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Heegaard splittings of distance exactly n
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In this paper, we show that, for any integers n � 2 and g � 2 , there exist genus-g

Heegaard splittings of compact 3–manifolds with distance exactly n .

57M27; 57M99

1 Introduction

For a closed orientable 3–manifold M , we say that V1[S V2 is a Heegaard splitting
of M if V1;V2 are handlebodies such that M D V1 [ V2 and @V1 D @V2 D S .
Heegaard splittings of compact orientable 3–manifolds with nonempty boundaries can
be defined similarly, using compression bodies for handlebodies (see Section 2). In [7],
Hempel gave the definition of the distance of a Heegaard splitting by using the curve
complex introduced by Harvey [6] and showed that, for any integer n, there exists
some integer m such that the mth power of a pseudo-Anosov map yields a Heegaard
splitting of distance at least n by using a construction of Kobayashi [8]. Abrams and
Schleimer [1] showed that the distance of the Heegaard splitting grows linearly with
respect to m by using a result of Masur and Minsky [12]. Moreover, Evans [3] gave
a combinatorial method to construct Heegaard splittings of high distance. The main
purpose of this paper is to give an answer to the following question.

Question Given n� 1 and g � 2, does there exist a genus-g Heegaard splitting with
distance exactly n?

For certain values, there are known examples that answer the above question affirma-
tively. For example, Berge and Scharlemann [2] showed that there exist 3–manifolds
which admit genus-2 Heegaard splittings with distance exactly 3.

In this paper, for each integer n� 2, we first construct a Heegaard splitting of a compact
orientable 3–manifold with nonempty boundary which has distance exactly n.

Published: 7 April 2014 DOI: 10.2140/agt.2014.14.1395

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M27, 57M99
http://dx.doi.org/10.2140/agt.2014.14.1395


1396 Ayako Ido, Yeonhee Jang and Tsuyoshi Kobayashi

Theorem 1.1 For any integers n � 2 and g � 2, there exists a genus-g Heegaard
splitting C1[P C2 with distance exactly n, where C1 and C2 are compression bodies.

To prove Theorem 1.1, we give a method of constructing a pair of curves on a closed
surface with distance exactly n. In fact, Schleimer [14] gave a method of constructing
a pair of curves with distance exactly four on the five-holed sphere by using subsurface
projection maps defined by Masur and Minsky [13] (for the definition, see Section 2).
In Section 4, we mimic the idea of Schleimer to construct a pair of curves with distance
exactly n for any positive integer n. By using the pair of curves and the properties
of a compression body obtained by adding a 1–handle to S � Œ0; 1�, where S is a
closed surface (for details, see Section 3), we prove Theorem 1.1. As a consequence of
Theorem 1.1, we have Corollary 1.2.

Corollary 1.2 For any integers n � 2 and g � 2, there exists a genus-g Heegaard
splitting of a closed 3–manifold with distance exactly n.

Remark 1.3 In [4], Guo, Qiu and Zou prove a statement that includes Corollary 1.2.
In fact, they show in [4, Theorem 1] that for each pair of integers n � 1 and g � 2

with .n;g/¤ .1; 2/, there is a genus-g Heegaard splitting of a closed 3–manifold with
distance n. We note that the pair .n;g/D .1; 2/ is not realizable (see Thompson [15,
Proposition 1]).
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2 Preliminaries

Let S be a compact connected orientable surface with genus g and p boundary
components. A simple closed curve in S is essential if it does not bound a disk in S

and is not parallel to a component of @S . An arc properly embedded in S is essential if
it does not cobound a disk in S together with an arc on @S . We say that S is sporadic
if g D 0;p � 4 or g D 1;p � 1. We say that S is simple if S contains no essential
simple closed curves. We note that S is simple if and only if S is a 2–sphere with at
most three boundary components. A subsurface X in S is essential if each component
of @X is contained in @S or is essential in S .

Heegaard splittings A connected 3–manifold V is a compression body if there exists
a closed (possibly empty) surface F and a 0–handle B such that V is obtained from
F�Œ0; 1�[B by adding 1–handles to F�f1g[@B . The subsurface of @V corresponding
to F � f0g is denoted by @�V . Then @CV denotes the subsurface @V n @�V of @V .
The genus of @CV is the genus of the compression body V . A compression body V

is called a handlebody if @�V D∅. A disk D properly embedded in V is called an
essential disk if @D is an essential simple closed curve in @CV .

Let M be a compact orientable 3–manifold. We say that C1 [P C2 is a genus-g
Heegaard splitting of M if C1 and C2 are compression bodies of genus g in M

such that C1 [C2 DM and C1 \C2 D @CC1 D @CC2 D P . Alternatively, given a
Heegaard splitting C1 [P C2 of M , we may regard that there is a homeomorphism
f W @CC1 ! @CC2 such that M is obtained from C1 and C2 by identifying @CC1

and @CC2 via f . When we take this viewpoint, we will denote the Heegaard splitting
by the expression C1[f C2 .

