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An alternative approach to hyperbolic
structures on link complements

MORWEN THISTLETHWAITE

ANASTASIIA TSVIETKOVA

An alternative method is described for determining the hyperbolic structure on a link
complement, and some of its elementary consequences are examined. The method is
particularly suited to alternating links.

57M25, 57M50

1 Overview

The purpose of this article is to describe an alternative method for calculating the
hyperbolic structure on a classical link complement. The method does not use an ideal
triangulation of the complement, but instead considers the shapes of ideal polygons
bounding the regions of a diagram of the link. In order to guarantee the applicability
of our method, we shall impose a “minimality” condition on the checkerboard surfaces
of our link diagrams:

Definition 1.1 A diagram of a hyperbolic link is taut if each associated checkerboard
surface is incompressible and boundary incompressible in the link complement, and
moreover does not contain any simple closed curve representing an accidental parabolic.

From this definition it follows that if ˛ is a proper, non-separating arc in a checkerboard
surface associated to a taut diagram, and z̨ is a lift of ˛ to the universal cover H3 ,
then the ends of z̨ are at the centres of distinct horoballs; thus ˛ is properly homotopic
to a geodesic. In particular, at each crossing of the diagram, the arc travelling vertically
from underpass to overpass, ie a “polar axis” in the terminology of Menasco [13], gives
rise in this manner to a geodesic; such geodesics, henceforth called crossing geodesics,
will form the edges of the ideal polygons mentioned above.

Although the method is applicable to any taut link diagram, we are particularly interested
in applying it to hyperbolic alternating links, as the resulting hyperbolicity equations
assume a reasonably pleasing form. We recall that it is proved in [13] that prime
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alternating link complements cannot contain essential tori, and since the only alternating
torus links are those of type .2; n/, it follows from W Thurston’s hyperbolization
theorem that an alternating link is hyperbolic if and only if it is prime and is not a
.2; n/–torus link. From [13] a reduced alternating link diagram represents a prime link if
and only if it is prime in the diagrammatic sense, and from Menasco and Thistlethwaite
[14] each reduced alternating diagram of a .2; n/–torus link is standard; therefore one
can tell by inspection whether a link presented as a reduced alternating diagram is
hyperbolic.

Proposition 1.2 Each reduced alternating diagram of a hyperbolic alternating link is
taut.

Proof It is proved in [14] that the checkerboard surfaces for such link diagrams are
incompressible and boundary incompressible, and it is proved in Adams [3], and Futer,
Kalfagianni and Purcell [10] that they are quasi-Fuchsian, hence contain no accidental
parabolics.

Note 1.3 In [10], the authors state their results for a more general class of diagrams
than alternating. However, the spanning surfaces considered are so-called state surfaces;
for non-alternating diagrams these are different from checkerboard surfaces, and we do
not know at present whether these can be incorporated into our method of computing
hyperbolic structures.

It would be interesting to know whether there exists a hyperbolic link not admitting a
taut diagram.

2 The geometry of an ideal polygon

Let F be a checkerboard surface for a connected diagram D of a link L. Then F

is the union of disks, one for each region coloured, say, black in the checkerboard
colouring of the diagram. The boundary of each disk is an alternating sequence of (i)
sub-arcs of the link travelling between adjacent crossings incident to the region, and
(ii) “polar axis” arcs travelling between the underpass and the overpass at a crossing.
The disks are glued together along the polar axis arcs.

Now suppose that D is taut; let R be a black region of D with n� 2 sides, and let
�R �F be the associated disk. Then �R�L is homeomorphic to a disk with n points
of its boundary removed, which we may describe as a “filled-in ideal n–gon”; this
lifts homeomorphically to a filled-in ideal n–gon e�R in the upper half-space model
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of H3 . The n ideal vertices of e�R correspond to the n arcs of �R \L (which in
turn correspond to edges of the region R), and the edges of the ideal n–gon boundary
of e�R are lifts of the interiors of the n polar axis arcs in @�R .

In order to proceed further, we need to show that e�R satisfies a non-degeneracy
condition.

Proposition 2.1 The n ideal vertices of e�R are pairwise distinct.

Proof Let ˛1; ˛2 be any two arc components of �R\L, and let  be an arc properly
embedded in �R that travels from a point of ˛1 to a point of ˛2 . Then the interior
of  lifts to an arc in e�R travelling between the corresponding ideal vertices. Since
the link diagram is taut and  is non-separating in the checkerboard surface F , the
conclusion follows.

As usual, we identify the boundary of H3 with the Riemann sphere C[f1g. Let R

be a region of the link diagram with at least three sides, and let the ideal vertices of
e�R be z1; : : : ; zn in cyclic order; then, from Proposition 2.1, these n points define an
ideal n–gon e…R in H3 , with geodesic edges that are pairwise distinct.

Let i be the geodesic edge of e…R joining zi with ziC1 (where indices are taken
modulo n). We define the shape parameter �i of i to be the cross-ratio

�i D
.zi�1� zi/.ziC1� ziC2/

.zi�1� ziC1/.zi � ziC2/
;

with the usual rules about cancelling ˙1 terms. If we perform an isometry of H3

to place the vertices zi�1; zi ; ziC1 at 1;1; 0 respectively, then the vertex ziC2 will
be placed at �i , and we see that the collection of n shape parameters determines the
isometry class of the ideal n–gon.

It follows that for a 3–sided polygon each shape parameter is equal to 1; it is also easy
to check that for a 4–sided polygon the sum of two consecutive shape parameters is 1,
whence opposite shape parameters are equal. For general n, we may obtain convenient
equations relating the �i from the fact that the polygon closes up. Specifically, if we
place the polygon so that zi�1 D 1; zi D1; ziC1 D 0, then the isometry  i given
by the Möbius transformation z 7! ��i=.z� 1/ maps zi�1; zi ; ziC1 to zi ; ziC1; ziC2 ,
respectively. Since the polygon e…R closes up, the composite  n ı � � � ı 2 ı 1 must
equal the identity, and passing to matrices, we see that we have an identity

(1)
�
0 ��n
1 �1

�
: : :

�
0 ��2
1 �1

� �
0 ��1
1 �1

�
�

�
1 0

0 1

�
;
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where � denotes equality up to multiplication by a non-zero scalar matrix. From the
.2; 1/–entry of this product we can read off a polynomial relation fn D 0 in the �i . It
is then easily checked, using induction on n, that the polynomials fn may be defined
recursively by

(2) f3 � 1� �2; f4 � 1� �2� �3; fn � fn�1� �nfn�2 .n� 5/:

We observe that the polynomial fn involves the n�2 shape parameters �2; �3; : : : ; �n�1 ,
and that fn is of degree 1 in each of these shape parameters. In particular, the relation
fn D 0 allows one to express each of these n�2 shape parameters as a function of the
other n�3. Let f Cn (f �n ) be the polynomial obtained from fn by increasing all indices
by 1 (resp. decreasing all indices by 1). Then f Cn is independent from fn , as it is the
only one of the two that involves �n ; also, f �n is independent from both fn and f Cn ,
as it is the only one of the three that involves �1 . In fact ff �n D 0; fn D 0; f Cn D 0g

must be a complete set of relations for the n shape parameters of a generic ideal n–gon,
as the triple transitivity of the action of the group of Möbius transformations on the
boundary C[f1g dictates that the isometry class of an ideal polygon with n sides
has n� 3 geometric degrees of freedom.

