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Invariants of links in thickened surfaces

J SCOTT CARTER
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SUSAN G WILLIAMS

A group invariant for links in thickened closed orientable surfaces is studied. Associ-
ated polynomial invariants are defined. The group detects the nontriviality of a virtual
link and determines its virtual genus.

57M25; 20E22

1 Introduction

A link in a thickened surface is a closed 1–dimensional submanifold `D `1[� � �[`d �

S �I , where S is a closed, connected orientable surface. Two such links `; `0 � S �I

are equivalent if there exists an orientation-preserving homeomorphism

hW .S � I IS � f0g; `/! .S � I IS � f0g; `0/:

Equivalent links are regarded as the same.

A link `� S � I is trivial if its components bound pairwise disjoint embedded disks.
An oriented link is defined in the usual way by giving an orientation to each component
of `� S � I . The homeomorphism h is required to preserve all orientations. A knot
is a link with only one component. Links in S2 � I correspond bijectively to isotopy
classes of (classical) links in S3 .

Our purpose is to introduce a group and associated polynomial invariants for links ` in
thickened surfaces S � I . It is well known that ` represents a virtual link. We show
that the group associated to ` detects the nontriviality of the virtual link (Theorem 3.5)
as well as its virtual genus (Theorem 6.1).
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2 The covering group of a link in a thickened surface

Let `D `1 [ � � � [ `d be a link in a thickened closed orientable surface S � I . The
universal cover zS of S has deck transformation group � D �1S . When the genus
of S is positive, zS is homeomorphic to R2 . The link ` lifts to z̀� zS�I . Equivalently,
one can lift a diagram D for ` to zD � zS . When S is a torus, zD is a “doubly periodic
textile structure” in the sense of Morton and Grishanov [15].

S

zS

Figure 1: Diagram D and lift zD

We consider the fundamental group �1. zS�I n z̀/. A homeomorphism hW S�I!S�I

taking one link to another lifts to the universal covers and induces an isomorphism of
the corresponding groups. Hence �1. zS � I n z̀/ is an invariant of `� S � I .

Definition 2.1 If `� S � I is a link in a thickened closed orientable surface, then its
covering group is �1. zS � I n z̀/. It is denoted by z�` .

Remark 2.2 When S D S2 , the covering group z�` is the classical link group
�1.S

3 n `/.

We assume throughout that S is a closed orientable surface with positive genus. The
nontrivial group � acts on z�` , and we write a for the image of a 2 z�` under  2 � .

Once an orientation for ` is chosen, an orientation for z̀ can be lifted. We choose a
basepoint in zS � f1g � zS � I n z̀, and we use it throughout. Wirtinger’s algorithm
then yields a presentation for z�` , with a generator corresponding to each arc of zD ,
and a relator for each crossing. The presentation is infinite. However, the generators
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comprise finitely many orbits fa j  2 �g, one for each arc of D . Similarly, we need
only a finite number of relator orbits.

Lemma 2.3 Let `�S�I be a link in a thickened surface. Then z�` has a presentation
such that the number of generator orbits is equal to the number of relator orbits.

Proof In the diagram D � S , the number of arcs is greater than or equal to the
number of crossings; we can obtain equality by Reidemeister moves. Each arc of D

corresponds to a generator orbit in the presentation of z�` described above, and each
crossing to a relator orbit.

The proof of Lemma 2.3 suggests a form of presentation for z�` that we will use
throughout.

Choose a fundamental domain R for the surface S , a 2g–gon. If a boundary edge
of R intersects the diagram D for `, we can assume that it does so transversely and in
its interior. We can also assume that every component of D contains an under-crossing.
In R, select representatives a1; : : : ; an of the � –orbits of arcs, which we identify with
meridional generators in z�` . The edges of R can be oriented and ordered so that they
project in S to a set of generators x�

1
;y�

1
; : : : ;x�g ;y

�
g for �1.S/D � . We label edges

(in pairs) with the dual generators x1;y1; : : : ;xg;yg (see Hatcher [6, Example 3.31]
or Collins and Zieschang [3, page 83]), and we choose these as generators of � . A
deck transformation corresponding to a generator, say x�i , takes R to a contiguous
region to the right of an oriented edge labeled xi . Each  2 � carries arcs a1; : : : ; an

to arcs identified with a

1
; : : : ; a


n . Some of these translated arcs may also intersect

the fundamental domain R. We write Wirtinger relators r1; : : : ; rm corresponding to
the crossings in R in the usual fashion. Then z�` is presented by the collection of
generators a


i and relators r


j .

