/. From now on we will just
write D.g/ rather than DY .g/.

The homomorphism DW End.X /!End.S/ is a bit like a trace, but it does not coincide
with the standard trace that exists for dualizable objects as defined in Section 3.1 (see
Remark 4.16 for an explicit example). The map D can also be regarded as something
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like a determinant; this analogy works well when C is a category of vector spaces or vec-
tor bundles, but of course in those cases the determinant and trace are indistinguishable
on one-dimensional objects. In the present paper we will just call D.f / the “D–
invariant” of the map f W X !X. Like a determinant, the D–invariant is multiplicative
(being a homomorphism of monoids): that is, D.idX /D idS and D.fg/DD.f /D.g/.
Here are some further properties of the D–invariant.

4.8 Lemma Let X and Z be invertible objects.

(a) Given a commutative diagram

X

f
��

q // Z

h
��

X
q // Z

in which q is an isomorphism, one has D.f /DD.h/.
(b) If f W X !X, then D.idZ ˝f /DD.f ˝ idZ /DD.f /.
(c) If f W X !X and gW Z!Z then D.f ˝g/DD.f /D.g/, where the product

on the right-hand side is in the monoid End.S/.

Proof All of the parts are easy exercises. For (a) one uses the diagram

End.S/ //

%%

End.X /

��
End.Z/;

where the vertical arrow sends a map f to qf q�1 . One checks that the diagram
commutes using Remark 4.3, and then it follows at once that D.qf q�1/DD.f /.

For (b) one looks at the composite End.S/! End.X /! End.X ˝Z/. Both maps
are isomorphisms, DX is the inverse of the first map, and DX˝Z is the inverse of the
composite; it follows at once that DX˝Z .f ˝ idZ /DD.f /.

Finally, (c) follows from (b) and the fact that f ˝g D .f ˝ idZ / ı .idX ˝g/.

4.9 Remark Let f W A!B and gW B!B , where B is invertible. The D–invariant
of g is the unique map S ! S satisfying g DD.g/ y̋ idB . We can then write

gf D .D.g/ y̋ idB/ ıf D f ı .D.g/ y̋ idA/;

using Remark 4.3 for the second equality. So automorphisms of invertible objects
can effectively be moved around inside a composition, by replacing them with their
D–invariant.
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4.10 The adjoint to � and the trace of a map

The following result shows that an invertible object is left dualizable.

4.11 Proposition Let X be an invertible object in C, with inverse .Y; �/. Then there
is a unique map y�W X ˝Y ! S with the property that the composite

X ŠX ˝S
id˝�
���!X ˝ .Y ˝X /Š .X ˝Y /˝X

y�˝id
���! S ˝X ŠX

equals the identity. Moreover, y� is an isomorphism and the composite

Y Š S ˝Y
�˝id
���! .Y ˝X /˝Y Š Y ˝ .X ˝Y /

id˝y�
���! Y ˝S Š Y

also equals the identity.

4.12 Remark Note that one is tempted to assume that y� equals the composite

.4:13/ X ˝Y
t
�! Y ˝X

��1

��! S:

This need not be the case. Let k be a field and let CD GrVect˙k be the category of
Z–graded vector spaces with the usual tensor product, and with the twist map that
involves signs. Let X D kŒ1�, and Y D kŒ�1�. Let �W k! Y ˝X send 1 to 1˝ 1.
Then y�W X ˝ Y ! k must be the multiplication map, whereas the composite (4.13)
sends a˝ b to �ab .

Proof of Proposition 4.11 Let the functor F W C!C be given by F.A/DX˝A, and
let GW C! C be given by G.A/D Y ˝A. These are an equivalence of categories, and
the map � gives a natural isomorphism Id!GF . The proof basically consists of the
observation that any equivalence of categories is an adjoint equivalence; moreover, any
choice of unit completely determines the corresponding counit by an explicit formula.
We are grateful to the referee for providing this perspective.

Given any object A in C, choose an isomorphism ˇW FG.A/!A (such an isomor-
phism exists because F and G are an equivalence). Then the top row of the following
diagram is a new isomorphism FG.A/! A that turns out to be independent of the
choice of ˇ :

FG.A/

FG.
�1/ ((

FG.ˇ�1/ // FGFG.A/

FGFu
��

F.��1
GA
/
//

��

FG.A/

Fu
��

ˇ // A

FGFG.A/
F.��1

GA
/

// FG.A/




88
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Indeed, if 
 W FG.A/!A is another choice of isomorphism then 
�1ˇ equals F.u/

for a unique uW GA! GA (since F is an equivalence). The above diagram is then
readily checked to commute, and so the two composites around the outside coincide.

The preceding paragraph shows how to define the counit maps y�AW FGA!A. It is
easy to verify that the composites G!GFG!G and F ! FGF ! F are indeed
the respective identities. The only remaining thing to verify is that y� is natural; but
given a map kW A!Z , commutativity of the square

FG.A/
y�A //

FG.k/

��

A

k
��

FG.X /
y�X // X

will follow from commutativity of the corresponding diagram obtained by apply-
ing G. But this in turn may be checked by precomposing with the unit isomorphisms
�G.�/W G.�/!GFG.�/ and using the unit/counit identities already established.

4.14 Remark We will not need this, but notice that the above proof provides an explicit
construction of y�W X ˝Y ! S , obtained for example by taking the isomorphism of
(4.13) to be the map ˇW FG.S/! S that appears in the proof.

Suppose that X is invertible and f W X ! X. Since X is left dualizable we may
take the trace, obtaining tr.f /W S ! S . Recall that we have another way to obtain a
self-map of S , namely the D–invariant D.f /. These are connected by the following
formula.

4.15 Proposition Let X be an invertible object and let f W X ! X. Then one has
tr.idX / �D.f /D tr.f /.

Proof The composite tr.idX / �D.f / is

S
�
�! Y ˝X

id˝f
����! Y ˝X

��1

��! S
�
�! Y ˝X

id
�! Y ˝X

t
�!X ˝Y

y�
�! S:

The terms in the middle cancel and we obtain the definition of tr.f /.

4.16 Remark Consider again the example GrVect˙k from Remark 4.12, with X, Y

and � as described there. Then tr.idX /D�1, but of course D.idX /D 1. So this gives
an example where the trace and D–invariant are distinct.
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4.17 Remark Returning again to Remark 4.12, it is worth noting that the difference
between y� and (4.13) is in some sense a main theme of the rest of this paper. These
are both isomorphisms X ˝Y ! S , and their “difference” may be measured by the
composite

S
�
�! Y ˝X

t
�!X ˝Y

y�
�! S:

But this composite is just tr.idX /.

Our next major goal will be to prove that when X is invertible one has tr.idX /
2D idS .

This is an important property of invertible objects, but unfortunately we have not been
able to find a direct, simple-minded proof. We will instead deduce the result from a
cyclic permutation property, which a priori feels somewhat deeper.

4.18 Automorphisms of invertible objects induced from permutations

Let x1; : : : ;xn be formal variables and let w be any tensor word in the xi ’s with the
property that each xi appears exactly once. For instance, if n D 3 we might have
w D .x1˝ x3/˝ x2 . We can associate to w a functor FwW C

n! C which plugs in
objects for the variables xi . For objects X1; : : : ;Xn in C write w.X1; : : : ;Xn/ as
shorthand for Fw.X1; : : : ;Xn/, and write w.X / as shorthand for Fw.X;X; : : : ;X /.