It is immediate from the definition of a shape parameter that an ideal polygon lies in a
hyperbolic plane if and only if all its shape parameters are real. For highly symmetric
links, ideal polygons are often encountered that are regular, in the sense that all �i are
equal.

Note 2.2 In order to conform to various sign conventions, later we shall be obliged
to deal with the complex conjugates of shape parameters. However, since complex
conjugation is a field automorphism of the complex numbers, these complex conjugates
�i satisfy the same polynomial relations as the �i .

Proposition 2.3 The common shape parameter for a regular n–sided ideal polygon
is 1

4
sec2 �

n
.

Proof We may assume that the n ideal vertices of the polygon are evenly spaced around
a unit circle in C ; specifically, we assume that the ideal vertices are wi (0� i � n�1),
where w D e2� i=n . The cross-ratio of the first four of these points is then

.1�w/.w2�w3/

.1�w2/.w�w3/
D
w2.1�w/2

w.1�w2/2
D

w

.1Cw/2
:

Noting that the line segment joining 0 with 1Cw is a diagonal of the rhombus with
vertices 0; 1; 1Cw;w , we see that the modulus of 1Cw is 2 cos�=n. Also, since this
diagonal bisects the angle of the rhombus at 0, the argument of the above cross-ratio
is 0; the result follows.
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It follows from Proposition 2.3 that for regular polygons � decreases monotonically to
the limit 1

4
as n!1.

In the absence of symmetry, polygons with four or more sides need not be regular,
and need not lie in a hyperbolic plane, although for alternating links it seems from
experiment that they are close to being planar, and never deviate very far from being
regular. Here are two examples of this phenomenon.

9a37 11a79

Figure 1

Example 2.4 The knot 9a37 in the Dowker–Thistlethwaite listing.

There is a symmetry of order 3 cyclically permuting the three regions with four sides.
For each of these regions, the shape parameters corresponding to the “north” and “south”
crossings are both 0:469789� 0:090643i , and the shape parameters corresponding to
the “east” and “west” crossings are both 0:530211C 0:090643i , these values being
rounded to six decimal places. The imaginary parts are seen to be quite small, and the
shape parameters are fairly close to that of a regular 4–sided region, namely 1

2
.

Example 2.5 The knot 11a79 in the Dowker–Thistlethwaite listing.

For the small 5–sided region in the lower-middle part of the diagram, we begin at the
top crossing and proceed around the region in a counterclockwise direction. To six
decimal places, the five shape parameters for this region are as follows: 0:312331�

0:008243i , 0:449632 � 0:007097i , 0:346369C 0:018155i , 0:370339 � 0:024868i ,
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0:432793C 0:022291i . This time we compare with the shape parameter of a regular
5–sided ideal polygon, 1

4
sec2 �

5
D .3�

p
5/=2� 0:381966.

In the next section we shall see how to use the peripheral structure of the link comple-
ment to set up a system of equations for determining the shape parameters of the ideal
polygons and for determining how the polygons are situated relative to one another.
The unknowns of these equations will be complex numbers attached to the edges and
crossings of the diagram; these complex number “labels” will in fact determine the
complete hyperbolic structure of the link complement.

3 Edge and crossing labels

We assume throughout that horospherical cross-sections of the cusps have been chosen
so that a (geodesic) meridian curve on the cross-sectional torus has length 1. This
guarantees (Adams [2]) that cross-sectional tori from distinct cusps are disjoint, and that
each torus is embedded in the link complement, with the exception of the figure-eight
knot complement, where the cross-sectional torus touches itself in two points.

The preimage of each cross-sectional torus in the universal cover H3 is a union of
horospheres, and we specify a complex affine structure on each horosphere by declaring
(for convenience) that meridional translation is through unit distance in the positive
real direction. We also would like the translation corresponding to a longitude on the
torus to have positive imaginary part, so in order to keep the standard orientation of the
complex plane and the usual “right-hand screw” convention relating the directions of
meridian and longitude, we view the torus from the thick part of the manifold, ie, from
the opposite side to the cusp.

We assume that coordinates are chosen so that one of the horospheres is the Euclidean
plane H1 of (Euclidean) height 1 above the xy–plane, and that it has the standard
affine structure; thus on that horosphere the meridional translation is represented by
the matrix

�
1 1
0 1

�
.

Now consider an ideal polygon e…R in H3 , associated to a region R of the link
diagram, and with ideal vertices z1; : : : ; zn as above. Each vertex zi is the center
of a horosphere Hi , and each geodesic edge i of e…R meets Hi ;HiC1 in points
Pi ;QiC1 respectively (Figure 2). At this stage, for book-keeping purposes we need
to choose an orientation of the link, and this orientation will determine a direction
on the geodesic arc on Hi joining Qi with Pi . From the affine structure on Hi we
now have a complex number determining a translation mapping one of Pi ;Qi to the
other, depending on this direction. This complex number is affixed to the side of the
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Hi�1

zi�1

Pi�1 i�1

Hi

Qi

zi

Pi

i

HiC1

QiC1

ziC1

Figure 2

corresponding edge E of the link diagram incident to the region R, and will be called
an edge label.

Next we note that there is a simple relation between the edge labels on the two sides
of an edge E of the link diagram. Let the regions incident to E be R;S , and let
the corresponding labels affixed to the two sides of E be uE

R
;uE

S
respectively. These

labels correspond to geodesic arcs on a horosphere that descend to arcs ˛E
R
; ˛E

S
on

the peripheral torus, joining the points of intersection of the torus with two successive
crossing geodesics. Let � denote a meridian curve on the torus, oriented as usual
according to the “right-hand screw” rule, and for an arc ˛ let ˛ denote its reverse. The
loop ˛E

R
�˛E

S
is homotopic to ��, where

� D

8<:
1 if E ascends from left to right,
�1 if E descends from left to right,

0 if E is level,

as one looks from the interior of the region R. It follows that uE
R
�uE

S
D � , where �

is as above (see Figure 3, which illustrates the case � D 1).