We denote the presentation described above by ha1; : : : ; an j r1; : : : ; rmi� . We may
regard this either as shorthand for an infinite group presentation, or as an operator
group presentation. Operator groups are discussed in detail in the next section.

Figure 2 below illustrates with a simple example.

The groups z�` and �1.S � I n `/ are, of course, related. Given an orbit presenta-
tion P of z�` as above, obtain a group presentation yP by introducing the generators
x1;y1; : : : ;xg;yg and relator

Qg
iD1

Œxi ;yi � and replacing any symbol a ;  2 � ,
appearing in the relators with a�1 .

Proposition 2.4 The presentation yP is a presentation of �1.S � I n `/.
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by

ax

b

a

S

�k D ha; b j aax
D ba; baD axby

i

Š ha j axayaxy
D aaxay

i

� D hx;y j Œx;y�D 1i

Figure 2: Group z�k of a knot k in a thickened torus

Proof Consider the short exact sequence

1 �! z�`
p�
�! �1.S � I n `/

q
�! � �! 1

induced by the covering projection pW zS�Inz̀!S�In`. The natural homeomorphism
from S to S � f1g � S � I n ` induces a splitting sW �! �1.S � I n `/, and hence
�1.S � I n `/ is a semidirect product z�` Ì� � , where � is induced by the action of �
on z�` . (When  2 � , we abbreviate the image s. / by  for notational simplicity.)
Let a

�
1
; a
�
2
; : : : ; a

�
n .� 2 �/ be generators of the covering group z�` . Then the group

�1.S � I n `/ has a presentation of the form

hz�`; � j a
�
i 
�1
D � .a

�
i /i;

where �;  range over � and i D 1; : : : ; n. By the definition of the covering group,
� .a

�
i / is equal to �ai�

�1�1 . When  is the identity element e 2 � , the relations
imply that each a

�
i is equal to �ai�

�1 . (The symbol ai is a shorthand for ae
i .) We

apply Tietze transformations to eliminate the generators a
�
i ; � ¤ e . The remaining

relations a
�
i 
�1 D � .a

�
i / then become redundant and we remove them as well. The

resulting presentation for �1.S � I n `/ is yP .

Proposition 2.4 immediately yields the following fact, provable also by appealing to a
short exact sequence in homology.

Corollary 2.5 H1.S � I n `IZ/ Š H1.S IZ/˚Zd , where Zd is generated by the
classes of meridians of `, one from each component.

Remark 2.6 S � I is the exterior of a spatial graph consisting of a pair of disjoint,
standardly embedded g–leafed roses

W
i Xi ;

W
i Yi � S3 such that lk.Xi ;Yj /D ıi;j .

Hence S � I n ` is the exterior of the spatial graph � D .
W

i Xi/[ .
W

i Yi/[ `, where
` is disjoint from the circles Xi ;Yi . When g D 1, � is a classical link (cf [15]). In
the presentation yP of Proposition 2.4, we may regard xi as the class of Xi . However,
yi is not in general conjugate to the class of Yi .
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3 Operator groups

The covering group z�` is an example of an operator group, a notion introduced by
Krull and Noether. Additional material can be found in Bourbaki [1], Kurosh [13] and
Robinson [16].

Definition 3.1 An operator group is a pair .�; �/ and a function � � � ! � ,
.g;  / 7! g , such that

(1) � is a group,

(2) � is a set (the “operator set”),

(3) for all  2 � , the map g 7! g is an endomorphism of � .

Remark 3.2 When � is empty, .�; �/ is a group in the usual sense.

In the operator groups that we consider, � is itself a group. We also assume that

(4) g� D .g /� for all g 2 �; ; � 2 � .

The abelianization of � can then be regarded in a natural way as a right ZŒ��–module.