If � is a permutation of f1; : : : ; ng, we let w� denote the word in which xi has been
replaced by x�.i/ . So we can write

Fw� .X1; : : : ;Xn/D Fw.� � .X1; : : : ;Xn//D Fw.X�.1/;X�.2/; : : : ;X�.n//:

By Mac Lane’s coherence theorem [13, Theorem XI.1.1] there is a unique natural
transformation Fw! Fw� obtained by composing associativity and commutativity
isomorphisms. If X is an object in C, we can evaluate this natural transformation at
the tuple .X;X; : : : ;X / and thereby obtain an automorphism �w;� W w.X /! w.X /.
In this way we obtain a function �wW †n! Aut.w.X //, which is readily checked to
be a homomorphism.

The following result is from Voevodsky [17, discussion preceding Theorem 4.3].

4.19 Lemma Let X be an invertible object in C. Then for any tensor word w in n

variables, and any even permutation � in †n , the map �w;� W w.X /! w.X / is equal
to the identity. In particular, the composite map

.X ˝X /˝X
tX˝X;X

�����!X ˝ .X ˝X /
a
�! .X ˝X /˝X

is equal to the identity. (Note that this composite map is an instance of the canonical
map .A˝B/˝C ! .C ˝A/˝B , ie the cyclic permutation map).
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Proof Since X is invertible, so is w.X /. Therefore, Aut.w.X // is abelian by
Proposition 4.7 and Lemma 3.5. This means the homomorphism �wW †n!Aut.w.X //
kills the commutator subgroup of †n , which is the alternating group An .

We can now obtain our goal.

4.20 Proposition If X is an invertible object then tr.idX /
2 D idS .

Proof Let f D tr.id.X˝X /˝X /. In the Kelly–Laplaza category KL.fX g/ this is
represented by the picture

from which one obtains that f D tr.idX /
3 (due to the three components).

On the other hand, by Lemma 4.19 f is also equal to tr.c/, where c D a ı tX˝X ;X is
the cyclic permutation map. In the Kelly–Laplaza category this is represented by the
picture

and from this one obtains f D tr.idX / (due to the one connected component). So we
have proven that tr.idX /

3 D tr.idX /.

However, when X is invertible all the maps in the composite defining tr.idX / are
isomorphisms; so tr.idX / is an isomorphism. We can therefore cancel one tr.idX /

from each side of the previous equation to obtain tr.idX /
2 D idS .

4.21 Remark In [8, Theorem C] it is proven that the Postnikov 1–truncation of the
sphere spectrum represents the free “Picard groupoid” on one object (Picard groupoids
are symmetric monoidal categories in which all objects are invertible and all maps
are isomorphisms). The stable homotopy group �1.S/ D Z=2 therefore represents
the endomorphism group of the objects in this free category. This gives another proof
of Proposition 4.20, albeit a more abstract one. We are grateful to Nick Gurski for
pointing out this reference.
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4.22 Basic commuters for invertible objects

If X is an invertible object define �X D tr.idX / 2 Aut.S/ and call this the basic
commuter associated to X. These elements will be important in our treatment of skew-
commutativity in Section 6. Note that if X ŠX 0 then �X D �X 0 , by Proposition 3.4(a).
Let Pic.C/ denote the set of isomorphism classes of invertible objects in C; the tensor
product makes this set into a group. We have produced a set map � W Pic.C/!Aut.S/,
whose image lands in the 2–torsion subgroup 2Aut.S/ by Proposition 4.20.

4.23 Proposition The map � W Pic.C/! 2Aut.S/ is a group homomorphism.

Proof We need only show that if X and Z are invertible then �X˝Z D �X � �Z . For
this we work in the Kelly–Laplaza category KL.fX;Zg/ and observe that the map
tr.idX˝Z / is represented by the picture

X Z

which also represents tr.idX / � tr.idZ /.

We may also describe �X in terms of the twist map tX ;X W X ˝X !X ˝X.

4.24 Proposition �X D tr.idX /DD.tX ;X /D tr.tX ;X /

Proof The first equality is the definition. By Proposition 4.15 we have that tr.idX˝X /�

D.tX ;X /D tr.tX ;X /, but tr.idX˝X /D �X˝X D �
2
X
D 1 using Proposition 4.23. This

proves the third equality. We can complete the proof by showing that tr.idX /D tr.tX ;X /.
This actually follows by the Kelly–Laplaza theorem, for tr.tX ;X / is represented by the
picture below:

Because there is only one connected component, this also represents tr.idX /.
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5 Coherence for invertible objects

In this section we prove our main coherence theorems for invertible objects in a
symmetric monoidal category. We deduce these as consequences of the Kelly–Laplaza
theorem.

Let .C;˝;S/ be a symmetric monoidal category and let X be an invertible object
with inverse .X �; �/. Recall that tr.idX / is defined to be the composite

S
�
�!X �˝X

t
�!X ˝X �

y�
�! S:

Every map in this composite is an isomorphism, so we can write

��1
D tr.idX /

�1
ı .y�t/D tr.idX / ı .y�t/D tr.idX / y̋ .y�t/;

where in the second equality we have used that tr.idX /
2 D idS (see Proposition 4.20).

Similarly, we have
y��1
D tr.idX / y̋ .t�/:

Let Cinv be the full subcategory of invertible objects. Then Cinv is a symmetric monoidal
category with left duals. We will deduce our desired coherence theorems for invertible
objects from Kelly–Laplaza coherence applied to Cinv .

We saw in Section 3 that maps in a Kelly–Laplaza category can be represented by
pictures consisting of certain kinds of directed curves in the plane. These curves are
very simple: every crossing is a standard “X 0”–crossing, and every place where there
is a horizontal tangent line is either a local minimum or local maximum with respect to
the y –coordinate (ie, a cup or cap); we will call these cups and caps the critical points
of the curve.

5.1 Coherence without self-twists

Proof of Theorem 1.6 Let us use the term “acceptable” for formal composites of the
type considered in the statement of the proposition. Suppose there were two acceptable
formal composites f;gW w1! w2 that yielded different maps in C. Then the formal
composite g�1f W w1! w1 would yield a map in C different from the identity. So it
suffices to prove the proposition in the case w1 D w2 and g D id.

Suppose f W w1!w1 is an acceptable formal composite such that f .C/¤ id. Let w�
1

be the formal inverse of the word w1 , and choose any acceptable formal composite
hW S ! w�

1
˝w1 . Consider the formal composite

S
h
�! w�1 ˝w1

id˝f
����! w�1 ˝w1

h�1

��! S:
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Since f .C/ ¤ id Proposition 4.7 shows that the map id˝f also does not give the
identity in C, and from this it follows that the above composite does not give the identity
either. So it suffices to prove the proposition in the case w1 D w2 D S and g D id.

Let n1 be the number of ��1 maps that appear in f , and let n2 be the number of
y��1 maps that appear. Let n D n1C n2 . Let F be the formal composite in which
every ��1 has been replaced with y�t and every y��1 has been replaced with t�. Using
Remark 4.3, the identities ��1 D tr.idX / y̋ .y�t/ and y��1 D tr.idX / y̋ .t�/ show that
f .C/D tr.idX /

n y̋F.C/.

