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Abelian quotients of the string link monoid

JEAN-BAPTISTE MEILHAN

AKIRA YASUHARA

The set SL.n/ of n–string links has a monoid structure, given by the stacking product.
When considered up to concordance, SL.n/ becomes a group, which is known to be
abelian only if nD 1 . In this paper, we consider two families of equivalence relations
which endow SL.n/ with a group structure, namely the Ck –equivalence introduced
by Habiro in connection with finite-type invariants theory, and the Ck –concordance,
which is generated by Ck –equivalence and concordance. We investigate under which
condition these groups are abelian, and give applications to finite-type invariants.

57M25, 57M27; 20F38

1 Introduction

For a positive integer n, let D2 be the standard two-dimensional disk equipped with n

marked points x1; : : : ;xn in its interior. Let I denote the unit interval. An n–string
link is a proper embedding

LW

nG
iD1

Ii!D2
� I

of the disjoint union
Fn

iD1 Ii of n copies of I in D2 � I , such that for each i the
image Li of Ii runs from .xi ; 0/ to .xi ; 1/. Abusing notation, we will also denote by
L�D2 � I the image of the map L, and Li is called the i th string of L. Note that
each string of an n–string link is equipped with an (upward) orientation induced by the
natural orientation of I . The string link

Fn
iD1.fxig � I/ is called the trivial n–string

link and is denoted by 1n , or simply by 1.

The set SL.n/ of isotopy classes of n–string links fixing the endpoints has a monoid
structure, with composition given by the stacking product and with the trivial n–string
link 1n as unit element. There is a surjective map from SL.n/ to the set of isotopy
classes of n–component links, which sends an n–string link to its closure (in the usual
sense). For nD 1, this map is a monoid isomorphism.

It is well known that the monoid SL.n/ is not a group. In fact, it is quite far from being
a group: the group of invertible elements in SL.n/ is actually the pure braid group
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on n strands; see Habegger and Lin [11]. However, SL.n/ becomes a group when
considered up to concordance. Recall that two n–string links L;L0 are concordant if
there is an embedding

f W

� nG
iD1

Ii

�
� I �! .D2

� I/� I

such that f ..
Fn

iD1 Ii/� f0g/D L and f ..
Fn

iD1 Ii/� f1g/D L0 , and such that we
have f .@.

Fn
iD1 Ii/� I/D .@L/� I . The inverse of a string link up to concordance is

simply its horizontal mirror image with reversed orientation. Le Dimet showed that
the group of concordance classes of n–string links is not abelian for n� 3 in [14].1

The fact that this result also hold for nD 2 seem to have been first observed by De
Campos [3], as a consequence of a result of Miyazaki for the theta-curve cobordism
group [19].

Now, other equivalence relations are known to endow SL.n/ with a group structure:
for each k � 1, the set SL.n/=Ck of Ck –equivalence classes of n–string links is a
group; see Habiro [13]. Here, the Ck –equivalence is an equivalence relation on links
generated by Ck –moves and ambient isotopies, defined in connection with the theory
of finite-type invariants. A C1 –move is just a crossing change, and for any integer
k � 2, a Ck –move is a local move on links as illustrated in Figure 1.1. These local
moves can also be defined in terms of ‘insertion’ of an element of the k th lower central
subgroup of some pure braid group (see Stanford [23]), or alternatively by using the
theory of claspers (see Section 2).

...

...

...

...
0 1 2 k�1 k 0 1 2 k�1 k

Figure 1.1: A Ck –move involves k C 1 strands of a link, labelled here by
integers between 0 and k .

Habiro proved in [13] that the quotient SL.n/=Ck is a finitely generated nilpotent
group, for any n and k . In this paper, we investigate under which condition this group
is abelian. This is immediate for k D 1 since SL.n/=C1 is the trivial group. It is also
well known that, for all n� 1, the group SL.n/=C2 is abelian. This essentially follows
from the fact, due to Murakami and Nakanishi [20], that C2 –equivalence classes of
(string) links are classified by the linking number. Another rather easy fact is the
following, which uses Milnor’s triple linking number (see Section 4.3).

1 The literature sometimes erroneously refers to [14] for the analogous fact for nD 2 , but, as Le Dimet
writes in [14, 4.5 Conclusion 2], his arguments did not allow him to conclude in the case of 2–string links.

Algebraic & Geometric Topology, Volume 14 (2014)



Abelian quotients of the string link monoid 1463

Proposition 1.1 The group SL.n/=Ck of Ck –equivalence classes of n–string links is
not abelian for any n� 3 and any k � 3.

Hence our study is reduced to the case of 2–string links. In [25], the second author
showed that SL.2/=Ck is not abelian for k � 12. Here we improve this result and give
an almost complete answer for this ‘abelian problem.’

Theorem 1.2 (1) The group SL.2/=Ck of Ck –equivalence classes of 2–string
links is abelian for k < 7.

(2) The group SL.2/=Ck is not abelian for k > 7.

Although the case k D 7 remains open so far, we show the following.

Theorem 1.3 The group SL.2/=C7 is abelian if it has no 2–torsion.

Remark 1.4 Bar-Natan’s computations [2] show that 7 is the smallest degree of a
finite-type invariant that can detect the orientation of 2–string links. The existence
of such an invariant was shown by Duzhin and Karev [8], and this result is used in
Section 3.2 to prove Theorem 1.2(2). Likewise, it would be very interesting to determine
whether there exists a Z2 –valued finite-type invariant of degree 6 that can detect the
orientation of 2–string links.

The ‘abelian problem’ addressed above is deeply related to one of the main results in the
theory of finite-type invariants, due to Habiro [13] and Goussarov [10] independently,
which gives a topological characterization of the information contained by finite-type
invariants of knots.

Theorem 1.5 [10; 13] Two knots cannot be distinguished by any finite-type invariant
of order less than k if and only if they are Ck –equivalent.

It was indeed conjectured by both Goussarov and Habiro that, although it fails to hold
for links, Theorem 1.5 may generalize to string links. One of the key ingredients of
Habiro’s proof of Theorem 1.5, based on the theory of claspers, is the fact that the
set of Ck –equivalence classes of knots forms an abelian group for all k � 1. As a
matter of fact, his techniques apply to the string link case, and the fact that the group
SL.n/=Ck is abelian implies that the conjecture holds at the corresponding degree (see
the Appendix for further explanation). Hence Theorem 1.2(1) gives us the following.

Corollary 1.6 For any integer k � 6, two 2–string links cannot be distinguished by
any finite-type invariant of order less than k if and only if they are Ck –equivalent.

Algebraic & Geometric Topology, Volume 14 (2014)



1464 Jean-Baptiste Meilhan and Akira Yasuhara

Remark 1.7 The Goussarov–Habiro Conjecture for string links was shown to be true
at low degree by various authors. It is easy to check for k D 2, using the linking
number [20], and was proved for k D 3 by the first author in [16]. Massuyeau gave a
proof for k D 4, using algebraic arguments [15]. In [17], the authors classified string
links up to Ck –equivalence for k � 5, by explicitly giving a complete set of low degree
finite-type invariants, and proved the Goussarov–Habiro conjecture for k � 5 as a
byproduct.