In the case of reduced alternating diagrams, the relation between uE
R

and uE
S

is
particularly simple. If we colour the regions in checkerboard fashion, then the view
from inside regions of one colour has all edges on the boundary of the region ascending
from left to right, and the view from regions of the other colour has edges descending
from left to right. We may take the convention that regions of the former type are black,
and those of the latter type white. Then, if R is a black region and S is an adjacent
white region, we have uE

R
�uE

S
D 1.
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1

�

S

uR

uS

R

2

Figure 3

We turn now to crossing labels. To each crossing geodesic  we assign a complex
number w as follows. We lift  to a geodesic z in H3 joining the centers of
horospheres H1;H2 . The meridional direction on Hi (i D 1; 2) together with the
geodesic z defines a hyperbolic half-plane †i containing z , and we define the argument
of w by argw D � C� , where � is the angle between the half-planes †1; †2 ,
the sign of � being determined by the convention that a right-handed screw is positive.
Thus we have arg.�w /D � ; the reason for choosing �w here rather than w is
explained in the next paragraph. In essence we are defining the angle � as the angle
between the two meridional directions by parallel transport along the geodesic z . The
specification of w is completed by defining its modulus to be e�d , where d is the
hyperbolic length of the part of z between H1 and H2 .

If we take H1 to be the horosphere H1 defined above, then jw j is the Euclidean
diameter of the horosphere H2 . The argument of w may loosely be interpreted as the
angle (in the hyperbolic structure) between the overpass and underpass at the crossing
in question. The reason for choosing � C� rather than � as the argument of w is
illustrated in Figure 4. In that figure are illustrated an overpass and underpass that are
parallel; thus, if arg.w / is to measure the angle between these strands, we would like
arg.w / to be zero. However, at the top end of the intercusp segment of the geodesic,
the direction of the meridian is away from the viewer, whereas at the bottom end the
direction of the meridian is towards the viewer.

We note that the isometry represented by the matrix
�

0 �w

1 0

�
maps H1 to H2 , respect-

ing affine structures.
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Figure 4

In the degenerate case of a two-sided region, the two arcs travelling from overpass to
underpass of the two crossings are parallel, hence are homotopic to the same geodesic.
Therefore the two crossing labels are equal, the ideal polygon for this region collapses,
and the two edge labels for the region are 0. For taut diagrams, in particular reduced
alternating diagrams, we have the following converse:

Theorem 3.1 Let R be a region of at least three sides of a taut diagram D of a
hyperbolic link L. Then each edge label for R is non-zero.

Proof Suppose that E is some edge of the region R for which the label uE
R

is
zero. Let z be the ideal vertex of e…R corresponding to this edge, and let H be the
horosphere centred at z . Since uE

R
D 0, the two geodesic edges of e…R issuing from

z meet H in the same point, hence are equal, contradicting Proposition 2.1.

Conjecture 3.2 Let D be a reduced alternating diagram of a hyperbolic link. Each
edge label for D has non-negative imaginary part.

The above definition of crossing labels applies to any geodesic  travelling from cusp
to cusp. Indeed, such a geodesic may be regarded as belonging to a crossing of some
diagram of the link.

We conclude this section with a remark on symmetries. Let hW .S3;L/! .S3;L/ be
a homeomorphism; then, modifying h by a homotopy if necessary, we may assume
that the restriction of h to S3 � L is an isometry. Let us suppose that h maps a
crossing geodesic  to  0 . Then the moduli of w ; w 0 will be equal. If h preserves
the orientation of S3 , the associated labels w ; w 0 will also have equal arguments,
whence w 0 D w ; on the other hand, if h reverses the orientation of S3 �L the
argument of w will be negated, whence w 0 Dw . Edge labels are affected similarly
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under the action of h: if h maps a diagram of L to itself and u;u0 are edge labels that
correspond under the homeomorphism, then u0 D u or u0 D u depending on whether
h preserves or reverses the orientation of S3 .

4 The hyperbolicity equations in the edge and crossing labels

We begin with a useful identity. Let R be a region of a link diagram with at least three
sides; from Theorem 3.1 this condition ensures that all edge labels for R are non-zero.
Let  be a geodesic edge of the ideal polygon bounding R, let w be the crossing label
attached to  , and let uE1

R
;uE2

R
be the labels for the edges incident to this crossing,

the suffix R indicating of course that the labels are placed on the sides of these edges
in the region R. Then we have the following relation between the shape parameter �
and the edge labels uE1

R
;uE2

R
:

Proposition 4.1

(3) � D
�w

u
E1

R
u

E2

R

;

where � D 1 if one edge is directed towards the crossing and one away from the
crossing, and where � D �1 if both edges are directed towards the crossing or both
away from the crossing.

Remark The presence of complex conjugation in � is merely an artefact of our
various sign conventions; as observed in Note 2.2, it is not an obstacle, as the �i satisfy
the same relations as the �i . By means of formula (3), each equation in (complex
conjugates of) shape parameters may now be regarded as an equation in edge and
crossing labels; moreover, by clearing denominators, we may regard these equations as
polynomial equations in the labels.

Lemma 4.2 Figure 5 illustrates a configuration in the hyperbolic plane containing a
horocycle of Euclidean diameter D , and geodesics 1; 2 originating from the centre
of the horocycle and meeting the horocycle at points P;Q respectively. The ends of 2

are Euclidean distance d apart. Then the hyperbolic distance along the horocycle from
P to Q is D=d .

Proof To obtain the hyperbolic distance along the horocycle from P to Q we perform
the isometry that is inversion in the circle C illustrated, with Euclidean centre at the foot
of 1 and with radius d . This inversion maps 1 into itself, maps 2 to the geodesic
 0

2
illustrated, and maps the horocycle to the Euclidean horizontal line at height d2=D
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above the boundary. The points P;Q are mapped to points P 0;Q0 respectively on this
image horocycle, and the circular arc on the horocycle joining P;Q is mapped to the
(horizontal) Euclidean line segment joining P 0;Q0 . This line segment has hyperbolic
length d=.d2=D/DD=d .

C

D

P

P 0

1

Q
2

d

 02

Q0

Figure 5

Proof of Proposition 4.1 We shall verify (3) in the case where both edges are directed
away from the crossing, in which case �D�1. The other cases are then verified simply
by changing the sign of one or both of the edge labels.

Let z0; z1; z2; z3 be consecutive ideal vertices of the ideal polygon corresponding to
the region R, such that the geodesic  joins z1 to z2 . Applying a suitable isometry of
hyperbolic space, we may assume that z0 D ju

E1

R
j; z1 D1; z2 D 0. The horosphere

of which z1 is centre is the Euclidean plane at height 1 above the boundary plane, and
the horosphere of which z2 is centre has diameter jwj. Cancelling infinite terms in the
usual way, the cross-ratio defining � is seen to be z3=z0 . The situation is illustrated in
Figure 6, where �1; �2 denote meridian vectors, and (for notational simplicity) u1;u2

denote uE1
R
;uE2

R
respectively.