Definition 3.3 Let .�; �/ and .x�; x�/ be operator groups and �; x� groups. A homo-
morphism .f; �/W .�; �/! .x�; x�/ consists of group homomorphisms f W �! x� and
�W �! x� such that

f .g /D f .g/�./ for all g 2 �;  2 �:

An isomorphism is a homomorphism .f; �/ such that both f and � are isomorphisms.

Henceforth we regard z�` as an operator group with � D �1.S/. If `; `0 � S � I are
equivalent links, then there exists an isomorphism from z�` to z�`0 . The automorphism
�W � ! � can in fact be chosen to be an automorphism that is induced by a self-
homeomorphism of S , as we see next.

Let Auth.�/ denote the subgroup of Aut.�/ consisting of automorphisms induced by
orientation-preserving homeomorphisms of S .

Theorem 3.4 Let `; `0�S�I be equivalent links in a thickened surface. There exists
an isomorphism .f; �/W .z�`; �/! .z�`0 ; �/ such that � 2 Auth.�/.
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Proof We will assume that there exists an orientation-preserving homeomorphism
hW .S � I;S �fig/! .S � I;S �fig/, i D 0; 1, taking ` to `0 . Then h restricts to an
orientation-preserving homeomorphism of S�f1g, which we identify with S . Without
loss of generality, we can assume that h leaves fixed the basepoint � 2 S .

The map h lifts to a homeomorphism zh of zS � I that leaves fixed a lift z� of the
point �. It induces an isomorphism zf W �1. zS � I n z̀; z�/! �1. zS � I n z̀0; z�/ and also
an automorphism � of �1.S;�/. The pair .f; �/ determines an isomorphism from z�`
to z�`0 .

Theorem 3.5 A link `D `1 [ � � � [ `n in a thickened surface S � I is trivial if and
only if z�k Š ha1; : : : ; an j i� .

Proof If ` is trivial, then clearly z�` Š ha1; : : : ; an j i� .

Conversely, assume that z�` Š ha1; : : : ; an j i� . It suffices to prove that any compo-
nent `i bounds a disk that does not intersect any of the other components.

The group � acts freely on H1. zS�I n z̀IZ/, which is freely generated by the classes of
meridians of distinct components of z̀, with orientations induced by a fixed orientation
of `.

Fix i 2 f1; : : : ; ng, and choose a longitude for `i , an oriented simple closed curve �
in the boundary of a tubular neighborhood Ni of `i and intersecting a meridian m

transversely in a single point. (The homotopy class of the longitude � is not unique.)
Then � together with a base path represents an element of � D �1.S � I/. For
notational convenience, � will also denote this element.

Now, we let zm be any meridian of the preimage z̀i of `i , and consider the class
Œ zm� 2H1. zS � I n z̀IZ/. The action of � takes zm to another, homologous meridian of
the same component of z̀i , and hence it fixes the class Œ zm�. Since � acts freely, either
�D 1 or else Œ zm�D 0. But zm is an arbitrary meridian of z̀i , and meridians of distinct
components of `i are among the set of free generators of H1. zS � I n z̀IZ/. Hence
�D 1. We conclude that each component of z̀i is a closed curve.

Consider any component of z̀i . Lift � to z� in the boundary @ zNi of a tubular neigh-
borhood of the component. Let zm� @ zNi be a meridian such that z� and zm intersect
transversely and in a single point. Again for notational convenience, we let z� and zm
together with base paths denote the elements of z�` that they represent. Since z� and zm
commute and z�` is free, z� and zm must be powers of a common element. However, zm
is not a proper power since its � –orbit is among a set of free generators of z�` . Hence z�
is a power of zm. Reselecting �, if necessary, we can assume that z� is trivial in z�` .
Dehn’s Lemma implies that z� bounds a properly embedded disk in the exterior of z̀.
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Projecting down, we find that � is null-homotopic in S � I n `. Dehn’s Lemma now
implies that � bounds an embedded disk in the exterior of `. Since the component `i

that we considered was arbitrary, the link ` is trivial.