The reason for introducing F is that it only involves maps that exist for dualizable
objects, rather than invertible ones. So we may consider F as a composite in the
Kelly–Laplaza category KL.fX g/. The assumption that f was acceptable implies
that F can be represented by the disjoint union of simple closed curves; for example,
one of the components might look like this:

Let us be clear about why this works. The assumption that the formal composite f is
acceptable guarantees that the only twist maps that appear in F come together with
an � or y�. In terms of the pictures, each of these twists can be eliminated; to see this,
recall how the pictures work:

�
��
� D �; � BB � D y�

�
��
�

��
D D t�;

� �
��

� �

ZZ � �

��
D D y�t

� �YY � EE�

ZZ

The twists in F only appear in conjunction with a cup or cap, and so they can all be
depicted by an untwisted cup or cap going in the opposite direction.
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Now we come to the crux of the matter. For the moment assume that the picture for F

only contains one component, for simplicity. In this simple closed curve, every � or y�
appears as a right-pointing arrow on a cup or cap. Likewise, every t� or y�t appears
as a left-pointing arrow on a cup or cap. So the number of left-pointing arrows in our
simple closed curve is n1C n2 D n. But elementary topology shows that in a (nice
enough) directed, simple, closed curve the number of left-pointing critical points must
always be odd (the same is true for the number of right-pointing critical points, of
course). So n is odd.

In the category KL.fX g/ we know that a simple closed curve as above is equal to
tr.idX /. So when F is evaluated in C it also gives this trace. Putting everything together,
we find that f .C/D tr.idX /

n ıF.C/D tr.idX /
n ı tr.idX /D tr.idX /

nC1 . Given that n

is odd, this just equals the identity (using Proposition 4.20). This completes the proof
for the case that the picture for F has only one component.

For the multicomponent case we observe that in KL.fX g/ the map F is the composition
of the maps represented by each individual component; by what has already been argued,
F.C/ is a composition of identity maps and hence equal to the identity.

Proof of Theorem 1.13 This is essentially the same as the proof of Theorem 1.6,
except we use the Kelly–Laplaza category KL.fX1; : : : ;Xng/. Note that the existence
part of the theorem is obvious; the work lies in showing uniqueness of the isomorphism.
For this one reduces, just as in Theorem 1.6, to the case of a composite f that starts
and ends with S and is of the type specified in the statement of the theorem.

Such a composite f is then replaced by a corresponding formal composite F in
KL.fX1; : : : ;Xng/. The picture for F is a collection of simple, closed curves in the
plane, each labelled by one of the Xi ’s, which are allowed to intersect each other in
double points. The Kelly–Laplaza theorem identifies F with the composite of the
maps whose pictures correspond to each closed curve. In this way one reduces to the
one-variable case handled by Theorem 1.6, to conclude that f must be the identity.

5.2 Coherence with self-twists

Proof of Theorem 1.10 The proof proceeds along the same lines as Theorem 1.6.
One immediately reduces to the case w1Dw2DS , gD id, and where the parity of f
is even. Just as before, we replace f by a corresponding formal composite F in the
Kelly–Laplaza category KL.fX g/. We have

f .C/D tr.idX /
n
ıF.C/;

where the integer n is the same as in the proof of Theorem 1.6.
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The picture corresponding to F is no longer a union of simple curves as it was in the
proof of Theorem 1.6. Rather, it is a union of oriented, closed curves that may contain
double points of self-intersection. For pedagogical purposes let us first deal with the
case where the picture contains a single closed curve, for example as follows:

It is easy to prove that in such an oriented curve one has

.5:3/ .# of left-pointing critical points/C .# of double points/� 1 mod 2:

Indeed, let L denote the number on the left of the congruence. Imagine taking a closed
loop of string — an unknot — and laying it on top of the plane containing our oriented
curve, in such a way that the string exactly covers the curve. This gives us an oriented
knot diagram which is similar to our original picture but in which every double-point
has been changed to an over- or under-crossing. One readily checks that the parity of
the number L is unchanged under the Reidemeister moves. Since our knot diagram is
equivalent to the unknot, this says that the parity of L is the same as the corresponding
number for an oriented circle. But a circle clearly gives LD 1.

The number of left-pointing critical points in the picture for F is just the number n.
Likewise, the number of double points in the picture is the parity of the formal com-
posite f , which we have assumed to be even. So (5.3) tells us that n is odd.

The Kelly–Laplaza theorem implies that F.C/ D tr.idX /. So f .C/ D tr.idX /
nC1 .

Since nC 1 is even tr.idX /
nC1 D idS by Proposition 4.20, and this completes the

proof in the present case (where the picture for F contains one closed curve).

For the general case we have F.C/D tr.idX /
e where e is the number of closed curves

in the picture. The analog of (5.3) — whose proof is the same as before — becomes

.5:4/ .# of left-pointing critical points/C .# of double points/� e mod 2:

We then obtain f .C/D tr.idX /
nCe , and (5.4) yields that nC e is even. So again we

have f .C/D idS , as desired.
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Proof of Theorem 1.14 This is a straightforward generalization of the proof of
Theorem 1.10, in the same way that Theorem 1.13 generalized Theorem 1.6. The main
point is that a map from S to S in KL.fX1; : : : ;Xng/ is represented by a collection
of closed curves, each of which is labelled by one of the Xi ’s. The Kelly–Laplaza
theorem identifies such a map with the composite of the maps obtained by considering
each closed curve separately. The i –parity of our formal composite represents the
number of double points in the curves labelled by Xi . The hypothesis that each of
these parities is even guarantees, just as in the proof of Theorem 1.13, that the specified
map in KL.fX1; : : : ;Xng/ is the identity.

6 The main applications: Zn–graded rings of maps

Assume that .C;˝;S/ is an additive category with a symmetric monoidal structure,
where the tensor product is an additive functor in each variable. In this section we
investigate Zn –graded groups of maps in C.

Suppose X1; : : : ;Xn 2 C are invertible objects, and let .X �i ; �i/ be a specific choice
of inverse for Xi . Recall the definition of X a for every a 2 Zn , from Section 1. For
every a; b 2 Zn there is a canonical isomorphism

�a;bW X
a
˝X b Š

�!X aCb

specified by Theorem 1.13. The uniqueness part of that proposition guarantees that the
pentagonal diagrams (2.1) all commute, and that for a; b 2Nn these �a;b ’s coincide
with the ones defined in Section 2.

For any W 2 C define ��.W / to be the Zn –graded abelian group

��.W /D
M

a2Zn

C.X a;W /:

Suppose that U, V , and W are objects and that there is a pairing U ˝V !W . The
maps �a;b allow us to define a Zn –graded pairing ��.U /˝ ��.V / ! ��.W / as
follows. Suppose f W X a! U and gW X b ! V . Define the product f � g to be the
composite

X aCb
��1

a;b

���!X a
˝X b f˝g

���! U ˝V �!W:

6.1 Proposition Let U be a monoid with respect to ˝.

(a) ��.U / is a Zn –graded ring (associative and unital).
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(b) If V is a left (resp. right) module over U then ��.V / is a left (resp. right)
module over ��.U /.

(c) If U is a commutative monoid then �0.U / is central in ��.U /.

Proof The proofs of (a) and (b) are the same: distributivity is automatic, and associa-
tivity follows from the commutativity of the diagram (2.1) involving the �a;b ’s. The
unit conditions follow as in the proof of Proposition 2.3.

For (c), let f W X a! U and gW S ! U. The following diagram is commutative:

X a //

##

X a˝S

t

��

f˝g // U ˝U

t

��

�
// U

S ˝X a g˝f // U ˝U

�

<<

The composite across the top is f � g , and the composite across the bottom is g � f .
Commutativity of the diagram shows these are equal.

