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Equivariant Poincaré–Alexander–Lefschetz duality
and the Cohen–Macaulay property

CHRISTOPHER ALLDAY

MATTHIAS FRANZ

VOLKER PUPPE

We prove a Poincaré–Alexander–Lefschetz duality theorem for rational torus-equiv-
ariant cohomology and rational homology manifolds. We allow non-compact and non-
orientable spaces. We use this to deduce certain short exact sequences in equivariant
cohomology, originally due to Duflot in the differentiable case, from similar, but more
general short exact sequences in equivariant homology. A crucial role is played by
the Cohen–Macaulayness of relative equivariant cohomology modules arising from
the orbit filtration.

55N91; 13C14, 57R91

1 Introduction

Let T D .S1/r be a torus, and let X be a T –space satisfying some fairly mild
assumptions (see Section 2.1). Recall that H�

T
.X / D H�

T
.X IQ/, the equivariant

cohomology of X with rational coefficients, can be defined as the cohomology of
the Borel construction (or homotopy quotient) XT D .ET �X /=T , and that it is an
algebra over the polynomial ring RDH�.BT /.

In [6, page 23], A Borel observed that “even if one is interested mainly in a statement
involving only cohomology, one has to use in the proof groups which play the role
of homology groups, and therefore this presupposes some homology theory”. In this
spirit we defined in [3] the equivariant homology H T

� .X / of X , which is a module
over R. In contrast to H�

T
.X /, it is not the homology of any space. Nevertheless, it

has many desirable properties: it is related to H�
T
.X / via universal coefficient spectral

sequences, and, in the case of a rational Poincaré duality space X , also through an
equivariant Poincaré duality isomorphism

(1-1) H�T .X /
��!H T

� .X /; ˛ 7! ˛\ oT ;

Published: 7 April 2014 DOI: 10.2140/agt.2014.14.1339

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=55N91, 13C14, 57R91
http://dx.doi.org/10.2140/agt.2014.14.1339
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which is the cap product with an equivariant orientation oT 2H T
� .X /. Note that unlike

the non-equivariant situation, the isomorphism (1-1) does not necessarily translate into
the perfection of the equivariant Poincaré pairing

(1-2) H�T .X /�H�T .X /!R; .˛; ˇ/ 7! h˛[ˇ; oT i:

In fact, the pairing (1-2) is perfect if and only if H�
T
.X / is a reflexive R–module; see

[3, Corollary 1.3]. Hence, in the equivariant setting Poincaré duality cannot be phrased
in terms of cohomology alone. Another reason to consider equivariant homology is
that sometimes it behaves better than cohomology. For example, the sequence

(1-3) 0!H T
� .X

T /!H T
� .X /!H T

� .X;X
T /! 0

is always exact (see Proposition 1.1 below), which is rarely the case for the correspond-
ing sequence in equivariant cohomology.

The first theme of the present paper is to extend Poincaré duality and its generalization
Poincaré–Alexander–Lefschetz duality to the torus-equivariant setting. Equivariant
Poincaré–Alexander–Lefschetz duality for compact Lie groups and certain generalized
(co)homology theories has been discussed by Wirthmüller [22], Lewis and May [19,
Section III.6], and May [20, Section XVI.9] in the framework of equivariant stable
homotopy theory. Here we are interested in an explicit algebraic description in the
context of the singular Cartan model; cf Section 2.2.

We allow rational homology manifolds that may be non-compact or non-orientable. To
this end we have to define equivariant cohomology with compact supports and equi-
variant homology with closed supports, and, for non-orientable homology manifolds,
also equivariant (co)homology with twisted coefficients.

Theorem 1.1 (Poincaré–Alexander–Lefschetz duality) Let X be an orientable n–
dimensional rational homology manifold with a T –action, and let .A;B/ be a closed
T –stable pair in X . Then there is an isomorphism of R–modules

H�T .X nB;X nA/ŠH
T;c
n��.A;B/:

Here H
T;c
� .A;B/ denotes the equivariant homology of the pair .A;B/ with compact

supports. Theorem 1.1 extends to an isomorphism of spectral sequences induced by a
T –stable filtration on X , and it implies an equivariant Thom isomorphism. We also
establish analogous results for non-orientable manifolds and twisted coefficients, which
is essential for our applications.

Another important result in equivariant stable homotopy theory is the Adams isomor-
phism. In Proposition 2.7 we prove a version of it in our context.
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Our second theme is to extend the results of [3] to the new (co)homology theories and
to combine them with equivariant duality results.

Recall that the equivariant i –skeleton Xi �X is the union of all T –orbits of dimension
at most i ; this defines the orbit filtration of X . A crucial observation, originally
made by Atiyah [5] in the context of equivariant K–theory, is that the R–module
H�

T
.Xi ;Xi�1/ is zero or Cohen–Macaulay of dimension r � i . The same holds for

equivariant homology, and it implies the following result.

Proposition 1.1 For any 0� i � r there is an exact sequence

0!H T
� .Xi/!H T

� .X /!H T
� .X;Xi/! 0:

The case i D 0 was made explicit in (1-3) above. Again, this extends to homology
with compact supports and/or twisted coefficients; see Proposition 4.3. Using the
naturality properties of equivariant Poincaré–Alexander–Lefschetz duality, we can
easily generalize a result of Duflot [14] about smooth actions on differential manifolds;
see Proposition 4.11:

Corollary 1.2 Let X be a rational homology manifold. For any 0� i � r there is an
exact sequence

0!H�T .X;X nXi/!H�T .X /!H�T .X nXi/! 0:

We now turn to the relation between equivariant homology and the orbit filtration.
Recall that the Atiyah–Bredon complex AB�.X / is defined by

(1-4) ABi.X /DH�Ci
T

.Xi ;Xi�1/

for 0� i � r and zero otherwise. (We set X�1 D∅.) The differential

(1-5) di W H
�
T .Xi ;Xi�1/!H�C1

T
.XiC1;Xi/

is the boundary map in the long exact sequence of the triple .XiC1;Xi ;Xi�1/. In other
words, AB�.X / is the E1 page of the spectral sequence arising from the orbit filtration
and converging to H�

T
.X /, and H�.AB�.X // is its E2 page. A principal result of [3]

is a natural isomorphism

(1-6) H i.AB�.X //D ExtiR.H
T
� .X /;R/

for all i � 0. This is once again a consequence of the Cohen–Macaulay property of
H T
� .Xi ;Xi�1/. In [3] we used the isomorphism (1-6) to study syzygies in equivari-

ant cohomology and to relate them to the Atiyah–Bredon complex. Here we again

Algebraic & Geometric Topology, Volume 14 (2014)



1342 Christopher Allday, Matthias Franz and Volker Puppe

indicate generalizations to (co)homology with the new pair of supports and/or twisted
coefficients. They are used in [16] to prove a “geometric criterion” for syzygies in
equivariant cohomology that only depends on the quotient X=T as a stratified space.

The paper is organized as follows. In Section 2 we first review equivariant cohomology
with closed supports and equivariant homology with compact supports and then define
equivariant (co)homology with the other pair of supports. We also consider homology
manifolds and define variants of equivariant (co)homology with twisted coefficients
in this case. Theorem 1.1 and its corollaries are proved in Section 3. Applications
to the orbit structure are given in Section 4. There we also relate the cohomology
of the Atiyah–Bredon complex to the question of uniformity of an action. Given
the importance of (1-6), we include a direct proof of it in Section 5. It uses only
exact sequences as in Proposition 1.1 and avoids the intricate reasoning with spectral
sequences done in [3].

Acknowledgements

We thank the referee for numerous helpful comments and in particular for suggesting
Proposition 2.7, a stronger version of one of our earlier results. M F was partially
supported by an NSERC Discovery Grant.

2 Equivariant homology and cohomology

2.1 Notation and standing assumptions

We write “�” for inclusion of sets and “¨” for proper inclusion.

Throughout this paper, T D .S1/r denotes a compact torus of rank r � 0, and k
a field. From Section 4 on we will assume that the characteristic of k is zero. All
(co)homology is taken with coefficients in k unless specified otherwise.

C�.�/ and C �.�/ denote normalized singular chains and cochains with coefficients in
the field k, and H�.�/ and H�.�/ singular (co)homology. We adopt a cohomological
grading, so that the homology of a space lies in non-positive degrees; an element
c 2Hi.X / has cohomological degree �i .

R D H�.BT / is the symmetric algebra generated by H 2.BT /, and m C R its
maximal homogeneous ideal. All R–modules are assumed to be graded. We consider
k as an R–module (concentrated in degree 0) via the canonical augmentation. For
an R–module M and an l 2 Z the notation M Œl � denotes a degree shift by l , so that
the degree i piece of M Œl � is the degree i � l piece of M . For the cohomology of
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some space, we alternatively write H�.X /Œl � or H��l.X /. Due to the cohomological
grading, we have in homology the identity H�.X /Œl �DH�Cl.X /.

We assume all spaces to be Hausdorff, second-countable, locally compact, locally
contractible and of finite covering dimension, hence also completely regular, separable
and metrizable. Important examples are topological (in particular, smooth) manifolds,
orbifolds, complex algebraic varieties, and countable, locally finite CW complexes. We
also assume that only finitely many distinct isotropy groups occur in any T –space X .

Remark 2.1 Under these assumptions on a T –space X , the orbit space X=T is
again Hausdorff and locally compact (Bredon [8, Theorem 3.1]), second-countable,
locally contractible (Conner [12, Theorem 3.8, Corollary 3.12]) and of finite covering
dimension (Borel [6, Theorem VIII.3.16]). It is easy to see that the same applies to the
fixed point set X T with the exception of local contractability: see Remark 2.17 below.