Curve complexes Except in sporadic cases, the curve complex C.S/ is defined as
follows: each vertex of C.S/ is the isotopy class of an essential simple closed curve
on S , and a collection of k C 1 vertices forms a k –simplex of C.S/ if they can
be realized by mutually disjoint curves in S . In sporadic cases, we need to modify
the definition of the curve complex slightly, as follows. Note that the surface S is
simple unless S is a torus, a torus with one boundary component, or a sphere with 4
boundary components. When S is a torus or a torus with one boundary component
(resp. a sphere with 4 boundary components), a collection of kC 1 vertices forms a
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k –simplex of C.S/ if they can be realized by curves in S which mutually intersect
exactly once (resp. twice). The arc-and-curve complex AC.S/ is defined similarly, as
follows: each vertex of AC.S/ is the isotopy class of an essential properly embedded
arc or an essential simple closed curve on S , and a collection of kC1 vertices forms a
k –simplex of AC.S/ if they can be realized by mutually disjoint arcs or simple closed
curves in S . Throughout this paper, for a vertex x 2 C.S/ we often abuse notation
and use x to represent (the isotopy class of) a geometric representative of x . The
symbol C0.S/ (resp. AC0.S/) denotes the 0–skeleton of C.S/ (resp. AC.S/).

For two vertices a; b of C.S/, we define the distance dC.S/.a; b/ between a and b ,
which will be denoted by dS .a; b/ in brief, as the minimal number of 1–simplexes of
a simplicial path in C.S/ joining a and b . For two subsets A;B of C0.S/, we define
diamS .A;B/ WD the diameter of A[B . Similarly, we can define dAC.S/.a; b/ for
a; b 2AC0.S/ and diamAC.S/.A;B/ for A;B �AC0.S/.

For a sequence a0; a1; : : : ; an of vertices in C.S/ with ai\aiC1D∅, iD0; 1; : : : ; n�1,
we denote by Œa0; a1; : : : ; an� the path in C.S/ with vertices a0; a1; : : : ; an in this
order. We say that a path Œa0; a1; : : : ; an� is a geodesic if nD dS .a0; an/.

Let V be a compression body. Then the disk complex D.V / is the subset of C0.@CV /

consisting of the vertices with representatives bounding essential disks of V . For a
genus-g.� 2/ Heegaard splitting C1 [P C2 , the (Hempel) distance of C1 [P C2 is
dP .D.C1/;D.C2//DminfdP .x;y/ j x 2D.C1/;y 2D.C2/g.

Subsurface projection maps Let P.Y / denote the power set of a set Y . Sup-
pose that X is an essential subsurface of S , where X is not a simple surface or
a torus. We call the composition �0 ı �A of maps �AW C0.S/! P.AC0.X // and
�0W P.AC0.X //! P.C0.X // a subsurface projection if they satisfy the following:
for a vertex ˛ , take a representative of ˛ so that j˛\X j is minimal, where j � j is the
number of connected components. Then

� �A.˛/ is the set of all isotopy classes of the components of ˛\X ,

� �0.f˛1; : : : ; ˛ng/ is the union, for all i D 1; : : : ; n, of the set of all isotopy
classes of the components of @N.˛i [ @X / which are essential in X , where
N.˛i [ @X / is a regular neighborhood of ˛i [ @X in X .

We denote the subsurface projection �0 ı�A by �X . We say that ˛ misses X (resp. ˛
cuts X ) if ˛\X D∅ (resp. ˛\X ¤∅).

Lemma 2.1 Let X be as above. Let Œ˛0; ˛1; : : : ; ˛n� be a path in C.S/ such that
every ˛i cuts X . Then diamX .�X .˛0/; �X .˛n//� 2n.
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Proof Since dS .˛i ; ˛iC1/D 1 and every ˛i cuts X , we have

diamAC.X /.�A.˛i/; �A.˛iC1//� 1

for every i D 0; 1; : : : ; n� 1. This together with [13, Lemma 2.2] implies

diamX .�0.�A.˛i//; �0.�A.˛iC1///.D diamX .�X .˛i/; �X .˛iC1///� 2:

Since diamX .�X .˛0/; �X .˛n//�
Pn�1

iD0 diamX .�X .˛i/; �X .˛iC1//, this implies

diamX .�X .˛0/; �X .˛n//� 2n:

Remark 2.2 Let X be an essential subsurface of S . Suppose that X is disconnected,
and at least two components of X are nonsimple. Then for any pair of curves ˛; ˛0 on S

we have diamX .�X .˛/; �X .˛
0//� 2. To be precise, let X1 be one of the nonsimple

components of X , and X2 the union of the others. Let a and a0 be elements of �X .˛/

and �X .˛
0/, respectively. If both a and a0 are contained in Xi for some i D 1; 2,

say X1 , then we can find a curve on X2 that is disjoint from a[ a0 , which implies
dX .a; a

0/� 2. If a�X1 and a0�X2 (or a�X2 and a0�X1 ), we have dX .a; a
0/� 1.

Thus dX .a; a
0/� 2 for any pair of elements a 2 �X .˛/ and a0 2 �X .˛

0/, and hence
we have diamX .�X .˛/; �X .˛

0//� 2.