6.2 Representation of elements in ��.S / by maps in C

Let w1 and w2 be two tensor words in the symbols X˙1
i , and suppose that f W w1!w2

is a map. Theorem 1.13 gives canonical isomorphisms X a! w1 and X b! w2 for
unique a; b 2 Zn . From now on we will denote all canonical isomorphisms provided
by Theorem 1.13 by � . (A consequence of this is that a canonical map and its inverse —
which is also canonical — are sometimes both denoted by � ; in practice this does not
lead to much confusion, though.) Let hf i denote the composite

X a �
�! w1

f
�! w2

�
�!X b:

There are two evident ways to obtain an element of ��.S/ from hf i. Let Œf �r 2�a�b.S/

be the composite

X a�b �
�!X�b

˝X a id˝hf i
�����!X�b

˝X b �
�! S

and let Œf �l 2 �a�b.S/ be the composite

X a�b �
�!X a

˝X�b hf i˝id
�����!X b

˝X�b �
�! S:

In general one must be careful, as Œf �r and Œf �l need not be the same element. We
will give a precise formula for relating them in Proposition 6.11 below, but it will take
some work to build up to this. We start with some simple observations.
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6.3 Proposition Let w1 , w2 and w3 be three tensor words that are formally isomor-
phic to X a , X b and X c , respectively. Let f W w1! w2;gW w2! w3 . Then:

(a) Œidw3
˝f �r D Œf �r and Œf ˝ idw3

�l D Œf �l

(b) Œgf �r D Œg�r � Œf �r

Proof For part (a) first note that hidw3
˝f i D idc ˝hf i, by an easy argument.

Next use the following diagram, where we have suppressed some tensor signs for
typographical reasons:

X�b�cX aCc � // X�b�cX cX a

�˝id
��

1˝1˝hf i// X�b�cX cX b

�˝id
��

id˝� // X�b�cX bCc

�

��
X a�b

�

OO

� // X�bX a 1˝hf i // X�bX b � // S

The three squares are readily checked to commute; in the case of the outer ones this
is by Theorem 1.13. The composite from X a�b to S across the ‘top’ of the diagram
is Œidw3

˝f �r , and the composite across the bottom is Œf �r . The argument showing
Œf ˝ idw3

�l D Œf �l is entirely similar.

For (b) we first examine the commutative diagram

X a�c �1 // X b�c ˝X a�b id˝Œf �r //

Œg�r˝Œf �r ((

X b�c ˝S
�2 //

Œg�r˝id
��

X b�c

Œg�r
��

S ˝S // S:

Let H D �2 ı .id˝Œf �r / ı �1 . The composite across the ‘bottom’ of the diagram is
Œg�r � Œf �r , so we have Œg�r � Œf �r D Œg�r ıH.

Next consider the following diagram:

X a�c
� //

�1

��

X�cX a
id˝hf i // X�cX b

id˝hgi // X�cX c
� // S

X b�cX a�b
id˝� // X b�cX�bX a

�˝id

OO

1˝1˝hf i// X b�cX�bX b

�˝id

OO

id˝� // X b�cS
�2

// X b�c

Œg�r

OO

�

kk

All of the regions of the diagram commute, in two cases by Theorem 1.13. The com-
posite across the top row is Œgf �r . The composite across the bottom edge from X a�c

to X b�c is the map H. So the diagram shows that Œgf �r D Œg�r ıH, and the latter
equals Œg�r � Œf �r by the preceding paragraph.
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6.4 Remark It is informative to check that the argument for part (b) of Proposition 6.3
does not dualize to prove Œgf �l D Œg�l � Œf �l . The reason comes down to the fact that
the formula g˝ f D .g˝ id/ ı .id˝f / has the identity tensored on the left side of
the f . The dual argument shows Œgf �l D Œf �l � Œg�l , although we will not need this
fact.

Our next task is to focus on the case where f W w1! w2 and w1 Š w2 ŠX a . Note
that in this case hf i is a map X a!X a and so we also have the invariants D.hf i/

and tr.hf i/, which like Œf �l and Œf �r are elements of �0.S/. The following result
gives the relation between all of these constructions.

6.5 Proposition Let w1 and w2 be two words that are formally isomorphic to X a ,
for a 2 Zn . Let f W w1! w2 be a map. Then:

(a) Œf �r D Œf �l DD.hf i/ and tr.hf i/DD.f / � tr.idX a/.

(b) Œidc ˝f �r D Œf ˝ idc �r D Œf �r for any c 2 Zn .

(c) For a canonical isomorphism �W w1! w2 (as provided by Theorem 1.13) one
has Œ��r D idS .

Before giving the proof let us introduce one more important definition. For a; b 2 Zn

we have the twist map ta;bW X
a˝X b!X b˝X a . We write Ta;b D hta;bi, which is

a map X aCb!X aCb . It is easy to check that Ta;b ıTb;a D id. Note that Ta;�a is a
map S ! S .

Proof of Proposition 6.5 For (a) we consider the following diagram:

S

""

// X�a˝X a //

t�a;a

��

X�a˝w1

id˝f //

t

��

X�a˝w2
//

t

��

X�a˝X a

t�a;a

��

// S

X a˝X�a // w1˝X�a f˝id // w2˝X�a // X a˝X�a;

;;

where all unlabelled maps are canonical isomorphisms (ie, they should be labelled
with � ). The three squares are commutative, but the triangles on the two ends are
not; the automorphism of S obtained by moving around one of these triangles is
either Ta;�a or T�a;a , depending on which direction the composite is taken. The
composite across the top of the diagram is Œf �r and the composite across the bottom
is Œf �l . The diagram thus yields the formula

Œf �r D Ta;�a ı Œf �l ıT�a;a:
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But this formula takes place in the monoid End.S/, which by Proposition 4.7 is
commutative. So we obtain Œf �r D Œf �l ıTa;�a ıT�a;a D Œf �l ı idS D Œf �l .

Next consider the following diagram:

S ˝X a

�

��

�˝id // X a˝X�a˝X a
�˝id˝ id //

vv

w1˝X�a˝X a
f˝id˝ id //

uu

w2˝X�a˝X a

uu
�˝id˝ id
��

X a˝S
�˝id

// w1˝S
f˝id

// w2˝S

�˝id
��

X a˝X�a˝X a

�˝id˝ id
��uu

X a˝S
�

// S ˝X a

The diagonal maps are all equal to the identity on the left tensor factor and the canonical
isomorphism �W X a˝X�a!S on the other two factors. All of the ‘squares’ obviously
commute in the diagram, and the triangles on the two ends commute by Theorem 1.13
since all the maps are canonical isomorphisms. The composition across the ‘top’ of
the diagram equals Œf �l ˝ idX a . Condensing the diagram to its outer rim yields the
commutative square

S ˝X a Œf �l˝id //

�

��

S ˝X a

�

��
X a˝S

hf i˝idS // X a˝S:

By Lemma 4.8(a) the top and bottom maps have the same D–invariant, and the D–
invariant of the bottom map is also that of hf i (using the unital isomorphism). Finally,
D.Œf �l ˝ id/DD.Œf �l/D Œf �l by Lemma 4.8(b). This ends the proof of (a).

Part (b) follows immediately from (a) and Proposition 6.3(a). Part (c) is a consequence
of coherence: the composite

X a �1
�! w1

�
�! w2

�2
�!X a

is a canonical map and must therefore equal the identity by Theorem 1.13. Hence,
h�i D idX a and Œ��r DD.idX a/D idS .

