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Moduli spaces of algebras over nonsymmetric operads

FERNANDO MURO

In this paper we study spaces of algebras over an operad (nonsymmetric) in symmetric
monoidal model categories. We first compute the homotopy fiber of the forgetful
functor sending an algebra to its underlying object, extending a result of Rezk. We
then apply this computation to the construction of geometric moduli stacks of algebras
over an operad in a homotopical algebraic geometry context in the sense of Toën and
Vezzosi. We show under mild hypotheses that the moduli stack of unital associative
algebras is a Zariski open substack of the moduli stack of nonnecessarily unital
associative algebras. The classical analogue for finite-dimensional vector spaces was
noticed by Gabriel.

18D50, 14K10; 55U35

1 Introduction

Let k be a commutative ring. An associative algebra structure on a free k–module F

of rank n with basis fe1; : : : ; eng � F Š kn is determined by structure constants ck
ij ,

1� i; j ; k � n, such that

ei � ej D

nX
kD1

ck
ij ek :

The associativity condition .ei � ej / � ek D ei � .ej � ek/ is equivalent to the identities of
structure constants

nX
mD1

cm
ij cl

mk D
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mD1

cl
imcm

jk ; 1� l � n:

Therefore, the moduli space of associative algebra structures on a free module of rank n

is the finitely presented affine subspace Spec R�An3

,

RD kŒck
ij I 1� i; j ; k � n�
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jk/ I 1� i; j ; k; l � n

�
:
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1490 Fernando Muro

A unital associative algebra structure on F is given by an associative algebra structure
together with a unit element
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Hence, the moduli space of unital associative algebra structures on a free module of
rank n is the affine subspace Spec S �An3Cn ,

S DRŒa1; : : : ; an�
.�

ıjk �

nX
iD1

aic
k
ij ; ıjk �

nX
iD1

ck
jiai I 1� j ; k � n

�
;

where ıkk D 1 and ıjk D 0 if j ¤ k .

The morphism f W Spec S! Spec R consisting of forgetting the unit is induced by the
inclusion R� S . This morphism is a categorical monomorphism since an associative
algebra may have at most one unit. Moreover, f is a Zariski open immersion, ie it
is also flat and of finite presentation; see Gabriel [12, 2.1 Lemma] and Crawley-
Boevey [8, page 4].

Associative algebra structures are somewhat rigid. We are rather interested in them up
to isomorphism. The algebraic group GLn Š Autk.F / acts on Spec R. The orbits are
the isomorphism classes of associative algebra structures. The isotropy group at a given
point is the automorphism group of the corresponding associative algebra structure.

In order to obtain a meaningful quotient which remembers all this, we must move to
the category of algebraic stacks. The quotient stack

Assn D Spec R=GLn
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Moduli spaces of algebras over nonsymmetric operads 1491

is the moduli stack of associative algebras on rank n vector bundles. The same applies
to Spec S , and the quotient

uAssn D Spec S=GLn

is the moduli stack of unital associative algebras on rank n vector bundles. The
morphism f W Spec S ! Spec R induces a morphism between these algebraic stacks,

f W uAssn �! Assn;

which inherits most properties from f , eg f is a monomorphism, affine, locally of
finite presentation and flat; see Dwyer and Kan [15].

These stacks can be described as follows. The category Affk of affine schemes over k is
opposite to the category of commutative (associative and unital) k–algebras. We assume
this category is endowed with the étale topology. For any commutative k–algebra A,
let Assn.A/ be the category of associative A–algebras whose underlying A–module
is locally free of rank n. Denote by iAssn.A/ the subcategory of isomorphisms. A
change of coefficient functors gives rise to a pseudofunctor

Affop
k �! Groupoids;

A 7! iAssn.A/;

which is the ‘functor of points’ of the stack Assn . Similarly, if uAssn.A/ is the category
of unital associative A–algebras whose underlying A–module is locally free of rank n,
the ‘functor of points’ of uAssn is

Affop
k �! Groupoids;

A 7! iuAssn.A/;

and the morphism f W uAssn ! Assn is induced by the functors forgetting the unit
uAssn.A/! Assn.A/.

In this paper we consider the same situation in a homotopical algebraic geometry
(HAG) context in the sense of Toën and Vezzosi [26]. In such a context, the category
of k–modules is replaced with a symmetric monoidal model category V and the
category of affine schemes AffV is the opposite of the category of commutative algebras
(ie monoids) in V. There is also a fixed model pretopology � and a class P of
morphisms which plays the role of smooth morphisms. A stack is a contravariant
functor from affine schemes to simplicial sets, Affop

V ! Set�
op

, satisfying certain
homotopy invariance and descent properties.

Algebraic & Geometric Topology, Volume 14 (2014)
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Given an operad O in V (nonsymmetric), admissible in the sense of Definition 4.1,
we define a stack AlgV.O/ such that, for any commutative algebra A,

AlgV.O/.A/' jwAlgMod.A/.O/j

is the classifying space of the category of weak equivalences between O–algebras in the
category Mod.A/ of A–modules. We call AlgV.O/ the moduli stack of O–algebras.

Notice that we proceed in a way inverse to the classical situation illustrated above. We
do not present AlgV.O/ as a quotient of an affine stack, but in terms of its ‘functor of
points’. The connection to affine stacks is described below.

Admissibility is not a very strong condition since all cofibrant operads are admissible.
Moreover, the associative and unital associative operads, Ass and uAss, are always
admissible.

The stack of quasicoherent modules is a stack QCoh such that, for any commutative
algebra A,

QCoh.A/' jwMod.A/j

is the classifying space of the category of weak equivalences between A–modules. We
show that the forgetful functors from O–algebras to modules gives rise to a morphism
of stacks

�OW AlgV.O/ �! QCoh:

The stack QCoh is too big and one is often interested in smaller substacks satisfying
nice geometric properties, such as the stack Vectn of rank n vector bundles, or the
stack Perf of perfect modules; see [26, Section 1.3.7]. We will consider a generic
substack F � QCoh such that the connected components of F.A/ are represented by
perfect A–modules, and often restrict to the substack AlgF .O/� AlgV.O/ obtained
as the homotopy pullback of �O along the inclusion F � QCoh.

We prove that the restriction

�OF W AlgF .O/ �! F

is an affine morphism (Theorem 5.17). The homotopy fiber of �O at an A–point
RSpec.A/ ! F represented by a perfect A–module M is an affine stack over
RSpec.A/

MapOp.V/.O; EndMod.A/.M //

called moduli stack of O–algebra structures on M , since, for any A–algebra B ,

MapOp.V/.O; EndMod.A/.M //.B/'MapOp.V/.O; EndMod.B/.
CM ˝L

A
B //

Algebraic & Geometric Topology, Volume 14 (2014)



Moduli spaces of algebras over nonsymmetric operads 1493

is the mapping space in the model category Op.V/ of operads in V from O to the
endomorphism operad of a fibrant–cofibrant replacement of the B –module M ˝L

A
B ,

so it does classify derived O–algebra structures on derived extensions of scalars of M .

A consequence of this fact is that AlgF .O/ is geometric provided F is, eg F DVectn
in many HAG contexts, and F D Perf in the weak complicial and brave new algebraic
geometry contexts. Notice that

Alg Vectn.Ass/ and Alg Vectn.uAss/

are the immediate generalizations of Assn and uAssn above.

We finally tackle our goal. The stack AlgV.O/ is a contravariant functor in O . The
operad morphism �W Ass ! uAss which models the forgetful functor from unital
associative algebras to associative algebras induces a morphism of stacks

(1-1) AlgV.�/W AlgV.uAss/ �! AlgV.Ass/;

which generalizes f above.

Similarly, � induces a morphism of affine stacks

(1-2) MapOp.V/.uAss; EndMod.A/.M // �!MapOp.V/.Ass; EndMod.A/.M //;

which generalizes f .

Our main results on the properties of these morphisms are summarized in the following
theorem. We refer the reader to [26] for the definition of the geometric terms in the
statement.

Theorem 1.1 Consider the morphism AlgF .�/W AlgF .uAss/!AlgF .Ass/ obtained
by restricting (1-1). Let M be a perfect A–module.

(1) The morphism AlgF .�/ is affine, ie .�1/–representable. The morphism (1-2) is
obviously affine since it has affine source and target.

(2) If V is simplicial or complicial, then (1-1) and (1-2) are monomorphisms of
stacks, in particular so is AlgF .�/.

(3) If in addition V is locally finitely presentable as a category, finitely generated as
a model category, and the tensor unit is finitely presented, then (1-2) is a finitely
presented morphism of affine stacks and AlgF .�/ is categorically locally finitely
presented.