It follows from our assumptions that every subset A � X is paracompact, hence
singular cohomology and Alexander–Spanier cohomology are naturally isomorphic for
all pairs .A;B/ such that A and B are locally contractible. We therefore put as another
standing assumption that all subsets A�X we consider are locally contractible; this
holds automatically if A is open in X . And we call .A;B/ a T –pair if A and B are
T –stable.

In addition we will put a finiteness condition on the (co)homology of the spaces and
pairs we consider. This will be explained in detail once we have defined equivariant
(co)homology.

2.2 The singular Cartan model

Let X be a T –space. We recall from [3, Section 3] the definition of equivariant
homology and cohomology via the “singular Cartan model”. As pointed out in [3], it
can be replaced by the usual Cartan model for differentiable actions on manifolds and
kDR.

The singular Cartan model of the T –pair .A;B/ in X is

(2-1) C �T .A;B/D C �.A;B/˝R

with R–linear differential

(2-2) d. ˝f /D d ˝f C

rX
iD1

ai �  ˝ tif

Algebraic & Geometric Topology, Volume 14 (2014)
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and R–bilinear product

(2-3) . ˝f /[ . 0˝f 0/D  [  0˝ff 0:

Here t1; : : : ; tr are a basis of H 2.BT /�R, and a1; : : : ; ar are representative loops
of the dual basis of H1.T /; the product ai � refers to the action of C�.T / on C �.X /

induced by the T –action on X . The equivariant chain complex C T
� .A;B/ is the

R–dual of (2-1),

(2-4) C T
� .A;B/D HomR.C

�
T .A;B/;R/:

Equivariant cohomology and homology are defined as

H�T .A;B/DH�.C �T .A;B//;(2-5)

H T
� .A;B/DH�.C

T
� .A;B//:(2-6)

This definition of H�
T
.A:B/ is naturally isomorphic, as an R–algebra, to the usual

one based on the Borel construction XT .

2.3 Other supports

Let .A;B/ be a closed T –pair in a T –space X . We define the equivariant cohomology
of .A;B/ with compact supports by

(2-7) H�T;c.A;B/D lim
�!

H�T .U;V /DH�.C �T;c.A;B//;

where

(2-8) C �T;c.A;B/D lim
�!

C �T .U;V /D
�

lim
�!

C �.U;V /
�
˝R;

and the direct limits are taken over all T –stable open neighbourhood pairs .U;V / of
.A;B/ such that X nV is compact. By tautness and excision, H�

T;c
.A;B/ is easily

seen to be naturally isomorphic to the Alexander–Spanier cohomology of the closure
of .A;B/ in the one-point compactification of X relative to the added point. Hence it
does not matter whether .A;B/ is considered as a closed T –pair in X or in A.

The equivariant homology of .A;B/ with closed supports is defined by taking the
R–dual of (2-8),

C
T;c
� .A;B/D HomR.C

�
T;c.A;B/;R/;(2-9)

H
T;c
� .A;B/DH�.C

T;c
� .A;B//:(2-10)

Clearly, we have H�
T;c
.A;B/ D H�

T
.A;B/ and H

T;c
� .A;B/ D H T

� .A;B/ if X is
compact.

Algebraic & Geometric Topology, Volume 14 (2014)
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2.4 Properties

We list several important properties of equivariant (co)homology, omitting proofs that
were given in [3]. In Section 2.6 we will extend all results of this section to homology
manifolds and (co)homology with twisted coefficients; see Remark 2.15.

Assumption 2.2 For the rest of this paper we assume that H�.A;B/ is a finite-
dimensional k–vector space for any T –pair .A;B/ for which we consider equivariant
cohomology with closed supports or equivariant homology with compact supports. By
Proposition 2.3 below, this implies that both H�

T
.A;B/ and H T

� .A;B/ are finitely
generated R–modules. (Each of the latter conditions is actually equivalent to the
former.)

Proposition 2.3 (Serre spectral sequence) Let .A;B/ be a T –pair in X . There are
spectral sequences, natural in .A;B/, with

E1 DE2 DH�.A;B/˝R)H�T .A;B/;

E1 DE2 DH�.A;B/˝R)H T
� .A;B/:

Proof These are equations (3.5) and (3.7) in [3].

Proposition 2.4 (Universal coefficient theorem [3, Proposition 3.5] ) Let .A;B/ be
a T –pair in X . There are spectral sequences, natural in .A;B/, with

E
p
2
D Extp

R
.H�T .A;B/;R/)H T

� .A;B/;

E
p
2
D Extp

R
.H T
� .A;B/;R/)H�T .A;B/:

For a multiplicative subset S �R and a T –space X , define the T –stable subset

(2-11) X S
D
˚
x 2X

ˇ̌
S \ ker.H�.BT /!H�.BTx//D∅

	
�X:

It is closed in X , cf [4, page 132]. For example, X S D X T if char k D 0 and S

contains all non-zero linear polynomials.

Proposition 2.5 (Localization theorem) Let .A;B/ be a T –pair in X , and let S �R

be a multiplicative subset. Then the inclusion X S ,! X induces isomorphisms of
S�1R–modules

S�1H�T .A;B/! S�1H�T .A
S ;BS /;

S�1H T
� .A

S ;BS /! S�1H T
� .A;B/:
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Proof The localization theorem for equivariant cohomology with closed supports is
classical; cf [4, Chapter 3]. (Recall that only finitely many orbit types occur in X .)

By the universal coefficient theorem, there is a spectral sequence converging to
H T
� .A;B/ with E2 page ExtR.H�T .A;B/;R/, and similarly for the pair .AS ;BS /.

The inclusion X S ,!X gives rise to a map of spectral sequences, which on the E2

pages is the canonical map

(2-12) ExtR.H�T .A
S ;BS /;R/! ExtR.H�T .A;B/;R/:

Since localization is an exact functor, the S –localization of (2-12) is the map

(2-13) ExtS�1R.S
�1H�T .A

S ;BS /;S�1R/! ExtS�1R.S
�1H�T .A;B/;S

�1R/;

which is an isomorphism by the cohomological localization theorem. Hence, the
localization of H T

� .A
S ;BS /!H T

� .A;B/ is an isomorphism as well.

Let K � T be a subtorus, say of rank p , with quotient LD T=K . In this case we
have canonical morphisms of algebras

(2-14) H�.BL/DRL D kŒtpC1; : : : ; tr �!R!H�.BK/DRK D kŒt1; : : : ; tp �:

Moreover, any choice of splitting T ŠK�L defines an isomorphism RDRK ˝RL .

Proposition 2.6 Let K � T be a subtorus with quotient LD T=K . Let .A;B/ be a
closed T –pair in X such that K acts trivially on AnB . Then there are isomorphisms
of R–modules

H�T .A;B/DH�L.A;B/˝RL
R;

H T
� .A;B/DH L

� .A;B/˝RL
R:

The result holds for any T –pair .A;B/ if K acts trivially on all of A.

In the proof below as well as in that of Proposition 2.7 we will use the following fact;
cf [4, Corollary B.1.13]: Let �W M !N be a quasi-isomorphism of dg R–modules.
If M and N are free as R–modules, then � is a homotopy equivalence over R.

Proof Since B is closed in A, we have, by tautness and excision, a quasi-isomorphism
of dg R–modules

(2-15) C �T .A;B/! lim
�!

C �T .AnB;U nB/D
�
lim
�!

C �.AnB;U nB/
�
˝R;

where the direct limit is taken over all T –stable open sets U � B . Hence we may
work with this direct limit, which we denote by M .

Algebraic & Geometric Topology, Volume 14 (2014)
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Now choose a splitting T DK �L. By [3, Proposition 3.4], we may assume that the
representatives ai 2C1.T / appearing in the “Cartan differential” (2-2) are chosen such
that a1; : : : ; ap 2 C1.K/ and apC1; : : : ; ar 2 C1.L/. Since we are using normalized
singular (co)chains, C�.K/ acts trivially on each C �.AnB;U nB/. The differential
on M therefore takes the form

(2-16) d. ˝f /D d ˝f C

rX
iDpC1

ai �  ˝ tif;

which implies

(2-17) H�T .A;B/DH�L.A;B/˝H�.BK/DH�L.A;B/˝RL
R

by the Künneth formula.

By the remark made above, the quasi-isomorphism (2-15) is a homotopy equivalence,
which is preserved by the functor HomR.�;R/. For equivariant homology we can
therefore argue analogously.

The last claim follows, by the five-lemma, from the previous one, applied to A and B

separately, and the long exact sequence of the pair.

At the other extreme, we have the following:

Proposition 2.7 Let K � T be a subtorus, say of rank p , with quotient LD T=K .
Let .A;B/ be closed a T –pair in X such that K acts freely on AnB (or just locally
freely in case char kD 0). Then H�.A=K;B=K/ is finite-dimensional, and there are
isomorphisms of RL –modules

H�T .A;B/DH�L.A=K;B=K/;

H T
� .A;B/DH L

��p.A=K;B=K/:

The result holds for any T –pair .A;B/ if K acts (locally) freely on all of A.

The cohomological part is well-known; cf [4, Proposition 3.10.9]. That a degree
shift by �p is necessary for the homological part can already be seen by considering
K D T D X : In this case one has H T

� .X /D kŒ�r �DH��r .X=T /; cf [3, Example
3.6].