The elements Ta;b 2 Aut.S/ are, of course, ubiquitous in calculations. We define

�a;b D Œta;b �l D Œta;b �r DD.Ta;b/ 2 �0.S/;

where the second two equalities are by Proposition 6.5. Recall that we have the basic
commuters �i D tr.idXi

/ 2 �0.S/ and these satisfy �2
i D 1 by Proposition 4.20. Recall

Algebraic & Geometric Topology, Volume 14 (2014)



Coherence for invertible objects and multigraded homotopy rings 1093

as well that �i D D.tXi ;Xi
/ by Proposition 4.24. If e1; : : : ; en is the standard basis

for Zn then this just says that �i D �ei ;ei
. Let us also point out that if i ¤ j then

�ei ;ej
D idS ; in fact Tei ;ej

is the composite

X eiCej
�
�!Xi ˝Xj

tXi ;Xj

����!Xj ˝Xi

�
�!X eiCej

and this equals the identity map either by Theorem 1.14 or by just looking at the
definitions. Quite generally, we can express all of the elements �a;b in terms of the
basic commuters.

6.6 Proposition For all a; b 2 Zn one has �a;b D �
.a1b1/
1

� � � �
.anbn/
n .

Proof Recall that Ta;b is the composite X aCb
�
�!X a˝X b

ta;b

��!X b˝X a
�
�!X aCb .

Observe that we can also obtain this map as a long composite

.6:7/ X aCb
! w1! w2! � � � ! wN !X aCb;

where each wk is a tensor word in the X˙1
i ’s and each map is one of the following:

(1) a canonical isomorphism � (as provided by Theorem 1.13)

(2) a tensor product of tXi ;Xi
with identity maps

(3) a tensor product of tXi ;X
�1
i

with identity maps

(4) a tensor product of tX�1
i
;X�1

i
with identity maps

In the ‘standard’ way to obtain such a composite the number of transpositions of types
(2)–(4) will be jaibi j, for any chosen value of i . Let f W S!S be the map

Q
i �
.ai bi /
i ,

noting that only the parity of aibi matters in the exponent since �2
i D idS . Consider

the composite

.6:8/ X a �
�! S ˝X a f˝id

���! S ˝X a �
�!X a:

It follows from Theorem 1.14 that the composites in (6.7) and (6.8) are the same,
because by construction they have the same i –parity for every i . Consequently, the D–
invariant of the two composites is the same. But the D–invariant of (6.8) is manifestly
equal to the map f . We have thus proven that f DD.Ta;b/D �a;b .

6.9 Remark As a consequence of Proposition 6.6 and the fact that �2
i D 1 note that

we have �a;b�a;c D �a;bCc D �a;b�c . Likewise, �a;b D ��a;b D �b;a . Identities such
as these will often be used.
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Before proceeding further we need a lemma, which is easy but worth recording.

6.10 Lemma Consider composable maps

X a f
�!X a g

�! S
h
�! S:

Then as elements of ��.S/ one has hg D h � g D g � h and gf D g �D.f /. More
generally, we can write hgf D h �g �D.f /D g � h �D.f /.

Proof We have already seen that h �g D g �h, in Proposition 2.3. The identification
of these with the composite hg is easy. For the second identity we have

g ıf D g ı .idX y̋D.f //D g y̋D.f /D g �D.f /;

where the second equality is from Lemma 4.2 and the third equality follows from the
definitions. Finally, the identity for hgf is a consequence of the previous identities.

Now we can move on to the study of Œf �r and Œf �l for general maps f .

6.11 Proposition Let w1 and w2 be two tensor words, where w1 is formally isomor-
phic to X a and w2 is formally isomorphic to X b . Let f W w1! w2 , and let c 2 Zn .
Write idc for idX c . Then:

(a) Œf �r D Œf �l � �b;a�b

(b) Œidc ˝f �r D Œf �r

(c) Œf ˝ idc �r D Œf �r � �a�b;c

(d) Œf ˝ idc �l D Œf �l

(e) Œidc ˝f �l D Œf �l � �a�b;c

(f) if gW w2!w3 , where w3 ŠX c , then Œgf �r D Œg�r � Œf �r and likewise Œgf �l D
Œg�l � Œf �l � �a�b;c�d

(g) let gW w0
1
! w0

2
where w0

1
ŠX c and w0

2
ŠX d , then

Œf ˝g�r D Œf �r � Œg�r � �a�b;d D Œg�r � Œf �r � �a�b;c

Œf ˝g�l D Œf �l � Œg�l � �b;c�d D Œg�l � Œf �l � �a;c�d

Proof of Proposition 6.11 Note first that parts (b), (d), and the first part of (f) were
already proven in Proposition 6.3; they are only restated here for ease of reference.
Note also that parts (c), (e), and the second part of (f) are formal consequences of the
aforementioned results, using (a). So most everything follows from (a).

Algebraic & Geometric Topology, Volume 14 (2014)



Coherence for invertible objects and multigraded homotopy rings 1095

To prove (a) we consider the usual diagram:

X a�b � //

� &&

X�b˝X a

t�b;a

��

id˝hf i // X�b˝X b

t�b;b

��

� // S

X a˝X�b hf i˝id // X b˝X�b

�

99

The square commutes but the triangles do not; the composite across the top is Œf �r and
the composite across the bottom is Œf �l . The diagram yields the formula

Œf �r D Tb;�b ı Œf �l ıT�b;a:

From Lemma 6.10 we get that in ��.S/ one has the formula

Œf �r D Œf �l �Tb;�b � ��b;a D Œf �l � �b;�b � ��b;a D Œf �l � �a�b;b

(using Remark 6.9 for the final equality).

Finally, in (g) we simply use that f ˝ g D .idw2
˝g/ ı .f ˝ idw0

1
/ D .f ˝ idw0

2
/ ı

.idw1
˝g/. The desired formulas follow from the combined application of the previous

parts.

6.12 Skew-commutativity

Skew-commutativity for ��.S/ follows immediately from the various formulas in
Proposition 6.11(g). We give a slightly more general version here.

6.13 Proposition Let W be an object in C, let f W X a! S and gW X b!W . Then
under the left and right actions of ��.S/ on ��.W / we have

f �g D g �f � �a;b D g �f � �
.a1b1/
1

� � � � .anbn/
n :

Proof Consider the diagram

X aCb � //

� $$

X a˝X b

ta;b

��

f˝g // S ˝W //

tS;W

��

W

X b˝X a g˝f // W ˝S

<<

and note that all regions commute except the leftmost triangle. The composite across
the top is f �g , and the composite across the bottom is g � f . The diagram yields the
identity f � g D .g � f / ıA, where A is the appropriate self-map of X aCb coming
from the left triangle. By Lemma 6.10 we obtain f �g D g �f �D.A/ in ��.W /, and
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we know that D.A/D Œta;b �r D �a;b . The identification of �a;b as
Q

i �
.ai bi /
i is from

Proposition 6.6.

6.14 Remark There are other settings in which one can prove similar skew-commuta-
tivity results. For example, if W is a commutative monoid in C (with respect to ˝)
then ��.W / has the same skew-commutativity law as ��.S/, where now the �i ’s
are regarded as elements of ��.W / via the unit map S ! W . If Z is a bimodule
over W then there is a corresponding skew-commutativity result in that setting. All of
the proofs are the same as for Proposition 6.13 above, so we leave these to the reader.