Algebraic & Geometric Topology, Volume 14 (2014)
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The crucial tool in the proof of (1) is a nonsymmetric generalization of one of the main
theorems in Rezk’s thesis [22, Theorem 1.1.5], which computes the homotopy fibers of
the forgetful functor sending an O–algebra to the underlying object; see Theorem 4.6
below. The proof of (2) is based in the main theorem by the author in [19], which
proves that � is a homotopy epimorphism in Op.V/. For the proof of (3) we use
Lurie’s [16, Theorem 5.2.3.5].

The only property of affine Zariski open immersions we do not address in Theorem 1.1
is flatness. Flatness is defined in arbitrary HAG contexts for morphisms between
affine stacks, but otherwise it is only defined for morphisms between geometric stacks
whenever flatness is a local property for � , so it may well happen that it does not
make sense to speak about the flatness of AlgF .�/ in a given HAG context. This
contrasts with the properties considered in Theorem 1.1, which are defined in all
HAG contexts. Nevertheless, in most HAG contexts of interest V is stable, with the
remarkable exception of the derived algebraic geometry context. In stable contexts, all
morphisms of affine stacks are flat, hence flatness is a local property and all morphisms
between geometric stacks are flat, so (1-2) and AlgF .�/ would be flat in this situation
if F were geometric.

The morphisms (1-2) and AlgF .�/ are also flat in derived algebraic geometry. Indeed,
since (1-2) is a finitely presented monomorphism, it is étale by [26, Proposition 1.2.6.5],
and therefore flat by [26, Corollary 2.2.2.11]. Flatness is a local property in this context
by [26, Lemma 2.2.3.4], hence it easily follows that AlgF .�/ is flat in the sense
of [26, Definition 1.3.6.2]; compare the proof of Proposition 6.15.

To finish, in contrast with the classical situation, we show with an example that the
stack MapOp.V/.Ass; EndMod.A/.M // need not be finitely presented. Our example is in
complicial algebraic geometry, in the two HAG contexts considered in [26, Section 2.3].
It is simply given by AD kDQ and M D†nQ for n� �2.

Moduli stacks of algebras over operads have already been considered by Toën and
Vezzosi in the following specific situations [25; 26].

In the derived algebraic geometry context, where VDMod.k/�
op

is the category of
simplicial modules over a commutative ring k, the stack Alg Vectn.O/ and the map
�OVectn were considered in [26, Section 2.2.6.2] for O an operad of projective k–modules
regarded as a constant simplicial operad. They prove that �OVectn is affine and hence
Alg Vectn.O/ is geometric. In the proof, they use Rezk’s aforementioned theorem in a
very clever way.

The stack Alg Perf.Ass/ and the map �Ass
Perf were also considered in the complicial

algebraic geometry context [26, Sections 2.3.3.2 and 2.3.5.3] and in the brave new

Algebraic & Geometric Topology, Volume 14 (2014)



Moduli spaces of algebras over nonsymmetric operads 1495

algebraic geometry context [25, Section 4.2]. In these contexts, V D Ch.k/ is the
category of chain complexes over a commutative Q–algebra k and the category of
symmetric spectra, respectively. They invoke Rezk’s Theorem to deduce that �Ass

Perf is
affine and that Alg Perf.Ass/ is geometric.

Toën and Vezzosi, however, did not provide full proofs of these claims in [25; 26].
On the one hand, they leave the reader to check that these moduli stacks of algebras
over operads satisfy the required homotopy invariance and descent properties. On the
other hand, Rezk did not prove his theorem for Ch.k/ or for the category of symmetric
spectra, and it is not completely obvious how to do so. Certainly, Rezk’s proof does
not extend to Ch.k/. For instance, he uses in a crucial way the simplicial structure
of Set�

op
and Mod.k/�

op
, but Ch.k/ is the paradigm of model category which is not

simplicial. However, the results and proofs in this paper subsume such gaps in [25; 26].

When proving homotopy invariance and descent for AlgV.O/ and that �O
F

is affine,
and hence AlgF .O/ is geometric, we closely follow the ideas in [26]. Moreover, our
proof of the generalization of Rezk’s Theorem also follows [22] in different ways,
in particular we use an extension of Quillen’s Theorem B and some computations of
classification complexes. Therefore, this paper is very much indebted to Rezk, Toën
and Vezzosi.

The paper is structured as follows. In Section 2 we fix terminology concerning model
categories and monoidal structures, and recall some notions about operads and their
algebras. Section 3 considers homotopy invariance properties of endomorphism operads,
which play a role in the proof of the generalization of Rezk’s Theorem in Section 4.

The moduli stacks of algebras and algebra structures over an admissible operad are
constructed in Section 5. The existence of AlgV.O/ is far from obvious. The proofs of
invariance and descent properties depend heavily on the homotopy theory of nonsym-
metric operads developed by the author in [20; 21]. Neither the existence of �O nor
the contravariant functoriality of AlgV.O/ is obvious. We also prove in this section
those properties of �O and the moduli stacks of algebras and algebra structures which
hold for any admissible operad O .

Finally, in Section 6 we concentrate in OD Ass; uAss and in the maps (1-1) and (1-2).
Theorem 1.1 follows directly from the results in that section.

At the end of the paper, there is a short appendix on a technical property of the tensor unit
of a monoidal model category, which is always satisfied by the underlying symmetric
monoidal model category V of a HAG context. It is also satisfied when the tensor unit
is cofibrant. The interest of this axiom comes from the fact that in some HAG contexts
of interest the tensor unit is not cofibrant, eg in brave new algebraic geometry.

Algebraic & Geometric Topology, Volume 14 (2014)
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2 Operads and algebras

This section contains some background about operads and their algebras. All operads
considered in this paper are nonsymmetric.

We will be mostly dealing with (symmetric) monoidal model categories. Model struc-
tures are not really relevant in this section, but we prefer to fix now the standard
assumptions needed in most of the paper.

Definition 2.1 A monoidal model category C in the sense of Hovey [13, Defini-
tion 4.2.6] is a biclosed monoidal category endowed with a model structure such that
the pushout product axiom (see Schwede and Shipley [23, Definition 3.1]) and the unit
axiom hold. These two axioms imply that the homotopy category Ho C has an induced
biclosed monoidal structure [13, Section 4.3]. The tensor product is denoted by ˝ and
the tensor unit by I . If we need to distinguish between different monoidal categories
we add a subscript, eg ˝C and IC .

We further assume that monoidal model categories satisfy the monoid axiom [20, Defi-
nition 9.1] and the strong unit axiom [21, Definition A.9], recalled in Remark A.2 below.
They guarantee the existence of transferred model structures on monoids, operads,
algebras over operads etc.; see [23; 20]. The strong unit axiom allows the transfer of
Quillen equivalences and always holds if the tensor unit is cofibrant; see [21].

We will also assume that all monoidal model categories are cofibrantly generated by
sets of generating (trivial) cofibrations with presentable sources.

A symmetric monoidal model category V is a monoidal model category as above whose
underlying monoidal category is symmetric. In this case the monoid axiom simplifies;
see [23, Definition 3.3].

For the rest of this section, we fix a symmetric monoidal model category V.

Algebraic & Geometric Topology, Volume 14 (2014)
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Definition 2.2 An operad O in V is a sequence O D fO.n/gn�0 of objects in V

equipped with an identity,
idOW I!O.1/;

and composition laws, 1� i � p , q � 0,

ıi W O.p/˝O.q/ �!O.pC q� 1/;

satisfying certain associativity and unit equations; see [20, Remark 2.6]. We refer
to O.n/ as the arity n component of O .

A morphism of operads f W O! P is a sequence of morphisms f .n/W O.n/! P.n/
in V, n� 0, compatible with the identities and composition laws in the obvious way.
We denote Op.V/ the model category of operads in V. An operad morphism f is a
fibration (resp. weak equivalence) if f .n/ is a fibration (resp. weak equivalence) in V

for all n� 0 [20, Theorem 1.1].

Example 2.3 The unital associative operad uAss is defined as follows: uAss.n/D I
is the tensor unit for all n� 0, ıi W uAss.p/˝uAss.q/! uAss.pCq�1/ is the unit
isomorphism I˝ I Š I in all cases, and iduAss is the identity map in I .

The associative operad Ass is defined by uAss.0/ D ¿ the initial object and by
the existence of an operad morphism �W Ass! uAss such that �.n/ is the identity
for n� 1.