4 Polynomial invariants from the covering group

Let `D `1[� � �[`d be an oriented link in a thickened surface S�I . Let �W z�`!Zd D

ht1; : : : ; td j Œti ; tj �D 1 for all i; j i be the homomorphism that maps every meridian of
the lift of `i to ti ; 1� i�d . Let K be the kernel of � . Its abelianization M DK=ŒK;K�

is a right-module over ZŒ� �Zd �. In order to obtain a Noetherian module, we pass
to the quotient SM DM=M0 , where M0 is the submodule of M generated by all
elements of the form a � a� , where a 2M , ; � 2 � , and ��1 2 Œ�; ��. Then SM
is a right-module over the Noetherian ring ZŒH1� �Zd �Š .ZŒZ2g�/Œt˙1

1
; : : : ; t˙1

d
�.

Denote ZŒZ2g� by R. By Lemma 2.3, SM is presented by a square n� n matrix A

over Rd DRŒt˙1
1
; : : : ; t˙1

d
�. For any nonnegative integer i , define �i.`/ to be the

greatest common divisor of the .n� i/� .n� i/ minors of A. We call �i.`/ the i th

Alexander polynomial of `� S � I .

Remark 4.1 (1) For convenience, we refer to elements of both � and H1� D

�=Œ�; �� as operators.

(2) We have assumed throughout that the genus of S is positive. If we were to consider
the case S D S2 , then �i.`/ would be the usual Alexander polynomial invariants of `.

The polynomials �i.`/ are well defined up to multiplication by units in Rd and
symplectic change of coordinates in H1� . We make this precise.

Recall that a module H over Z (resp. R) is symplectic if it is equipped with a skew-
symmetric pairing H �H !Z (resp. H �H !R), .v; w/ 7! v �w . A standard basis
is a basis a1; b1; : : : ; ag; bg of H such that ai � aj D bi � bj D 0 and ai � bj D ıi;j for
all i; j . The first homology group of any compact oriented surface is a symplectic
module, and a standard basis exists which is represented by simple closed oriented
circles.

Fix a standard basis for H1.S IZ/Š Z2g . Any � 2 Auth.�/ induces an element of
the symplectic group Sp.2g;Z/, and hence an automorphism �] of Rd by extending
linearly in R and mapping each ti to itself. Two polynomials �;�0 are equivalent if
�0 D u ��].�/ for some unit u 2Rd and some � 2 Auth.�/.
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Proposition 4.2 Assume that `0 is obtained from ` by reversing the orientation of the
j th component. Then, for any i � 0, �i.`

0/ is obtained from �i.`/ by replacing tj
with t�1

j .

Proof Changing the orientation of some component of ` alters the covering group
by inverting generators corresponding to meridians of the component. The conclusion
follows using standard Fox calculus as for classical links in the 3–sphere.

Example 4.3 Returning to the example of Figure 2,

AD

�
1C tx� t �1

x� 1� tx ty

�
;

�0.k/D .xy �y/t2
C .y �x/t C .x� 1/:

Here we write t instead of t1 and x;y instead of x1;y1 . (In later examples, we avoid
subscripts in a similar fashion.) A Dehn twist induces �]W x 7! xy;y 7! y . Hence
�0.k/ is equivalent to .xy2�y/t2C .y �xy/t C .xy � 1/.

Consider the projection qW Rd ! ZŒt˙1
1
; : : : ; t˙1

d
� induced by the trivial homomor-

phism �! f1g.

Proposition 4.4 If ` is any oriented link in a thickened surface, then q.�0.`//D 0:

Proof Choose the rows of A to correspond to crossing relations. These have the form
.1�tj /aCti

0b� 00cD0, where a labels an overcrossing arc on the i th component,
and b

0

and c
00

label the undercrossing arcs on the j th component. For k D 1; : : : ; d ,
multiply each column of A corresponding to an arc on the k th component by 1� tk .
When we set the elements of � equal to 1, every row of A will sum to zero and so the
determinant will be zero.

5 Symplectic rank

Let V be a submodule of H1� Š Z2g . Tensoring with R, we obtain a subspace
W D V ˝R of H1�˝RŠR2g .