3 Disk complexes

Let D.V / .� C0.@CV // be the disk complex of a compression body V . We have
a decomposition D.V /D Dnonsep.V /tDsep.V /, where Dnonsep.V / (resp. Dsep.V /)
denotes the subset of D.V / consisting of the vertices with representatives bounding
nonseparating (resp. separating) essential disks of V . In this section, we prove the
following proposition.

Proposition 3.1 Let V be a compression body obtained by adding a 1–handle to
F � Œ0; 1�, where F is a genus-.g � 1/ closed orientable surface (g � 2). Then we
have the following:

(1) Dnonsep.V / consists of a single vertex, say c0 .

(2) For each element c˛ of Dsep.V /, there is a 1–simplex in C.@CV / joining c0

and c˛ .

Remark 3.2 In fact, we can see that Dsep.V / is a countable, infinite set and that there
is no 1–simplex between c˛ and c˛0 for each pair c˛; c˛0 2Dsep.V /.
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In the remainder of this section, V denotes a compression body obtained by adding a
1–handle to F � Œ0; 1�, where F is a genus-.g� 1/ closed orientable surface (g � 2).
Then D denotes the essential disk of V corresponding to the cocore of the 1–handle.
Proposition 3.1 follows from Lemmas 3.3 and 3.4 below.

Lemma 3.3 Any nonseparating disk properly embedded in V is ambient isotopic
to D .

Proof Let D0 be a nonseparating disk in V . Assume that D and D0 intersect
transversely, and jD\D0j is minimized up to ambient isotopy class of D0 .

Suppose jD\D0j D 0, ie, D\D0 D∅. Then D0 is properly embedded disk in the
manifold obtained from V by cutting along D , that is, F � Œ0; 1�. Since any disk
properly embedded in F � Œ0; 1� is boundary parallel and D0 is nonseparating in V ,
we see that D[D0 bounds a product region, and hence D0 is ambient isotopic to D .

Suppose jD\D0j> 0. By standard innermost disk arguments, we can see that D\D0

has no loop components. Note that there are at least two components of D0 nD which
are outermost in D0 . Take a pair of such outermost components, say �1 and �2 ,
which are next to each other, ie, there is a subarc ˇ � @D0 such that ˇ \�1 is an
endpoint of ˇ and ˇ\�2 is the other endpoint of ˇ , and ˇ does not intersect any other
outermost disk of D0 nD . Note that we can retrieve F � Œ0; 1� by cutting V along D .
Let DC;D� be the copies of D in F � f1g, and let x�1 (resp. x�2 ) be the closure of
the image of �1 (resp. �2 ) in F � Œ0; 1�. Note that x�1 and x�2 are disks properly
embedded in F � Œ0; 1�, and x�i \ .D

C[D�/ consists of an arc properly embedded in
DC[D� . Let �i .i D 1; 2/ be the disk in F �f1g such that @�i D @x�i . Without loss
of generality, we may suppose x�1\ .D

C[D�/D x�1\DC . Note that if D� is not
contained in �1 , we can isotope D0 in V via the product region between x�1 and �1

to reduce jD\D0j, a contradiction. Hence, D� is contained in �1 . Let ˇ be the arc
in @D0 as above. Then ˇ\D consists of finite number of points, say p0;p1; : : : ;pn ,
where @ˇ D fp0;png, p0 2 @x�1 , pn 2 @x�2 , and p0;p1; : : : ;pn are arrayed on ˇ in
this order. Then a small neighborhood of p0 in ˇ is contained in a small neighborhood
of D� in F� Œ0; 1�. If the other endpoint of the subarc p0p1 of ˇ is contained in @D� ,
then we see that the subarc p0p1 is an inessential arc in Cl.F�f1gn.DC[D�//. This
shows that we can reduce jD\D0j by an isotopy on D0 , a contradiction. By applying
the same argument successively, we see that each subarc pi�1pi .i D 1; 2; : : : ; n/

joins DC and D� , and particularly, a small neighborhood of pn in ˇ is contained in
a small neighborhood of DC . This shows that x�2\ .D

C[D�/D x�2\D� . Then
we see that DC is not contained in �2 , hence we have a contradiction by using the
argument as above.
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Let D0 be a separating essential disk properly embedded in V . By an argument similar
to that in the proof of Lemma 3.3, we can see that D0 is ambient isotopic to a disk
disjoint from D . Hence, we have the following lemma.

Lemma 3.4 Any separating essential disk properly embedded in V can be isotoped to
be disjoint from the nonseparating disk D .

4 A pair of curves with distance exactly n

In this section, for each integer n � 3, we construct pairs of curves with distance
exactly n. Let S be a closed connected orientable surface with genus greater than or
equal to 2. We first prove Propositions 4.1 and 4.4. Then we describe the constructions
of paths in C.S/ of length n and show that they are geodesics in C.S/.

Proposition 4.1 For an integer n.� 4/, let Œ˛0; ˛1; : : : ; ˛n� be a path in C.S/ satisfy-
ing the following:

(H1) Œ˛0; : : : ; ˛n�2� and Œ˛n�2; ˛n�1; ˛n� are geodesics in C.S/.
(H2) diamXn�2

.�Xn�2
.˛n�4/; �Xn�2

.˛n//� 4n, where Xn�2 D Cl.S nN.˛n�2//.