Remark 2.4 If V D Set is the category of sets, the identity is simply an element
idO 2O.1/ and the associativity and unit equations are:

(1) .x ıi y/ ıj z D .x ıj z/ ıiCq�1 y if 1� j < i and z 2O.q/

(2) .x ıi y/ ıj z D x ıi .y ıj�iC1 z/ if y 2O.p/ and i � j < pC i

(3) idO ı1x D x

(4) x ıi idO D x

The same happens if V D Mod.k/ is the category of modules over a commutative
ring k.

If VDMod.k/Z is the category of Z–graded k–modules then the identity must be in
degree 0, idO 2O.1/0 , and (1) must be replaced with

.10/ .x ıi y/ ıj z D .�1/jyjjzj.x ıj z/ ıiCq�1 y if 1� j < i and z 2O.q/.

Algebraic & Geometric Topology, Volume 14 (2014)



1498 Fernando Muro

This reflects the use of the Koszul sign rule in the definition of the symmetry constraint
for the tensor product in Mod.k/Z .

Furthermore, if VDCh.k/ is the category of differential graded k–modules, in addition
the identity must be a cycle, d.idO/D0, and the differential must behave as a derivation
with respect to all composition laws,

d.x ıi y/D d.x/ ıi yC .�1/jxjx ıi d.y/:

In this paper, differentials have degree jd j D �1, ie we consider chain complexes.

In all these cases, the compatibility conditions an operad morphism f W O! P must
satisfy are

f .p/.x/ ıi f .q/.y/D f .pC q� 1/.x ıi y/; f .1/.idO/D idP :

Definition 2.5 A model V–algebra C is a monoidal model category, in the sense of
Definition 2.1, equipped with a left Quillen functor zW V!C and natural isomorphisms

multiplicationW z.X /˝C z.X 0/ �! z.X ˝V X 0/;

unitW IC �! z.IV/;

�.X;Y /W z.X /˝C Y �! Y ˝C z.X /;

satisfying some coherence laws; see Borceux [6, Definition 6.4.1] and [20, Section 7].

We also assume that z satisfies the I–cofibrant axiom [21, Definition B.6]. Hence,
Quillen equivalent V–algebras have Quillen equivalent categories of algebras over a
same nice enough operad; see [21, Theorem D.11].

A symmetric model V–algebra C is a symmetric monoidal model category equipped
with a strong symmetric monoidal left Quillen functor zW V! C satisfying the I–
cofibrant axiom.

In Hovey’s terminology, a model V–algebra is the same as a central monoidal V–model
category, and a symmetric model V–algebra is a symmetric V–model category; see
the paragraph after [13, Definition 4.2.20].

For the rest of this section, let us fix a model V–algebra C.

Example 2.6 The trivial example of symmetric model V–algebra is CDV and z the
identity functor.

Algebraic & Geometric Topology, Volume 14 (2014)
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Remark 2.7 The functor z.�/˝Y W V! C has a right adjoint

HomC.Y;�/W C �! V

for any Y in C. These morphism objects define a tensored V–enrichment of C over V;
see Janelidze and Kelly [14, Appendix]. Moreover, this enrichment can be enhanced to
a monoidal V–category structure on C. For this, given two objects Y and Y 0 in C,
we define the evaluation morphism

evaluationW z.HomC.Y;Y
0//˝Y �! Y 0

as the adjoint of the identity in HomC.Y;Y
0/, and given two other objects X and X 0

in C we define the morphism in V

˝CW HomC.X;X
0/˝V HomC.Y;Y

0/ �! HomC.X ˝C Y;X 0˝C Y 0/

as the adjoint of:

z.HomC.X;X
0/˝V HomC.Y;Y

0//˝C X ˝C Y

Šmultiplication�1˝CidX˝CY

��

z.HomC.X;X
0//˝C z.HomC.Y;Y

0//˝C X ˝C Y

�.HomC.Y;Y
0/;X / Š

��

z.HomC.X;X
0//˝C X ˝C z.HomC.Y;Y

0//˝C Y

evaluation˝Cevaluation
��

X 0˝C Y 0

Definition 2.8 Let O be an operad in V. An O–algebra A in C is an object of C

equipped with structure morphisms

�nW z.O.n//˝A˝n
�!A; n� 0;

which satisfy compatibility relations with the composition laws and the unit of O ;
see [20, Definition 7.1].

An O–algebra morphism gW A!B is a morphism in C compatible with the structure
morphisms in the obvious way; see again [20, Definition 7.1]. We denote AlgC.O/ the
model category of O–algebras in C, where a morphism is a fibration (resp. weak equiv-
alence) if its underlying morphism in C is a fibration (resp. weak equivalence) [20, The-
orem 1.2].

Algebraic & Geometric Topology, Volume 14 (2014)
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Example 2.9 Algebras over the unital associative operad uAss in Example 2.3 are
unital associative algebras in C, ie monoids, and algebras over the associative operad
Ass are associative algebras in C, ie nonunital monoids.

Remark 2.10 Let V D C and z the identity functor. If V D Set or Mod.k/, as in
Remark 2.4, and we denote

�n.x; a1; : : : ; an/D x.a1; : : : ; an/;

then the relations an O–algebra must satisfy are:

(1) If x 2O.p/ and y 2O.q/, then

.x ıi y/.a1; : : : ; apCq�1/

D x.a1; : : : ; ai�1;y.ai ; : : : ; aiCq�1/; aiCq; : : : ; apCq�1/

(2) idO.a/D a

If VDMod.k/Z then (1) must be replaced with:

(1 0 ) If x 2O.p/ and y 2O.q/, then

.x ıi y/.a1; : : : ; apCq�1/

D .�1/jyj
Pi�1
jD1 jaj jx.a1; : : : ; ai�1;y.ai ; : : : ; aiCq�1/; aiCq; : : : ; apCq�1/:

Moreover, if VD Ch.k/, then in addition the following derivation-like formula holds:

d.x.a1; : : : ; an//Dd.x/.a1; : : : ; an/C

nX
iD1

.�1/jxjC
Pi�1
jD1 jaj jx.a1; : : : ; d.ai/; : : : ; an/

In all these cases the compatibility conditions that an O–algebra morphism gW A!B

must satisfy are
g.x.a1; : : : ; an//D x.g.a1/; : : : ;g.an//:

Algebras over an operad can be alternatively described by means of endomorphism
operads.

Definition 2.11 The endomorphism operad of an object Y in C is the operad EndC.Y /

in V with
EndC.Y /.n/D HomC.Y

˝n;Y /:

The identity of this operad is the V–enriched identity in Y . Composition laws are
described in [20, Definition 7.1].

Algebraic & Geometric Topology, Volume 14 (2014)
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Remark 2.12 In the first (resp. last) two examples of Remark 2.10, composition laws
in the endomorphism operad are given by equation (1) (resp. (1 0 )).

Lemma 2.13 For any operad O in V and any object Y in C, there is a bijection
between the morphisms O! EndC.Y / in Op.V/ and the O–algebra structures on Y .

Proof The adjoint of the morphism O.n/! EndC.Y /.n/D HomC.Y
˝n;Y / is the

structure morphism �nW z.O.n//˝Y ˝n! Y .

Diagrams of algebras over an operad O can also be descried as O–algebras in a
category of diagrams.

Given a small category I , the category of I –shaped diagrams in C is the category CI

of functors I ! C and natural transformations between them. This category inher-
its from C a model V–algebra structure. A morphism Y ! Y 0 between diagrams
Y;Y 0W I ! C is a fibration (resp. weak equivalence) if Y .i/! Y 0.i/ is a fibration
(resp. weak equivalence) for all objects i in I . The tensor product of Y and Y 0 is
defined as

.Y ˝Y 0/.i/D Y .i/˝Y 0.i/; i 2 I;

and the tensor unit of CI is the constant diagram ICI .i/D IC . The rest of the structure
is given by

zI
W V �!Z.CI /; zI .X /.i/D z.X /; �I .X;Y /.i/D �.X;Y .i//:

The right adjoint of zI .�/˝Y W V! CI is the functor

HomCI .Y;�/W CI
�! V

defined by the following end in V (see Mac Lane [18, IX.5]):

HomCI .Y;Y 0/D

Z
i2I

HomC.Y .i/;Y
0.i//

The next result follows readily from the previous lemma and the universal property of
an end.

Corollary 2.14 For any operad O in V, any small category I , and any diagram
Y W I ! C, there is a bijection between the morphisms O! EndCI .Y / in Op.V/ and
the collections of O–algebra structures on the objects Y .i/ in C, i 2 I , such that the
morphisms in the diagram are O–algebra morphisms.
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Definition 2.15 A V–algebra functor is a lax monoidal functor between V–algebras
F W C! D equipped with a monoidal natural isomorphism FzC.X / Š zD.X / such
that the diagram in [13, Definition 4.1.11] commutes (after replacing Hovey’s i with
our z , which is just a matter of notation).