7 More general grading schema

Let .C;˝;S/ be an additive category with a symmetric monoidal structure that is
additive in each variable. Let A be a finitely-generated abelian group, and fix a
homomorphism hW A! Pic.C/. For each a 2 A let Xa be a chosen object in the
isomorphism class h.a/; assume X0 D S . For W in C define �A

� .W / to be the
A–graded abelian group a 7! C.Xa;W /. To obtain a product on �A

� .S/ one can start
by choosing isomorphisms

�a;bW XaCb!Xa˝Xb

for each a; b 2A. If f W Xa! S and gW Xb! S then we define the product f �g to
be the composite

XaCb

�a;b

���!Xa˝Xb

f˝g
���! S ˝S Š S:

This clearly defines a distributive product on �A
� .S/. The questions that arise are:

(1) Is it possible to choose the �a;b isomorphisms so that the product on �A
� .S/ is

associative and unital?

(2) If there are multiple ways to accomplish (1), do they give rise to isomorphic
rings? That is, is the ring structure on �A

� .S/ in some sense canonical?

Note that in Section 6 we proved that the answer to (1) is yes in the case when A is free.
The construction depended on choosing a free basis e1; : : : ; en for A and then fixing a
specific choice of isomorphism �i W S !X�ei

˝Xei
for each i ; so the construction

was certainly not canonical.

We will see below that the answer to (1) is yes in general, but the answer to (2) is
no. In fact, the set of isomorphism classes of ring structures obtained in this way is
parameterized by the cohomology group H 2.AIAut.S//. Much of the material behind
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this story seems to be standard, but we were unable to find an adequate reference (the
introduction to the paper [2] by Cegarra and Khmaladze gives a partial survey, though).

I am grateful to Victor Ostrik and Vadim Vologodsky for conversations about the results
in this section.

Let us call the collection .�a;b/a;b2A an A–trivialization of C with respect to X if it
satisfies two properties:

(1) For every a 2 A the isomorphisms �a;0 and �0;a coincide with the unital
isomorphisms in C.

(2) For every a; b; c 2A the following pentagon commutes:

XaCbCc

�a;bCc //

�aCb;c

��

Xa˝XbCc id˝�b;c

++
Xa˝ .Xb˝Xc/

XaCb˝Xc

�a;b˝id
// .Xa˝Xb/˝Xc

a 33

Under conditions (1) and (2) the induced product on �A
� .S/ is both associative and

unital; we will call this the standard ring structure on �A
� .S/ associated to � . Note

that there possibly exist ring structures on �A
� .S/ which are not standard, ie, which

do not arise from an A–trivialization. Such structures are not part of the theory we
develop here.

7.1 Remark Let A be the category having only identity maps and whose objects are
the elements of A; equip A with the evident symmetric monoidal structure coming
from the group law in A. Then an A–trivialization of C with respect to X is simply
the extra structure needed to make X into a strong monoidal functor that is strictly
unital.

Given two A–trivializations � and � 0 we get two ring structures �A
� .S/� and �A

� .S/� 0 .
Are the two standard rings obtained in this way isomorphic? The question is not easy
to answer when stated so broadly, but we can refine it somewhat. The evident way to
construct a map �A

� .S/� ! �A
� .S/� 0 would be to send each f W Xa! S to f �u.a/

for some chosen u.a/ 2 Aut.S/ that is independent of f . [Note that it does not matter
which product we use for f �u.a/, since both the � –product and the � 0–product will
give the same answer if one of the factors lies in �A

0
.S/, by condition (1).] Let us

say that a standard isomorphism between standard ring structures is one that is of this
form; note that it is determined by a chosen map of sets uW A! Aut.S/.

Here is the main goal of this section.
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7.2 Proposition Suppose .C;˝;S/, hW A! Pic.C/, and X W A! ob.C/ are as in
the beginning of this section.

(a) There exists an A–trivialization of C with respect to X, and therefore a resulting
standard ring structure on �A

� .S/.

(b) The set of all A–trivializations as in (a) is in bijective correspondence with
Z2.AIAut.S//norm , the normalized 2–cocycles for the bar complex of A.

(c) The set of different possible standard ring structures on �A
� .S/, up to standard

isomorphism, is in bijective correspondence with H 2.AIAut.S//.

Note that we essentially already encountered this in the case where A was Zn . In
that case H 2.AIAut.S// Š Aut.S/n (noncanonically), and one only obtains a ring
structure after fixing a basis for A together with n elements of Aut.S/, as we found
in our earlier treatment. The overall lesson is that grading morphism sets by invertible
objects is a bit dicey when it comes to product structures; the rings obtained are typically
neither unique nor canonical.

7.3 Remark One can also ask about the graded commutativity properties of �A
� .S/.

It is easy to prove that if f 2 �A
a .S/ and g 2 �A

b
.S/, then fg D gf � �a;b , where

�a;b D D.��1
b;a
ı ta;b ı �a;b/ 2 Aut.S/. We have not explored the properties of

� W A2! Aut.S/, mostly due to a lack of application. Our analysis in the free case
(Proposition 6.6) suggests this might be a nice exercise.

We will prove Proposition 7.2 by analyzing a very specific class of monoidal categories,
and then reducing to that case.

7.4 Monoidal categories of type .A;N /

Fix abelian groups A and N. Let C D CŒA;N � be the category with object set A,
where there are no maps between distinct objects, and where the set of self-maps of
each object is equal to N . Define a bifunctor ˝W C�C! C whose behavior on objects
is given by the sum in A, and whose behavior on morphisms is given by the sum in N .
To equip .C;˝; 0A/ with a monoidal structure we must specify unital isomorphisms
a˚ 0Š a and 0˚ aŠ a; but a˚ 0D aD 0˚ a, so we can (and will) just take the
isomorphisms to be the identities.

We must also specify an associativity isomorphism ˛a;b;c W .a˝ b/˝ c! a˝ .b˝ c/,
for every a; b; c 2A. Again, since the objects .a˝b/˝ c and a˝ .b˝ c/ are actually
equal (they both are equal to the object aC bC c ) we are just specifying an element
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˛a;b;c 2N . We could require this to be the identity, but we wish to not be so restrictive
here. Let us call a monoidal structure on .C;˝; 0A/ obtained in this way an extended
monoidal structure, as it is an extension of the canonical tensor functor and unital
isomorphisms.

The pentagonal condition that a monoidal structure must satisfy says that ˛W A3!N

is a 3–cocycle in the usual bar complex C �.AIN / for computing group cohomol-
ogy. Compatibility between associativity and unital isomorphisms then requires that
˛a;b;c D 0 if any of a, b , or c are zero; in other words, we have a normalized
cocycle. In this way we see that extended monoidal structures on .C;˝; 0/ are in
bijective correspondence with the group Z3.AIN /norm . Even more, it is easy to see
that elements of the group H 3.AIN / are in bijective correspondence with extended
monoidal structures on .C;˝; 0/ up to isomorphism. This is a standard story. For
˛ 2Z3.AIN /norm write C˛ D CŒA;N �˛ for the corresponding monoidal category.

Fix an element ˛ 2Z3.AIN /norm . In C˛ let us ask if there is an A–trivialization with
respect to the identity map: that is, do there exist isomorphisms �a;bW a˝ b! aC b

satisfying the required associativity and unital conditions? Again, �a;b is just an element
of N and so � 2C 2.AIN /. The unital condition is the requirement � 2C 2.AIN /norm

and the associativity condition translates to ı� D ˛ . So the cohomology class of ˛
in H 3.AIN / (or H 3.AIN /norm , which is the same thing) is the obstruction to the
existence of the desired � ’s.