Then Œ˛0; ˛1; : : : ; ˛n� is a geodesic in C.S/.

Remark 4.2 In Proposition 4.1, we note that Xn�2 is connected, ie, ˛n�2 is nonsepa-
rating in S . This can be shown by using Remark 2.2 together with the condition (H2).

Proof of Proposition 4.1 Let Œˇ0; ˇ1; : : : ; ˇm� be a geodesic in C.S/ such that
ˇ0 D ˛0 , ˇm D ˛n . Then note that m� n.

Claim 4.3 ǰ D ˛n�2 for some j 2 f0; 1; : : : ;mg.

Proof Assume on the contrary that ǰ ¤ ˛n�2 for any j . Then every ǰ cuts Xn�2

(ie, ǰ \ Xn�2 ¤ ∅) since Xn�2 D Cl.S n N.˛n�2//. By Lemma 2.1, we have
diamXn�2

.�Xn�2
.ˇ0/; �Xn�2

.ˇm//� 2m. On the other hand, since Œ˛0; ˛1; : : : ; ˛n�2�

is a geodesic, no ˛i .0� i � n�3/ is isotopic to ˛n�2 . Hence each ˛i .0� i � n�3/

cuts Xn�2 . By Lemma 2.1, diamXn�2
.�Xn�2

.˛0/; �Xn�2
.˛n�4// � 2.n � 4/ < 2n.

These imply

diamXn�2
.�Xn�2

.˛n�4/; �Xn�2
.˛n//� diamXn�2

.�Xn�2
.˛n�4/; �Xn�2

.˛0//

C diamXn�2
.�Xn�2

.˛0/; �Xn�2
.˛n//

< 2nC diamXn�2
.�Xn�2

.ˇ0/; �Xn�2
.ˇm//

� 2nC 2m� 4n:

This contradicts the hypothesis (H2).
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By Claim 4.3 and the hypothesis (H1), we have the equalities

j D dS .ˇ0; ǰ /D dS .˛0; ˛n�2/D n� 2;

m� j D dS . ǰ ; ˇm/D dS .˛n�2; ˛n/D 2:

By combining the above equalities, we have mD n. Recall that Œˇ0; ˇ1; : : : ; ˇm� is a
geodesic in C.S/ with ˇ0 D ˛0 and ˇm D ˛n . Hence, Œ˛0; ˛1; : : : ; ˛n� is a geodesic
in C.S/.

Proposition 4.4 For an integer n.� 3/, let Œ˛0; ˛1; : : : ; ˛n� be a path in C.S/ satisfy-
ing the following:

(H1 0 ) Œ˛0; : : : ; ˛n�1� and Œ˛n�2; ˛n�1; ˛n� are geodesics in C.S/.

(H2 0 ) ˛n�2 [ ˛n�1 is nonseparating in S , and diamS 0.�S 0.˛0/; �S 0.˛n// > 2n,
where S 0 D Cl.S nN.˛n�2[˛n�1//.

Then Œ˛0; ˛1; : : : ; ˛n� is a geodesic in C.S/.

Proof Let Œˇ0; ˇ1; : : : ; ˇm� be a geodesic in C.S/ such that ˇ0D˛0 , ˇmD˛n . Then
note that m� n.

Claim 4.5 There exists j 2 f0; 1; : : : ;mg such that ǰ D ˛n�2 or ǰ D ˛n�1 .

Proof Suppose that ǰ ¤ ˛n�2 and ǰ ¤ ˛n�1 for any j . Since ˛n�2 [ ˛n�1 is
nonseparating in S , each ǰ cuts S 0 . Hence, by Lemma 2.1, we have

diamS 0.�S 0.ˇ0/; �S 0.ˇm//� 2m� 2n:

On the other hand, by (H2 0 ), diamS 0.�S 0.ˇ0/; �S 0.ˇm// > 2n, a contradiction.

Suppose ǰ D ˛n�2 . Then we have the equalities

j D dS .ˇ0; ǰ /D dS .˛0; ˛n�2/D n� 2;

m� j D dS . ǰ ; ˇm/D dS .˛n�2; ˛n/D 2:

By combining the above equalities, we have n D m. Hence, Œ˛0; ˛1; : : : ; ˛n� is a
geodesic in C.S/. We can use a similar argument for the case when ǰ D ˛n�1 . This
completes the proof of Proposition 4.4.
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Construction 4.6 (The case when n is even) We first assume that n is an even
integer with n� 4. Let ˛0 , ˛2 be essential nonseparating simple closed curves on S

which intersect transversely in one point, and let ˛1 be an essential simple closed curve
on S which is disjoint from ˛0[˛2 . Let X2 D Cl.S nN.˛2//. Note that Œ˛0; ˛1; ˛2�

is a geodesic of length two in C.S/. Choose a homeomorphism '2W S ! S such that
'2.N.˛2//DN.˛2/ and that diamX2

.�X2
.˛0/; �X2

.'2.˛0///� 4n. This is possible
by [12, Proposition 4.6]. Let ˛3 D '2.˛1/ and ˛4 D '2.˛0/. Note that Œ˛2; ˛3; ˛4� is
a geodesic of length two in C.S/, and j˛2\˛4j D 1.