Definition 5.1 The symplectic rank of V , denoted by rks.V /, is the dimension of
W =W \W ? , where W ? D fv 2R2g j v �w D 0 for all w 2W g.

Remark 5.2 It is not difficult to see that rks.V / is the dimension of a maximal
symplectic subspace of R2g contained in W .
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Let z�` denote the covering group of a link `� S �I in a thickened surface. As above,
we regard z�` as a � –operator group.

Definition 5.3 Let P be a presentation of z�` . Its symplectic rank rks.P / is the
symplectic rank of the submodule WP of H1� generated by the operators that appear
in relators.

The symplectic rank of z�` is the minimum of rks.P /, taken over all presentations P

of z�` . It is denoted by rks.z�`/.

Definition 5.4 The symplectic rank of �0.`/ is the symplectic rank of the submod-
ule W� of H1� generated by quotients of operators that appear in the coefficients
of �0.`/. It is denoted by rks.�0.`//.

Proposition 5.5 The symplectic rank of �0.`/ is well defined and independent of the
orientation of `. Moreover,

rks.�0.`//� rks.z�`/:

Proof Recall that �0.`/ is defined up to multiplication by units in Rd DZŒH1��Zd �

and symplectic automorphisms of H1� . Since W� is spanned by quotients of elements
of H1� , it is unchanged if �0.`/ is multiplied by a unit of Rd . Furthermore, a symplec-
tic automorphism of H1� preserves orthogonality and hence it takes W�=W�\W ?

�

to an isomorphic module. The symplectic rank of �0.`/ is therefore well defined. By
Proposition 4.2, it is independent of the orientation of `.

To see why the inequality holds, consider any � –operator group presentation P of z�` .
We construct a square matrix �M as above with determinant equal to �0.`/. Any
operator that appears in the polynomial must be contained in WP .

Remark 5.6 (1) We can “base” �0.`/, multiplying by a unit of Rd so that some
coefficient is monic. Then considering quotients of elements is no longer necessary.
We will do this in the examples that follow.

(2) We will see in Example 7.2 that the inequality of Proposition 5.5 can be strict.

6 Applications to virtual links

The notion of a virtual link is due to Kauffman [11]. It is a nontrivial extension of the
classical theory of knots and links. Virtual links correspond bijectively to abstract link
diagrams, introduced by N Kamada in [7; 8] (see N Kamada and S Kamada [9]).
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It is shown by Carter, S Kamada and Saito in [2] that one can regard a virtual link as a
link diagram in a closed orientable surface up to Reidemeister moves on the diagram,
orientation-preserving homeomorphisms of the surface and adding or deleting hollow
1–handles in the complement of the diagram. Adding a 1–handle (“stabilization”) is a
surgery operation, removing two open disks disjoint from the diagram, and then joining
the resulting boundary components by an annulus. Deleting a 1–handle (“destabiliza-
tion”) is also a surgery operation, removing the interior of a neighborhood of a simple
closed curve that misses the diagram, and then attaching a pair of disks to the resulting
boundary.

In general we do not assume the surface is connected, but we do assume that each
component of the surface meets the link. We say a virtual link is split if it has a
diagram D supported by a 2–component surface S such that each component of S

meets D . We will also call a link `� S � I split if it represents a split virtual link.

The virtual genus of ` is the minimal genus of a surface that contains a diagram
representing the link. For a nonconnected surface, this is defined to be the sum of the
genera of the components.

We can regard a virtual link also as an equivalence class of embedded links in thick-
ened surfaces. The equivalence relation is generated by isotopy as well as stabiliza-
tion/destabilization. As in Kuperberg [12], destabilization consists of parametrized
surgery along an embedded annulus A that is vertical in the sense that ADp�1

1
.p1.A//,

where p1 is the first coordinate projection on S�I (see Waldhausen [20]). The reverse
operation of stabilization, which need not concern us here, is a parametrized connected
sum operation with a thickened torus.

The main theorem of [12] states that every virtual link has a unique representative
` � S � I for which the genus of S is equal to the virtual genus of ` and the
number of components of S is maximal. Uniqueness is up to Reidemeister moves and
orientation-preserving homeomorphisms of the surface. Consequently, the Alexander
polynomials �i.`/ of a link in a thickened surface of minimal genus and maximal
number of components are invariants of the virtual link it represents.