Since we have two equivalence relations, concordance and Ck –equivalence, that provide
group structures on the set of string links, it is natural to combine them to get a new
group structure. We call this equivalence relation on string links generated by Ck –
moves and concordance the Ck –concordance [17]. The Ck –concordance is very
closely related to Whitney tower concordance of order k � 1 studied in [6] by Conant,
Schneiderman and Teichner,2 and to finite-type concordance invariants.

In Section 4, we investigate whether the group SL.n/=.Ck C c/ of Ck –concordance
classes of n–string links is abelian. In the knot case, it is known that SL.1/=.Ck C c/

is trivial for k D 1 or 2, and that SL.1/=.Ck C c/ is isomorphic to Z=2Z for k � 3;
see Ng [21] and the authors [17]. We show the following.

Theorem 1.8 (1) The group SL.2/=.Ck C c/ is abelian if and only if k � 8.

(2) For n� 3, the group SL.n/=.Ck C c/ is abelian if and only if k � 2.

The proof of (1) is given in Sections 4.4 and 4.5. In Section 4.3, we prove the ‘only
if’ part in (2). The ‘if’ part is actually easy to see. Indeed, as mentioned above,
SL.n/=C1 is a trivial group and SL.n/=C2 is an abelian group classified by the linking
number. Since the latter is a C2 –concordance invariant, we have that SL.n/=C2 and
SL.n/=.C2C c/ are isomorphic.

Since two Ck –concordant string links share all finite-type concordance invariants of
degree less than k , and it is natural to ask, parallel to the Goussarov–Habiro conjecture,
whether the converse is also true. This question was raised by the authors in [17]. As
in the case of the Ck –equivalence, Habiro’s arguments apply if SL.n/=.Ck C c/ is
abelian. Hence we have the following corollary.

Corollary 1.9 For any integer k � 8, two 2–string links cannot be distinguished
by any finite-type concordance invariant of order less than k if and only if they are
Ck –concordant.

2 These two equivalence relations are actually equivalent, as announced in [6].
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2 Claspers

We recall here the main definitions and properties of the theory of claspers, which is
one of the main tools of this paper. For convenience, we restrict ourselves to the case
of string links. For a general definition of claspers, we refer the reader to [13].

2.1 A brief review of clasper theory

Let L be a string link. An embedded surface g is called a graph clasper for L if it
satisfies the following three conditions:

(1) g is decomposed into disks and bands, called edges, each of which connects
two distinct disks.

(2) The disks have either 1 or 3 incident edges, and are called leaves or nodes
respectively.

(3) g intersects L transversely, and the intersections are contained in the union of
the interiors of the leaves.

In particular, if a graph clasper is a simply connected, we call it a tree clasper. A graph
clasper for a string link L is simple if each of its leaves intersects L at one point.

The degree of a connected graph clasper g is defined as half the number of nodes and
leaves. We call a degree k connected graph clasper a Ck –graph. A tree clasper of
degree k is called a Ck –tree.

Convention 2.1 Throughout this paper, we make use of the drawing convention
for claspers of [13, Figure 7], except for the following: a ˚ (resp. 	) on an edge
represents a positive (resp. negative) half-twist. (This replaces the convention of a
circled S (resp. S�1 ) used in [13].)

Algebraic & Geometric Topology, Volume 14 (2014)
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Given a graph clasper g for a string link L, there is a procedure to construct, in a regular
neighborhood of g , a framed link  .g/. There is thus a notion of surgery along g ,
which is defined as surgery along  .g/. There exists a canonical diffeomorphism
between D2�I and the manifold .D2�I/.g/ fixing the boundary, and surgery along
the Ck –graph g can thus be regarded as an operation on L in the (fixed) ambient
space D2 � I . We say that the resulting string link Lg in D2 � I is obtained from L

by surgery along g . In particular, surgery along a simple Ck –tree is a local move as
illustrated in Figure 2.1.

Throughout this paper, we will often define string links in terms of claspers for the
trivial string link, implicitly referring to the result of surgery along this clasper.

Figure 2.1: Surgery along a simple C5 –tree

The Ck –equivalence (as defined in the introduction) coincides with the equivalence
relation on string links generated by surgeries along Ck –graphs and isotopies. In
particular, it is known that two links are Ck –equivalent if and only if they are related
by surgery along simple Ck –trees [13, Theorem 3.17].

This family of equivalence relations becomes finer as the degree increases, that is, the
Ck –equivalence implies the Cm –equivalence if k >m.

A string link is called Ck –trivial if it is Ck –equivalent to the trivial string link.

2.2 Standard calculus of claspers

In this subsection, we summarize several properties of claspers. Although similar
statements hold in a more general context, it will be convenient to state these results
for the trivial string link 1. Proofs are omitted, since they involve the same techniques
as in [13, Section 4], where similar statements appear.

Lemma 2.2 Let t1 [ t2 be a disjoint union of a Ck1
–graph and a Ck2

–graph for 1.
Let t 0

1
[ t 0

2
be obtained from t1 [ t2 by sliding a leaf of t1 across a leaf of t2 ; see

Figure 2.2. Then

1t1[t2

Ck1Ck2C1

� 1t 0
1
[t 0

2
� 1t ;

where t is a Ck1Ck2
–graph obtained from t1[ t2 by inserting a vertex v in the edge e

of t and connecting v to the edge incident to f as shown in Figure 2.2.
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;

t2 t1

e

f

t 0
2

t 0
1 t

v

Figure 2.2: Sliding a leaf

Lemma 2.3 Let t1 [ t2 be a disjoint union of a Ck1
–graph and a Ck2

–graph for 1.
Let t 0

1
[ t 0

2
be obtained from t1 [ t2 by changing a crossing of an edge of t1 with an

edge of t2 . Then

1t1[t2

Ck1Ck2C2

� 1t 0
1
[t 0

2
� 1t ;

where t is a Ck1Ck2C1 –graph obtained by inserting a vertex in both edges involved in
this crossing change, and connecting them by an edge.

Remark 2.4 By combining the two previous lemmas, we have the following. Let L1

(resp. L2 ) be a Ck1
–trivial (resp. Ck2

–trivial) n–string link, for some n � 1. Then
L1 � L2 is Ck1Ck2

–equivalent to L2 � L1 . This fact was already noted by Habiro
in [13, Proposition 5.8].

Lemma 2.5 Let g be a Ck –graph for 1. Let f1 and f2 be two disks obtained by
splitting a leaf f of g along an arc ˛ as shown in Figure 2.3.

˛
f

g

f1

g1

f2

g2

Figure 2.3: The 3 claspers are identical outside a small ball, where they are as depicted.