7.5 Remark Note that the �a;b ’s are giving a (strong) monoidal structure on the iden-
tity functor CŒA;N �0! CŒA;N �˛ , showing that the domain and target are monoidally
equivalent. This is why we call the collection .�a;b/a;b2A a trivialization of the
monoidal structure CŒA;N �˛ .

7.6 Symmetric monoidal categories of type .A;N /

There is a similar story for the existence of extended symmetric monoidal categories
on C. Here one must specify both the ˛a;b;c elements and certain elements ˇa;b 2N

giving the commutativity isomorphisms. One again finds that the set of extended
structures is in bijective correspondence with the 3–cocycles in a certain complex. To
describe this, let E be the complex

ZhA4
i˚ZhA3

i1˚ZhA3
i2˚ZhA2

i
d4
�!ZhA3

i˚ZhA2
i

d3
�!ZhA2

i
d2
�!ZhAi

d1
�! 0

(concentrated in homological degrees 0 through 4) with differentials defined on free
generators by the formulas below:
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d1.Œa�/D 0; d2.Œajb�/D Œa�� ŒaC b�C Œb�

d3.Œajbjc�/D Œbjc�� ŒaC bjc�C ŒajbC c�� Œajb�; d3.Œajb�/D Œajb�� Œbja�

d4.Œajbjcjd �/D Œbjcjd �� ŒaC bjcjd �C ŒajbC cjd �� ŒajbjcC d �C Œajbjc�

d4.Œajbjc�1/D Œajbjc�� Œajcjb�C Œcjajb�� Œbjc�C ŒaC bjc�� Œajc�

d4.Œajbjc�2/D Œajbjc�� Œbjajc�C Œbjcja�C Œajb�� ŒajbC c�C Œajc�

d4.Œajb�/D Œajb�C Œbja�

Let D � E be the “degenerate” subcomplex spanned by all symbols Œa1j � � � jan� in
which at least one of the ai ’s is zero, and note that this is indeed closed under the
differential. A little legwork shows that extended symmetric monoidal structures on C

correspond to normalized 3–cocycles .˛; ˇ/ 2Z3.Hom.E;N // (where ‘normalized’
refers to cocycles that vanish on the degenerate subcomplex).

7.7 Remark The paper [7] used a similar complex but where the ZhA3i2 term was
omitted from E4 (and where the grading of the complex was shifted by 1). It is easy to
see that omitting this term does not effect H3.E/ or Z3.EIN /; in effect, the relations
coming from this term are consequences of the ones coming from d4.Œajbjc�1/ and
d4.Œajb�/, by an easy exercise. We are using the larger complex because it allows us to
directly quote published results from Eilenberg and Mac Lane [5].

The complex E was introduced by Eilenberg and Mac Lane [4; 5]: it is the first few
terms of their iterated bar construction. They prove that their complex calculates the
homology of Eilenberg–Mac Lane spaces in the stable range; in particular,

Hi.E/ŠHnCi�1.K.A; n//

for 1 � i � 3 and n � 3 [4, Theorem 6]. Let us write H EM
� .A/ for H�.E/ and

H�EM.AIN / for H�.Hom.E;N //. Eilenberg and Mac Lane calculated the following.

7.8 Proposition (Eilenberg–Mac Lane) (a) There are natural isomorphisms

H EM
1 .A/ŠA; H EM

2 .A/Š 0; H EM
3 .A/ŠA=2A:

The last isomorphism is induced by a 7! Œaja�.

(b) There is an isomorphism H 3
EM.AIN /!Hom.A=2A;N /DHom.A; 2N / given

by .˛; ˇ/ 7! Œx 7! ˇ.x;x/�.

The isomorphisms in part (a) are from [5, Theorems 20.3, 20.5, 23.1]. Note that (b)
is an immediate consequence of (a), using the universal coefficient theorem. Also,
note that part of the claim in (b) is that if .˛; ˇ/ is a 3–cocycle in Hom.E;N / then
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x 7!ˇ.x;x/ is linear and takes its values in 2N . Neither of these claims is immediately
obvious, although they follow from (a). Separate from this, however, observe that
they also follow from Proposition 4.23 because x 7! ˇ.x;x/ is the � –function for the
symmetric monoidal category CŒA;N �.˛;ˇ/ .

Observe that the bar complex C�.A/ is contained inside E as a subcomplex. Let Q be
the quotient, so that we have the short exact sequence 0!C�.A/!E!Q! 0. Note
that Q has the form ZhA3i1˚ZhA3i2˚ZhA2i!ZhA2i, concentrated in degrees 3

and 4. Applying Hom.�;N /, the long exact sequence in cohomology then gives

.7:9/ � � �  H 3.AIN / H 3
EM.AIN / H 3.QIN / H 2.AIN / � � � :

The group H 3.QIN / is easy to analyze: it is the collection of ˇW A2!N satisfying
ˇ.x;y/D �ˇ.y;x/ and ˇ.y; z/� ˇ.xC y; z/C ˇ.x; z/D 0 for all x;y; z 2 A. In
other words, H 3.QIN / is the collection of alternating bilinear forms A�A! N ;
write this as H 3.QIN /Š AltBilin.A;N /. The map AltBilin.A;N /!H 3

EM.AIN /

sends an alternating form ˇ to the cohomology class Œ.0; ˇ/�.

The following lemma is the key calculation of this entire section.

7.10 Lemma For any abelian groups A and N , the map H 3
EM.AIN /!H 3.AIN /

is the zero map.

Proof We consider the commutative diagram

� � � // AltBilin.A;N /
u //

p ((

H 3
EM.A;N /

Š

��

v // H 3.A;N / // � � �

Hom.A; 2N / Hom.A=2A;N /

where the top row is the long exact sequence (7.9), the vertical map is the one from
Proposition 7.8(b), and the map p is the evident composite. Note that p sends an
alternating bilinear form � W A�A!N to the map a 7! �.a; a/. But it is easy to see
that p is surjective. Indeed, let feig be an F2 –basis for A=2A. If f W A=2A! N

then define a bilinear form bW A=2A �A=2A! N by b.ei ; ej / D 0 if i ¤ j and
b.ei ; ei/ D f .ei/. This is alternating because 2f .ei/ D 0. Let zb be the composite
A�A!A=2A�A=2A b

�!N , and note that p.zb/D f .

Since p is surjective it follows that u is surjective, and so v D 0.
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7.11 Trivializations of .A;N /–structures

7.12 Proposition Fix an extended symmetric monoidal structure .˛; ˇ/ on CŒA;N �.
Then there exists a trivialization of the monoidal structure CŒA;N �˛ , and the set of all
such trivializations is in bijective correspondence with Z2.AIN /norm .

Proof As we saw in 7.4, a trivialization is simply an element � 2 C 2.AIN /norm

satisfying ı� D ˛ . It is clear that if such a thing exists, the set of all possibilities
is in bijective correspondence with Z2.AIN /norm . To prove existence we need only
show that Œ˛�D 0 in H 3.AIN /. But the map H 3

EM.AIN /!H 3.AIN / which sends
Œ.˛; ˇ/� to Œ˛� is the zero map by Lemma 7.10, so this finishes the proof.

7.13 The general case

We will prove Proposition 7.2 by reducing the construction of an A–trivialization to the
corresponding problem for an extended symmetric monoidal category of type .A;N /.
This uses the following lemma from [7, Chapter II, Proposition 7].