˛2

˛0

˛1

Figure 1

We repeat this process to construct a path Œ˛0; ˛1; : : : ; ˛n� inductively as follows.
Suppose we have constructed a path Œ˛0; ˛1; : : : ; ˛i � with j˛i�2\˛i j D 1 for an even
integer i.< n/. Let Xi D Cl.S nN.˛i//. Choose a homeomorphism 'i W S ! S such
that 'i.N.˛i//DN.˛i/ and that

(4-1) diamXi
.�Xi

.˛i�2/; �Xi
.'i.˛i�2///� 4n:

Then we let ˛iC1D'i.˛i�1/ and ˛iC2D'i.˛i�2/. Note that Œ˛i ; ˛iC1; ˛iC2� is a geo-
desic of length two in C.S/, and we have obtained the path Œ˛0; ˛1; : : : ; ˛i ; ˛iC1; ˛iC2�

with j˛i \˛iC2j D 1.

Assertion 4.7 For each k 2 f2; 4; : : : ; ng, the path Œ˛0; ˛1; : : : ; ˛k � in C.S/ is a
geodesic.

Proof We prove the proposition by mathematical induction on k . It is clear that
Œ˛0; ˛1; ˛2� is a geodesic in C.S/. Hence, Assertion 4.7 holds for k D 2. Assume that
Œ˛0; ˛1; : : : ; ˛k � is a geodesic in C.S/ for some k 2 f2; 4; : : : ; n� 2g. We note that
Œ˛k ; ˛kC1; ˛kC2� is a geodesic in C.S/. Furthermore, by the inequality (4-1), we have
diamXk

.�Xk
.˛k�2/; �Xk

.˛kC2// � 4n � 4.k C 2/. Hence, by Proposition 4.1, the
path Œ˛0; ˛1; : : : ; ˛kC2� is a geodesic in C.S/, which shows that Assertion 4.7 holds
for kC 2. This completes the proof of Assertion 4.7.

Construction 4.8 (The case when n is odd) Suppose that n is an odd integer with
n�3. Let Œ˛0; ˛1; : : : ; ˛n�1� be a geodesic in C.S/ as in the previous subsection. Here,
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in addition, we assume that each ˛i is a nonseparating curve. (It is easy to see that this
holds if we take a nonseparating curve in S for ˛1 at the beginning of the construction
of the geodesic.) Note that ˛n�3 intersects ˛n�1 transversely in one point and is
disjoint from ˛n�2 . It is easy to see that these imply that ˛n�1[˛n�2 is nonseparating.
Choose a nonseparating essential simple closed curve 
 on S such that 
 \˛n�1D∅
and 
 intersects ˛n�2 transversely in one point. Let S 0 D Cl.S nN.˛n�2[˛n�1//.
By [12, Theorem 1.1], the diameter of C.S 0/ is infinite. This shows that there exists

 02C0.S 0/ such that dS 0.


0; �S 0.˛0//>2nC2. If g>2, it is easy to find 
 002C0.S 0/

such that dS 0.

00; 
 0/� 2 and that 
 00 cuts off a pair of pants P with @N.˛n�2/� @P .

If gD 2, then 
 0 separates S 0 into two pairs of pants P1 and P2 . If @N.˛n�2/� @Pi

(i D 1 or 2), then set 
 00 D 
 0 , otherwise, take any essential simple closed curve 
 00

in S 0 such that 
 00\ 
 0 consists of two points (ie, dS 0.

00; 
 0/D 1) and that 
 00 cuts

off a pair of pants P with @N.˛n�2/� @P . Since 
 00 cuts off a pair of pants P with
@N.˛n�2/ � @P in either case, there is a simple closed curve ˛n.� S/ intersecting
˛n�2 in one point such that ˛n\˛n�1 D∅ and that �S 0.˛n/D 


00 . Then we have

diamS 0.�S 0.˛0/; �S 0.˛n//� diamS 0.�S 0.˛0/; 

0/� dS 0.


00; 
 0/

> .2nC 2/� 2D 2n:

On the other hand, since ˛n \ ˛n�1 D ∅ and ˛n intersects ˛n�2 transversely in
one point, Œ˛n�2; ˛n�1; ˛n� is a geodesic in C.S/. Further, Œ˛0; : : : ; ˛n�1� is also
a geodesic in C.S/. Hence, by Proposition 4.4 together with the above inequality
diamS 0.�S 0.˛0/; �S 0.˛n// > 2n, we see that the path Œ˛0; ˛1; : : : ; ˛n� is a geodesic
in C.S/.

˛n�2




˛n�1

Figure 2

5 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1 Let C1 and C2 be copies of the compression body obtained
by adding a 1–handle to F � Œ0; 1�, where F is a genus-.g � 1/ closed orientable
surface (g � 2). Let ˛0 be the boundary of the nonseparating essential disk D1

Algebraic & Geometric Topology, Volume 14 (2014)



Heegaard splittings of distance exactly n 1405

properly embedded in C1 and ˛2 a simple closed curve on @CC1 which intersects ˛0

transversely in one point. Then we construct a geodesic Œ˛0; ˛1; : : : ; ˛nC2� on @CC1 as
in Section 4. Note that ˛nC2 intersects ˛n transversely in one point by the construction.
Take any homeomorphism f W @CC1! @CC2 such that f .˛nC2/D @D2 , where D2

is the nonseparating essential disk properly embedded in C2 . We identify the boundary
components @CC1 and @CC2 by f , and let P D@CC1Df

�1.@CC2/. Then C1[P C2

is a genus-g Heegaard splitting of a compact orientable 3–manifold.