The main result of this section is the following theorem.

Theorem 6.1 Let ` be a nonsplit virtual link. For any representative `� S � I , the
symplectic rank of z�` is twice the virtual genus of `.

Proposition 5.5 immediately yields the following.

Corollary 6.2 For ` as above, the virtual genus of ` is at least half the symplectic
rank of �0.`/.
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The exterior X of ` is S � I minus the interior of a regular neighborhood of `.

Proposition 6.3 Assume that ` is neither a split link nor a local link (that is, a link
in a 3–ball). Then the exterior X is an irreducible 3–manifold with incompressible
boundary.

Proof Since zS � I is irreducible, so is S � I (see, eg, Hatcher [5, Proposition 1.6]).
An embedded 2–sphere †�X must bound a ball in S � I . The hypotheses ensure
that such a ball is in X .

The boundary of X is incompressible if the inclusion map of any component induces
an injection of fundamental groups. This is clear for each component S�fj g, j D 0; 1,
since the each inclusion map S�fj g ,!S�I induces an isomorphism of fundamental
groups. Consider a neighborhood Ni of some component `i of `. If @Ni ,!X induces
a homomorphism of fundamental groups that is not injective, then by the loop theorem,
there exists an embedded 2–disk D �X such that the boundary of D is an essential
simple closed curve in @Ni . Elements of the first homology of @Ni can be written
˛Œ��CˇŒm�, where � and `i cobound an annulus in Ni , m is a meridian of `i , and
˛; ˇ are relatively prime integers. Corollary 2.5 implies that .˛; ˇ/D .˙1; 0/. Then
by thickening D and adjoining it to Ni , we obtain a 3–ball in X containing `i but no
other component of `. Hence ` is either a split link or a local knot, contrary to our
hypothesis. Hence the boundary of X is incompressible.

A curve in S is homologically essential if it represents a nontrivial element of H1.S IZ/.
We will say that a diagram D � S of a link ` � S � I is reducible if S contains a
homologically essential simple closed curve C that is disjoint from D . In this case,
we can perform 1–surgery on C and obtain a diagram in a surface of smaller genus.

We now prove Theorem 6.1.

Proof It is clear that any component of ` contained in a 3–ball can be removed
without affecting the virtual genus of ` or the symplectic rank of z�` . Hence we assume
without loss of generality that ` is neither a split nor a local link.

The proof of the main theorem of [12] shows that if ` is represented by a diagram in a
surface S and if genus.S/D virtual genus.`/C n, for some positive integer n, then,
after Reidemeister moves, there exists an essential n–component 1–manifold C that
is disjoint from the diagram and along which we can perform surgery to produce a
surface of genus equal to the virtual genus of `.

Build a fundamental region for S by cutting along the 1–manifold C and continuing.
The edges of C correspond to generators of � that do not appear in the corresponding

Algebraic & Geometric Topology, Volume 14 (2014)



1388 J Scott Carter, Daniel S Silver and Susan G Williams

operator group presentation P of z�` and so do not appear in WP . These n generators
represent mutually orthogonal elements of H1.S IZ/ since surgery along C reduces
the genus of S by n. Hence the symplectic rank of z�` is at most twice the virtual
genus of `.

Now suppose that z�` has symplectic rank less than twice the virtual genus of `. Then
we must have that some operator group presentation P of z�` omits a generator of
� D hx1;y1; : : : ;xg;yg j

Qg
iD1

Œxi ;yi �i. Without loss of generality, we can assume
that the omitted generator is x1 . By Proposition 2.4, the group �1.S � I n `/ has a
presentation in which x1 occurs only in the relator

Q
i Œxi ;yi �. Express the relator as

x1y1x�1
1 D

� gY
iD2

Œxi ;yi �

�
y1:

Let B be the subgroup of �1.S � I n `/ generated by y1;x2;y2; : : : ;xg;yg . Let U

and V be the cyclic subgroups of B generated by y1 and
�Qg

iD2
Œxi ;yi �

�
y1 , respec-

tively. Since the inclusion S � f0g ! S � I n ` induces an injection of fundamental
groups, the subgroups U and V are in fact infinite cyclic. Hence �1.S � I n `/

has an HNN decomposition with stable letter x1 , base group B and infinite cyclic
amalgamating subgroups U and V (see Lyndon and Schupp [14], for example).