7.14 Lemma Let .C;˝;S/ be a symmetric monoidal category in which every
object is invertible and every map is an isomorphism. Then C is equivalent (as a
symmetric monoidal category) to an extended symmetric monoidal category of type
.Pic.C/;Aut.S//.

Proof First recall that C is equivalent to a symmetric monoidal category where the
associativity and unital conditions are strict [13, Theorem XI.3.1]. So we can just
assume that C itself has these properties.

Let N D Aut.S/. Let D be the category whose objects are the elements of Pic.C/,
where there are no maps between distinct objects, and where every endomorphism of
self-maps is equal to N .

For each element a 2 Pic.C/ choose a fixed object Xa in C that belongs to this
isomorphism class; when a D ŒS � choose Xa D S . Moreover, for each Y in C

choose a fixed isomorphism iY W Y !XŒY � . Define a functor F W C!D by sending
each object Y to its isomorphism class in Pic.C/; if gW Y1! Y2 is a map, then let
F.g/ D D.iY2

ı g ı i�1
Y1
/. One readily checks that this is indeed a functor, and that

each self-map f W Y ! Y is sent to its D–invariant D.f / 2N .

Likewise, define a functor GW D! C by sending an object a 2 Pic.C/ to Xa , and
sending a self-map of a corresponding to n 2N to the unique self-map Xa!Xa that
has D–invariant equal to n. It is easy to check that F and G give an equivalence of
categories. Note that FG D idD and that G.ŒS �/D S .
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Use the equivalence .F;G/ to transplant the symmetric monoidal structure from C

onto D. For example, define the monoidal product on D by

d1˝ d2 D F.Gd1˝Gd2/;

and likewise for the associativity, unital, and commutativity isomorphisms. It is routine
to check that the unit in D is strict, because this was assumed to be the case for C and
G.ŒS �/ D S ; in contrast, the associativity isomorphisms need not be strict. But one
readily verifies that this gives an extended symmetric monoidal structure on D, which
is equivalent to .C;˝;S/ by construction.

Proof of Proposition 7.2 We begin by replacing C by the subcategory Cinv of in-
vertible objects and isomorphisms: the question of whether or not there exists an
A–trivialization of X is the same for C and Cinv . Next use Lemma 7.14 to replace Cinv

by an extended symmetric monoidal category of type .A;N /, where A D Pic.C/
and N D Aut.S/. Finally, use Proposition 7.12. This shows the existence of an
A–trivialization � of C with respect to X.

Suppose now that � 0 is another A–trivialization of C with respect to X. Define

�a;b DD..� 0a;b/
�1
ı �a;b/ 2 Aut.S/

for each a; b 2 A. Note the resulting formula � 0
a;b
D �a;b y̋ �a;b . Condition (1) in

the definition of A–trivialization shows that �a;b D idS if either a or b is zero. Take
the pentagonal diagram in condition (2) for � and let C denote a composition going
around the pentagon; let C 0 denote the corresponding composition for � 0 . Note that
C DC 0D id by commutativity of these diagrams. But if we replace each � 0

a;b
appearing

in C 0 with �a;b y̋ �a;b , then all of the � ’s can be moved outside the composition by
Remark 4.3. This shows that C 0 D C y̋ .ı�/.a; b; c/. Since C D C 0 D id we get that
ı�.a; b; c/D idS for every a; b; c 2 A. So � 2Z2.AIAut.S//norm , and moreover it
is easy to see that this gives a bijection between A–trivializations and elements of
Z2.AIAut.S//norm .

Finally, we have seen how the trivializations � and � 0 each give rise to a ring structure
on �A

� .S/; write these as �A
� .S/� and �A

� .S/� 0 . Recall from the beginning of this
section that a standard isomorphism between these rings depends on a fixed map of
sets uW A! Aut.S/. Let FuW �

A
� .S/! �A

� .S/ be the map of A–graded abelian
groups which sends f W Xa! S to f �u.a/. It is routine to check that Fu gives a ring
isomorphism �A

� .S/� ! �A
� .S/� 0 if and only if ıu D � , therefore completing the

proof.
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Appendix: A short motivic application

Here we give the proof of Proposition 1.19. We concentrate on the basic idea, ignoring
technical details about the foundations.

Let Ho.Sp/ and Ho.MotSp/ denote the stable homotopy category and the motivic
stable homotopy category over C , respectively. These both have symmetric monoidal
structures, with the units written S0 and S0;0 , respectively. There is a realization func-
tor  W Ho.MotSp/!Ho.Sp/ that is strong monoidal. Let X1 D S1;0 and X2 D S1;1

be the standard motivic spheres, and write S1 for the classical suspension spectrum of
the circle. Choose a model for S�1 in Ho.Sp/ and an isomorphism �W S0!S�1^S1 .
Choose inverses X �

1
and X �

2
, and let us assume for simplicity that  .X �

1
/D S�1 and

 .X �
2
/ D S�1 (equalities instead of merely isomorphisms). A little thought shows

that one can choose isomorphisms �1W S
0;0! X �

1
^X1 and �2W S

0;0! X �
2
^X2

that map to � under  .

Below we will write Z D S1 to avoid having to write double exponents like .S1/a .

Proof of Proposition 1.19 Let f W X a
1
^X b

2
! S and gW X r

1
^X s

2
! S . Then f �g

is the composite

X aCr
1
^X bCs

2

�
�!X a

1 ^X b
2 ^X r

1 ^X s
2

f^g
���! S ^S D S:

The canonical isomorphism � commutes the X b
2

past the X r
1

and then simplifies the
resulting monomial by using associativity and the � and y� maps (but without any more
commutations). If we apply  to this composite then we get the analogous composite

ZaCrCbCs
�!Za

^Zb
^Zr

^Zs  .f /^ .g/
��������! S ^S D S:

Note that the first map in the composite is not a canonical map anymore, and so we
have dropped the label � . Rather, this map commutes the Zr past the Zb . If we were
to compute  .f / � .g/ in ��.S/, however, we would get the composite

ZaCrCbCs �
�!Za

^Zb
^Zr

^Zs  .f /^ .g/
��������! S ^S D S:

So we obtain a commutative diagram

ZaCrCbCs  .f �g/ //

T
��

S

ZaCrCbCs

 .f /� .g/

88
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where T is the composite

ZaCrCbCs �
�!Za

^Zr
^Zb

^Zs
1^tr;b^1
������!Za

^Zb
^Zr

^Zs �
�!ZaCrCbCs:

Using Lemma 6.10 the triangle gives  .f �g/D .f / � .g/ �D.T /. We next compute
that

D.T /D ŒT �r D Œ��r ı Œ1^ tr;b ^ 1�r ı Œ��r D id ıŒtr;b �r ı idD �r;b D �
rb
1 D .�1/rb

(the first, second and third equalities are by Proposition 6.5, and the fifth equality is by
Proposition 6.6). This yields the desired result; one only needs to remember that the
motivic bigrading is set up so that f 2 �aCb;b.S/ and g 2 �rCs;s.S/, and then one
recovers the formula from the statement of the proposition.

A.1 Remark Note that in the setup of motivic homotopy groups we chose X1DS1;0

and X2DS1;1 . The sign in Proposition 1.19 actually depends on this choice. We leave
it as an exercise to check that if we had chosen X1 D S1;1 and X2 D S1;0 then the
sign rule would be  .fg/D .�1/.a�b/s .f / .g/ for f 2 �a;b.S/ and g 2 �r;s.S/.
This shows how sensitive sign formulas are to the choices in the bookkeeping.
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