First we check that the moduli of the two sides of (3) agree. This follows from
Lemma 4.2, applied to the hyperbolic plane containing z1; z2; z3 , and where the
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quantities of the lemma apply as follows: 1 D  , D D jwj, d D jz3j D j� jju
E1

R
j,

and the distance from P to Q along the horocycle is juE2

R
j.

1

�2

z2 D 0

u2

�1

2

z3

u1

z0

0

Figure 6

It remains to check that the arguments of the complex numbers on each side of equation
(3) match. Figure 6 illustrates the situation where the angle �1

between meridian
vectors �1; �2 is approximately C�=2 and the arguments of u1;u2 are each positive
acute angles. The ideal vertices z0; z1; z2 are situated at ju1j;1; 0 respectively, so
arg.�1

/D arg.z3/. Noting that the Euclidean ray from z2 towards z0 is in the positive
real direction, and taking account of the angles between the four vertical planes through
1 containing the vectors �1; �2;u1;u2 , we see that

arg.z3/D arg.u1/C arg.u2/��1
D arg.u1/C arg.u2/� arg.�w/:

Therefore, in the notation of the statement of the proposition, we have

arg.� /D� arg.z3/D arg.�w/�
�
arg.uE1

R
/C arg.uE2

R
/
�
;

and the proof is complete.

The next proposition gives an alternative version of the equation

1Y
iDn

�
0 ��i
1 �1

�
� I
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in Möbius transformations for a region with n � 3 sides, given by Equation (1) of
Section 2. This will be useful for the discussion regarding holonomy representations in
Section 5.

Proposition 4.3 Let R be a region of a link diagram with n� 3 sides, and, starting
from some crossing of R, let u1; w1;u2; w2; : : : ;un; wn be the alternating sequence of
edge and crossing labels for R encountered as one travels around the region. Also, for
1� i � n let �i D 1 (resp. �i D�1) if the direction of the edge corresponding to ui is
with (resp. against) the direction of travel. Then the equation in Möbius transformations
for R may be written as

(4)
1Y

iDn

��
0 �wi

1 0

� �
1 �iui

0 1

��
�

�
1 0

0 1

�
:

Proof The conclusion follows from (1) in Section 2, together with�
0 �wi

1 0

� �
1 �iui

0 1

�
D

�
0 �wi

1 �iui

�
D .��iui/TiC1 Mi T �1

i ;

where

Ti D

�
��iui 0

0 1

�
and Mi D

"
0 � wi

.�i ui /.�iC1uiC1/

1 �1

#
D

�
0 ��i
1 �1

�
:

Suppose now that we have a reduced alternating diagram with c crossings. Attached
to the diagram are 4c edge labels (two for each edge), and c crossing labels, making
altogether 5c unknowns for our system of equations. The diagram has cC 2 regions,
giving rise to 3.cC 2/ “region” equations in the labels. Together with the 2c “edge”
equations relating labels on the two sides of an edge, we have in total 5cC6 equations
in 5c unknowns. In the next section we examine the relationship between solutions to
the equations and representations of the link group into PSL2.C/.

5 The holonomy representation associated to a solution of the
label equations

The connection between solutions to the label equations and parabolic representations
of the fundamental group of the link complement into PSL2.C/ is not quite immediate,
but can be established without undue difficulty from first principles, using the classical
Wirtinger presentation.
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In the traditional picture of the Wirtinger presentation of an oriented link, one takes a
diagram of the link that resides in the projection plane apart from vertical perturbations
within small neighbourhoods of crossings, and one chooses as basepoint of the link
complement some point above the diagram. The generators of the fundamental group
of the link complement are then path homotopy classes of loops of form ˛i ��i �˛i ,
where the path ˛i travels in a straight line from the basepoint down to a point a small
distance above the i th overpass of the link, �i is a small circular loop bounding a
disk punctured by the overpass (its direction being determined by the right-hand screw
convention), and ˛i is the reverse of ˛i .

For the current context, we shall take the tree that is the union of the ˛i , and push it,
keeping the terminal ends of the ˛i fixed, so that the basepoint lies on the peripheral
torus, directly above the i th overpass, and so that each path ˛i is a succession of
subpaths, each of which either travels along the peripheral torus between crossings or
travels along the intercusp segments of crossing geodesics. At this stage the endpoints
of the ˛i , including the basepoint, are all at the tops of meridional circles on the
peripheral torus. It is convenient for purposes of visualization, however, to make a final
adjustment to the tree, whereby we drag the endpoints of the ˛i halfway around their
respective meridional circles so that each lies underneath its overpass, on the vertical
arc that joins overpass to underpass.

One can imagine a large playground construction consisting of knotted tubes of cross-
sectional diameter say 1 metre, and ladders joining underpasses with overpasses; the
task of ˛i is to travel from one overpass to another by clambering along sections of
tube and climbing or descending ladders, in such a way that the union of the ˛i is
the result of a deformation of the “classical” tree as described above. We note that
if we take the first overpass to be that where the basepoint is situated, then we may
take ˛1 to be the trivial path at the basepoint. Also, we may assume that each subpath
of ˛i that lies on the peripheral torus is either of the type ˛E

R
of Section 3 (in which

case it corresponds to an edge label), or else is a meridional circle. The reason why
meridional circles might be needed is that one is not permitted to travel along an
underpass under an overpass, so in order to get past the overpass one would need to
climb up to it, travel around a meridional circle and then climb back down before
proceeding. Naturally, each subpath that travels along a vertical arc between overpass
and underpass corresponds to a crossing label.

The process of deforming the tree
S
˛i is illustrated in Figure 7. After the deformation,

˛1 has been shrunk to a point, ˛2 descends to the underpass at the left-hand crossing
before travelling along the peripheral torus to its target overpass, and ˛3 travels along
the peripheral torus from the basepoint x0 before ascending vertically to its target
overpass.
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x0

˛1
˛2

˛3

x0

˛2

˛3

Figure 7

We are now ready to specify the representation �W �1.S
3�L/! PSL2.C/ associated

to a set of labels satisfying the label equations. Each Wirtinger generator Œ˛i ��i �˛i �

will map to a conjugate of the parabolic
�

1 1
0 1

�
by a matrix Mi determined by the

path ˛i . Evidently there are choices involved in how the “classical” tree is pushed to
its present form; one can travel in either of two ways around a region between two
crossings incident to that region; however, it will be seen from the definition of Mi

given shortly that independence of those choices is guaranteed by the label equations,
in the form given in (4) of Proposition 4.3.