Since �1.S � I n `/ splits over the infinite cyclic group U and X is irreducible
with incompressible boundary, the proof of Satz 1.2 of Waldhausen [19] (see also
Scott [17, Corollary 1.2]) shows that there exists a proper annulus A�X such that:

.1/ The inclusion map i W A ,! X induces an injection i�W �1A! �1X with the
image of i� conjugate to a subgroup of U .

Since the image of i� is generated by a simple closed curve in the surface S�f1g �X ,
the image is conjugate to the entire subgroup U . However, we will not need this. We
do, however, need the following, which follows easily from the proof in [17]:

.2/ The annulus A meets a simple closed curve representing x1 transversely in a
single point.

We argue that, after isotopy, we can find a vertical annulus C � I in X such that
C � f1g � S is homologically essential. We can then perform parametrized surgery
on A, as in [12], in order to reduce the genus of S .

Condition (2) implies that at least one boundary component of A must be contained
in @.S � I/. Moreover, since A is nonseparating, it is impossible for both boundary
circles of A to lie on the same component of @.S � I/.

Assume that some component of @A lies in @.S�I/ while the other is contained in the
boundary of a component @Ni of the neighborhood N DN1[ � � �[Nd of `. Without
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loss of generality, we assume that a component lies in S � f1g. (If it is contained
in S � f0g, then the argument is similar.) By Corollary 2.5, A meets the boundary
of Ni in a longitude. (“Longitude” was defined in the proof of Theorem 3.5.) We can
use A to perform an isotopy that lifts `i up into a collar neighborhood Y of S � f1g

containing no other component of `, and extend the annulus to the lower boundary
of Y . Consider the sublink `0 of ` obtained by deleting `i . Regard `0 as a link in the
closure of S �I nY . Its fundamental group results from �1.S �I n`/ by annihilating
a meridian of `i . Since the quotient group also splits over the infinite cyclic group U

generated by x1 , we can apply the preceding argument. After a finite number of steps,
we obtain a proper annulus satisfying (1) and (2) with boundary components on S�f1g

and S � f0g.

By [20, Lemma 3.4], there is an isotopy of S � I that is constant on the boundary and
takes A to a vertical annulus A0 . The link ` is carried to an equivalent link, which we
continue to denote by `, that is disjoint from A0 .

Recall that we began with a presentation P of z�` that omits the generator x1 .
Parametrized surgery on the annulus A produces a link x̀� xS�I , where the genus of xS
is one less than that of S . By Lemma 6.4, we obtain a presentation xP for �1. xS�I n x̀/

from P by introducing relations x1 D y1 D 1.

It is clear that xP has the same symplectic rank as P . Hence we may repeat the
above construction until the genus of the thickened surface is half the symplectic rank
of z�` .

Lemma 6.4 Let ` � S � I be a link in thickened surface, and assume that A is a
vertical annulus in S � I n ` such that A\ .S � f1g/D C represents a generator y1

of �1S Š hx1;y1; : : : ;xg;yg j
Q
Œxi ;yi �i. If x̀ � xS � I is the link resulting from

parametrized surgery on A, then �1. xS � I n x̀/ is isomorphic to �1.S � I n `/ modulo
the normal subgroup generated by x1;y1 .

Proof Let R be a fundamental domain for S , a 2g–gon with oriented edges labeled
x1;y1; : : : ;xg;yg as above. Let S0 be the bounded surface that results from S by
cutting along the curve C . The universal cover zS0 of S0 is a subsurface of zS , a
union of copies of R matched along edges except those labeled x1 . The link ` lifts to
`0 � zS0�I and �1. zS �I n`0/ is a �0 –operator group, where �0 is the subgroup of �
generated by y1;x2;y2; : : : ;xg;yg . A presentation is also a presentation of z�` , one
in which the operator x1 does not appear. The argument of Proposition 2.4 shows that
�1.S0� I n `0/ is isomorphic to �1.S � I n `/ modulo the normal subgroup generated
by x1 . Completing the parametrized surgery introduces the relator y1 .
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7 Examples

Example 7.1 The diagram in Figure 1 represents a virtual knot k sometimes called
the virtual trefoil. The polynomial �0.k/, computed in Section 4, has symplectic
rank 2. Since the link has a diagram on the torus, Theorem 6.1 implies the well-known
fact that the virtual genus of the knot is 1.