Geometrically, the homological isomorphism can be understood as a transfer for the
quotient map X ! X=K . Since, in the singular setting, it is delicate to define a
transfer map or integration over the fibre on the (co)chain level, we will follow an
algebraic approach and postpone the geometrical aspects to our discussion of Poincaré–
Alexander–Lefschetz duality (Remark 3.10). The homology isomorphism can also be
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viewed as a version of the Adams isomorphism in equivariant stable homotopy theory
(see [19, Section II.7; 20, Section XVI.5]) in our algebraic context.

The proof of Proposition 2.7 requires some preparation. Recall that mD .t1; : : : ; tr /
is the maximal graded ideal in R. In the proof below we will use the local duality
isomorphism

(2-18) H j
m.M /D Extr�j

R
.M;RŒ2r �/_;

which is natural in the R–module M ; see for instance Eisenbud [15, Theorem A1.9]
(where the generators of the polynomial ring are assigned the degree 1, not 2). The
symbol “_” in (2-18) denotes the dual of a graded k–vector space. We will also need
the Čech complex computing H�m.M / by means of some generators of m as in [15,
p. 189].

More generally, we consider the Čech complex for a dg R–module M . Thus we
obtain a bicomplex C

�;�
m .M / with first differential d I coming from M and second

differential d II coming from the Čech complex for the canonical generators t1; : : : ; tr .
An element in C

i;j
m .M / is a sum of elements of degree j in the i –fold localizations

in this Čech complex. While j is unbounded in both directions, we have 0 � i � r ,
so that both filtrations of the bicomplex are regular (Bredon [11, page 452]). Hence
both associated spectral sequences converge to H�m.M /, the cohomology of C

�;�
m .M /

with respect to the total differential.

In the first bicomplex spectral sequence we have

IE1 D C �;�m .H�.M //;(2-19)
IE2 DH�m.H

�.M //;(2-20)

since the cohomology of the localization of M is the localization of the cohomology.

Taking the other bicomplex spectral sequence, we get

(2-21) IIE1 D
IIH�m.M /

where IIH�m.M / means the cohomology of C
�;�
m .M / with respect to the differential

d II , that is, the local cohomology of the R–module M with trivial differential.

Suppose that M is finitely generated and free as an R–module. By local duality one
then has that the E1 page

(2-22) IIEk
1 D

IIH k
m.M /D

�
HomR.M;RŒ2r �/_ if k D r ,
0 otherwise,

Algebraic & Geometric Topology, Volume 14 (2014)
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is concentrated in the column k D r , and therefore

(2-23) H�m.M /DH�.HomR.M;RŒ2r �//_Œr �DH�.HomR.M;R//_Œ�r �:

If M is R–homotopy equivalent to some M 0 , then so are C
�;�
m .M / and C

�;�
m .M 0/,

hence H�m.M /ŠH�m.M
0/ as R–modules. In particular, if M D C �

T
.X /, then it is

R–homotopy equivalent to a dg R–module M 0 that is finitely generated and free as
an R–module. We therefore conclude that

H�m.C
�
T .X //DH�.HomR.C

�
T .X /;R//

_Œ�r �(2-24)

DH�.C T
� .X //

_Œ�r �DH T
� .X /

_Œ�r �:(2-25)

Let mL D .tpC1; : : : ; tr / be the maximal graded ideal of RL . Using the canonical
generators, we can similarly define C

�;�
mL
.�/ and H�mL

.�/ for dg RL –modules, hence
a fortiori for dg R–modules. Since these generators are among the chosen generators
of m, we have a canonical map of bicomplexes

(2-26) C �;�m .M /! C �;�mL
.M /

for any dg R–module M , inducing a map of R–modules H�m.M /!H�mL
.M /.

Lemma 2.8 Let .A;B/ be a closed T –pair in X . Assume that K acts freely on
AnB , and that all x 2 AnB have the same isotropy group, say K0 . Then the map
H�m.H

�
T
.A;B//!H�mL

.H�
T
.A;B// is an isomorphism.

If char kD 0, then it is enough that K acts locally freely and that the isotropy groups
in AnB have the same identity component K0 .

Proof Since K acts (locally) freely, the composition K0!T !L is injective (or has
finite kernel). This implies that the composition H�.BL/!H�.BT /!H�.BK0/ is
surjective. Hence there are t 0

1
; : : : ; t 0p 2mL such that ti and t 0i map to the same element

in H�.BK0/ for 1� i � p , and ui D ti � t 0i maps to 0. By the localization theorem
(Proposition 2.5), this implies that the localization of H�

T
.A;B/ at ui vanishes.

We observe that u1; : : : ;up , tpC1; : : : ; tr also generate m. Since local cohomology
can be computed from any set of generators (cf [15, Theorem A1.3]), we can assume
that one has chosen these generators instead of the canonical generators t1; : : : ; tr .
Then the terms in the Čech complex involving at least one of the ui drop out, and we
are left with the Čech complex computing H�mL

.H�
T
.A;B//.

Proof of Proposition 2.7 We choose a splitting T DK �L with compatibly chosen
representatives ai 2 C1.T / as in the proof of Proposition 2.6.
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As mentioned already, the isomorphism

(2-27) H�T .A;B/DH�L.A=K;B=K/

is classical (and requires that B is closed in A). It is induced by the quasi-isomorphism
of dg RL –modules

(2-28) C �L.A=K;B=K/D C �.A=K;B=K/˝RL! C �T .A;B/D C �.A;B/˝R;

 ˝f 7! �� ˝f;

where � W X !X=K is the projection.

It follows from the localization theorem that the localization of H�
K
.A;B/ at each

generator ti of RK vanishes. Since H�
K
.A;B/ is finitely generated over RK by

Assumption 2.2, this implies that H�
K
.A;B/ is killed by some power of each ti and

therefore that it is finite-dimensional as k–vector space. By taking T DK in (2-27),
we see that H�.A=K;B=K/ is also finite-dimensional.

For the homological statement we start by proving that the canonical map

(2-29) C �;�m .C �T .A;B//! C �;�mL
.C �T .A;B//

is a quasi-isomorphism. We proceed by induction on the number m of (connected)
orbit types in A nB . For m D 0 there is nothing to show as A D B in this case.
Otherwise fix an orbit type of maximal dimension in AnB and let A0 � A be the
union of B and all other orbit types; A0 is T –stable and closed in A.

The short exact sequence

(2-30) 0! C �T .A;A
0/! C �T .A;B/! C �T .A

0;B/! 0

gives rise to the commutative diagram

(2-31)

0 // C �;�m .C �
T
.A;A0//

��

// C �;�m .C �
T
.A;B//

��

// C �;�m .C �
T
.A0;B//

��

// 0

0 // C �;�mL
.C �

T
.A;A0// // C �;�mL

.C �
T
.A;B// // C �;�mL

.C �
T
.A0;B// // 0

whose horizontal sequences are again short exact. The right vertical arrow is a quasi-
isomorphism by induction. To see that the left one is so as well, we consider the
induced map between the E2 pages of the first bicomplex spectral sequences (2-20).
In our case this is the map

(2-32) H�m.H
�
T .A;A

0//!H�mL
.H�T .A;A

0//;
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and it is an isomorphism by Lemma 2.8 and our choice of A0 . The map induced in
cohomology by the left arrow above therefore is also an isomorphism. Hence the
middle arrow is a quasi-isomorphism by the five-lemma, which proves the claim.

The quasi-isomorphism (2-28) is in fact a homotopy equivalence over RL as both sides
are free as RL –modules. We therefore get isomorphisms of RL –modules

H T
� .A;B/

_Œ�r �DH�m.C
�
T .A;B//DH�mL

.C �T .A;B//(2-33)

DH�mL
.C �L.A=K;B=K//DH L

� .A=K;B=K/
_Œ�.r �p/�;(2-34)

which translates into the claimed isomorphism

(2-35) H T
� .A;B/!H L

� .A=K;B=K/Œ�p�DH L
��p.A=K;B=K/:

The last claim follows again from the absolute case and the five-lemma.

All these results hold as well for cohomology with compact supports and homol-
ogy with closed supports and closed T –pairs .A;B/, assuming that H�c .A;B/ is a
finite-dimensional k–vector space; cf Assumption 2.2. The proofs are identical; the
localization theorem for cohomology with compact supports follows from the version
for closed supports since direct limits preserve isomorphisms.

Proposition 2.9 For any closed T –pair .A;B/ in X there are isomorphisms of R–
modules

H�T;c.A;B/DH�T;c.AnB/;

H
T;c
� .A;B/DH

T;c
� .AnB/:

Proof The first identity follows from excision and the fact that a direct limit is an
exact functor. The second identity then is a consequence of the universal coefficient
theorem.

2.5 Homology manifolds

Let X be a k–homology manifold, say of dimension n. By this we mean a connected
space X such that for any x 2X one has

(2-36) Hi.X;X nfxg/Š

�
k if i D n,
0 if i ¤ n.

If in addition H c
n .X /Š k, then X is called orientable. Homology manifolds are an

appropriate setting for Poincaré duality; see Lemma 3.1 below.
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Assumption 2.10 We assume that any homology manifold X we consider is orientable
or admits an orientable two-fold covering � W zX !X .

For non-orientable X , such a covering will be called an orientation cover. Note that
zX is necessarily connected. For orientable X we define the trivial two-fold covering

to be the orientation cover. We will use orientation covers to define (co)homology with
twisted coefficients in Section 2.6.

Remark 2.11 Any Z–homology manifold admits an orientation cover, but it seems
unclear whether this holds for arbitrary k–homology manifolds; see the discussion in
[11, page 331]. On the other hand, if an orientation cover exists, then it is unique. For
orientable X , this is true by definition. For non-orientable X it can be seen as follows:

Let  be a loop at x 2 X . By transporting local orientations along  , we get an
automorphism of Hn.X;X nfxg/ (cf [7, page 39]), which is necessarily multiplication
by some non-zero scalar. This induces a morphism �W �1.X /! k� . The connected
orientable covers of X are of the form zX=G where zX is the universal cover and G a
subgroup of the kernel of � . In particular, there is at most one orientation cover.