Remark 2.16 A V–algebra functor F W C!D is V–enriched. For any two objects Y

and Z of C, the morphism F.Y;Z/W HomC.Y;Z/! HomD.F.Y /;F.Z// in V is
the adjoint of

zD.HomC.Y;Z//˝D F.Y /

Š

��

FzC.HomC.Y;Z//˝D F.Y /

mult.
��

F.zC.HomC.Y;Z//˝C Y /

F.evaluation/
��

F.Z/:

A functor F W J ! I between small categories induces by precomposition a strong
monoidal V–algebra functor

F�W CI
�! CJ ; F�.Y /D YF:

The morphisms between morphism objects in V,

F�.Y;Z/W HomCI .Y;Z/ �! HomCJ .YF;ZF /;

are defined by the universal property of an end. These morphisms give rise to morphisms
in Op.V/ between endomorphism operads,

(2-1) F�W EndCI .Y / �! EndCJ .YF /:

Denote � the simplex category, whose objects are the finite ordinals

nD f0< � � �< ng; n� 0;

and morphisms are nondecreasing maps. These ordinals are regarded as categories
with morphisms going upwards i ! j , i � j . The category � is generated by the
coface and codegeneracy maps,

d i
W n� 1 �! n; si

W nC 1 �! n; 0� i � n;
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which satisfy the duals of the usual simplicial relations. As usual, we denote .d i/�Ddi

and .si/� D si .

A morphism in C is the same as a functor 1! C. Applying the previous corollary to
I D 1, we deduce the following characterization of O–algebra morphisms.

Corollary 2.17 Given an operad O in V and two O–algebras in C, X and Y ,
defined by morphisms fX W O! EndC.X / and fY W O! EndC.Y / in Op.V/, there
is a bijection between the morphisms gW X ! Y in AlgC.O/ and the morphisms
gW X ! Y in C such that there exists a morphism fgW O! EndC1.g/ making the
following diagram commutative:

O
fX

xx

fg

��

fY

&&

EndC.X / EndC1.g/
d1
oo

d0
// EndC.Y /

In this corollary, the morphism fg is unique provided it exists since, by definition of
end, we have pullback diagrams as follows, n� 0:

(2-2)
EndC.X /.n/D HomC.X

˝n;X /

HomC.X
˝n;g/

��

pull

EndC1.g/.n/

d1

tt

��

d0

��

oo

HomC.X
˝n;Y / HomC.Y

˝n;Y /D EndC.Y /.n/
HomC.g

˝n;Y /

oo

3 Homotopy invariance of endomorphism operads

Let V be a symmetric monoidal model category and C a model V–algebra. In this
section we establish the homotopy invariance properties in Op.V/ of endomorphism
operads of objects in C. This is a standard way of transferring algebra structures along
weak equivalences in C, compare Berger and Moerdijk [5, Theorem 3.5], and it will
have further applications in Section 4.

Lemma 3.1 Given a cofibrant object Y in C, the adjoint pair

V
z.�/˝Y

//C
HomC.Y;�/

oo

is a Quillen pair.
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Proof Since z is a left Quillen functor and Y is cofibrant then z.�/˝ Y is a left
Quillen functor by the pushout product axiom.

Corollary 3.2 If Y is a fibrant–cofibrant object in C then EndC.Y / is a fibrant operad
in Op.V/.

Proof The tensor powers Y ˝n are cofibrant for n� 1 by the pushout product axiom.
Hence, by the previous lemma, the objects EndC.Y /.n/D HomC.Y

˝n;Y / are fibrant
in V since Y is fibrant and HomC.Y

˝n;�/ is a right Quillen functor. Similarly,
EndC.Y /.0/ D HomC.I;Y / is fibrant since Y is fibrant and HomC.I;�/ is a right
Quillen functor. It is actually the right adjoint of the left Quillen functor z .

Lemma 3.3 If f W X ! Y is a cofibration (resp. trivial cofibration) and Z is a fibrant
object in C, then the induced morphism

HomC.f;Z/W HomC.Y;Z/ �! HomC.X;Z/

is a fibration (resp. trivial fibration).

Proof Consider a commutative square of solid arrows in V,

(3-1)

U

g

��

h
// HomC.Y;Z/

HomC.f;Z/

��

V
k

//

l

99

HomC.X;Z/;

where g is a trivial cofibration (resp. cofibration). We must construct a diagonal
morphism l such that the two triangles commute.

The solid diagram (3-1) is the same as a commutative square in C

z.U /˝X

z.g/˝X

��

z.U /˝f
// z.U /˝Y

xh
��

z.V /˝X
xk

// Z

where xh and xk are the adjoints of h and k , respectively. We will consider the induced
morphism from the pushout of the left upper corner to Z :
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z.U /˝X

z.g/˝X

��

z.U /˝f
//

push

z.U /˝Y

xh

��

xg

��

z.V /˝X

xk
00

xf

// W

r

&&
Z

Since z is a left Quillen functor, z.g/ is a trivial cofibration (resp. cofibration), hence
the pushout product z.g/ˇ f W W ! z.V /˝Y of z.g/ and f , see [20, Section 4],
is a trivial cofibration by the pushout product axiom. Since Z is fibrant, there exists a
morphism xl W z.V /˝Y !Z fitting into a commutative diagram:

W
��

z.g/ˇf �

��

r
// Z

����

z.V /˝Y

xl

::

// �

Here � denotes the final object. We can take l W V ! HomC.Y;Z/ to be the adjoint
of xl .

The following result is a consequence of the previous lemma and Ken Brown’s Lemma.

Corollary 3.4 For any fibrant object Z in C, the functor HomC.�;Z/W Cop ! V

takes weak equivalences between cofibrant objects in C to weak equivalences in V.

An immediate consequence of the following proposition is that the endomorphism
operad of a fibrant–cofibrant object in C is an invariant of its weak homotopy type.

Proposition 3.5 Let f W X!Y be a morphism in C. Consider the induced morphisms
between endomorphism operads in Op.V/,

EndC.X /
d1
 � EndC1.f /

d0
�! EndC.Y /:

(1) If f is a (trivial) fibration and X is cofibrant then d0 is a (trivial) fibration.

(2) If f is a trivial fibration between fibrant–cofibrant objects then d1 is a weak
equivalence.

(3) If f is a (trivial) cofibration between cofibrant objects and Y is fibrant then d1

is a (trivial) fibration.

(4) If f is a trivial cofibration between fibrant–cofibrant objects then d0 is a weak
equivalence.
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Proof Consider the pullback diagram (2-2). By the pushout product axiom, the tensor
powers X˝n are cofibrant in the four cases. Hence, under the assumptions of (1) and
(2), HomC.X

˝n; f / is a (trivial) fibration by Lemma 3.1. Now (1) follows from the
fact that (trivial) fibrations are closed under pullbacks.

Under the hypotheses of (2), the pushout product axiom and Ken Brown’s Lemma
show that the tensor powers f ˝n are weak equivalences between cofibrant objects,
hence HomC.f

˝n;Y / is a weak equivalence between fibrant objects by Lemma 3.3
and Corollary 3.4. Therefore (2) follows, since the pullback of a weak equivalence
between fibrant objects along a fibration is a weak equivalence.

Under the assumptions of (3) and (4), the tensor powers f ˝n are (trivial) cofibrations
between cofibrant objects by the pushout product axiom. Hence, HomC.f

˝n;Y / is a
(trivial) fibration between fibrant objects by Lemma 3.3. Notice that (3) follows from
the same reason as (1). Moreover, under the hypotheses of (4), HomC.X

˝n; f / is a
weak equivalence between fibrant objects by Lemma 3.1 and Ken Brown’s Lemma,
hence (4) follows from the same reason as (2).

The following result follows from the usual lifting properties, Proposition 3.5 and
Corollary 2.17.

Corollary 3.6 Let O be a cofibrant operad in V and f W X
�

! Y a weak equivalence
in C.

(1) If f is a trivial fibration, X is cofibrant, and Y is an O–algebra, then there exists
an O–algebra structure on X such that f becomes a morphism of O–algebras.

(2) If f is a trivial cofibration, X is cofibrant, Y is fibrant, and X is an O–algebra,
then there exists an O–algebra structure on Y such that f becomes a morphism
of O–algebras.

The following corollary of Proposition 3.5 will be very useful in our study of spaces of
algebras.