Let D0
1

be a separating essential disk in C1 disjoint from ˛2 obtained as follows.
Let DC

1
and D�

1
be the components of Cl.@N.D1/ n @CC1/, where N.D1/ is a

regular neighborhood of D1 in C1 . Take the subarc of ˛2 lying outside of the product
region N.D1/ between DC

1
and D�

1
. Then D0

1
is obtained from DC

1
[ D�

1
by

adding a band along the subarc of ˛2 . Similarly, we can obtain a separating essential
disk D0

2
in C2 disjoint from ˛n , by using D2 and ˛n . On the other hand, we have

dP .˛2; ˛n/D n� 2 since Œ˛0; ˛1; : : : ; ˛nC2� is a geodesic in C.P /. Hence

dP .@D
0
1; @D

0
2/� dP .@D

0
1; ˛2/C dP .˛2; ˛n/C dP .˛n; @D

0
2/

D 1C .n� 2/C 1D n:

Let D00
1
� C1 and D00

2
� C2 be any essential disks. By Proposition 3.1, we have

dP .@D
00
i ; @Di/� 1 for i D 1; 2. This implies

dP .@D1; @D2/� dP .@D1; @D
00
1/C dP .@D

00
1 ; @D

00
2/C dP .@D

00
2 ; @D2/

� 1C dP .@D
00
1 ; @D

00
2/C 1;

and hence

dP .@D
00
1 ; @D

00
2/� dP .@D1; @D2/� 2

D dP .˛0; ˛nC2/� 2D .nC 2/� 2D n:

Therefore, dP .@D
00
1
; @D00

2
/� n for any pair of essential disks D00

1
� C1 and D00

2
� C2 ,

which implies dP .D.C1/;D.C2// � n. Since dP .@D
0
1
; @D0

2
/ � n, we have that

dP .D.C1/;D.C2//D n.

In the remainder of the paper, we prove Corollary 1.2 by using the following propo-
sition. (Throughout this paper, given an embedding 'W X ! Y between compact
surfaces X and Y , we abuse notation and use ' to denote the map C0.X /! C0.Y /

or P.C0.X //! P.C0.Y // induced by 'W X ! Y .)

Proposition 5.1 Let V1[f V2 be a genus-g .� 2/ Heegaard splitting, where V1 and
V2 are handlebodies. Let D0 be a separating essential disk in V1 , and let D2 be either
D.V2/ or a finite subset of D.V2/. Assume that d@V2

.f .@D0/;D2/ D n � 3. Then
there exists a homeomorphism gW @V1! @V1 such that d@V2

.fg.D.V1//;D2/D n.
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Proof Let V 1
1

and V 2
1

be the closures of the two components of V1nD0 . For i D 1; 2,
let Fi be the subsurface @V i

1
\ @V1 of @V1 , and let �Fi

D �0 ı �
i
A
W C0.@V1/ !

P.AC0.Fi//! P.C0.Fi// be the subsurface projection introduced in Section 2. Let
Pi W Fi ! Fi [D0 be the inclusion map. Since D0 is separating, the image of any
essential simple closed curve in Fi by Pi is essential in Fi [D0 . This immediately
implies the following.

Claim 5.2 For any nonempty subset E of C0.Fi/, we have that

� Pi.E/ is nonempty,

� diamFi[D0
.Pi.E//� diamFi

.E/.

We note that there exists a constant N such that

(5-1) diamFi
.�Fi

f �1.D2//�N .i D 1; 2/:

In fact, if D2 is a finite subset of D.V2/, this is clear. Thus assume D2 DD.V2/. We
claim that the condition d@V2

.f .@D0/;D2/� 3 implies the pair .V2; f .F1/[f .F2//

is not homeomorphic to a ( Œ0; 1�–bundle, the associated @Œ0; 1�–bundle). In fact, oth-
erwise, we have a contradiction as follows. Take an essential arc ˛ and an essential
simple closed curve l in f .F1/. If .V2; f .F1/ [ f .F2// is not homeomorphic
to a Œ0; 1�–bundle, then f .@D0/, l and ˛ � Œ0; 1� give a path of length 2. Further,
˛� Œ0; 1� is an essential disk in V2 , a contradiction to d@V2

.f .@D0/;D2/� 3. Hence,
by [10, Theorem 1] together with the assumption d@V2

.f .@D0/;D2/� 3, we see that
diamf .Fi /.�f .Fi /.D2//�12, which means diamFi

.�Fi
f �1.D2//�12. By Claim 5.2,

the inequality (5-1) implies

(5-2) diamFi[D0
.Pi�Fi

f �1.D2//�N .i D 1; 2/:

Let D0.V i
1
/ be the subset of C0.Fi/ consisting of simple closed curves that bound

disks in V i
1

(i D 1; 2). By the inequality (5-2) and [7] (see also [1]), we see that there
exists a homeomorphism gW @V1! @V1 such that g.@D0/D @D0 and

(5-3) dFi[D0
.Pi.D0.V i

1 //; yg
�1
i .Pi�Fi

f �1.D2///� 2n

for each i D 1; 2, where ygi W Fi [D0! Fi [D0 is a homeomorphism obtained by
extending gjFi

W Fi ! Fi . (We note that gjFi
W Fi ! Fi extends to a homeomor-

phism ygi W Fi [D0 ! Fi [D0 in a unique way up to isotopy in D0 by Alexan-
der’s trick.) Since g.@D0/ D @D0 , it is easy to see that yg�1

i .Pi�Fi
f �1.D2// D

Pi.gjFi
/�1�Fi

f �1.D2/DPi�Fi
g�1f �1.D2/DPi�Fi

.fg/�1.D2/. We denote the
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map Pi�Fi
.fg/�1.D yg�1

i Pi�Fi
f �1/W C0.@V2/!P.C0.Fi[D0// by ˆi . Then, by

the inequality (5-3), we have

(5-4) dFi[D0
.Pi.D0.V i

1 //; ˆi.D2//� 2n .i D 1; 2/:

Note that d@V2
.fg.D.V1//;D2/ � n since f .@D0/ D fg.@D0/ 2 fg.D.V1// and

d@V2
. f .@D0/;D2/ D n by the assumption. To prove d@V2

.fg.D.V1//;D2/ D n,
assume on the contrary that d@V2

.fg.D.V1//;D2/ < n, or equivalently, d@V1
.D.V1/,

.fg/�1.D2// < n. Then there exist a 2D.V1/ and b 2D2 such that

(5-5) d@V1
.a; .fg/�1.b//Dm< n:

Let Œ
0; 
1; : : : ; 
m� be a geodesic in C.@V1/ from a to .fg/�1.b/.

Claim 5.3 Every 
j .j D 1; 2; : : : ;m/ cuts both F1 and F2 .

Proof Assume that 
j does not cut Fi for some j 2f1; 2; : : : ;mg and some i 2f1; 2g.
Then 
j is disjoint from @D0.D @F1 D @F2/, and hence we have

nD d@V1
.@D0; .fg/�1.D2//

� d@V1
.@D0; 
j /C d@V1

.
j ; .fg/�1.D2//

� d@V1
.@D0; 
j /C d@V1

.
j ; 
m/� 1C .m� j / < 1C n� j ;

a contradiction.

Let Da be a disk in V1 bounded by a. We may assume that jDa \D0j is minimal.
By using innermost disk arguments, we see that Da\D0 has no loop components.

Case 1: jDa \D0j ¤ 0 Let � be a component of DanD0 that is outermost in Da .
Then � � V i

1
for some i D 1; 2. Without loss of generality, we may assume that

�� V 1
1

, which implies a.D 
0/ cuts F1 . This, together with Claim 5.3, shows that
every 
j .j D 0; 1; : : : ;m/ in the geodesic Œ
0; 
1; : : : ; 
m� from a to .fg/�1.b/

cuts F1 . Hence, by Lemma 2.1, we have

(5-6) diamF1
.�F1

.a/; �F1
.fg/�1.b//� 2m< 2n;

which implies, by Claim 5.2,

(5-7) diamF1[D0
.P1�F1

.a/; ˆ1.b// < 2n:

Note that @�\F1 is an element of the image of a by �1
A
W C0.@V1/! P.AC0.F1//.

Further, by the minimality of jDa\D0j, the disk � is essential in V 1
1

. Let D1
0

and D2
0

be the two components of D0 n�, and let �0 be one of the disks properly embedded
in V 1

1
which is parallel to D1

0
[� or D2

0
[�. Then we have @�0 2 P1.D0.V 1

1
//,
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and also @�0 2 P1�0.@�\F1/� P1�0�
1
A
.a/D P1�F1

.a/. These, together with the
inequality (5-7), imply

dF1[D0
.P1.D0.V 1

1 //; ˆ1.D2//� dF1[D0
.@�0; ˆ1.b//

� diamF1[D0
.P1�F1

.a/; ˆ1.b// < 2n;

which contradicts the inequality (5-4).

Case 2: jDa \D0j D 0 In this case, the arguments in Case 1 work with regarding
Da D�

0 to have a contradiction.

The above contradictions give d@V2
.fg.D.V1//;D2/D n.

Remark 5.4 If we pose the assumption that the distance d.V1[f V2/ of the genus-g
Heegaard splitting V1[f V2 is greater than or equal to 2 in Proposition 5.1, then the
statement of the proposition can be strengthened as in the following form.

Let D0 be a separating essential disk in V1 , and let D2 be any subset of D.V2/. If
d@V2

.f .@D0/;D2/D n, then there exists a homeomorphism gW @V1! @V1 such that
d@V2

.fg.D.V1//;D2/D n.

In fact, the statement can be proved basically by using the arguments of the proof of
Proposition 5.1. The difference is the proof of inequality (5-1). We should replace the
argument with the following.