The following observation seems to be well-known, but we could not find a suitable
reference.

Lemma 2.12 Assume char k D 0. Any connected, locally orientable orbifold is a
k–homology manifold satisfying Assumption 2.10.

See Adem, Leida and Ruan [1, Section 1.1] or Satake [21] for the definition of an
orbifold. By “locally orientable” we mean that locally the orbifold X , say of dimension
n, is the quotient of an open ball in Rn by a finite subgroup of SO.n/.

Proof Condition (2-36) holds because one locally divides by a finite subgroup of
SO.n/ and char kD 0.

The existence of an orientation cover can be shown in the same way as for manifolds.
Recall that in the smooth case one proceeds as follows (cf Lee [18, Chapter 15–17]):
If X admits an oriented atlas, that is, if the charts of X can be oriented in a way
consistent with coordinate changes, then one can integrate differential forms with
compact supports, and the integration map provides an isomorphism H c

n .X / Š k.
Otherwise H c

n .X /D 0, and one can construct a connected double cover with oriented
atlas by doubling all charts and gluing them according to whether coordinate changes
preserve or reverse chart orientations. Hence X is orientable in our sense if and only
if it admits an oriented atlas.
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For an orbifold X one can also define differential forms with compact supports, and if
X is locally orientable and has an atlas of compatibly oriented charts, then one can
integrate these forms; cf [21, Section 8]. If such an atlas does not exist, then one can
again pass to an oriented two-fold cover. Now the proofs for manifolds go through
without change.

Lemma 2.13 Let X be a k–homology manifold with orientation cover � W zX !X .
Any T –action on X lifts to a T –action on zX .

See [8, Corollary I.9.4] for an analogous result in the context of topological manifolds.

Proof The case of orientable X is trivial. If X is non-orientable, then by [8, Sec-
tion I.9] the T –action on X lifts to a zT –action on zX , where zT is a two-fold covering
of T and ker. zT ! T / Š Z2 acts by deck transformations. If the non-trivial deck
transformation � were orientation-preserving, then X would have to be orientable be-
cause H c

n .X /DH c
n .
zX /� Šk, where nD dim X . So � does not preserve orientations,

which implies that zT cannot be connected. Hence its identity component is T , and
the action lifts.

2.6 Twisted coefficients

The aim of this section is to introduce equivariant (co)homology with twisted coefficients
zk. To distinguish it from the (co)homology we have considered so far, the latter will
be called (co)homology with constant coefficients k from now on. Twisted coefficients
are only interesting if the characteristic of the ground field k differs from 2, which
we assume in this section. For char kD 2, (co)homology with twisted coefficients is
defined to be the same as (co)homology with constant coefficients.

We focus on cohomology with closed supports and homology with compact supports.
All results are equally valid for the other pair of supports; we will indicate when proofs
for that case need additional arguments.

Let X be a k–homology manifold (which, by our definition, is connected) with
orientation cover � W zX !X and non-trivial deck transformation � . For a pair .A;B/
in X , we write . zA; zB/ D .��1.A/; ��1.B//. Moreover, we denote the involution
of C �. zA; zB/ induced by � by the same letter. Since 2 2 k is invertible, we get a
decomposition

(2-37) C �. zA; zB/D C �. zA; zB/C˚C �. zA; zB/�

into the eigenspaces of � for the eigenvalues ˙1. Note that �� is an isomorphism
of C �.A;B/ onto C �. zA; zB/C . We define C �.A;BI zk/, the cochains on .A;B/ with
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twisted coefficients, to be the eigenspace for the eigenvalue �1 of � . Hence the splitting
(2-37) becomes

(2-38) C �. zA; zB/D C �.A;B/˚C �.A;BI zk/

and induces an analogous decomposition in cohomology,

(2-39) H�. zA; zB/DH�.A;B/˚H�.A;BI zk/:

We now assume that X is equipped with a T –action and that the pair .A;B/ is T –
stable. Since the decomposition (2-38) is C�.T /–stable, we can define equivariant
(co)homology with twisted coefficients in a way analogous to Section 2.2:

(2-40) C �T .A;BI
zk/D C �T .

zA; zB/� D C �.A;BI zk/˝R

with the same differential as in (2-2),

H�T .A;BI
zk/DH�.C �T .A;BI

zk//;(2-41)

C T
� .A;BI

zk/D HomR.C
�
T .A;BI

zk/;R/;(2-42)

H T
� .A;BI

zk/DH�.C
T
� .A;BI

zk//:(2-43)

Note that one has decompositions

H�T .
zA; zB/DH�T .A;B/˚H�T .A;BI

zk/;(2-44)

H T
� .
zA; zB/DH T

� .A;B/˚H T
� .A;BI

zk/:(2-45)

(For H�
T;c
.�/ and H

T;c
� .�/ they follow from the fact that sets of the form zV such

that the complement of V � X is compact are cofinal among all subsets of zX with
compact complement.) Of course, one already has decompositions on the (co)chain
level.

Assumption 2.2 is extended as follows:

Assumption 2.14 For any T –pair .A;B/ in a k–homology manifold X and any
(co)homology theory we are going to consider, we assume that the non-equivariant
cohomology of the cover . zA; zB/ is finite-dimensional over k. In light of (2-39), this
is equivalent to both the cohomology with constant coefficients and that with twisted
coefficients being finite-dimensional. By Proposition 2.3, this in turn implies that the
equivariant (co)homology of .A;B/ with constant or twisted coefficients is finitely
generated over R.

Our definition of H�.A;BI zk/ does not require A or B to be k–homology manifolds
themselves. But if A is connected and open in X , then it is a k–homology manifold as
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well, and the restriction of � to A is the orientation cover of A. Hence the definition
of twisted coefficients is independent of the ambient space in this case.

Remark 2.15 All results from Section 2.4 (Serre spectral sequences, universal coef-
ficient theorems and localization theorems) carry over to twisted coefficients. To see
this, one can either redo the proofs with twisted (co)homology, or one can reduce the
new results to the untwisted case by using the splittings (2-44) and (2-45).

Remark 2.16 An alternative way to define cohomology with twisted coefficients is to
use local coefficient systems. This could be done as well in the equivariant setting, and
one could even dispense with Assumption 2.10. The drawback of this approach would
be that one cannot reduce statements to the case of constant coefficients anymore. In
particular, one would need to prove a generalization of Proposition 2.7 (essentially, of
the Vietoris–Begle mapping theorem) to local coefficients, which is required to prove
Proposition 4.1.

Remark 2.17 We are mainly interested in applying our results to the fixed point
sets X K of subtori K � T , and because we want to use the localization theorem for
singular cohomology (Proposition 2.5), we put local contractability into the standing
assumptions in Section 2.1

Now it is a small step from (2-8) to using Alexander–Spanier cohomology for all
closed invariant pairs .A;B/, cf [3, Remark 4.7]. Thus it is not, in fact, necessary
to assume closed subsets to be locally contractible since the localization theorem for
Alexander–Spanier cohomology does not need this assumption. We would, however,
continue to assume that the ambient space X satisfies the standing assumptions; and
we do not know of any torus action on such a space where the fixed point sets are not
locally contractible, but nor do we know a proof that they always are.

3 Equivariant duality results

3.1 Poincaré duality

Let k be a field. We start with the statement of non-equivariant Poincaré duality for
orientable homology manifolds in our setting because it is not easy to locate it in the
literature in the desired generality.

Lemma 3.1 Let X be an orientable k–homology manifold of dimension n. For any
non-zero o 2H c

n .X /, the cap product map

H�c .X /!Hn��.X /; ˛ 7! ˛\ o

is an isomorphism.
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Such an o is called an orientation of X ; it generalizes the notion of a fundamental
class of a manifold.

Proof Recall that X is assumed to be a locally compact and locally contractible
second-countable Hausdorff space. Sheaf (co)homology and singular (co)homology
(with closed or compact supports) are therefore naturally isomorphic on X ; cf [11,
Theorem III.1.1, Corollary V.12.17, Corollary V.12.21].

As mentioned in the proof of [11, Corollary V.16.9], the stalks of the orientation sheaf
on X are given by (2-36). Hence X is an n–dimensional homology manifold over
k in the sense of [11, Definition V.9.1]. Moreover, by [11, Theorem V.16.16(f)] our
definition of orientability coincides with the one in [11, Definition V.9.1]. By [11,
Theorem V.9.2, Corollary V.10.2], the sheaf-theoretically defined cap product with o is
an isomorphism. This map coincides with the cap product in the singular theory given
above; cf [11, Example V.22].

Now let X be a T –space and a not necessarily orientable k–homology manifold of
dimension n with orientation cover zX . The cup product in zX is � –equivariant, so that
we obtain a pairing

(3-1) C �T;c.X I
zk/˝C �T .X /! C �T;c.X I

zk/;

hence a cap product

(3-2) H�T;c.X I
zk/˝H

T;c
� .X I zk/!H T

� .X /; ˛˝ b 7! ˛\ b:

Extending the above definition, an orientation of X is a non-zero element o 2

H c
n .X I

zk/ � H c
n .
zX /. An equivariant orientation is an element oT 2 H

T;c
n .X I zk/

that restricts to an orientation under the restriction map H
T;c
� .X I zk/!H c

�.X I
zk/.