Corollary 3.7 Let fi W Xi ! XiC1 be trivial fibrations between fibrant–cofibrant
objects in C, 0 � i � n. The induced morphisms between endomorphism operads
in Op.V/,

EndCn.X0!� � �!Xn/
dnC1

 ���EndCnC1.X0!� � �!Xn!XnC1/
d

nC1
0
���!EndC.XnC1/;

are a weak equivalence and a trivial fibration, respectively. Moreover, these three
operads are fibrant in Op.V/.
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Proof By induction on n. The case nD 0 follows directly from Proposition 3.5 and
Corollary 3.2. Assume n> 0. Consider the following pull back diagram:

EndCn.X0! � � � !Xn/.m/

dn
0

��

EndCnC1.X0! � � � !Xn!XnC1/.m/

d
nC1
0

��

pull

dnC1
oo

EndC.Xn/.m/

HomC.X
˝m
n ;Xn/

HomC.X
˝m
n ;fn/

��

HomC.X
˝m
n ;XnC1/ HomC.X

˝m
nC1

;XnC1/D EndC.XnC1/
HomC.f

˝m
n ;XnC1/

oo

The morphism dn
0

is a trivial fibration by induction hypothesis. We showed within the
proof of Proposition 3.5 that, under the hypotheses of this corollary, the morphisms
HomC.X

˝m
n ; fn/ and HomC.f

˝m
n ;XnC1/ are a trivial fibration and a weak equiva-

lence between fibrant objects, respectively. Hence, the first part of the statement follows
from the facts that trivial fibrations are closed under composition and pullbacks and that
weak equivalences between fibrant objects are closed under pullbacks along fibrations.
Finally, the first and last operads are fibrant by induction hypothesis, and the middle
one is fibrant since dnC1

0
is a trivial fibration with fibrant target.

4 Spaces of algebras

The main result of this section (Theorem 4.6) generalizes Rezk’s [22, Theorem 1.1.5]
in the nonsymmetric context.

We will be concerned with the classifying space jwMj (also called nerve) of the
subcategory of weak equivalences wM in a model category M, and more generally
in appropriate subcategories of a model category. The classifying space jwMj is
sometimes referred to as the classification complex or space of M, compare Dwyer
and Kan [10]. This need not be an honest simplicial set because M may have a proper
class of objects. Moreover, it need not be homotopically small in the sense of Dwyer
and Kan [9]. We will overlook this fact since there are well known ways of patching
these problems: restricting to the closure of a set of objects under weak equivalences,
working with Grothendieck universes etc.

Denote Mc and Mf the full subcategories of cofibrant and fibrant objects in M,
respectively. The inclusions induce weak equivalences jwMcj ' jwMj ' jwMf j
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(see [22, Lemma 4.2.4].) Moreover, a Quillen equivalence F W M� NW G induces
weak equivalences jwMcj'jwNcj and jwNf j'jwMf j by Cisinski [7, Proposition 2.3,
Exemple 2.5 and Théorème 2.9]. Therefore, if in addition G or F preserves weak
equivalences then it induces a weak equivalence jwMj ' jwNj.

In this paper, the word space is a synonym of simplicial set. Bisimplicial sets will be
regarded as spaces via the diagonal construction.

Let V be a symmetric monoidal model category and C a model V–algebra. A morphism
f W O! P in Op.V/ induces a Quillen pair of change of operad functors,

(4-1) AlgC.O/
f�
//AlgC.P/:

f �
oo

The functor f � restricts the action of P to O along f and is the identity on underlying
objects in C, hence it preserves fibrations and weak equivalences. The functor f� is left
adjoint to f � . This Quillen pair is a Quillen equivalence if f is a weak equivalence
and the operads O and P are admissible in the sense of the following definition;
see [21, Theorem D.4].

Definition 4.1 An object X in V is I–cofibrant if there exists a cofibration I�X

from the tensor unit I . An operad O in V is admissible if each O.n/ is cofibrant or
I–cofibrant, n� 0.

Remark 4.2 If O is a cofibrant operad then O.n/ is cofibrant for n ¤ 1 and I–
cofibrant for nD 1 [21, Corollary C.3], hence cofibrant operads are admissible. The
unital associative operad in Example 2.3 is I–cofibrant in all arities, and the associative
operad is I–cofibrant in positive arities and cofibrant in arity 0, so they are also
admissible despite not being cofibrant.

If O� is a cosimplicial operad then the contravariant change of base operad functors,
like f � in (4-1), induced by cofaces and codegeneracies gives rise to a simplicial
category AlgC.O�/.

Lemma 4.3 If O� is a cosimplicial resolution in the sense of [9, Section 4.3] of an
admissible operad O in V, then there is a weak equivalence

jwAlgC.O/j
�

�! jwAlgC.O�/j:

Proof The operads On are cofibrant, hence admissible, n � 0, so faces and degen-
eracies in AlgC.O�/ are right adjoints of a Quillen equivalence, therefore they induce
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weak equivalences on nerves. This implies that the iterated degeneracies induce a weak
equivalence

jwAlgC.O0/j
�

�! jwAlgC.O�/j:

For the same reason, the weak equivalence O0 �!O induces a weak equivalence

jwAlgC.O/j
�

�! jwAlgC.O0/j:

Denote f wCfc the category of fibrant-cofibrant objects in C and trivial fibrations
between them. Under the assumptions of the previous lemma, define the simplicial
category D� as the following pullback:

(4-2)

D� //

�0�
��

pull

wAlgC.O�/

��

��

f wCfc inclusion
// C

Here we regard the two categories in the bottom as constant simplicial categories, and ��
is the forgetful simplicial functor. Notice that Dn is the category of trivial fibrations
between On –algebras whose underlying objects in C are fibrant and cofibrant.

Lemma 4.4 In the situation of the previous paragraph, the horizontal (simplicial)
functors in (4-2) induce weak equivalences

jf wCfcj
�

�! jwCj; jD�j
�

�! jwAlgC.O�/j:

Proof The first part of the statement follows from [22, Lemmas 4.2.4 and 4.2.5].
Moreover, by the same results together with [21, Corollaries D.2 and D.3], the inclusion
Dn � wAlgC.On/ induces a weak equivalence

jDnj
�

�! jwAlgC.On/j; n� 0;

hence the second map in the statement is also a weak equivalence.

Recall that the category of simplices �K of a simplicial set K is the category whose
objects are pairs .n;x/ with n � 0 and x 2 Kn . A morphism � W .n;x/! .m;y/

in �K is a morphism � W n! m in � such that the induced map ��W Km ! Kn

takes y to x , ��.y/ D x . This category comes equipped with a natural projection
functor pK W �K!�, pK .n;x/D n. This construction defines a functor from the
category of simplicial sets to the category of small categories over �,

Set�
op
�! Cat #�;

K 7! pK :
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Lemma 4.5 If Y is a fibrant–cofibrant object in C and O� is a cosimplicial reso-
lution in Op.V/, then, with the notation in (4-2), j�0� # Y j is weakly equivalent to
Op.V/.O�; EndC.Y //DMapOp.V/.O; EndC.Y //.

Proof We will use an alternative construction of the bisimplicial set j�0� # Y j in terms
of endomorphism operads. By Corollary 2.14,

(4-3) j�0t # Y js D
a

X0!���!Xs!Y in f wCfc

Op.V/.Ot ; EndCs .X0! � � � !Xs//:

Notice that the set indexing this coproduct is j.f wCfc/ # Y js . In order to describe the
bisimplicial structure of j�0� # Y j in terms of the right hand side of (4-3), we consider
the functor

EW .�jCj/op
�! Op.V/;

.n;X0! � � � !Xn/ 7! EndCn.X0! � � � !Xn/:

Note that X0!� � �!Xn is a functor X W n!C. Given a morphism � W .n;X/!.m;X 0/

in the category of simplices, then we have that the induced morphism E.�/ is
��W EndCm.X 0/! EndCn.X /; here we use the notation in (2-1). We also consider the
functor

FY W .f wCfc/ # Y �! C;

.X ! Y / 7!X;

and the composite functor

.�j.f wCfc/ # Y j/op .�jFY j/
op
//.�jCj/op E

//Op.V/
Op.V/.O�;�/

//Set�
op
:

Taking the left Kan extension [18, X.3] of this functor along the opposite of the natural
projection from the category of simplices to �, we obtain a bisimplicial set

Lanp
op
j.fwCfc j/#Y

Op.V/.O�;E.�jFY j/
op/:

One can easily check that the .s; t/ set of this bisimplicial set is the right hand side of
(4-3). Moreover, this defines an isomorphism between this bisimplicial set and j�0� #Y j.