Figure 3: Satellite virtual knot

Example 7.2 Let k be a virtual knot. A satellite zk is defined by the second and
third authors in [18] as in the classical case by replacing k by a knot zk in a regular
neighborhood of k (but not contained in a 3–ball). It is shown that if zk is a satellite
of k , then the virtual genus of zk is equal to that of k .

Consider the double zk of the virtual trefoil k of the previous example. It is a special
case of a satellite knot. A diagram for zk appears in Figure 3. Calculation reveals that

�0.zk/D .t � 1/.xy � 1/2:

The symplectic rank of �0.zk/ is zero. However, the virtual genus of zk is equal to that
of k , which is 1. Hence the inequality of Corollary 6.2 is not an equality in general.

Example 7.3 Consider the oriented diagram for Kishino’s knot in Figure 4. The group
is

z�k D ha; b; c; d j a
xb D axyax; axdv D aax; bd D cb; dvbu

D cdvi� :
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x

v

u

v

u

y

x

y ax

d

b

bu

a

axy

dv c

Figure 4: Kishino’s knot

The associated matrix A is0BB@
x�xy �xt t 0 0

x�xt � 1 0 0 vt

0 1� t �1 t

0 ut �1 v� vt

1CCA :
Here �0.k/ D .x � uvx/t2 C .1C v � x C uvx � vxy � uvxy/t C .�v C vxy/.
The symplectic rank of �0.k/ is 4. By Corollary 6.2, the virtual genus of Kishino’s
knot is 2. This result was proved earlier by Kauffman and Dye [4], using the Jones
polynomial and symplectic algebra to produce lower bounds on virtual genus.

A virtual link ` is invertible if some oriented diagram is equivalent to the same
underlying diagram with the opposite orientation. In this case, �0.`/.t1; : : : ; td / and
�0.`/.t

�1
1
; : : : ; t�1

d
/ are equivalent.

We see Kishino’s knot k is not invertible as follows. If k were invertible, there would
exist an symplectic inversion of R4D span.x;y;u; v/ such that x�uvx 7!�vCvxy .

If x 7!�v then uvx 7!�vxyD�y.�x/.�v/ and hence y 7!�u. But the symplectic
pairing hx;yi is equal to 1 while h�v;�uiD�1, a contradiction. (In fact, this change
of basis corresponds to flipping .S � I; k/ over, reversing the orientations of both the
knot k and the surface S .)
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The only other possibility is x 7! vxy and v 7! uvx . In this case,

uvxy D .uvx/.vxy/x�1v�1
7! vx.vxy/�1.uvx/�1

D u�1v�1x�1y:

Since the middle term of �0.k/ is not preserved, we again have a contradiction.

Kauffman informs the authors that the noninvertibility of Kishino’s knot also can be
shown using the parity bracket [10].

Figure 5: Stoimenow’s link

Example 7.4 Stoimeow proposed the virtual link z̀ in Figure 5 as an example for
which the methods of [4] appear to be insufficient to determine virtual genus.

Instead of computing directly, we can recognize z̀ is a satellite and use [18]. In the
companion link `, the classical trefoil component is replaced by an unknot. We simplify
further by computing the one variable polynomial �0.`/.t; t/, which is equal to

.t � 1/2Œ.yx�1
� 1/C t.1�y/C t2.�1C 2y �y2/C t3.y2

�y/C t4.xy �y2/�:

The symplectic rank is 2. The symplectic rank of �0.`/.t1; t2/ cannot be smaller.
Since the link has a diagram on a torus, Corollary 6.2 implies that ` and hence z̀ have
virtual genus equal to 1.
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