Proposition 3.2 Let X be an n–dimensional k–homology manifold. Any orientation
o of X lifts uniquely to an equivariant orientation oT . Moreover, taking the cap product
with oT gives an isomorphism of R–modules

H�T;c.X I
zk/
\oT
���!H T

n��.X /

and, dually, an isomorphism

H
T;c
� .X I zk/ �!H n��

T .X /:

Proof The canonical projection H c
�.X I

zk/˝R!H c
�.X I

zk/ is the edge homomor-
phism of the E2 page of the Serre spectral sequence for H T;c

� .X I zk/ (Proposition 2.3
and Remark 2.15). Since H c

�.X /˝R lives in homological degrees at most n, there
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are no higher differentials, and the map H
T;c
n .X I zk/!H c

n .X I
zk/ is an isomorphism.

Hence any orientation lifts uniquely to an equivariant orientation.

To prove the first isomorphism, let us assume for the moment that X is orientable.
Applying the Serre spectral sequence to the map

(3-3) H�T;c.X /!H T
� .X /; ˛ 7! ˛\ oT ;

we find on the E2 level the R–linear extension

(3-4) H�c .X /˝R!H�.X /˝R; ˛˝f 7! ˛\ o˝f

of the non-equivariant Poincaré duality isomorphism from Lemma 3.1, which is there-
fore an isomorphism, too. The non-orientable case reduces to the orientable one: Since
H c

n .
zX / D H c

n .
zX /� D H c

n .X I
zk/, capping with oT D zoT restricts to the claimed

isomorphism.

The second isomorphism is a consequence of the first and the universal coefficient
theorem (Proposition 2.4 and Remark 2.15).

Remark 3.3 If X is orientable, then the two eigenspaces of � in the decomposition

(3-5) H�T .
zX /DH�T .X /˚H�T .X I

zk/

are isomorphic as R–modules and even as modules over H�
T
.X /. Hence (co)homology

with twisted coefficients and with constant coefficients are isomorphic in this case,
and these isomorphisms are compatible with the two Poincaré duality isomorphisms
H�

T;c
.X /!H T

� .X / and H�
T;c
.X I zk/!H T

� .X /. Of course, in the case char kD 2

there is no difference either.

3.2 Poincaré–Alexander–Lefschetz duality

Classically, Poincaré–Alexander–Lefschetz duality (also called “Poincaré–Lefschetz
duality”) refers to an isomorphism of vector spaces

(3-6) H�c .A;B/ŠHn��.X nB;X nA/

for any closed pair .A;B/ in an oriented n–dimensional manifold X ; cf Dold [13,
Section VIII.7] or Bredon [10, Section VI.8], for instance. In this section we generalize
this to equivariant (co)homology, and we also derive a spectral sequence version of
it. Our approach is similar to the one in [10]. We continue to assume that X is an
n–dimensional k–homology manifold with a T –action.

Our first result includes Theorem 1.1 from the introduction.
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Theorem 3.4 (Poincaré–Alexander–Lefschetz duality) Let .A;B/ be a closed T –
pair in X . Then there is a commutative diagram

// H n��
T;c

.A;BI zk/

��

// H n��
T;c

.AI zk/

��

// H n��
T;c

.BI zk/

��

d // H nC1��
T;c

.BI zk/

��

//

// H T
� .X nB;X nA/ // H T

� .X;X nA/ // H T
� .X;X nB/

d // H T
��1

.X;X nB/ //

all of whose vertical arrows are isomorphisms. An analogous diagram exists with the
roles of homology and cohomology interchanged and all arrows reversed.

Since we also want to prove an extension to spectral sequences, we place ourselves in
a slightly more general situation. Consider an increasing filtration

(3-7) ∅DX�1 �X0 � � � � �Xm DX

of X by closed T –stable subsets. (See Remark 2.17 on how to do without the standing
assumption of local contractability.) We set yXiDXnXi , so that the decreasing filtration
of X by the open complements of the Xi can be written as

(3-8) X D yX�1 � � � � �
yXm�1 �

yXm D∅:

Let � W zX ! X be the orientation cover, and let U D .U�1;U0; : : : ;Um/ be an
increasing sequence of open T –stable subsets of X such that X nU�1 is compact and
Xi � Ui for all i . Any such sequence determines an open cover

(3-9) U D
˚
��1.U0/; �

�1.U1 nX0/; : : : ; �
�1.Um nXm�1/

	
of zX . We write C �.X j U I zk/ for the complex of U –small cochains and similarly
C �

T
.X j U I zk/D C �.X j U I zk/˝R for the corresponding singular Cartan model. We

start by establishing a variant of the cup product (3-1).

Lemma 3.5 For any �1� i � j �m there is a well-defined relative cup product

C �T .X;Uj I
zk/˝C �T .

yXi/
[
�! C �T .X j U I zk/:

It is compatible with restrictions in the sense that the following diagram commutes:

C �
T
.X;Uj I

zk/˝C �
T
. yXj /

[ // C �
T
.X j U I zk/

C �
T
.X;Uj I

zk/˝C �
T
. yXi/

[ //

OO

��

C �
T
.X j U I zk/

D

OO

D
��

C �
T
.X;Ui I

zk/˝C �
T
. yXi/

[ // C �
T
.X j U I zk/
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Proof The product of ˛˝f 2 C �
T
.X;Uj I

zk/ and ˇ˝g 2 C �
T
. yXi/ is defined by

(3-10) .˛˝f /[ .ˇ˝g/D ˛[��. y̌/˝fg;

where y̌ 2 C �.X / is a preimage of ˇ .

To show that this is well-defined, consider a U –small singular simplex � in zX . If
� lies in ��1.Uj /, then so does any face � 0 of it. Hence ˛.� 0/ D 0 and therefore
.˛[��. y̌//.�/D 0. If � does not lie in ��1.Uj /, then it lies in ��1. yXi/��

�1. yXj /

since it is U –small, and .˛[��. y̌//.�/ is again independent of the choice of y̌.

The commutativity of the diagram is clear by construction.

For i � j , write

(3-11) xC �T;c.Xj ;Xi I
zk/D lim

�!
C �T .Uj ;Ui I

zk/

where the direct limit is taken over all open covers U induced by sequences U as
above, and let xC T;c

� .Xj ;Xi I
zk/ be the R–dual complex. Note that for i � j � k we

have short exact sequences

(3-12) 0! xC �T;c.Xk ;Xj I
zk/! xC �T;c.Xk ;Xi I

zk/! xC �T;c.Xj ;Xi I
zk/! 0;

and the canonical maps

xC �T;c.Xj ;Xi I
zk/! C �T;c.Xj ;Xi I

zk/ and C
T;c
� .Xj ;Xi I

zk/! xC T;c
� .Xj ;Xi I

zk/

are quasi-isomorphisms by tautness.

By passing to the direct limit in Lemma 3.5, we get the family of relative cup products

(3-13) xC �T;c.X;Xi I
zk/˝C �T .

yXi/
[
�! xC �T;c.X I

zk/:

Fix a representative cT 2
xC

T;c
n .X I zk/ of the equivariant orientation oT 2H

T;c
n .X I zk/.

Composition of (3-13) with cT yields a pairing xC �
T;c
.X;Xi I

zk/˝C �
T
. yXi/!R, which

we interpret as a map

(3-14) fi W
xC �T;c.X;Xi I

zk/! C T
� .
yXi/:

Lemma 3.6 The map (3-14) is a quasi-isomorphism. Moreover, for i � j it leads to a
commutative diagram

0 // xC �
T;c
.X;Xj I

zk/

fj��

// xC �
T;c
.X;Xi I

zk/

fi��

// xC �
T;c
.Xj ;Xi I

zk/

fj i��

// 0

0 // C T
� .
yXj / // C T

� .
yXi/ // C T

� .
yXi ; yXj / // 0

whose rows are exact and whose induced map fji is a quasi-isomorphisms as well.
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Proof The exactness of the top row in the diagram was already observed in (3-12).
The compatibility of relative cup products with restrictions stated in Lemma 3.5 implies
that the left square in the diagram commutes, which induces the right vertical arrow.

Note that Proposition 2.9 remains valid for twisted coefficients, and that the diagram

(3-15)

H�
T;c
.X;Xi I

zk/˝H
T;c
� .X;Xi I

zk/ //

Š

��

R

D

��
H�

T;c
. yXi I
zk/˝H

T;c
� . yXi I

zk/ // R

is commutative. Moreover, the restriction of the orientation oT to any component of
yXi is again an orientation. Hence the map (3-14) corresponds to the map

H�T;c.
yXi I
zk/!H T

� .
yXi/;

which is an isomorphism by Proposition 3.2.

Coming back to the commutative ladder, two out of the three maps between the
corresponding long exact sequences in (co)homology are isomorphisms, hence so is
the third.

Proof of Theorem 3.4 Consider the filtration ∅�B�A�X of X and the associated
diagram

0 // xC �
T;c
.A;BI zk/

fAB

��

// xC �
T;c
.AI zk/

fA

��

// xC �
T;c
.BI zk/

fB

��

// 0

0 // C T
� .X nB;X nA/ // C T

� .X;X nA/ // C T
� .X;X nB/ // 0

whose top row is again of the form (3-12). The maps fA and fB are special cases
of the map fji from Lemma 3.6. It follows from their definition that the right square
commutes, which induces the map fAB . By passing to (co)homology we get the com-
mutative ladder stated in Theorem 3.4. Since H�.fA/ and H�.fB/ are isomorphisms
by Lemma 3.6, so is H�.fAB/. This proves the first part of the theorem.