Then,

.1/g
CkC1
� .1/g1

� .1/g2
;

where gi denotes the Ck –graph for 1 obtained from g by replacing f by fi (i D 1; 2);
see Figure 2.3.

Lemma 2.6 Let t be a Ck –graph for 1, and let t 0 be a Ck –graph obtained from t by
adding a half-twist on an edge. Then

1t � 1t 0
CkC1
� 1:

Algebraic & Geometric Topology, Volume 14 (2014)
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Claspers also satisfy relations analogous to the AS, IHX and STU relations for Jacobi
diagrams; see Bar-Natan [1].

Lemma 2.7 (AS) Let t and t 0 be two Ck –graphs for 1 which differ only in a small
ball as depicted in Figure 2.4.

t t 0
tI

tH tX

gS

e gT gU

Figure 2.4: The AS, IHX and STU relations

Then
1t � 1t 0

CkC1
� 1:

(IHX) Let tI , tH and tX be three Ck –graphs for 1 which differ only in a small ball
as depicted in Figure 2.4. Then

1tI

CkC1
� 1tH � 1tX :

(STU) Let gS , gT and gU be three Ck –graphs for 1 which differ only in a small
ball as depicted in Figure 2.4. Then

1gS
� 1gT

CkC1
� 1gU

:

In the rest of the paper, we will simply refer to Lemma 2.7 as the AS, IHX and STU
relations.

By the IHX and STU relations, one can easily check the following.

Lemma 2.8 Let t be a Ck –graph for 1.

(1) Suppose that there exists a 3–ball which intersects t as on the left-hand side of
Figure 2.5. Then

1t
CkC1
� 1c ;

where c is a Ck –graph as shown in the figure.

(2) Suppose that there exists a 3–ball which intersects t as on the right-hand side of
Figure 2.5. Then

1t
CkC1
� 1g;

where g is a Ck –graph as shown in the figure.
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t c t g

Figure 2.5

2.3 A commutativity lemma

We conclude this section with a purely algebraic lemma. Although seemingly very
technical, it turns out to be a rather natural tool in the proofs of our main results.

Lemma 2.9 Let L be an n–string link satisfying the following three conditions, for
some integers p , l , m and k (p < k , l <m< k ):

� L2 is Cp –equivalent to a central element in SL.n/=Ck .

� L commutes with any Cl –trivial string link in SL.n/=Cm .

� L commutes with any Cm –trivial string link in SL.n/=Ck .

Suppose, moreover, that SL.n/=Ck has no 2–torsion, and that Cl –trivial and Cp –
trivial string links all commute in SL.n/=Ck . Then L commutes with any Cl –trivial
string link in SL.n/=Ck .

Remark 2.10 Observe that a string link commutes with any Cl –trivial string link
in SL.n/=Ck (l < k ) if and only if it commutes with 1t for any Cs –tree t with
l � s � k � 1. Indeed, let T and T 0 be two Cl –equivalent string links. Since T is
C1 –trivial, it is not hard to see, using Lemmas 2.2 and 2.3, that T 0 is Ck –equivalent
to a product T �Tl �TlC1 � � �Tk�1 , where Ti is a product of string links, each obtained
from 1 by surgery along a single Ci –tree .l � i � k � 1/. In particular, each Ti is a
Ci –trivial string link, and Tl �TlC1 � � �Tk�1 is thus a Cl –trivial string link.

Proof As mentioned above, this is a purely algebraic result, which relies on the
following.

Fact Let A, B and C be subgroups of some group G . Let x; z 2 G , where z is
central. Suppose that

x2z�1
2 C; Œx;A�� B; Œx;B�D f1g; ŒA;C �D f1g:

If B has no 2–torsion, then we have that Œx;A� D f1g. (Here, Œg; h� denotes the
commutator ghg�1h�1 of g and h.)

Algebraic & Geometric Topology, Volume 14 (2014)
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This is easily shown as follows. Set c D x2z�1 2 C . Then, for any element a of A,
the above assumptions imply that

Œx; a�2 D xŒx; a�x�1Œx; a�D Œx2; a�D Œcz; a�D Œc; a�D 1;

which implies that Œx; a�D 1 as desired, since B has no 2–torsion.

Lemma 2.9 is merely an application of this fact in the case where G D SL.n/=Ck ,
AD SLl.n/=Ck , B D SLm.n/=Ck and C D SLp.n/=Ck , where SLi.n/=Ck denotes
the subgroup of SL.n/=Ck of the Ck –equivalence classes of Ci –trivial string links.

Remark 2.11 It follows from the above proof that Lemma 2.9 still holds if we replace,
in the statement, the condition that SL.n/=Ck has no 2–torsion with the condition that
SLm.n/=Ck has no 2–torsion.

3 The group of Ck–equivalence classes of 2–string links

In this section, we prove Theorems 1.2 and 1.3.

3.1 Abelian cases: k� 6

Since the Ck –equivalence implies the Cm –equivalence if k > m, it is sufficient to
show that SL.2/=C6 is abelian. This is done in Proposition 3.3, by first providing a
set of generators for this group and then by showing that any two of these generators
commute in SL.2/=C6 . (Recall that it was shown by Habiro that SL.n/=Ck is a finitely
generated group for any n and k [13].)

Let the 2–string links I , Y , Y 0 , H , X , D , S1
˛ and S2

˛ (˛ 2S3 ) obtained from 12 by
surgery along the tree clasper i , y , y0 , h, x , d , s1

˛ and s2
˛ , represented in Figure 3.1,

respectively.

i y y0 h x d s1
˛ s2

˛

˛ ˛

1

2

3

1

2

3

Figure 3.1

Let SLi.2/ denote the set of Ci –trivial 2–string links (i � 1). It is shown in [17, Sec-
tions 4.1–4.3.2] that, for i 2 f1; 2; 3; 4g, the group SLi.2/=CiC1 has generating
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set Hi DHm
i [Hl

i , where3

Hm
1 D fIg; Hm

2 D fY g; Hm
3 D fH;Dg; Hm

4 D f�
1
id; �

1
.12/; �

1
.123/; �

1
.13/; �

2
idg;

and where Hl
i is a set of local generators. Here, we say that an element of SL.2/ is

local if there exists a 3–ball whose boundary intersects it at only two points, such that
an homotopy of this ball to a point produces the trivial 2–string link. (In other words,
local elements consists of a local knot on one strand.) Clearly local elements are central
in SL.2/.

Let us also fix a generating set H5 for SL5.2/=C6 . We call elements of Hi (i � 5)
generators of degree i .

Before stating Proposition 3.3, we make a few simple, yet useful observations. First,
notice the following.

Lemma 3.1 The string link I is central in SL.2/.

Proof This is shown in Figure 3.2. Let L2SL.2/. Then I �L is as represented on the

L L
L L

rotate

Figure 3.2

left-hand side of the figure. Rotating the two strings by 360 degrees about the vertical
axis (fixing the endpoints) yields an isotopic string link, which is precisely L � I .