We need two more functors

LY ;CY W �j.f wCfc/ # Y j �!�jCj;

LY .n;X0! � � � !Xn! Y /D .nC 1;X0! � � � !Xn! Y /;

LY .d
i/D d i ; LY .s

i/D si ;

CY .n;X0! � � � !Xn! Y /D .0;Y /;
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where CY is constant, and two natural transformations,

ıY W �jFY j H)LY ; ıY .n;X0! � � � !Xn! Y /D dnC1;

&Y W CY H)LY ; &Y .n;X0! � � � !Xn! Y /D .d0/nC1:

For simplicity, denote K D j.f wCfc/ # Y j. We claim that the following morphisms
of bisimplicial sets are weak equivalences:

Lanp
op
K

Op.V/.O�;E.�jFY j/
op/

Lanp
op
K

Op.V/.O�;EL
op
Y
/

Lan
p

op
K

Op.V/.O�;E.ıY //

OO

Lan
p

op
K

Op.V/.O�;E.&Y //

��

Lanp
op
K

Op.V/.O�;EC
op
Y
/

It is enough to notice that, at the .n; �/ simplicial set, we have the coproduct indexed
by Kn of the morphisms of simplicial sets obtained by applying Op.V/.O�;�/ to the
weak equivalences between fibrant operads in Corollary 3.7, n� 0:`

X0!���!Xn!Y in f wCfc

Op.V/.O�; EndCn.X0! � � � !Xn//

`
X0!���!Xn!Y in f wCfc

Op.V/.O�; EndCnC1.X0! � � � !Xn! Y //

.dnC1/� �

OO

�.d
nC1
0

/�
��`

X0!���!Xn!Y in f wCfc

Op.V/.O�; EndC.Y //

The functor Op.V/.O�;�/ takes the weak equivalences between fibrant operads in
Corollary 3.7 to weak equivalences of simplicial sets by [9, Corollary 6.4].

In order to complete the definition of the weak equivalence claimed in the statement
we notice that

Lanp
op
K

Op.V/.O�;EC
op
Y
/D j.f wCfc/ # Y j �Op.V/.O�; EndC.Y //:

The category .f wCfc/ # Y has a final object, the identity in Y , hence its nerve
is contractible and the projection onto the second factor of the product is a weak
equivalence.
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We can now proceed with the main theorem of this section.

Theorem 4.6 Let O be an admissible operad in V. The homotopy fiber of the map

jwAlgC.O/j �! jwCj

induced by the forgetful functor AlgC.O/ ! C at a fibrant–cofibrant object Y is
MapOp.V/.O; EndC.Y //.

Proof We want to apply [22, Lemma 4.2.2] to the simplicial functor �0�W D�!f wCfc

in (4-2). This lemma of Rezk says that the commutative diagram of simplicial sets

j�0� # Y j //

��

jD�j

��

jf wCfc # Y j // jf wCfcj

is a homotopy pullback if the maps j�0� # Y j! j�0� # Y 0j induced by maps gW Y ! Y 0

in f wCfc are weak equivalences. In the previous square, the vertical maps are induced
by �0� and the horizontal maps are defined by the source functors on comma categories.

Using Lemma 4.5, we can identify the map j�0� # Y j ! j�0� # Y 0j in the homotopy
category of spaces with the map represented by the zigzag

MapOp.V/.O; EndC.Y // �MapOp.V/.O; EndC1.g// �!MapOp.V/.O; EndC.Y
0//

obtained by applying MapOp.V/.O;�/ to d1 and d0 in Proposition 3.5. Since g

is a trivial fibration between fibrant–cofibrant objects, d1 and d0 are weak equiva-
lences between fibrant operads by Corollary 3.2 and Proposition 3.5(1) and (2). This
and [9, Corollary 6.4] imply that the previous zigzag consists of two weak equivalences
of spaces. Therefore j�0� # Y j ! j�0� # Y 0j must be weak equivalence, as we wanted to
show.

We have now established that the commutative square in the first paragraph is a
homotopy pullback. The space jf wCfc # Y j is weakly contractible since f wCfc # Y

has a final object (the identity in Y ), hence the homotopy fiber of j�0�jW jD�j!jf wCfcj

at Y is j�0� #Y j, which is weakly equivalent to MapOp.V/.O; EndC.Y // by Lemma 4.5.

The map in the statement is weakly equivalent to j�0�jW jD�j! jf wCfcj by Lemma 4.4.
This observation concludes the proof.

Mapping spaces take homotopy colimits in the first variable to homotopy limits. Hence,
we deduce the following result.
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Corollary 4.7 The contravariant functor O 7! jwAlgC.O/j defined by the contravari-
ant change of base operad functors, like f � in (4-1), takes homotopy colimits of
admissible operads to homotopy limits of spaces.

5 Stacks of algebras

In this section we place ourselves in a homotopical algebraic geometry (HAG) con-
text .V;V0;A; �;P / in the sense of [26, 1.3.2.13]. This consists, first of all, of
an underlying combinatorial symmetric monoidal model category V, in the sense
of [13, Definition 4.2.6], and two full subcategories V0;A � V which intuitively
play the role of the aisle and the heart of a t –structure in a triangulated category,
respectively. Among the various required assumptions, the category Comm.V/ of
commutative algebras (ie monoids) in V must carry a model structure with fibrations
and weak equivalences defined by the underlying morphisms in V. The model category
AffV D Comm.V/op of affine stacks is the opposite model category, � is a model
pretopology on AffV , which induces a Grothendieck topology on Ho.AffV/, and P is
a class of morphisms in AffV , which are regarded as good enough to define quotients.

Apart from the axioms imposed in [13, Definition 4.2.6] to symmetric monoidal
model categories, V satisfies the strong unit axiom by [26, Assumption 1.1.0.3]
and [21, Lemma A.11]. The monoid axiom is not explicitly required in [26], but
it is satisfied by all known examples. We will also assume that V satisfies the monoid
axiom, so it is a symmetric monoidal model category in the sense of Definition 2.1.

A simplicial presheaf F is a (contravariant) functor from affine stacks to simplicial
sets,

F W Affop
V �! Set�

op
;

that is, a (covariant) functor from Comm.V/. The category SPr.AffV/ of simplicial
presheaves carries a model structure where weak equivalences (resp. fibrations) are
pointwise weak equivalences (resp. fibrations) of simplicial sets. In particular, a
simplicial presheaf is fibrant if and only if its values are Kan complexes.

A stack is a simplicial presheaf F which preserves weak equivalences, finite homotopy
products, and satisfies the following descent condition [26, Corollary 1.3.2.4]: given a
commutative algebra A, a cosimplicial commutative algebra B� , and a cosimplicial
map A! B� corresponding to a � –hypercover in AffV , where A is regarded as a
constant cosimplicial object, the induced morphism

F.A/ �! holimn2� F.Bn/
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is a weak equivalence of spaces. The simplicial presheaf represented by a commutative
algebra A,

RSpec.A/DMapComm.V/.A;�/;

is a stack, that we call affine stack. It is defined by a cosimplicial resolution of A and a
functorial fibrant resolution in Comm.V/. In order to turn RSpec into a Yoneda-like
functor

RSpecW AffV �! SPr.AffV/

we choose a functorial cosimplicial resolution in Comm.V/.

The model category of stacks Aff�;�V is a left Bousfield localization of SPr.AffV/

whose fibrant objects are the stacks taking values in Kan complexes. The homotopy
category of stacks St.V; �/D Ho.Aff�;�V / can be identified with the full subcategory
of Ho.SPr.AffV// spanned by stacks. The homotopy limit of a diagram of stacks is
the same in Aff�;�V and in SPr.AffV/, ie it can be computed as a pointwise homotopy
limit in the category of spaces. A simplicial presheaf weakly equivalent to a stack in
SPr.AffV/ is itself a stack. A map between stacks is a weak equivalence in Aff�;�V if
and only if it is a weak equivalence in SPr.AffV/. The functor RSpec above induces a
full embedding

RSpecW Ho.AffV/ �! St.V; �/:

Let A be a commutative algebra in V. The category Mod.A/ of A–modules is a model
category with fibrations and weak equivalences defined by the underlying morphisms
in V. In an ideal world, there would be a stack of modules, denoted by QCoh, defined
by

QCoh.A/D jwMod.A/j:

Moreover, given a commutative algebra morphism A! B , the induced map

(5-1) QCoh.A/D jwMod.A/j �! QCoh.B/D jwMod.B/j

would be defined by the change of coefficients functor �˝A BW Mod.A/!Mod.B/.
However, there are some issues.