The analogous result with the roles of (co)homology reversed is obtained by applying
the functor HomR.�;R/ to the diagram above. Because the short sequences in the
diagram split over R, their duals remain exact. Moreover, the natural inclusion of
C �

T
.A;B/ into its double dual is a chain homotopy equivalence. This follows from

the fact that for the chain-equivalent minimal Hirsch–Brown model, which is free and
finitely generated over R, the corresponding map is even an isomorphism.
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A spectral sequence version of equivariant Poincaré–Alexander–Lefschetz duality is as
follows:

Proposition 3.7 Let oT 2H
T;c
n .X I zk/ be an equivariant orientation of X . Taking the

cap product with oT induces an isomorphism (of degree �n) from the E1 page on
between the spectral sequences

E
p
1
DH�T;c.Xp;Xp�1I

zk/)H�T;c.X I
zk/;

E
p
1
DH T

� .
yXp�1; yXp/)H T

� .X /:

Similarly, the spectral sequences

E
p
1
DH

T;c
� .Xp;Xp�1I

zk/)H
T;c
� .X I zk/;

E
p
1
DH�T .

yXp�1; yXp/)H�T .X /

are isomorphic from the E1 page on.

Proof We filter xC �
T;c
.X I zk/ by Fi D

xC �
T;c
.X;Xi�1I

zk/ for 0� i �m and similarly

C T
� .X / by yFi D C T

� .
yXi�1/.

We know from Lemma 3.6 that the diagram

(3-16)

Fj D
xC �

T;c
.X;Xj I

zk/ //

��

C T
� .
yXj /D yFj

��

Fi D
xC �

T;c
.X;Xi I

zk/ // C T
� .
yXi/D yFi

commutes for i � j , so that we obtain a map of spectral sequences with

Ei
0.F/D xC

�
T;c.Xi ;Xi�1I

zk/!Ei
0.
yF/D C T

� .
yXi�1; yXi/;(3-17)

Ei
1.F/DH�T;c.Xi ;Xi�1I

zk/!Ei
1.
yF/DH T

� .
yXi�1; yXi/:(3-18)

It follows as in the proof of Theorem 3.4 that the map (3-18) is an isomorphism. The
second part follows analogously by dualizing (3-14) and the filtrations F and yF .

Equipped with equivariant Poincaré–Alexander–Lefschetz duality, we can easily deduce
the following result, which is asserted in [9, page 849] without proof.

Corollary 3.8 If X is orientable and T acts locally freely, then X=T is an orientable
k–homology manifold of dimension n� r .
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Proof As discussed in Remark 2.1, X=T satisfies our assumption on spaces, and it is
connected since X is.

To verify condition (2-36), take an x2X with image xx2 xX DX=T . By Proposition 2.7
and Poincaré–Alexander–Lefschetz duality for the T –pair .T x;∅/ in X , we have

(3-19) Hi. xX ; xX nfxxg/DH T
iCr .X;X nT x/ŠH n�r�i

T;c .T x/

DH n�r�i
c .fxxg/D

�
k if i D n� r ,
0 otherwise.

Again by Proposition 2.7, the equivariant orientation oT 2 H
T;c
n .X / descends to a

non-zero element in H c
n�r .X=T /. Hence X=T is orientable.

Example 3.9 A simple example shows why orientability is needed in Corollary 3.8
above. Let X be the open Möbius band with its standard locally free action of T DS1 .
Then X=T is a half-open interval, and so it is not a (homology) manifold, but rather
a manifold with boundary. The quotient zX=T of the orientation cover looks like the
letter “V” with its vertex corresponding to the end point of the interval, which in turn
corresponds to the middle circle, the only non-free orbit.

Remark 3.10 Let .A;B/ be a closed T –pair in X . In Proposition 2.7 we established
an isomorphism of H�.BL/–modules

(3-20) H T
� .A;B/DH L

��p.A=K;B=K/

whenever a subtorus K � T of rank p and with quotient L D T=K acts freely
on AnB ; a locally free action was sufficient in case char k D 0. In the context of
orientable homology manifolds, we can now understand this isomorphism in terms of
Poincaré–Alexander–Lefschetz duality:

Assume that K acts freely (or just locally freely if char k D 0) on the orientable
homology manifold X , so that X=K is again an orientable homology manifold by
Corollary 3.8. Let n D dim X D dim X=K C p . Using the cohomological part of
Proposition 2.7 and Poincaré–Alexander–Lefschetz duality, we get

H T
� .A;B/DH n��

T;c .X nB;X nA/(3-21)

DH n��
L;c ..X nB/=K; .X nA/=K/DH L

��p.A=K;B=K/:(3-22)

Hence the isomorphism (3-20) can be interpreted as a push-forward map or integration
over the fibre in this setting.
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3.3 Thom isomorphism

As in the non-equivariant case, the Thom isomorphism is a consequence of Poincaré and
Poincaré–Alexander–Lefschetz duality; cf [13, Section VIII.7, Section VIII.11]. In fact,
one can use our version of equivariant duality to define also Gysin homomorphisms
(push forwards), indices, Euler classes etc. in the equivariant setting and to prove their
main properties (cf [4, Section 5.3]) for cohomology with different supports. The
use of the Cartan model even provides a more functorial approach than the minimal
Hirsch–Brown model used in [4]. Here we only develop the theory as far as needed for
our applications in Section 4.2.

We continue to assume that X is an n–dimensional k–homology manifold with a
T –action.

Proposition 3.11 (1) Let Y �X be a closed T –stable k–homology manifold of
dimension m. Suppose that the orientation cover of X restricts to the orientation
cover of Y . Then there is an isomorphism of R–modules H�

T
.X;X nY / Š

H�
T
.Y / of degree m� n.

(2) Assume char kD 0, and let K � T be a subtorus. Then there is an isomorphism
of R–modules H�

T
.X;X nX K / Š H�

T
.X K /. This isomorphism has degree

m�n if all components of X K are of dimension m; in general it only preserves
degrees mod 2.

Proof We start with the first case. By Poincaré–Alexander–Lefschetz duality for the
pair .X;Y / and Poincaré duality for Y we have isomorphisms of R–modules

(3-23) H�T .X;X nY /ŠH
T;c
� .Y; zk/ŠH�T .Y /;

whose composition has degree m� n. Note that for the first isomorphism H
T;c
� .Y; zk/

is defined via the restriction of the orientation cover of X , and via the orientation cover
for Y in the second isomorphism. By assumption, these two covers coincide.

We now consider the fixed point set X K . It has finitely many components, say
Y1; : : : ;Yk , which are k–homology manifolds whose dimensions are congruent to n

mod 2 by a result of Conner and Floyd [6, Theorem V.3.2]. By excision we have

(3-24) H�T .X;X nX K /D
M

i

H�T .X;X nYi/:

The claim follows once we know that the restriction of an orientation cover for X to
each Yi is an orientation cover for that component. This is the content of the following
lemma.
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Lemma 3.12 Assume char kD 0. Then the restriction of an orientation cover for X

to any component Y of X T is an orientation cover for Y .

Note that each component Y is orientable if and only if its orientation cover is trivial.
According to the theorem of Conner and Floyd mentioned previously, each component
Y of X T is orientable if X is so. Lemma 3.12 can therefore be seen as a generalization
of this part of their result. Also note that for a smooth T –manifold X , Lemma 3.12
is a consequence of the fact that the normal bundle of each component Y of X T

is orientable (cf [14, Corollary 2]): By excision one can restrict from X to a T –
stable tubular neighbourhood of Y , and, like the normal bundle, this neighbourhood is
orientable if and only if Y is.

Proof Let zX ! X be an orientation cover for X and zZ ! Z its restriction to
Z DX T . Note that zZ D . zX /T . For each component Y of Z , say of dimension m,
let zY ! Y be the further restriction. We will show H c

m.
zY /� ¤ 0, which proves that

zY ! Y is an orientation cover of Y : If Y is orientable, this condition ensures that zY
is disconnected, and if Y is non-orientable, it shows that zY is orientable.

Since the cap product (3-2) is natural with respect to proper maps of spaces, we get a
commutative diagram

(3-25)

H�
T;c
. zX /�

\ ��.b/ //

��

��

H T
� .
zX /C

H�
T;c
. zZ/�

\b // H T
� .
zZ/C

��

OO

where �W zZ ,! zX and b 2 H
T;c
� . zZ/� . Note that ��W H c

�.
zZ/! H c

�.
zX / commutes

with the involution � and therefore preserves the ˙1 eigenspaces. Let S �R be the
multiplicative subset of homogeneous polynomials of positive degree. We localize
the diagram at S and choose b to be a preimage of oT 2 S�1H T

� .
zX /� , which is

possible by the localization theorem in equivariant homology (Proposition 2.5, here for
homology with closed supports). By the same result and equivariant Poincaré duality,
this turns the top and vertical arrows into isomorphisms, hence also the bottom arrow.

Now b 2 S�1H
T;c
� . zZ/� is a sum of elements, one for each component of Z DX T .

The summand bY corresponding to the component Y can be written in the form

(3-26) bY
D bY

mC � � �C bY
0 2 S�1H

T;c
� . zY /� DH c

�.
zY /�˝S�1R

for some bY
i 2H c

i .
zY /�˝S�1R. A cap product ˛\c with ˛2H m. zY / and c2H c

i .
zY /

vanishes unless i Dm. Because capping with bY is an isomorphism, we conclude that
bY

m ¤ 0, hence H c
m.Y /� ¤ 0.
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4 Applications to the orbit structure

We assume throughout the rest of this paper that X is a T –space and that the charac-
teristic of the field k is 0. Recall that the orbit filtration .Xi/ has been defined in the
introduction.