Let us write ˛i as a concatenation of subpaths ˛1
i �˛

2
i � � � � �˛

ni

i , where each subpath
is of one of the three types: (i) corresponds to an edge label, (ii) is a meridional circle,
(iii) corresponds to a crossing label. The standard process of lifting the loop ˛i ��i �˛i

to H3 dictates that we define Mi DM 1
i M 2

i � � �M
ni

i , where

M
j
i D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

"
1 ˙u

0 1

#
(˛j

i corresponds to the edge label u, the sign being C1 if
and only if the direction of the edge agrees with that of ˛i),"

1 ˙1

0 1

#
(˛j

i is a meridional circle, the sign determined by the RH
screw rule),"

0 �w

1 0

#
(˛j

i corresponds to the crossing label w).

Finally, the image of the i th Wirtinger generator is given by

�.Œ˛i ��i �˛i �/DMi

�
1 1

0 1

�
.Mi/

�1:

There now follows an illustration of the construction of the representation � . The
solutions of the label equations for the Turk’s head knot (Figure 8) are obtained in
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Example 6.2 below, in the case nD 4. As explained in that example, there are two
geometric solutions (forming a complex conjugate pair) and two real non-geometric
solutions.

1

2

3

4

5

6

7

8

Figure 8

In Figure 8, the overpasses are labelled from 1 to 8, in order around the knot. From the
knot’s symmetry, the four edge labels for the central 4–sided region are equal, as are
that region’s four crossing labels. Let us denote the common edge label for this region
u, and the common crossing label w . A quick study of the Wirtinger presentation for
this diagram reveals that the knot group is generated by the Wirtinger generators at
overpasses labelled 1; 7; 5; let us denote these generators a; b; c respectively, and let
us use upper-case A;B;C to denote their inverses. The defining relators for the group
(also obtained from the Wirtinger presentation) are then

r1 D BabACbcBabCBcaBAbC;

r2 DACbcBabCBcaCbcBAbCBcbcBabCBcACbcBAbCBcaBI

we could of course have had much shorter relators at the expense of a larger generat-
ing set.

If we put the basepoint at overpass 1, then we can get to overpass 7 by travelling
along the part of the peripheral torus corresponding to the lower edge of the central
4–sided region, followed by a climb from the underpass to the overpass at the crossing
labelled 7. In order to get to overpass 5, we have to repeat this process, travelling along
the right-hand edge of the central 4–sided region. The conjugating matrices for the
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generators b; c are therefore

Mb D

�
1 u

0 1

� �
0 �w

1 0

�
; Mc DM 2

b :

From the computation in Example 6.2, the values of u for each of the four solutions
are:

�1C i
p

4
p

2� 5
p

2
;
�1� i

p
4
p

2� 5
p

2
;

1C
p

4
p

2C 5
p

2
;

1�
p

4
p

2C 5
p

2
;

these being the roots of the polynomial x4 � 6x2 � 8x � 4. It is evident from the
regularity of the central 4–sided region that in each case w D 1

2
u2 . Also, from our

choice of basepoint, in each case �.a/D
�

1 1
0 1

�
. For the first solution, we find that

�.b/D

24 1p
2

�
2
p

2C 1C i
p

2
p

2C 1
�

2

1
2

�
�1� i

p
11C 8

p
2
�

1p
2

�
�1� i

p
2
p

2C 1
�
35 ;

�.c/D

24 1p
2

�
2
p

2C 1C i
p

2
p

2C 1
�

1

�1� i
p

11C 8
p

2 1p
2

�
�1� i

p
2
p

2C 1
�
35 ;

and for the (non-geometric) third solution

�.b/D

24 1p
2

�
2
p

2� 1�
p

2
p

2� 1
�

2

1
2

�
�1C

p
�11C 8

p
2
�

1p
2

�
1C

p
2
p

2� 1
�
35 ;

�.c/D

24 1p
2

�
2
p

2� 1�
p

2
p

2� 1
�

1

�1C
p
�11C 8

p
2 1p

2

�
1C

p
2
p

2� 1
�
35 :

Representations corresponding to the other two solutions may be constructed similarly.
That all four representations satisfy the relations r1 D 1; r2 D 1 may be verified using
software such as Maple or Mathematica.

Clearly the induced parabolic representation of the link group into PSL2.C/ is a
continuous function of the edge and crossing labels; also, a variation of the labels
within the solution space would change the geometry of the link complement. Therefore
from Mostow–Prasad rigidity we have:

Theorem 5.1 The solution of the label equations corresponding to the geometric
structure is isolated.
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Conjecture 5.2 For hyperbolic alternating links, the solution space of the label equa-
tions is 0–dimensional, whence the same is true of the space of parabolic representations
of the link group into PSL2.C/.

Since the label equations have a reasonably pleasant form for alternating diagrams, it
is reasonable to hope that a proof of Theorem 5.1, and indeed of Conjecture 5.2, can
be found without recourse to Mostow–Prasad rigidity.

We do not know of a simple test for deciding which solution of the equations corresponds
to the geometric structure; however, by subdividing the link complement into ideal
tetrahedra and keeping track of labels, one may compute the volume of the representation
given by the solution, and the solution with the greatest volume will be the geometric
solution (Francaviglia [9]). Empirically, for alternating links the geometric solution is
that for which the “region” ideal polygons are closest to being regular.

Experimentally, the near-regularity of these polygons is particularly evident for alter-
nating diagrams of so-called Conway basic polyhedra, these being links possessing
alternating diagrams with no two-sided region. The simplest examples are (i) the
Borromean rings, (ii) the Turk’s head knot, (iii) the 9–crossing knot denoted 9* by J H
Conway in [7] (listed as 940 in Rolfsen [16] and as 9a37 in the Dowker–Thistlethwaite
classification).

For the Borromean rings, the regions are forced to be regular by virtue of being 3–sided,
and regularity of the 4–sided regions of the Turk’s head knot is a consequence of the
symmetries of that knot; see Example 6.2 below. On the other hand, as already seen
in Example 2.4, the knot 9* (Figure 1) has 4–sided regions that deviate slightly from
being regular.

6 Examples

In this section we give some examples illustrating the use of the hyperbolicity equations
from Section 4.