Next, we have the following.

Fact 3.2 The string links Y and Y 0 are ambient isotopic.

This is the string link version of the usual symmetry property of the Whitehead link, as
illustrated in Figure 3.3 below.

In the following, however, we will use the term ‘symmetric’ for another property. Given
an n–string link L, we denote by xL its image under orientation-reversal of all its
strands. The string link L is called symmetric if it is isotopic to xL. For example, the

3 In [17], the generating set Hm
3
D fH;X g is used instead. Here, it will be convenient to use the

element D rather than X as generator. This is possible since, by the STU relation, we have D �H
C4
�X .

Algebraic & Geometric Topology, Volume 14 (2014)
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D � D
isotopy

Figure 3.3: Symmetry property of the Whitehead string link

string links I , Y , Y 0 , H and D are all symmetric. Notice that this is nicely reflected
in the symmetry of the clasper defining these string links.

We can now prove the first part of Theorem 1.2.

Proposition 3.3 The group SL.2/=C6 is abelian.

Proof We use the generating sets Hi for SLi.2/=CiC1 specified above (1� i � 5).
In order to prove Proposition 3.3, it suffices to show that lifts in SL.2/=C6 of any two
elements of

S5
iD1 Hi commute, since

S5
iD1 Hi forms a generating set for this group.

By Remark 2.4, two generators of degree k and k 0 commute in SL.2/=C6 if kCk 0�6.
Hence all generators of degree 5 are central in SL.2/=C6 . Remark 2.4 also implies
that H and D commute with each other. Moreover, we may safely ignore local
generators, since these are central elements in SL.2/, as well as I (by Lemma 3.1).

So we only need to check that the generator of degree 2, namely Y , commutes with
both H , and D .

Let us first show that Y and H commute in SL.2/=C6 . The proof is given in Figures 3.4
and 3.5 as follows. Consider the product H � Y . By Lemmas 2.2 and 2.6, we have
that H �Y

C6
�G �K , where G and K are shown in Figure 3.4. Observe that G ‘locally’

Y

H
� � � �

G K G0 K A B C

C6
�

isotopy
�

C6
�

Figure 3.4

contains a copy of Y , so that we can use Fact 3.2 to show that G is isotopic to the string
link G0 represented in Figure 3.4. Now, by a second application of Lemma 2.2, G0

is C6 –equivalent to the product of the two string links A and B represented on the

Algebraic & Geometric Topology, Volume 14 (2014)
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right-hand side of the figure. Also, Lemmas 2.6 and 2.8 imply that K
C6
� C , where C

is also given in Figure 3.4.

Let us now focus on the string link B . By the IHX relation and Lemma 2.6, we have
B

C6
�B0 �B00 , as illustrated in Figure 3.5. Applying Lemmas 2.8 and 2.6 to the string

..

B B0 B00 D E

C6
�

C6
�

Figure 3.5

link B0 and B00 , we deduce that B
C6
� D �E , where D and E are represented on the

right-hand side of Figure 3.5.

Hence we have shown that H �Y
C6
� A �C �D �E . Note that, by Remark 2.4, we have

that A, C , D and E commute with each other in SL.2/=C6 . Observe that A
C6
� xA by

Lemma 2.3, and that the three string links C , D and E are symmetric. We thus have

H �Y
C6
� H �Y D Y �H;

where the equality follows from the fact that Y and H are also symmetric.

Similarly, we now show that Y commutes with D as follows. Starting with the product
D �Y and applying Lemmas 2.2 and 2.6 twice as shown in Figure 3.6, we obtain that
D �Y

C6
�M �N �O , where M , N and O are represented on the right-hand side of the

figure. The STU relation shows that N
C6
�P �Q, where P and Q are represented in

. . .
Y

D

M N O

C6
�

C6
�

Figure 3.6

Figure 3.7. Now, by Lemmas 2.6 and 2.8 we see that O and P are both C6 –equivalent
to the string link R shown in Figure 3.7. Summarizing, we have shown that

D �Y
C6
� M �R2

�Q:

Algebraic & Geometric Topology, Volume 14 (2014)



1474 Jean-Baptiste Meilhan and Akira Yasuhara

. .

N P Q R Q

C6
�

C6
�

Figure 3.7

Now, we have that M
C6
� SM by Lemma 2.3, and also Q

C6
� xQ by Lemma 2.8(2). Hence

we obtain that D �Y
C6
�D �Y D Y �D , where the equality follows from the fact that Y

and D are both symmetric.

3.2 Nonabelian case: k� 8

Denote by A.2/ the Q–vector space of Jacobi diagrams on two strands, modulo the
Framing Independance (FI) and STU relation, and denote by Ak.2/ the subspace
generated by degree k elements (see eg [1] for the definitions). The stacking product �
endows A.2/ with an algebra structure. As is well known, A.2/ coincides with the
space of chord diagrams on two strands modulo the FI and 4T relations [1].

In [8], Duzhin and Karev showed that A.2/=A8.2/, hence A.2/, is noncommutative.
More precisely, let DH 2A3.2/ and DS 2A4.2/ be the two Jacobi diagrams shown
in Figure 3.8. Then we have that DH �DS ¤DS �DH in A7.2/ [8, Proposition 1].

Figure 3.8: The Jacobi diagrams DH 2A3.2/ and DS 2A4.2/

We now show how this result implies that SL.2/=C8 is not abelian.

For k � 0, let Jk.2/ denote the subgroup of ZSL.2/ generated by singular 2–string
links with k double points, via the Vassiliev skein relation:

D �

By definition, the difference of two string links is in JkC1.2/ if and only if they cannot
be distinguished by any finite-type invariant of degree less than or equal to k . There is
a well-known isomorphism

�k W Ak.2/! .Jk.2/=JkC1.2//˝Q

which “maps chords to double points”, with inverse given by the Kontsevich integral.
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Now recall from Section 3.1 that H and S1
Id denote the 2–string links obtained from 12

by surgery along the tree clasper h and s1
Id represented in Figure 3.1, respectively. (For

simplicity, we will use here the simpler notation S for the string link S1
Id .) Then the

image of DH �DS �DS �DH by �7 is (up to a sign) the difference H � S � S �H

(this can be checked using a standard argument on the good behavior of the Kontsevich
integral on alternate sums defined by claspers; see eg Ohtsuki [22, Appendix E]). This
shows that H �S and S �H can be distinguished by some degree 7 finite-type invariant.
Since two Ck –equivalent (string) links cannot be distinguished by any finite-type
invariant of degree less than k , we deduce that H �S and S �H are not C8 –equivalent.

3.3 The case kD 7

In this section, we prove Theorem 1.3, hence we suppose that SL.2/=C7 has no
2–torsion.