4.1 General T –spaces

In [3, Sections 4, 5.1 and 5.2] we established results about the equivariant cohomology
with closed supports and equivariant homology with compact supports of the orbit
filtration of a T –space X . All these results have analogues for the other pair of
supports, ie for cohomology with compact supports and homology with closed supports.
Moreover, for a k–homology manifold X , one has another set of analogous results
for (co)homology with twisted coefficients. The proofs for the new cases are usually
identical to the ones given in [3]. In the case of twisted coefficients, one may alternatively
derive them from the decompositions (2-44) and (2-45) and the untwisted result for
an orientation cover; see Proposition 4.1 below for an example. We therefore content
ourselves by stating the most important results in a more general setting. All results in
this section are equally valid for the other pair of supports.

We simplify notation in the following way: For a T –pair .A;B/ in a homology mani-
fold X we write H�

T
.A;BI `/ to denote either cohomology with constant coefficients

(` D k) or with twisted coefficients (` D zk). The same applies to homology and
(co)chain complexes. If X is not a homology manifold, then ` always means constant
coefficients.

Proposition 4.1 The R–modules H�
T
.Xi ;Xi�1I `/ and H T

� .Xi ;Xi�1I `/ are zero or
Cohen–Macaulay of dimension r � i for 0� i � r .

Proof The version for constant coefficients and the usual pair of supports is proved in
[3, Proposition 4.2], following the ideas of [5, Section 7]. The proof for the other pair
of supports is identical. The case of twisted coefficients follows from the untwisted
version for an orientation cover and the observation that a non-zero direct summand of
a Cohen–Macaulay module is again Cohen–Macaulay of the same dimension.

Corollary 4.2 The spectral sequence associated with the orbit filtration of C T
� .X I `/

and converging to H T
� .X I `/ degenerates at E1

p DH T
� .Xp;Xp�1I `/.

Proof See [3, Corollary 4.4].
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The following two results are immediate consequences of Corollary 4.2; cf [3, Corollary
4.6]. For the convenience of the reader, we provide proofs that are based only on the
crucial Cohen–Macaulay property identified in Proposition 4.1.

Proposition 4.3 For any �1� i < j � r there is a short exact sequence

0!H T
� .Xj ;Xi I `/!H T

� .X;Xi I `/!H T
� .X;Xj I `/! 0:

Proposition 4.4 Extp
R
.H T
� .Xj ;Xi I `/;R/D 0 for p > j and p � i . In other words,

dimR H T
� .Xj ;Xi I `/� r � i � 1 and depthR H T

� .Xj ;Xi I `/� r � j .

Proof of Propositions 4.3 and 4.4 We prove both statements simultaneously by
falling induction on i . For i D r there is nothing to show.

Now assume both claims are true for a given i and all j � i . By Proposition 4.1,
H T
� .Xi ;Xi�1I `/ is zero or Cohen–Macaulay of dimension r�i . Because H T

� .X;Xi I `/

is of dimension at most r � i � 1 by induction, the connecting homomorphism

(4-1) H T
� .X;Xi I `/!H T

��1.Xi ;Xi�1I `/

is zero (cf [3, Lemma 2.2]), so that we get the short exact sequence

(4-2) 0!H T
� .Xi ;Xi�1I `/!H T

� .X;Xi�1I `/!H T
� .X;Xi I `/! 0:

By induction, the map H T
� .X;Xi I `/! H T

� .X;Xj I `/ is surjective, hence so is the
composition

(4-3) H T
� .X;Xi�1I `/!H T

� .X;Xi I `/!H T
� .X;Xj I `/;

which proves the first claim. Taking X DXj in (4-2), we obtain

(4-4) 0!H T
� .Xi ;Xi�1I `/!H T

� .Xj ;Xi�1I `/!H T
� .Xj ;Xi I `/! 0:

The second claim now follows by induction and the way Ext modules (or dimension
and depth/projective dimension) behave with respect to short exact sequences.

The spectral sequence for equivariant cohomology induced by the orbit filtration does
not degenerate at the E1 page in general. Since this page of the spectral sequence is
of independent interest, we give it a name.

The non-augmented Atiyah–Bredon complex AB�.X I `/ with coefficients in ` is the
complex of R–modules defined by

(4-5) ABi.X I `/DH�Ci
T

.Xi ;Xi�1I `/
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for 0� i � r and zero otherwise. The differential

(4-6) di W H
�
T .Xi ;Xi�1I `/!H�C1

T
.XiC1;Xi I `/

is the connecting map in the long exact sequence of the triple .XiC1;Xi ;Xi�1/. Note
that AB�.X I `/ is the E1 page of the spectral sequence arising from the orbit filtration
of X and converging to H�

T
.X I `/, and its cohomology H�.AB�.X I `// is the E2

page.

The augmented Atiyah–Bredon complex is obtained by augmenting AB�.X I `/ by
AB�1.X I `/DH�

T
.X I `/ and the restriction to the fixed point set,

(4-7) 0!H�T .X I `/!H�T .X0I `/
d0
�!H�C1

T
.X1;X0I `/

d1
�! � � �

dr�1
���!H�Cr

T
.Xr ;Xr�1I `/! 0:

Remark 4.5 This sequence first appeared explicitly in the paper [9] of Bredon, but it
goes back to work of Atiyah [5, Section 7]. In the context of equivariant K–theory,
Atiyah showed that the freeness of K�

T
.X / implies that the sequence

(4-8) 0!K�T .X;Xi�1/!K�T .Xi ;Xi�1/!K�T .X;Xi/! 0

is exact for all i [5, Equation (7.3)]. This in turn is equivalent to the exactness of the
K–theoretic analogue of (4-7); cf Franz and Puppe [17, Lemma 4.1]. Atiyah actually
considered representations only, but his arguments work for any T –space.

It turns out that the cohomology of the non-augmented Atiyah–Bredon complex is
completely determined by H T

� .X I `/.

Theorem 4.6 For any T –space X the following two spectral sequences converging
to H�

T
.X I `/ are naturally isomorphic from the E2 page on:

(1) The one induced by the orbit filtration with E
p
1
DH�

T
.Xp;Xp�1I `/

(2) The universal coefficient spectral sequence with E
p
2
D Extp

R
.H T
� .X I `/;R/

Proof See [3, Theorem 4.8]. The version for twisted coefficients may again be derived
from the untwisted result for an orientation cover.

Corollary 4.7 For any i � 0 there is an isomorphism of R–modules

H i.AB�.X I `//D ExtiR.H
T
� .X I `/;R/:

In Section 5 we will give a direct proof of this important result that is not based on
Theorem 4.6.
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Theorem 4.8 The following conditions are equivalent for any 0� j � r :
(1) The Atiyah–Bredon sequence (4-7) is exact at all positions �1� i � j � 2.
(2) The restriction map H�

T
.X I `/!H�

K
.X I `/ is surjective for all subtori K of T

of rank r � j .
(3) H�

T
.X I `/ is free over all subrings H�.BL/ � H�.BT / D R, where L is a

quotient of T of rank j .
(4) H�

T
.X I `/ is a j th syzygy.

Several equivalent definitions of syzygies are collected in [3, Section 2.3].

Proof The proof of [3, Theorem 5.7] carries over. Only the argument for the equiv-
alence (2), (3) has to be slightly modified in the case of twisted coefficients: The
involution on an orientation cover zX induces one on the Borel construction zXT , and
H�

T
.X I zk/DH�. zXT /� in the notation of Section 2.6, and analogously for K . (Note

that the decomposition of the cohomology into the ˙1 eigenspaces of the involution
exists even for spaces that do not satisfy our standing assumptions.) Now one considers
the map

(4-9) H�T .X I
zk/DH�T=K .

zXK /�!H�. zXK /� DH�K .X I
zk/;

and applies the Leray–Hirsch argument as used in [3] to the �1 eigenspaces.

4.2 Homology manifolds

In this section we assume that X is a k–homology manifold. Theorem 4.6 and
[3, Theorem 4.8] may be combined with Poincaré duality and Poincaré–Alexander–
Lefschetz duality in various ways. The following result is an example of this. Recall
that yXi DX nXi .

Corollary 4.9 The following spectral sequences are isomorphic from the E2 page on:

E
p
1
DH T

� .
yXp�1; yXp/)H T

� .X /

E
p
2
D Extp

R
.H�T .X /;R/)H T

� .X /

Proof Let nD dim X . By Proposition 3.7, the first spectral sequence is isomorphic,
from the E1 page on, to the spectral sequence

(4-10) E
p
1
DH�T;c.Xp;Xp�1I

zk/Œ�n�)H�T;c.X I
zk/Œ�n�:

By Poincaré duality, the second spectral sequence is isomorphic to

(4-11) E
p
2
D Extp

R
.H

T;c
� .X I zk/;R/Œ�n�)H�T;c.X I

zk/Œ�n�:

Hence the claim follows from Theorem 4.6.
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Proposition 4.10 For any 0� i � r there is an isomorphism of R–modules

H�T .
yXi�1; yXi/ŠH�T .Xi nXi�1/;

preserving degrees modulo 2.

Proof Since only finitely many isotropy groups occur in X , there is a subtorus K�T

such that yX K
i�1
DXi nXi�1 . Hence our claim reduces to the Thom isomorphism from

Proposition 3.11.

The following result generalizes a theorem of Duflot [14, Theorem 1] concerning smooth
actions on differential manifolds. More than the extension to continuous actions on
homology manifolds, our main insight is that Duflot’s result follows by equivariant
Poincaré–Alexander–Lefschetz duality from Proposition 4.3, which is valid for all
T –spaces.