The homotopical issue is that the change of coefficients functor �˝A B does not
preserve weak equivalences, so it cannot define a map as (5-1). This can be solved by
restricting to full subcategories of cofibrant objects,

QCoh.A/D jwMod.A/cj;

since �˝A B is a left Quillen functor, so it preserves weak equivalences between
cofibrant objects. This is not harmful since jwMod.A/cj ' jwMod.A/j.
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The categorical issue is that this construction does not define a functor since, given
commutative algebra morphisms A! B ! C and an A–module M , the natural
isomorphism M ˝A B˝B C ŠM ˝A C is not the identity. Nevertheless, these natural
isomorphisms satisfy the coherence condition by Anel in [2, Définition I.56], so the
nonfunctor A 7! Mod.A/ defines a weak presheaf of model categories, which can
be strictified before restricting to weak equivalences and taking nerves; see [2, Sec-
tion I.2.3.1]. The strictification of QCoh is explicitly described in [26, Section 1.3.7] in
terms of categories of quasicoherent modules, hence the name QCoh of this simplicial
presheaf.

The geometric issue is to check that the simplicial presheaf QCoh is a stack. This
holds in any HAG context, essentially by definition; see [26, Theorem 1.3.7.2].

Given an admissible operad O in V, in this section we aim at constructing a moduli
stack of O–algebras AlgV.O/. We would like that

AlgV.O/.A/D jwAlgMod.A/.O/j;

and that given a commutative algebra morphism A! B , the induced map

AlgV.O/.A/D jwAlgMod.A/.O/j �! AlgV.O/.B/D jwAlgMod.B/.O/j

were defined by the change of coefficients functor �˝A B . We would also like that
the forgetful functors AlgMod.A/.O/!Mod.A/ defined a morphism of stacks

�OW AlgV.O/ �! QCoh:

In order to achieve this goal, we will face the same difficulties as for the definition of
QCoh and some other specific issues. We will rely on the homotopy theory of operads
developed in [20; 21].

First of all, in order the model category of O–algebras in Mod.A/ to be defined, we
need to endow Mod.A/ with a model V–algebra structure.

Lemma 5.1 Let A be a commutative algebra in V. The functor

zA D�˝AW V!Mod.A/

endows CDMod.A/ with the structure of a combinatorial symmetric model V–algebra
in the sense of Definition 2.5. In addition, it satisfies the very strong unit axiom in
Definition A.1.

Proof By [26, Assumption 1.1.0.2], Mod.A/ is a combinatorial model category and
satisfies the pushout product axiom and the unit axiom. The monoid axiom follows
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from [23, Theorem 4.1(2)]. The very strong unit axiom follows from [26, Assump-
tion 1.1.0.3]; see Remark A.4.

The functor zA , which is obviously strong symmetric monoidal, is a left Quillen functor
since its right adjoint, the forgetful functor Mod.A/! V, preserves fibrations and
weak equivalences. Moreover, zA satisfies the I–cofibrant axiom by Lemma A.6.

The next step is to show how, given a commutative algebra morphism A! B , the
change of coefficients functor �˝A BW Mod.A/!Mod.B/ induces a functor �˝A

BW AlgMod.A/.O/! AlgMod.B/.O/.

Definition 5.2 A symmetric V–algebra functor is a lax symmetric monoidal func-
tor between symmetric V–algebras F W C ! D equipped with a monoidal natural
isomorphism FzC.X /Š zD.X /.

A symmetric V–algebra Quillen adjunction F W C� DW G is a Quillen pair between
symmetric model V–algebras which is a lax–lax symmetric monoidal adjunction and
such that F is equipped with the structure of a symmetric V–algebra functor. In
particular F is strong monoidal. We assume in addition that the I–cofibrant axiom
in [21, Definition B.6] is satisfied.

Example 5.3 Given a commutative algebra morphism A ! B in V, the functor
�˝A BW Mod.A/!Mod.B/ is the left adjoint in a symmetric V–algebra Quillen
adjunction. The natural isomorphism zA.X /˝A BDX ˝A˝A BŠX ˝BD zB.X /

is the obvious one. The I–cofibrant axiom follows from Lemmas A.6 and 5.1. If
A! B is a weak equivalence then this symmetric V–algebra Quillen adjunction is a
Quillen equivalence as a consequence of [26, Assumption 1.1.0.3].

Remark 5.4 Given a symmetric V–algebra Quillen adjunction F W C� DW G and
an operad O in V, there is an induced Quillen pair between categories of algebras
F W AlgC.O/� AlgD.O/W G which overlies the previous adjunction; see [21, Proposi-
tion 7.1] and its proof. The latter is a Quillen equivalence if the former is and O is
admissible [21, Theorem D.11].

Therefore, if O is an admissible operad, we can define a simplicial presheaf AlgV.O/
by

(5-2) AlgV.O/.A/D jwAlgMod.A/.O/cj:

Honestly speaking, we should go through a categorical strictification process before
restricting to weak equivalences between cofibrant objects and taking nerves, as in the
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case of QCoh, but we will keep this technical issue aside so as not to overload the
paper.

Now we must show that AlgV.O/ is a stack. The most complicated property is descent.
We will see that descent for operads follows from descent for modules, which is an
assumption of HAG contexts. In order to check this technical condition, we need some
definitions.

Definition 5.5 Given a cosimplicial commutative algebra A� , a cosimplicial A�–
module M �D .M n; d i ; si/ consists of a An –module M n for each n� 0 together with
coface morphisms of An�1 –modules d i W M n�1!M n and codegeneracy morphisms
of AnC1 –modules si W M nC1!M n , 0� i � n, satisfying the usual cosimplicial iden-
tities. Here M n is regarded as An�1 –module and as an AnC1 –module via restriction
of scalars along the coface d i W An�1!An and codegeneracy si W AnC1!An in A� ,
respectively.

We say that a cosimplicial A�–module M � is homotopy cartesian if the derived adjoints
M n�1˝L

An�1 An!M n and M nC1˝L
AnC1 An!M n of all coface and codegeneracy

maps are weak equivalences.

Remark 5.6 The category Mod.A�/ of cosimplicial A�–modules carries (at least)
two combinatorial model structures, called projective and injective, with the same
weak equivalences; see Barwick [3, Theorems 2.28 and 2.30 and Section 2.22]. A
morphism f �W M �!N � of cosimplicial A�–modules is a weak equivalence if each
f nW M n!N n is a weak equivalence. Moreover f � is a projective fibration if each f n

is a fibration in Mod.An/ (or equivalently in V), and f � is an injective cofibration if
each f n is a cofibration in Mod.An/. The injective model structure is technically more
convenient, and will be the only one we use. Toën and Vezzosi use the projective model
structure in [26], probably because the injective model structure was not available
at that time. We can freely change since both model structures have the same weak
equivalences.

We must consider O–algebras in Mod.A�/. For this, we need the following result.

Lemma 5.7 The injective model structure and the tensor product of An –modules,
n � 0, induce a combinatorial symmetric monoidal model structure on Mod.A�/
satisfying the very strong unit axiom. Moreover, the functor zA� W V ! Mod.A�/,
zA�.X /

n D X ˝ An , endows Mod.A�/ with the structure of a symmetric model
V–algebra.
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Proof The pushout product axiom, the monoid axiom, and the very strong unit
axiom in Mod.A�/ follow from the corresponding axioms in Mod.An/, checked in
Lemma 5.1, since we are working with the injective model structure. Hence Mod.A�/
is a combinatorial symmetric monoidal model category in the sense of Definition 2.1,
since it is locally presentable.

The functor zA� is obviously strong symmetric monoidal. Its right adjoint sends a
cosimplicial A�–module M � to the limit limn2�M n in V. By Lemma 5.1, each zAn

preserves (trivial) cofibrations, hence so does zA� for the injective model structure.
Finally, the I–cofibrant axiom for zA� is a consequence of the fact that this axiom is
satisfied by all zAn ; see again Lemma 5.1.

Notice that the functor zA� sends cofibrant objects to homotopy cartesian simplicial
A�–modules.

Now we are ready to show that AlgV.O/ is a stack, at least when O is cofibrant.

Proposition 5.8 Let O be a cofibrant operad in V. The simplicial presheaf AlgV.O/
is a stack.

In the proof of descent, we use the following technical observation.

Lemma 5.9 Let F W A� BW G be an adjoint pair F a G . The functor F is fully
faithful if and only if the unit X !GF.X / is a natural isomorphism. Moreover, if F

is fully faithful then the essential image of F consists of those objects Y in B such
that the counit FG.Y /! Y is an isomorphism.