6.1 The figure-eight knot

Recall that for a 3–sided region all shape parameters are 1. Regions I, II, III each
provide three equations in the labels, as follows:

I: w2 D�.u2C 1/, w2 D�.u1C 1/, w1 D .u1C 1/.u2C 1/

II: w1 D u2 , w1 D u3 , w2 D u2u3

III: w2 D�.u3C 1/, w2 D�.u4C 1/, w1 D .u3C 1/.u4C 1/
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u1

u2 u3

u4u1C 1

u2C 1 u3C 1

u4C 1

0

0

0 01 1

�1

�1

w1 w1

w2

w2

I

II

III

Figure 9

Collecting these results, we obtain

w1 D u1 D u2 D u3 D u4; u2
1Cu1C 1D 0; w2 D�.u1C 1/; w1 D w

2
2 :

Therefore, without loss of generality, we have

u1 D u2 D u3 D u4 D
1
2
.�1C i

p
3 /; w1 D

1
2
.�1C i

p
3 /; w2 D

1
2
.�1� i

p
3 /:

6.2 The closure Ln of the braid .�1�
�1
2
/n , n � 3

In Figure 10(i) we have exploited symmetries of the link Ln in order to economize
on labels. For notational convenience let �n denote 1

2
sec �

n
, the positive square root

of the shape parameter of a regular ideal n–gon. Looking at Figure 10(i), from the
right-hand n–sided region we have

w D �2
n u2

1 ;

and from 3–sided regions we have

w D�.u1C 1/.u2C 1/; w D u2
2 :

Thus u1 D ˙.1=�n/u2 ; however, for the geometric solution we must take u1 D

.1=�n/u2 , as otherwise all edge labels will turn out to be real, resulting in a collapse
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u1

u1

u2

u2

u1

w

w

w

(i) A section of the braid (ii) The closure of .�1�
�1
2
/8

Figure 10

of the peripheral structure. It then follows quickly that u2 satisfies�
1C 2 cos �

n

�
u2

2C

�
1C 2 cos �

n

�
u2C 1D 0;

the two solutions of this quadratic yielding geometric structures corresponding to the
two orientations of the link complement.

If n is divisible by 3, Ln is a link of 3 components, with symmetries acting transitively
on the set of components; otherwise Ln is a knot. The link L3 is the Borromean rings,
and L4 is the Turk’s head knot. In the case of the Borromean rings, the crossing labels
are ˙i=2, indicating that the overpass and underpass at each crossing are perpendicular
to one another; this is also evident from the extra symmetries possessed by this link.

It is of some interest to note that as n!1, jwj! 1
3

. This has the following interpreta-
tion in terms of meridian lengths. Let us expand cusp cross-sections, keeping meridian
lengths equal, until their union just ceases to be embedded in the link complement (in
the case where Ln is a knot the cusp will touch itself). Let `n denote the length of a
meridian on one of these expanded cusp cross-sections; then `n tends to a limit

p
3 as

n!1.

Another interesting aspect of the links Ln concerns the canonical cell decompositions
(Epstein and Penner [8]) of their complements. The alternating diagram of Ln exhibits
a decomposition of the link complement into two congruent ideal polyhedra, one “above”
and one “below” (Aitchison, Lumsden and Rubinstein [4]), and this decomposition is
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precisely the canonical cell decomposition, as is readily verified by examination of the
horoball pattern. See also the discussion of canonical cell decompositions in Sakuma
and Weeks [18].

The ideal polygons corresponding to the regions of the alternating diagram of Ln are
all regular, hence also planar (compare with the knot 9*, discussed in Example 2.4).

6.3 Three-punctured sphere

Let us consider the three-punctured sphere S in the configuration of Figure 11, with
meridional punctures at the two parallel vertical strands, and with a longitudinal puncture
at the circular link component. It is well-known (Adams [1]) that we may take S to
be a totally geodesic surface, constructed by gluing two ideal triangles together along
their edges. If we choose cusps of an ideal triangle so that the length of each cusp
boundary is 1, then these cusp boundaries will be tangent to one another; therefore
if we choose cusps of a three-punctured sphere so that each cusp boundary is a circle
of length 1C 1D 2, these circles will touch one another. If we now retract the cusps
of the three-punctured sphere so that their boundaries have length 1, the intercusp
length of each of the three geodesics joining distinct punctures will be log.4/. Since
by convention our meridians always have length 1, it follows that w3 , the label for the
geodesic represented by the horizontal line at the top of Figure 11, has modulus equal
to 1

4
(recall from the remark following Conjecture 3.2 that to any geodesic joining

cusps there is an associated complex number, defined exactly as crossing labels are
defined). On the other hand, since the three-punctured sphere is totally geodesic, the
meridians belonging to the vertical strands lie in the same hyperbolic plane as this
geodesic, whence w3 D

1
4

. (Note: Here we have chosen orientations of the strands so
that they are parallel; were they anti-parallel, instead we would have w3 D�

1
4

.)

From the 4–sided region marked I, from the relation f4 in shape parameters given in
Section 2, we have

�
w1

u2

�
w1

u1

D 1; �
w1

u1

C
w2

u1

D 1;
w2

u1

C
w2

u2

D 1;

from which it follows easily that

w2 D�w1 and u1 D u2 D�2w1:

Then, from the 3–sided region marked II, we have

w3 D
�w1w2

u2
1

D
1

4
;

thus recovering the result obtained by the geometric argument of the previous paragraph.
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w1

w1

w2

w2

w3

u1

u2

1 �1I

II

Figure 11

7 Labels on tangles

Let L be a hyperbolic link in S3 . In this section we are concerned with tangles
.B;T /� .S3;L/, where B is a 3–ball and T is a properly embedded 1–dimensional
submanifold of B meeting the boundary of B transversely in four points. Thus @B�@T
is a 4–punctured sphere; we require that this “Conway sphere” be essential in S3�L.
Thus both .B;T / and the complementary tangle .S3�B;L�T / are non-trivial in
the sense of Lickorish [11], ie, neither is homeomomorphic as a pair to .B0;T0/, where

B0 D f.x1;x2;x3/ 2R3
W x2

1 Cx2
2 Cx2

3 � 1g;

T0 D f.x1;x2;x3/ 2 B0 W x2 D 0 and x3 D˙
1
2
g:

The restriction of the hyperbolic metric on S3 � L to B � T is complete (in the
sense that Cauchy sequences converge), as is the restriction to the 4–punctured sphere
@B � @T .

Our first observation is that the boundary of .B;T / enjoys a certain kind of symmetry,
which can be described as follows. Let us suppose that B is a standard 3–ball meeting
the projection plane in an equatorial disk �, and that the tangle T is contained in this
disk except for small vertical perturbations at crossings; thus the four boundary points
of T are contained in the circle C D @�. Let these points, taken in cyclic order around
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C , be Q1;Q2;Q3;Q4 . If our tangle diagram is part of a taut link diagram, then for
each i 2 f1; 2; 3; 4g we have a complex number wi;iC1 associated to the sub-arc of C

joining Qi to QiC1 (suffixes taken modulo 4).