Proposition 4.11 For any 0� i � r there are short exact sequences

0!H�T .X;
yXi/!H�T .X /!H�T .

yXi/! 0

0!H�T .X;
yXi�1/!H�T .X;

yXi/!H�T .Xi nXi�1/! 0

where the right map in the lower sequence preserves degrees only mod 2.

Duflot also considers actions of p–tori .Zp/
r with p > 2. The results of [3] and this

paper can as well be extended to p–tori; we will elaborate on this elsewhere because
some proofs require modification.

Proof By Proposition 4.3 we have a short exact sequence

(4-12) 0!H T
� .Xi I

zk/!H T
� .X I

zk/!H T
� .X;Xi I

zk/! 0:

The first short exact sequence we are claiming follows from this by Poincaré–Alexander–
Lefschetz duality (Theorem 3.4).

Replacing Xi by Xi�1 and Xj by Xi in Proposition 4.3 leads similarly to the short
exact sequence

(4-13) 0!H�T .X;
yXi�1/!H�T .X;

yXi/!H�T .
yXi�1; yXi/! 0:

Combining this with Proposition 4.10 confirms our second claim.

Not surprisingly, we also get the following spectral sequence version:
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Proposition 4.12 The spectral sequence associated to the filtration . yXi/ and converg-
ing to H�

T
.X / degenerates at the E1 page.

Proof By Proposition 3.7, this spectral sequence is isomorphic, from the E1 page on,
to the spectral sequence converging to H T;c

� .X I zk/ with E
p
1
DH T;c

� .Xp;Xp�1I
zk/.

The latter degenerates by Corollary 4.2.

4.3 Uniform actions

Let X be a T –space. For dimensional reasons, it follows from Proposition 4.1 that
the differential

(4-14) di W H
�
T .Xi ;Xi�1/!H�C1

T
.XiC1;Xi/

cannot be injective unless H�
T
.Xi ;Xi�1/D 0. This has implications for the uniformity

of actions, which we discuss now.

Recall from [4, Definition 3.6.17] that the T –action on X is said to be uniform if for
any subtorus K � T and any component F of X K one has FT ¤∅. (This implies
X T ¤∅ if X ¤∅.)

We call F a minimal stratum of X corresponding to the subtorus K � T if F is a
component of X K and if FL D∅ for any subtorus L properly containing K . Note
that the action is uniform if and only if all minimal strata are components of X T . This
observation makes it easy to construct non-uniform actions, even in the context of
compact orientable manifolds with fixed points; see [2, Example 1.7.4].

It has been noted by a number of authors that the T –action is uniform if H�
T
.X / is a

free R–module. A large part of [3], however, is concerned with the case where H�
T
.X /

is a torsion-free R–module (that is, a first syzygy), but not necessarily free. So we
note the following, which is also an immediate consequence of the characterization of
uniform actions given in [4, Theorem 3.6.18].

Proposition 4.13 If H�
T
.X / is R–torsion-free, then the action is uniform.

Proof Assume that there is a minimal stratum F , corresponding to a subtorus K ¨ T .
Then H�

T
.F / is a direct summand of H�

T
.X K /. Set SDH�.BK/nf0g and zSDRnf0g.

By the localization theorem, we have

(4-15) S�1H�T .X /Š S�1H�T .X
K /D S�1H�T .F /˚S�1H�T .X

K
nF /;

so we can choose a c 2H�
T
.X / such that its image in S�1H�

T
.X K / is non-zero and

lies in S�1H�
T
.F /. Because FT is empty, H�

T
.F / is R–torsion. This implies that
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the image of c in zS�1H�
T
.X T / is zero, hence also the one in H�

T
.X T /. But this is a

contradiction because the torsion-freeness of H�
T
.X / is equivalent to the injectivity of

the map H�
T
.X /!H�

T
.X T /.

Proposition 4.14 Let F be a minimal stratum of X corresponding to a subtorus
K � T of rank r � i . Then H i.AB�.X //¤ 0.

Proof The minimal stratum F is a component of both Xi nXi�1 and Xi nXi�2 . So
the summand H�

T
.F / maps isomorphically under the restriction H�

T
.Xi ;Xi�1/!

H�
T
.Xi ;Xi�2/, and H�

T
.F /\ im di�1 D 0. On the other hand, dimR H�

T
.F /D r � i .

Because H�
T
.XiC1;Xi/ is of dimension r � i � 1, the restriction of the differential to

H�
T
.F / cannot be injective.

Proposition 4.14 also follows from [4, Theorem 3.6.14]. For another result relating
the uniformity and torsion-freeness, see [4, Theorem 3.8.7 (4)]. In the notation of that
theorem, a minimal stratum F D c corresponding to a subtorus K � T gives one of
the pairs .Ki ; ci/, 1� i �  .

5 The cohomology of the Atiyah–Bredon complex

In this section we shall give a direct proof of Corollary 4.7. Instead of reasoning with
spectral sequences, we will rely on Propositions 4.3 and 4.4. Our proof is valid for any
pair of supports and, in case of a k–homology manifold, also for twisted coefficients.
For ease of notation, we write it down only for constant coefficients and the usual
pair of supports. Recall that we are still assuming the characteristic of k to be 0. For
convenience, we define XrC1 DX in addition to X�1 D∅.

Let 0� i � r . The following commutative diagram with exact rows will play a central
role:

(5-1)

0 // H T
� .Xi/

��

// H T
� .XiC1/

��

// H T
� .XiC1;Xi/

��

// 0

0 // H T
� .Xi ;Xi�1/ // H T

� .XiC1;Xi�1/ // H T
� .XiC1;Xi/ // 0

The exactness of the top row is Proposition 4.3 for the triple .XiC1;Xi ;X�1/, and that
of the bottom follows by looking at .XiC1;Xi ;Xi�1/.

For brevity, we denote H T
� .Xj ;Xi/ by Mj ;i and, for any R–module M , we abbreviate

Extp
R
.M;R/Œp� by Ep.M /. From the bottom row of (5-1) and the long exact sequence
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for Ext we have a connecting homomorphism

(5-2) E i.Mi;i�1/
ıi
�! E iC1.MiC1;i/:

Lemma 5.1 There is an isomorphism of R–modules, natural in X ,

H i.AB�.X //Š ker ıi= im ıi�1:

Proof By Proposition 4.4, the universal coefficient spectral sequence

E
p
2
D Extp

R
.H T
� .XiC1;Xi�1/;R/)H�T .XiC1;Xi�1/

collapses (since E
p
2
D 0 unless p D i or i C 1), and there is a short exact sequence

(5-3) 0! E iC1.MiC1;i�1/!H�T .XiC1;Xi�1/! E i.MiC1;i�1/! 0

coming from the filtration of the spectral sequence.

Consider the following (possibly non-commuting) diagram:

H�
T
.XiC1;Xi�1/ //

��

H�
T
.Xi ;Xi�1/

di //

�i

��

H�
T
.XiC1;Xi/ // H�

T
.XiC1;Xi�1/

0 // E i.MiC1;i�1/ // E i.Mi;i�1/
ıi // E iC1.MiC1;i/ //

 iC1

OO

E iC1.MiC1;i�1/ //

OO

0

The rows are part of long exact sequences; the bottom one is based on the bottom row
of (5-1) and uses again Proposition 4.4. The vertical maps come from (5-3), and �i

and  iC1 are isomorphisms, once again by Proposition 4.4. The left square and the
right square commute by naturality. Hence �i maps ker di isomorphically onto ker ıi ,
and  iC1 maps im ıi isomorphically onto im di .

The maps �i and  i are induced by the filtration of H�
T
.Xi ;Xi�1/ coming from

the universal coefficient spectral sequence. But since ExtjR.H
�
T
.Xi ;Xi�1/;R/D 0 for

j ¤ i , the filtration of H�
T
.Xi ;Xi�1/ has only one non-trivial step, ie , it looks like

(5-4) 0D � � � D 0D F iC1
� F i

DH�T .Xi ;Xi�1/D F i�1
D � � � D F0:

By the properties of spectral sequences the composition  i�i is the inclusion F i ,!

F i�1 , which in our case is the identity. So �i D  
�1
i for any i .

As a consequence, �i induces an isomorphism

ker di= im di�1! ker ıi= im ıi�1:
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Proof of Corollary 4.7 Applying ExtR.�;R/ to the diagram (5-1) leads to the
commutative diagram:

E i.H T
� .XiC1// // E i.H T

� .Xi// // E iC1.MiC1;i/

E i.Mi;i�1/
ıi //

OO

E iC1.MiC1;i/

D

OO

Together with the analogous square for i�1 instead of i we can form the commutative
diagram

0

E i�1.H T
� .Xi�1//

D //

OO

E i�1.H T
� .Xi�1//

��
E i�1.Mi�1;i�2/

ıi�1 //

OO

E i.Mi;i�1/
ıi //

pi
��

E iC1.MiC1;i/

E i.H T
� .Xi//

D //

��

E i.H T
� .Xi//

OO

0 E i.H T
� .XiC1//

OO

0

OO

where all columns come from the long exact sequence for Ext, applied to some row of
(5-1). We have used Proposition 4.4 to obtain the zero entries. As a consequence,

ker ıi D p�1
i .E i.H T

� .XiC1///;(5-5)

im ıi�1 D ker pi :(5-6)

Hence

(5-7) H i.AB�.X //D ker ıi= im ıi�1 Š E i.H T
� .XiC1//Š E i.H T

� .X //:

The last isomorphism follows from Proposition 4.4 and the short sequence

(5-8) 0D E i.H T
� .X;XiC1//! E i.H T

� .X //

! E i.H T
� .XiC1//! E iC1.H T

� .X;XiC1//D 0:

This completes the proof.
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