Note that f .@D0/.D f .@F1/D f .@F2// intersects with every essential loop in D.V2/,
since d@V2

.f .@D0/;D.V2//� d.V1[f V2/� 2. By [10, Theorem 1], either

(5-8) diamFi
.�Fi

f �1.D2//� diamFi
.�Fi

f �1.D.V2///� 12

or V2 is a Œ0; 1�–bundle over f .F1/. In the latter case, it is easy to see that g must be
even and that the union of V2 and N.D0/ is homeomorphic to a Œ0; 1�–bundle over a
closed surface, say S , of genus g=2. Note that the exterior of the union of V2 and
N.D0/ is Cl.V1 nN.D0// and consists of two handlebodies of genus g=2. Thus, S

is a Heegaard surface of genus g=2, and @V2.D f .@V1// is a stabilization of S . This
implies d.V1[f V2/D 0, a contradiction. Hence, we have the inequality (5-8).

Proof of Corollary 1.2 We first note that the proof of the corollary for the case when
nD 2 is exceptional, and we give it in the Appendix of this paper, and in this proof we
show the corollary for the case n�3. Let C1[P C2DC1[f C2 be a genus-g Heegaard
splitting with distance n.� 3/ obtained in Theorem 1.1. By the proof of Theorem 1.1,
there are separating essential disks D1 and D2 in C1 and C2 , respectively, such that
d@CC2

.f .@D1/; @D2/D n. Let Hi .i D 1; 2/ be a handlebody of genus .g�1/. Take
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and fix any homeomorphism hi W @Hi! @�Ci , and put Vi WD Ci [hi
Hi (hence, Vi is

a handlebody of genus g ). Then V1[f V2 is a genus-g Heegaard splitting.

By Proposition 5.1, there exists a homeomorphism g1W @V1! @V1 such that

d@V2
.fg1.D.V1//; @D2/D n:

By applying Proposition 5.1 again to V2 [.fg1/�1 V1 , we see that there exists a
homeomorphism g2W @V2! @V2 such that

d@V1
..fg1/

�1g2.D.V2//;D.V1//D n:

That is, the distance of the Heegaard splitting V1[g�1
2
fg1

V2 is exactly n.

Appendix: A construction of distance 2 examples

In this Appendix, we show for each g � 2, there is a genus-g Heegaard splitting of a
closed 3–manifold with distance 2. The examples are given by using the construction
of strongly irreducible Heegaard splittings by Kobayashi and Rieck in [9]. For the
description of the construction we will use the notation .H;A1 [ A2/, N , R etc
from [9, Section 2.1].

For the case when g D 2, let F be an annulus, and let R D F � Œ0; 1�. For the
case when g � 3, let F be a genus-(g � 2) nonorientable surface (connected sum
of g � 2 copies of projective planes) with two holes, and let R be the orientable
twisted Œ0; 1�–bundle over F . Note that F is homotopy equivalent to a bouquet of
g � 1 circles, hence R is homeomorphic to the genus-(g � 1) handlebody. Let R0

be a copy of R. Then let A1 [A2 (resp. A0
1
[A0

2
) be the union of annuli in @R

(resp. @R0 ) corresponding to the Œ0; 1�–bundle over @F . Then let N be the manifold
obtained from R and R0 by identifying the subsurfaces of the boundaries corresponding
to the associated @Œ0; 1�–bundle. It is easy to see that the manifolds N , R and R0

satisfy [9, page 639, Conditions (1)–(3)].

Recall from [9] that H is a genus-2 handlebody, and fA1;A2g is a pair of prim-
itive annuli in @H . Let .H 0;A0

1
[ A0

2
/ be a copy of .H;A1 [ A2/. Then it is

observed in [9] that for any 2–bridge link L in S3 there is a homeomorphism
hW Cl.@H n .A1 [ A2// ! Cl.@H 0 n .A0

1
[ A0

2
// such that the manifold obtained

from H and H 0 by identifying Cl.@H n .A1 [A2// and Cl.@H 0 n .A0
1
[A0

2
// by h

is homeomorphic to the exterior E.L/ of L. Then let M be the 3–manifold obtained
from E.L/ and N by identifying their boundaries by an orientation-reversing homeo-
morphism such that Ai (resp. A0i ) is identified with Ai (resp. A0i ). Then it is shown
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in [9, Section 2.1] that H [R and H 0 [R0 are genus-g handlebodies, and these
handlebodies give a Heegaard splitting of M .

Then we have the following.

Assertion Suppose that the 2–bridge link L is not a trivial link or a Hopf link, then
the distance of the Heegaard splitting .H [R/[ .H 0[R0/ is exactly 2.

Proof Since L is not a trivial link or a Hopf link, we see, by [9, Proposition 2.1], that
.H [R/[ .H 0[R0/ is strongly irreducible, ie the distance of the Heegaard splitting
is greater than or equal to 2. On the other hand, since @E.L/ (D @N ) �M is an
essential torus, we see, by Hartshorn [5], that the distance of any Heegaard splitting
of M is at most 2, and this together with the above shows that the distance of the
Heegaard splitting .H [R/[ .H 0[R0/ is exactly 2.
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