We proceed as in Section 3.1, using the generating sets Hi for SLi.2/=CiC1 (i � 5).
By Remark 2.4, elements of SL6.2/=C7 are central in SL.2/=C7 , so we only need to
consider these generators of degree less than or equal to 5. As above, we may also
safely ignore local generators, as well as I . Actually, by Lemma 3.1 and Remark 2.4,
we only have to check the following commutativity properties:

(3,3) Generators of degree 3 commute with each other.

(2,4) Generators of degree 4 commute with generators of degree 2.

(2,3) Generators of degree 3 commute with generators of degree 2.

(Recall from Section 3.1 that by generator of degree k we mean any element of Hk .)

Case .3; 3/ We have to show that H and D commute in SL.2/=C7 . We will use the
following result, whose proof is postponed to the end of this section.

Claim 3.4 The string link D2 is C4 –equivalent to a central element in SL.2/.

It follows from this fact and Remark 2.4 that D fulfills the assumptions of Lemma 2.9
with .p; l;m; k/ D .4; 3; 6; 7/. Applying the lemma then proves that D commutes
with any C3 –trivial string link in SL.2/=C7 , and in particular with H .

Case .2; 4/ We have the following.

Claim 3.5 The string link Y 2 is C3 –equivalent to a central element in SL.2/.
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(The proof of Claim 3.5 uses the exact same arguments as the proof of Claim 3.4,
although it turns out to be actually significantly simpler.)

Claim 3.5 and Remark 2.4 ensure that Y satisfies the assumptions of Lemma 2.9 with
.p; l;m; k/D .3; 4; 6; 7/. Applying the lemma then shows that Y commutes with any
generator of degree 4 in SL.2/=C7 .

Case .2; 3/ Using Case .3; 3/ and Claim 3.5, we can now apply Lemma 2.9 to the
string link Y with .p; l;m; k/D .3; 3; 5; 7/. Applying the lemma then shows that Y

commutes with any generator of degree 3 in SL.2/=C7 .

We conclude this section with the proof of Claim 3.4.

Proof of Claim 3.4 We first notice that, as a consequence of Lemma 2.8, the string
link D has a symmetry property similar to that of the Whitehead string link Y in
SL.2/=C4 (see Figure 3.3):

C6
�

C6
�

Figure 3.9: A Whitehead-type symmetry for the 2–string link D

Now consider the C3 –graph g for 12 shown on the left-hand side of Figure 3.10.
Clearly, the 2–string link G obtained by surgery along g is central in SL.2/. By apply-
ing repeatedly Lemma 2.5, we have that G is C4 –equivalent to a product

Q8
iD1.12/gi

of eight 2–string links, each obtained from 12 by surgery along a simple C4 –graph,
as shown in Figure 3.10. By several isotopies, Lemma 2.6 and the symmetry prop-
erty of Figure 3.9, we deduce that G is C4 –equivalent to the product C � .D�/2 ,
where C D .12/g1

� .12/g5
is clearly central in SL.2/ and where D� D .12/d� (see

Figure 3.10).

Using Lemma 2.6, we thus have that D2 C4
� C �G�1 , where G�1 denotes the inverse

of the central element G in SL.2/. The result follows.

Remark 3.6 The techniques used in Section 3.1 to prove that SL.2/=Ck is abelian
for k � 6 can also be applied to the case k D 7 to some extent. More precisely, by
fixing a generating set H6 for SL6.2/=C7 , one can try to show directly that lifts to
SL.2/=C7 of any two elements of

S6
iD1 Hi commute. We can actually apply our

methods, involving somewhat advanced calculus of claspers, to prove that this is indeed
the case, except for one computation that remains open. Namely, the question whether
H �Y is C7 –equivalent to Y �H remains open so far, and is the only missing case to
establish the commutativity of SL.2/=C7 (without the 2–torsion assumption).
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.

. ..

. ..

. .
2g1 g2 g3 g4

g

g5 g6 g7 g8

g1 g5 d�

C4
�

C4
�

Figure 3.10

4 The group of Ck–concordance classes of string links

In this section, we prove Theorem 1.8 and Proposition 1.1. We start with a brief review
on the Ck –concordance.

4.1 Ck –concordance

Let k and n be positive integers. Two n–string links L;L0 are Ck –concordant if
there is a sequence L D L0;L1; : : : ;Lm D L0 of n–string links such that for each
i � 1, either

Li
CkC1
� LiC1

or Li is concordant to LiC1 . We denote the Ck –concordance relation by
CkCc
� .

A string link is .Ck C c/–trivial if it is Ck –concordant to the trivial string link.

It is well known that Milnor invariants are concordance invariants; see Casson [4].
So by [13, Theorem 7.1], Milnor invariants of length less than or equal to k are Ck –
concordance invariants. Habegger and Masbaum showed that all rational finite-type
concordance invariants of string links are given by Milnor invariants via the Kontsevich
integral [12].

It is known that surgery along graph claspers with loops (ie graph claspers that are not
tree claspers) implies concordance.

Lemma 4.1 (Conant and Teichner [7], Garoufalidis and Levine [9]) For any graph
clasper with loop g for 1, the string link 1g is concordant to 1.

By combining this lemma and the STU relation, we have the following.
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Lemma 4.2 Let gT and gU be two Ck –trees for 1 which differ only in a small ball
as depicted in Figure 2.4. Then

1gT

CkC1Cc
� 1gU

:

Note also that the algebraic argument used to prove Lemma 2.9 also apply in this
context, so that there is a ‘Ck –concordance version’ of Lemma 2.9 (see Lemma 4.7
below).

4.2 The ordered index

In order to study Ck –concordance for string links, we use the notion of ordered index
of a linear Ck –tree.

Let t be a simple tree clasper for a string link L. We call a leaf of t an i –leaf if it
intersects the i th component of L. The index of t is the collection of all integers i

such that t contains an i –leaf, counted with multiplicities. For example, a simple
C3 –tree of index f2; 3.2/; 5g for L intersects component 3 twice and components 2

and 5 once (and is disjoint from all other components of L).

For k � 3, a Ck –tree G having the shape of the tree clasper in Figure 2.1 is called a
linear Ck –tree. (Note in particular that a linear tree clasper is always assumed to be
simple.) The left-most and right-most leaves of G in Figure 2.1 are called the ends
of G . As a convention, any simple Ck –tree is linear for k � 2; the ends of a linear
C1 –tree (resp. C2 –tree) are its two leaves (resp. a choice of any two leaves).

Let t be a linear Ck –tree with ends f0; fk . Since t is a disk, we can travel from f0

to fk along @t so that we meet all other leaves f1; : : : ; fk�1 in this order. If fs is
an is –leaf .s D 0; : : : ; k/, we can consider two vectors .i0; : : : ; ik/ and .ik ; : : : ; i0/
and may assume that .i0; : : : ; ik/� .ik ; : : : ; i0/, where ‘�’ is the lexicographic order
in ZkC1 . We call .i0; : : : ; ik/ the ordered index of t and denote it by o–index.t/. In
the following, we will simply denote by .i0 : : : ik/ an ordered index .i0; : : : ; ik/.