Proposition 7.1 In the notation of the previous paragraph, w1;2 D w3;4 and w2;3 D

w4;1 .

Proof This follows essentially from the results of D Ruberman in [17]. In that paper it
is shown that if we take the Conway sphere @B�@T to be of least area in its homotopy
class, then an involution of mutation is a local isometry near @B � @T . We apply this
result to the mutation � corresponding to a half-turn about an axis perpendicular to the
projection plane. In the notation of the previous paragraph, let ˛i;iC1 be the interior
of the sub-arc of C joining Qi to QiC1 ; then we may assume that the ˛i;iC1 lie on
the least area Conway sphere and that the involution � interchanges neighbourhoods
in S3�L of opposite pairs of these arcs. � also interchanges intersections of these
neighbourhoods with our chosen horospherical cusp boundaries.

It is sufficient to check that w1;2 D w3;4 , as the other equality will follow simply by
shifting indices. In order to check that w1;2 D w3;4 holds, we need to compare the
relative positions of horospheres at each end of a lift ę1;2 of ˛1;2 , with those at each
end of a lift ę3;4 of ˛3;4 . Since the involution interchanges open patches of cusp
boundaries, it follows that there is an isometry of H3 mapping the pair of horospheres
at the ends of ę1;2 to the pair at the ends of ę3;4 ; we conclude that jw1;2j D jw3;4j.
Equality of the respective arguments of w1;2; w3;4 follows from consideration of the
action of � on the affine structures on the open patches of cusp boundaries. Indeed, �
maps meridian curves at Q1;Q2 to meridian curves at Q3;Q4 , and since the tangle
has two inward-pointing ends and two outward-pointing ends, � either preserves or
reverses both of their orientations.

Remark The conclusion of Proposition 7.1 holds also for diagrams of tangles that
are trivial in the sense of [11]. This can be established directly from the equations
governing edge and crossing labels, by taking the diagram to be of standard 4–plait
“rational tangle” form [7] and proceeding by induction on the number of crossings of the
4–plait, the inductive step corresponding to the addition of a crossing by performing
a half-twist of two adjacent ends of the tangle. The basis for the induction is the
conclusion for a tangle diagram of a single crossing, with crossing label w ; there each
arc ˛i;iC1 is homotopic to the arc travelling vertically from underpass to overpass at
the crossing, whence each wi;iC1 is equal to w .

Corollary 7.2 If a crossing c1 is traded for a crossing c2 by a flype of the link diagram,
then the crossings c1; c2 have equal crossing labels.
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Proof With appropriate numbering, the crossing labels for c1 , c2 are precisely w1;2 ,
w3;4 for the tangle turned upside-down by the flype (see Figure 12).

c1 c2

Figure 12: A flype: the tangle represented by the shaded disk is rotated
through a half-turn about a horizontal axis, untwisting the left-hand strands
and twisting the right-hand strands, thus trading the crossing c1 for the
crossing c2 .

We turn now to consideration of complete hyperbolic structures on a tangle complement
B �T . Given a solution to the equations in edge and crossing labels corresponding to
the regions of a diagram of the tangle, the method of Section 5 will yield a corresponding
parabolic representation of the fundamental group of B �T into PSL2.C/. Here we
are considering a tangle pair .B;T / in isolation, not necessarily contained in a link
pair .S3;L/.

To avoid dealing with manifolds with non-compact boundary (in this case a 4–punctured
sphere), the appropriate setting for investigating the Teichmüller space of complete
hyperbolic structures on a tangle complement is that of a pared manifold (Morgan
[15]; see also Canary and McCullough [6]): one constructs a manifold M , homotopy
equivalent to B �T and with compact boundary, by excising from B the interior of a
regular neighbourhood of T ; the boundary P � @M of this regular neighbourhood is
marked as being peripheral, and is termed the parabolic locus of the pared manifold
.M;P /. The reader is referred to [15, Definition 4.8] for details.

From a discrete faithful parabolic representation of �1.B�T / into PSL2.C/, or equiv-
alently a discrete faithful representation of �1.M / into PSL2.C/ mapping elements
of �1.P / to parabolics, one obtains a complete hyperbolic structure on the pared
manifold .M;P /.

Proposition 7.3 Let .M;P / be a pared manifold arising from a tangle pair .B;T / as
above. Then (i) the space T of complete hyperbolic structures on .M;P /, if non-empty,
is homeomorphic to R2 , and (ii) T , regarded as a set of solutions of the label equations
for a given taut diagram of .B;T /, is an open subset of the space of all solutions of the
label equations.
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Proof It follows from a classical result of L Bers [5] (see also [15, Theorem 9.2]) that
there is a homeomorphism from the space of complete hyperbolic structures on .M;P /

to the Teichmüller space of complete, finite area hyperbolic structures on @M �P .
Since @M �P is homeomorphic to a 4–punctured sphere, part (i) follows from the
well-known fact that the Teichmüller space of finite area complete hyperbolic metrics
on a 2–sphere with n punctures (n� 3) is homeomorphic to R2n�6 . Part (ii) follows
directly from the deformation theorem in Marden’s [12, Section 6.4]; indeed, Marden’s
theorem also tells us that T is a connected, complex analytic manifold of dimension 1,
consistent with part (i) of Proposition 7.3.

The Kleinian group � that is the image of �1.M / in PSL2.C/ can act either on
the universal cover �M , or on the whole of H3 . In the former case we obtain a
hyperbolic metric on M , and the latter provides a complete hyperbolic metric on
H3=� Š M � @M ; these two scenarios can be considered to be in some sense
equivalent.

The following two-part remark is tangential to the main discussion, but may be of some
interest.

Remark (i) From Proposition 7.1, it follows that if .B;T / � .S3;L/ for some
hyperbolic link L, and if the boundary 4–punctured sphere of .B;T / is essential in
S3�L, then the numbers wi;j for T arising from the geometric structure on S3�L

obey the symmetry property w1;2 D w3;4 , w2;3 D w4;1 . Thus this property of the
wi;j holds for those points of the Teichmüller space T that correspond to the situation
where we sum .B;T / with a non-trivial tangle to form .S3;L/ for some hyperbolic
link L. In fact, if T ¤∅ there are infinitely many such points of T , as one can form
infinitely many distinct hyperbolic links L by summing T with an infinite sequence
of pairwise distinct non-trivial tangles. From Marden’s deformation theorem, T has
complex dimension 1, so w1;2; w3;4 cannot be algebraically independent over T . The
fact that w1;2 D w3;4 holds for infinitely many points of T then implies that the
equality holds for all points of T ; likewise, w2;3 D w4;1 throughout T .