By combining Lemma 4.1 and [17, Lemma 5.1], we have the following lemma.

Lemma 4.3 (1) Let t and t 0 be two linear Ck –trees for 1 with same ordered index.
Then either

1t
CkC1Cc
� 1t 0 or 1t � 1t 0

CkC1Cc
� 1:

(2) Let t be a linear Ck –tree .k � 3/ for 1 with o–index.t/D .i0 : : : ik/. If i0D i1
or ik�1 D ik , then

1t
CkC1Cc
� 1:
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For each sequence I D .i0 : : : ik/ of integers in f1; 2g, let T .I/ denote the choice of
a 2–string link obtained from 12 by surgery along a linear Ck –tree with o–index I .
In particular, the 2–string links T .12/, T .121/, T .1221/, T .12221/ and T .21112/

are chosen to be the string links I , Y , H , S1
id and S2

id introduced in Section 3.1,
respectively. We note that by Lemma 4.3(1), there are essentially two choices in
SL.2/=.CkC1C c/ for each sequence I .

4.3 Proofs of Proposition 1.1 and Theorem 1.8(2)

We first show why SL.n/=.C3C c/ is not abelian for any n� 3.

Since the Ck –concordance implies the Cm –concordance if k >m, this will imply state-
ment (2) of Theorem 1.8, and since the Ck –equivalence implies the Ck –concordance,
we will also deduce Proposition 1.1.

Let �1 and �2 be the Artin generators for the 3–braid group. Then �2
1

, ��2
1

, �2
2

and ��2
2

are 3–string links. Since the closure of �2
1
�2

2
��2

1
��2

2
is a copy of the

Borromean rings, �2
1
�2

2
��2

1
��2

2
has nontrivial Milnor invariant �.123/ of length 3,

which is a C3 –concordance invariant. Hence �2
1
�2

2
��2

1
��2

2
is not C3 –concordant to 13 .

This implies that SL.3/=.C3Cc/ is not commutative: suppose that �2
1

and �2
2

commute
in SL.3/=.C3Cc/, then �2

1
�2

2
��2

1
��2

2
is C3 –concordant to �2

2
�2

1
��2

1
��2

2
D13 , which

leads to a contradiction.

4.4 Abelian cases: k� 8

We now show that SL.2/=.Ck C c/ is abelian for k � 8.

Since the Ck –concordance implies the Cm –concordance for k >m, it is sufficient to
show that SL.2/=.C8C c/ is abelian.

We use the same strategy as in Section 3.1, where we showed that SL.2/=C6 is
abelian. More precisely, we first chose generating sets for the successive quotients
SLc

i .2/=.CiC1Cc/ (i � 7), where SLc
i .2/ is the set of .CiCc/–trivial 2–string links,

to obtain a set of generators for SL.2/=.C8C c/, then we show that any two of these
generators commute. In this discussion, we may again ignore local generators, since
they are central in SL.2/.

Let

Hc
1 D fT .12/g; Hc

2 D fT .121/g; Hc
3 D fT .1221/g;

Hc
4 D fT .12221/;T .21112/g; Hc

5 D fT .122221/;T .211112/;T .121221/g:
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In [17], the authors show that Hc
i is a generating set for SLc

i .2/=.CiC1C c/, i � 5.4

Let us now pick a generating set for SLc
6.2/=.C7C c/. By Lemma 4.3(2), a string link

obtained from 12 by surgery along a linear C6 –tree with index f1; 2.6/g or f1.6/; 2g
is C7 –concordant to 12 . So it is enough to consider C6 –trees with index f1.2/; 2.5/g,
f1.3/; 2.4/g, f1.4/; 2.3/g or f1.5/; 2.2/g. Furthermore, the IHX relation implies that it
is sufficient to consider linear C6 –trees.

By the IHX relation, the ends of a linear C6 –trees with index f1.2/; 2.5/g can be chosen
to be the two 1–leaves, so that the only possible o–index is .1222221/. Similarly,
we may assume that the ends of a linear C6 –trees with index f1.3/; 2.4/g are both
2–leaves. Then by Lemma 4.3(2), the o–index should be of the form .21ij k12/

for some i; j ; k 2 f1; 2g. Since the index is f1.3/; 2.4/g, we have three possibilities,
namely ij k D 212, 122, or 221. By definition, the only two possible o–indices are
then .2112212/ and .2121212/. Summarizing, we may assume that

(1) all linear C6 –trees with index f1.2/; 2.5/g have o–index .1222221/,

(2) all linear C6 –trees with index f1.3/; 2.4/g have o–index .2121212/ or .2112212/,

(3) all linear C6 –trees with index f1.4/; 2.3/g have o–index .1212121/ or .1211221/,

(4) all linear C6 –trees with index f1.5/; 2.2/g have o–index .2111112/.

(The last two cases are deduced from the first two by exchanging 1 and 2.)

The following lemma is useful to further reduce the number of generators.

Lemma 4.4 For an integer k � 5, let t and t 0 be two linear Ck –trees for 12 whose
respective o–indices are either of the form .ijj i iI/ and .ij ij iI/, where I is a
sequence of k � 4 integers in f1; 2g and where fi; j g D f1; 2g. Then either

.12/t
CkC1Cc
� .12/t 0 or .12/t � .12/t 0

CkC1Cc
� 12:

Proof Suppose that o–index.t/ is of the form .ijj i iI/. By Lemmas 4.2 and 2.6, we
can assume without loss of generality that there a 3–ball which intersects 12 [ t as
shown on the left-hand side of Figure 4.1. Using Lemma 2.6 again, we have that .12/t
is CkC1 –equivalent to .12/t 0 , where t 0 is shown in the figure.

By the IHX relation, .12/t 0 is CkC1 –equivalent to L �S , where L and S are string
links as illustrated in Figure 4.1. Notice that, by the AS relation, L is CkC1 –equivalent
to a string link obtained from 12 by surgery along a Ck –trees with o–index .ij ij iI/.
So, proving that S is .CkC1C c/–trivial would imply Lemma 4.4.

4 In [17], T .121212/ is chosen instead of T .121221/ , but these two string links are C6 –equivalent
by the AS relation.
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.

i j

t t 0

L S

CkC1
�

CkC1
�

Figure 4.1

We now show that S is indeed .CkC1C c/–trivial. The proof is given in Figure 4.2 as
follows. By Lemma 2.6 and the IHX relation, we have

S
CkC1
� U �V;

where U and V are as shown, and by Lemmas 2.3 and 4.2, V is CkC1 –concordant to
the string link W represented on the right-hand side.

..

S U V U W

CkC1
�

CkC1Cc
�

Figure 4.2

It then follows from the AS relation that U �W
CkC1
� 12 , which concludes the proof.

Remark 4.5 The same result holds if t and t 0 have respective o–indices .Ii ijj i/

and .Iij ij i/.

Using this, we can assume all linear C6 –trees with index f1.3/; 2.4/g and f1.4/; 2.3/g
have o–index .2121212/ and .1212121/, respectively. It follows that

Hc
6 D fT .1222221/; T .1212121/; T .2121212/; T .2111112/g

is a generating set for SLc
6.2/=.C7C c/.

Similarly, we have the following generating set for SLc
7.2/=.C8C c/:

Hc
7 D fT .12222221/;T .21111112/;T .12111221/;T .21122212/;T .12211221/;

T .12112221/g

In the following, we call generator of degree k (k � 7) any element T .I/ of the
generating set Hc

k
.
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In order to prove that SL.2/=.C8 C c/ is abelian, it suffices to show that any two
generators of degree less than or equal to 7 do commute in SL.2/=.C8C c/.

By Lemma 3.1, T .12/ is central in SL.2/. Moreover by Remark 2.4, two gener-
ators of degrees k and l commute in SL.2/=.C8 C c/ if k C l � 8. Hence it is
enough to check the commutativity of generators of degrees k and l for .k; l/ D
.3; 4/; .2; 5/; .2; 4/; .2; 3/. (The cases .3; 3/ and .2; 2/ are vacuous, since there is only
one generator in degree 3 and 2.)

In order to prove the commutativity in the case .3; 4/, we need the following.

Lemma 4.6 Let t be a linear Ck –tree .k � 1/ for 1n with k odd. Then .1n/t is
CkC1 –concordant to its image under orientation-reversal of all strings.

A proof is easily obtained by combining Lemma 4.1 and arguments similar to those
in the proof of [17, Lemma 5.1 (3)]. Here, let us only illustrate the general idea on
an example. Consider the linear C7 –tree t for 12 illustrated on the left-hand side of
Figure 4.3. Let also t 0 be the linear C7 –tree for 12 illustrated on the right-hand side
of the figure. (notice that both t and t 0 have o–index .12112221/.) On one hand, the
two string links obtained by surgery along t and t 0 are obtained from one another by
reversing the orientation of all strings. On the other hand, by Lemma 2.6 we have that
.12/t is C8 –equivalent to .12/c , where c is the C7 –tree shown in the figure. Let zc
be obtained by a 180–degree rotation of c around the axis a fixing the leaves; see
Figure 4.3. By sliding the leaves of zc repeatedly, we can deform it into the C7 –tree c0

isotopy

t c
zc c0 t 0

aC8
�

C8Cc
�

C8
�

Figure 4.3: The two string links obtained by surgery along t and t 0 are C8 –concordant.

shown in Figure 4.3, which only differs from t 0 by an even number of half-twists on its
edges. By Lemmas 4.2 and 2.6, we obtain that .12/t and .12/t 0 are C8 –concordant.
(In the general case, the fact that the degree is odd ensures that there is an even number
of half-twists.)

We can now prove the desired commutativity property in the case .k; l/D .3; 4/.

Case .3; 4/ We first show that T .1221/ and T .12221/ commute in SL.2/=.C8Cc/.
Since both string links are symmetric, we note that T .12221/ �T .1221/ is obtained
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from T .1221/ � T .12221/ by orientation-reversal of both strings. By Lemma 2.2,
T .1221/ �T .12221/ is C8 –equivalent to .12/t[s �L, where t and s are tree claspers
for 12 as illustrated in Figure 4.4, and where L is a string link obtained from 12 by
surgery along some C7 –trees. Since L is C8 –concordant to a product L0 of generators

t
s

Figure 4.4

of degree 7, we have that T .1221/ �T .12221/ is C8 –concordant to .12/t[s �L
0 . Hence

T .12221/ �T .1221/ is C8 –concordant to the 2–string link .12/t[s �L
0 with orientation

reversed. On the other hand, by Lemma 2.3, .12/t[s is C8 –equivalent to its image
under orientation-reversal, and by Lemma 4.6, each generator of degree 7 is C8 –
concordant to its image under orientation-reversal. It follows that T .1221/ �T .12221/

and T .12221/ �T .1221/ are C8 –concordant.

The fact that T .1221/ and T .21112/ commute in SL.2/=.C8Cc/ is shown completely
similarly.

Before we deal with the remaining cases, we make an observation. Since the group
SLc

7.2/=.C8C c/ is generated by the 6 elements of Hc
7

, and since there are 6 inde-
pendent Milnor invariants of length 8 (see Cochran [5, Appendix B]), we have that
SLc

7.2/=.C8Cc/ is a free abelian group with rank 6, and in particular, has no 2–torsion.
Moreover, by Claim 3.5, we have that T .121/2.D Y 2/ is C3 –equivalent to a central
element in SL.2/. So we get the following as an application of the ‘Ck –concordance
version’ of Lemma 2.9 (see also Remark 2.11).

Lemma 4.7 Suppose that the string link T .121/ commutes with any .Cl C c/–trivial
string link in SL.n/=.C7C c/, for some integers l (l < 8). Suppose moreover that
.C3C c/–trivial and .Cl C c/–trivial string links commute in SL.n/=.C8C c/. Then
T .121/ commutes with any .Cl C c/–trivial string link in SL.n/=.C8C c/.

We can now prove the desired commutativity property in the remaining cases .k; l/D
.2; 5/; .2; 4/; .2; 3/, namely that T .121/ commutes with generators of degree 5, 4

and 3 in SL.2/=.C8C c/.

Case .2; 5/ By Remark 2.4, T .121/ commutes with any C5 –trivial string link in
SL.2/=C7 . Also, any C3 –trivial string link commutes with any C5 –trivial string link
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in SL.2/=C8 . So by applying Lemma 4.7 for l D 5, we have that T .121/ commutes
with any .C5C c/–trivial string link in SL.2/=.C8C c/.

Case .2; 4/ We already showed that any .C3C c/–trivial string link commutes with
any .C4Cc/–trivial string link in SL.2/=.C8Cc/ (Case .3; 4/). By an argument similar
to that of Case .3; 4/ above, one can easily show that T .121/ commutes with any
C4 –trivial string link in SL.2/=.C7C c/. By applying Lemma 4.7 for l D 4, we thus
have that T .121/ commutes with any .C4C c/–trivial string link in SL.2/=.C8C c/.

Case .2; 3/ We only have to show that T .121/ and T .1221/ (that is, Y and H )
commute in SL.2/=.C7C c/, since this and Lemma 4.7 for l D 3 implies the desired
commutativity property. To do so, recall that we showed in the proof of Proposition 3.3
that Y �H is C6 –equivalent A �C �D �E (see Figures 3.4 and 3.5), which implies
that Y �H is C7 –concordant to A �C �D �E �L, where L is a product of string links,
each obtained by surgery along a degree 6 generator. Since all such generators are
symmetric, as well as Y , H , C , D and E , we have by Remark 2.4 that H �Y DY �H

is C7 –concordant to xA � C �D �E �L. Hence it suffices to show that A and xA are
C7 –concordant. To see this, notice that the tree claspers defining A and xA only differ
by a crossing change between edges, so that by Lemma 2.3, A is C7 –equivalent to a
product xA �.12/T , where T is a C6 –tree that intersects a ball as shown on the left-hand
side of Figure 2.5. The result then follows by combining Lemmas 2.8 and 4.1.