(ii) Suppose that we have diagrams of tangles T1;T2 , with respective solutions S1;S2

to the label equations for these diagrams. The numbers wi; j of Proposition 7.1 are
then determined for each diagram. Suppose that we form a link diagram by summing
together T1 and T2 ; then the solutions S1;S2 can be amalgamated to create a solution
to the label equations for this link if and only if corresponding wi; j for the two tangles
agree. In the case of geometric solutions, we can think of w1;2; w2;3 for each Ti as
defining a complex curve in C2 ; the two curves then meet generically at a point, this
point corresponding to the complete structure on the link complement.
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We turn our attention to a particular kind of tangle, endowed with a surprising rigidity
property.

Definition 7.4 A tangle T conforming to Figure 13(i) will be called an encircled
tangle, and a diagram of that type will be called a standard diagram of an encircled
tangle. In that figure, the shaded disk represents an arbitrary tangle U , and T is
the union of U and a simple closed curve C that weaves around the ends of U in
alternating fashion.

Definition 7.5 Let T be an encircled tangle as above, with encircling simple closed
curve C . We assume that T is represented by a standard diagram, ie, one conforming
to Figure 13(i). The four crossing labels attached to crossings of C , and four edge
labels attached to the insides of the edges of C will be called boundary labels, and the
remaining labels of T interior to C will be called interior labels.

C

U

u1u2

u3 u4

w1

w2

w3

w4

(i) An encircled tangle (ii) Boundary labels

Figure 13

The next theorem expresses the rigidity property for encircled tangles. As before, we de-
note by T the space of complete hyperbolic structures on B�T . From Proposition 7.3,
T ŠR2 , and we may regard T as an open subspace of the solution space of the label
equations.

Theorem 7.6 (i) Each interior label of T is constant over T .

(ii) Let S1;S2 be solutions of the label equations corresponding to points of T . There
exists a non-zero complex number k such that if � is a boundary label of T in the
solution S1 , then the corresponding boundary label in the solution S2 is k� .
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Proof We assume that the diagram of the subtangle U of T (Figure 13) has at least
one crossing; thus each region of the tangle diagram incident to the encircling curve C

has at least three sides, and shape parameters for these regions are defined. The simple
case where U has no crossings will be dealt with directly from the label equations in
the proof of Theorem 7.7 below.

Recall that the shape parameter at a corner of a region is, up to sign, the quotient of the
label at that crossing by the product of the two incident edge labels. If we take any
non-zero complex number k and replace each boundary label of T in S1 by its product
with k , by inspection of Figure 13(ii) all shape parameters for T are unchanged, and
the equations given by the regions of the tangle T are still satisfied.

Let C be the component of the solution set of the label equations that contains T ; C
has the structure of a complex algebraic set. From Marden’s deformation theorem [12],
T is open in C , consists only of smooth points of C , and has real dimension 2; it
follows that C has complex dimension 1, ie, is a complex algebraic curve, and that T
is away from any singular points of C . Let z0 be any point of T (regarded as a subset
of C ), and let C0 � C be the set of solutions obtained by taking a non-zero complex
number k and then multiplying all boundary labels for z0 by k , but keeping interior
labels fixed, as in the previous paragraph (thus k varies over C0 ). Since T � C and C
has complex dimension 1, k must parametrize the set T ; in particular, T � C0 . Both
parts of the theorem follow.

To summarize informally, T has one complex “degree of freedom”, and because of
dimensional constraints, this “structural flexibility” has to be parametrized by k . Thus
the complete structures of an encircled tangle are related in a simple way; however,
we do not know how to determine which values of k , applied in this manner to the
particular complete structure z0 , yield points of T .



Figure 14
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It is perhaps enlightening to give a heuristic, more geometric explanation of this phenom-
enon. The sequence of diagrams in Figure 14 shows that the encircling simple closed
curve bounds a disk � meeting Li in C together with two transverse “punctures”.
� �Li is thus a 3–punctured sphere in the link complement, and it follows from
Example 6.3 above that the geodesic marked  in the final diagram of Figure 14
has associated label ˙1

4
, independent of the link .S3;Li/ containing .B;T /. This

imposes an extra constraint (of complex dimension 1) on the geometric structure of the
sub-tangle U , making it plausible that its structure is determined uniquely.

The boundary labels of an alternating encircled tangle are subject to further constraints,
as expressed in the next theorem. With a little more effort the conclusion can be
established without the hypothesis that the tangle be alternating; however, our main
interest here is with alternating links.

Theorem 7.7 Let .B;T / be an alternating encircled tangle, represented by a standard
diagram with boundary labels ui ; wi (1� i � 4), as in Figure 13(ii).

(i) The boundary crossing labels wi are all equal up to sign, any two being equal if
and only if the crossings to which they belong have equal sign (see Figure 15).

(ii) Opposite boundary edge labels are equal, ie, in Figure 13(ii) u1D u3 and u2D u4 .

C1

�1

w �w w w

w w

�w w

Crossing signs
Figure 15

Proof We first observe that conclusions (i), (ii) hold for the oriented encircled tangles
V1;V2 illustrated in Figure 16. This may easily be verified from the label equations
associated to the 4–sided region interior to the tangle. For example, for V1 we have
u1 D u3 D 0, w1 D w2 , w3 D w4 , together with the equations

w3

u2

C
w3

u4

D 1 ; �
w1

u2

�
w1

u4

D 1;
w3

u2

�
w1

u2

D 1;
w3

u4

�
w1

u4

D 1I
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it then follows that u2 D w3 �w1 D u4 and w3 D �w1 D u2=2. If we switch the
crossings of V1 , the edge labels marked 1 both become �1, but the result of the
computation is unaffected. In the case of V2 , it is shown similarly that u2 D u4 and
w1 D w2 D w3 D w4 D�u2=2.

Now suppose that T is an encircled, oriented tangle distinct from V1;V2 . Then we may
form an alternating hyperbolic link L by summing T with a trivial tangle (Figure 16).
We then see that T shares its encircling link component with a copy of one of V1;V2 .
The conclusion for T then follows from the analysis of the Vi in the previous paragraph,
together with Theorem 7.6(ii).

u2 u2

u4 u4

w1 w1

w3 w3

1 1

1 1

V1 V2

Figure 16

8 Epilogue

It had been observed by the first author that the horoball patterns of alternating links had
certain “elements of predictability”, and that in many cases one could even reconstruct
a diagram for the link by visual inspection of the horoball pattern. The original purpose
of the method outlined in this paper was to search for an explanation of this behaviour.
For alternating diagrams the hyperbolicity equations relate to the diagram in a natural
way, and it is perhaps reasonable to hope that the method will lead eventually to a
deeper understanding of the geometry of prime alternating links.
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