This concludes the proof that SL.2/=.Ck C c/ is abelian for all k � 8.

4.5 Nonabelian case

Let L1 , L0
1

, L2 and L0
2

be 2–string links as illustrated in Figure 4.5. The following

1 2 1 2 1 2 1 2
L1 L01 L2 L02

Figure 4.5

implies that SL.2/=.Ck C c/ is not abelian for all k � 9.

Proposition 4.8 The string links L1 and L2 do not commute in SL.2/=.C9C c/.
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Proof The proof relies on a direct computation, using a program by Takabatake,
Kuboyama and Sakamoto [24]5 based on the algorithm given by Milnor in [18] to
compute �–invariants. We have that the Magnus expansion of the 1st longitude of
L1 �L2 �L

0
1
�L0

2
is

1�XXXYXY Y Y CXXXY Y YXY C 5XXYXXY Y Y

� 6XXYXYXY Y �XXYXY Y YX CXXYXY Y Y Y C 6XXY YXYXY

� 5XXY YXY Y Y � 5XXY Y YXXY CXXY Y YXYX C 5XXY Y YXY Y

�XXY Y Y YXY � 5XYXXXY Y Y C 9XYXXYXY Y � 9XYXXY YXY

C 5XYXXY Y YX � 6XYXYXY YX C 6XYXYXY Y Y C 9XYXY YXXY

� 9XYXY YXY Y �XYXY Y YXX CXYXY Y Y YX � 9XY YXYXXY

C 6XY YXYXYX C 9XY YXY YXY � 5XY YXY Y YX C 5XY Y YXXXY

� 5XY Y YXXYX CXY Y YXYXX � 6XY Y YXYXY C 5XY Y YXY YX

�XY Y Y YXYX CYXXXXY Y Y C 6YXXXY YXY � 5YXXXY Y YX

�YXXXY Y Y Y � 9YXXYXXY Y C 9YXXYXY YX � 9YXXY YXYX

C 9YXXY YXY Y C 5YXXY Y YXX � 6YXXY Y YXY C 6YXYXXXY Y

� 6YXYXXY Y Y � 6YXYXY YXX C 6YXYXY Y YX � 6YXY YXXXY

C 9YXY YXXYX � 9YXY YXY YX �YXY Y YXXX C 6YXY Y YXXY

CYXY Y Y YXX � 6Y YXXXYXY C 5Y YXXXY Y Y C 9Y YXXYXXY

� 9Y YXXYXY Y � 9Y YXYXXYX C 9Y YXYXXY Y C 6Y YXYXYXX

� 9Y YXY YXXY C 9Y YXY YXYX � 5Y YXY Y YXX �Y Y YXXXXY

C 5Y Y YXXXYX � 5Y Y YXXXY Y � 5Y Y YXXYXX C 6Y Y YXXYXY

CY Y YXYXXX � 6Y Y YXYXYX C 5Y Y YXY YXX CY Y Y YXXXY

�Y Y Y YXYXX C .higher-degree terms/;

where the Magnus expansion is defined here by sending the first meridian to 1CX

and the second meridian to 1C Y . Hence some Milnor invariants of length 9 do
not vanish on the string link L1 �L2 �L

0
1
�L0

2
. This implies that L1 �L2 �L

0
1
�L0

2
is

not C9 –concordant to 12 . Now, if L1 commutes with L2 in SL.2/=.C9C c/, then

5 The first version, based on Milnor’s algorithm, was written by Tetsuji Kuboyama using the program-
ming language Ruby. The current version [24] is a significantly improved version of it, due to Yoshimasa
Takabatake, Tetsuji Kuboyama and Hiroshi Sakamoto, which uses C++.
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L1 �L2 �L
0
1
�L0

2
is C9 –concordant to L2 �L1 �L

0
1
�L0

2
, which is concordant to 12 .

This is a contradiction.

Appendix: Proofs of Corollaries 1.6 and 1.9

In this short appendix, we briefly outline the proofs of Corollaries 1.6 and 1.9. That is,
we show how the abelian group structure on the set of Ck –equivalence classes (resp.
Ck –concordance classes) of 2–string links implies the Goussarov–Habiro Conjecture at
the corresponding degree. As explained in the introduction, this is merely an adaptation
of Habiro’s argument for proving Theorem 1.5, so we do not reproduce here all the
details of this proof, but give precise references to the technical results from Habiro’s
paper that are used in this arguments, and emphasize the role of the commutativity of
SL.n/=CkC1 .

For simplicity, we only give the arguments for Corollary 1.6. They easily adapt to the
case of Ck –concordance and finite-type concordance invariants to obtain Corollary 1.9.

Actually, Habiro’s proof of Theorem 1.5 can be adapted to show the following.

Proposition A.1 Suppose that the group of CkC1 –equivalence classes of n–string
links is abelian. Then two n–string links cannot be distinguished by any finite-type
invariant of order less than or equal to k if and only if they are CkC1 –equivalent.

Proof The fact that two CkC1 –equivalent string links share all finite-type invariants
of degree up to k is well known [13, Corollary 6.8], so we only need to show the
converse implication.

Suppose that the group SL.n/=CkC1 is abelian. Following Habiro’s strategy for proving
Theorem 1.5 [13, Theorem 6.18], we consider the homomorphism of abelian groups
(from an additive to a multiplicative abelian group)

'k W ZSL.n/ �! SL.n/=CkC1

which maps an n–string link L to its CkC1 –equivalence class ŒL�kC1 . The key
point is that the existence (ie the well-definedness) of this map relies on the fact that
SL.n/=CkC1 is abelian. Notice that 'k is indeed additive, since for two n–string links
L and L0 , we have

'k.L �L
0
�L�L0/D ŒL �L0�kC1 � ŒL�

�1
kC1 � ŒL

0��1
kC1 D Œ1�kC1 D 'k.1/:

Now, we have that 'k is a finite-type invariant of degree k . This is proved by Habiro
in the (string) knot case in [13, Proposition 6.16]. His argument relies on a deep
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result on the structure of the Goussarov–Vassiliev filtration [13, Proposition 6.10],
which involves advanced clasper theory. But Habiro actually established the latter
result not only for (string) knots, but also for string links (and more generally for
surface string links). So we can freely use [13, Proposition 6.10] to show that 'k is
a finite-type invariant of degree k . The proof of Proposition A.1 is then completed
by simply following [13, Theorem 6.18] as follows. If two n–string links L and L0

cannot be distinguished by any finite-type invariant of order less than or equal to k ,
then 'k.L/ D 'k.L

0/. This implies that ŒL�kC1 D ŒL
0�kC1 , that is, L and L0 are

CkC1 –equivalent.
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