Proof of Proposition 5.8 By Example 5.3 and Remark 5.4, if A
�

! B is a weak
equivalence in Comm.V/ then �˝A BW AlgMod.A/.O/! AlgMod.B/.O/ is the left
adjoint of a Quillen equivalence, hence it induces a weak equivalence

jwAlgMod.A/.O/cj
�

�! jwAlgMod.B/.O/cj:

This proves that AlgV.O/ preserves weak equivalences.

Let A and B be fibrant commutative algebras in V. Then the product category
Mod.A/�Mod.B/ is a symmetric model V–algebra with the obvious product struc-
ture. Moreover, the natural projections induce a symmetric model V–algebra Quillen
equivalence [26, proof of Lemma 1.3.2.3(1)],

Mod.A�B/
.�˝A�BA;�˝A�BB/

//Mod.A/�Mod.B/:oo
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Again by Remark 5.4, we obtain an induced Quillen equivalence between categories of
O–algebras,

AlgMod.A�B/.O/
//AlgMod.A/�Mod.B/.O/D AlgMod.A/.O/�AlgMod.B/.O/:oo

The left adjoint gives rise to a weak equivalence

jAlgMod.A�B/.O/cj
�

�! jAlgMod.A/.O/cj � jAlgMod.B/.O/cj:

Therefore AlgV.O/ preserves finite homotopy products.

Now, let us tackle the descent condition. Let A be a commutative algebra, that we also
regard as a constant cosimplicial object, B� a cosimplicial commutative algebra, and
'W A! B� a map as in [26, Assumption 1.3.2.2(3)]. There is a symmetric V–algebra
Quillen adjunction

Mod.A/
'�
//Mod.B�/

'�
oo

defined by '�.M /n DM ˝A Bn . This is indeed a Quillen pair because we are using
the injective model structure on the right. The derived adjoint pair

Ho Mod.A/
L'�

//Ho Mod.B�/
R'�
oo

satisfies the following properties: L'� is fully faithful and any homotopy cartesian
B�–module is in the essential image of L'� [26, Assumption 1.3.2.2(3)]. These two
properties can be read as properties of the unit and counit of the derived adjoint pair;
see Lemma 5.9.

By Remark 5.4, the previous symmetric V–algebra Quillen adjunction induces a Quillen
adjunction

AlgMod.A/.O/
'�
//AlgMod.B�/.O/:

'�
oo

Moreover, the derived adjunction

Ho AlgMod.A/.O/
L'�

//Ho AlgMod.B�/.O/
R'�
oo

overlies the previous derived adjoint pair, since cofibrant O–algebras in Mod.A/ have
an underlying cofibrant A–module [21, Corollaries C.3 and D.3] and fibrant O–algebras
in Mod.B�/ have an underlying fibrant cosimplicial B�–module. Therefore, the unit
and counit of the former derived adjunction underlie those of the latter, so they share
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the properties in the statement of Lemma 5.9. This, together with [26, Corollary B.0.8],
finishes the proof.

In order to check that AlgV.O/ is actually a stack for any admissible operad O , we need
functoriality in O for AlgV.O/. Continuing with our ideal picture, given a morphism
of admissible operads f W O! P , we would like to have a morphism of simplicial
presheaves

AlgV.f /W AlgV.P/ �! AlgV.O/

defined by the contravariant change of base operad functor f � in (4-1),

AlgV.P/.A/D jwAlgMod.A/.P/j �! AlgV.O/.A/D jwAlgMod.A/.O/j:

The functor f � does preserve all weak equivalences. The problem here is that, in
order to define the simplicial presheaf AlgV.O/, we have had to restrict to cofibrant
O–algebras (5-2), and f � does not preserve cofibrant objects.

In order to solve this problem, we thicken AlgV.O/, ie we give an alternative but
weakly equivalent definition in terms of nerves of categories of weak equivalences
between a class of objects bigger than cofibrant ones.

Let Algpc

Mod.A/.O/ � AlgMod.A/.O/ be the full subcategory of O–algebras whose
underlying A–module is pseudocofibrant in the sense of [21, Definition A.1]. The
definition of pseudocofibrant object is recalled in Remark A.2 below. Cofibrant al-
gebras over an admissible operad O have a pseudocofibrant underlying A–module
by [21, Corollary D.3], ie AlgMod.A/.O/c � Algpc

Mod.A/.O/. Moreover, this inclusion
induces a weak equivalence on nerves jwAlgMod.A/.O/cj ' jwAlgpc

Mod.A/.O/j, since
functorial cofibrant replacements define a homotopy inverse.

We can equivalently define AlgV.O/ by

AlgV.O/.A/D jwAlgpc

Mod.A/.O/j

since, given a commutative algebra morphism A ! B , the change of coefficients
functor �˝A B preserves pseudocofibrant modules (see [26, Assumption 1.1.0.2]
and [21, Remark B.9]), and weak equivalences between them (see Lemma A.6).

The functor f � in (4-1) is the identity on underlying objects, hence it yields a morphism
of simplicial presheaves AlgV.f /W AlgV.P/! AlgV.O/ given by

AlgV.P/.A/D jwAlgpc

Mod.A/.P/j �! AlgV.O/.A/D jwAlgpc

Mod.A/.O/j:

Moreover, this morphism is a weak equivalence if f is a weak equivalence.
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Corollary 5.10 Let O be an admissible operad in V. The simplicial presheaf AlgV.O/
is a stack.

Proof Let f W zO
�� O be a cofibrant replacement. The morphism of simplicial

presheaves AlgV.f /W AlgV.O/! AlgV. zO/ is a weak equivalence, and AlgV. zO/ is a
stack by Proposition 5.8. Hence AlgV.O/ is also a stack.

Remark 5.11 By Corollary 4.7, AlgV.O/, regarded as a contravariant functor in O ,
takes homotopy colimits of admissible operads to homotopy limits of stacks.

For O an admissible operad, the forgetful functors AlgMod.A/.O/!Mod.A/ induce
a morphism of stacks

�OW AlgV.O/ �! QCoh:

Indeed, if O.0/ is cofibrant in V, eg if O is a cofibrant operad [21, Corollary C.3], we
can use the unthickened definition of AlgV.O/ to define this morphism by the maps

AlgV.O/.A/D jwAlgMod.A/.O/cj �! QCoh.A/D jwMod.A/cj;

since the underlying object of a cofibrant O–algebra is cofibrant [21, Corollary D.3].
For a general O , we thicken QCoh without changing its homotopy type by using the
subcategories Modpc.A/�Mod.A/ of pseudocofibrant A–modules,

QCoh.A/D jwModpc.A/j:

Then we define �O by using the thickened versions of the source and the target stacks
and the maps

AlgV.O/.A/D jwAlgpc

Mod.A/.O/j �! QCoh.A/D jwModpc.A/cj:

The morphism �O is natural in the admissible operad O . Our next aim is to study
properties of this morphism.

Definition 5.12 Let O be an admissible operad in V, A a commutative algebra
in V, and M an A–module. The stack of O–algebra structures on M is the stack
over RSpec.A/,

MapOp.V/.O; EndMod.A/.M //;

defined as the homotopy pullback of �O along the morphism gW RSpec.A/! QCoh
represented by M .

Honestly speaking, we should take a fibrant replacement of QCoh in order the map g

to be defined in the category of stacks, not just in the homotopy category. However, we
will allow us this kind of language.
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Remark 5.13 For any cofibrant commutative algebra A in V, Mod.A/ is the base
combinatorial symmetric monoidal model category of a new HAG context and Aff�;�Mod.A/
is Quillen equivalent to the comma model category Aff�;�V #RSpec.A/; see [26, Propo-
sition 1.3.2.10] and its preceding paragraph. Hence, we can identify stacks over
RSpec.A/ with stacks in this new HAG context.

Remark 5.14 By Theorem 4.6, for any A–algebra B ,

MapOp.V/.O; EndMod.A/.M //.B/'MapOp.V/.O; EndMod.B/.
CM ˝L

A
B //;

where zN denotes a fibrant–cofibrant replacement of a B–module N . This justifies
the name of this stack.

Remark 5.15 The stack MapOp.V/.O; EndMod.A/.M // is a contravariant functor in
the admissible operad O since AlgV.O/ is a contravariant functor in O and �O is
natural. Moreover, it takes homotopy colimits of admissible operads to homotopy
limits of stacks, since mapping spaces take homotopy colimits in the first variable to
homotopy limits of spaces.

We will show that the stack of O–algebra structures on a module M is representable
when M is perfect in the sense of the following definition.

Definition 5.16 [26, Definition 1.2.3.6] Let Y be an object in V. For the sake of
simplicity, let us assume that Y is fibrant and cofibrant. Let

qX W QX
��X; rX W X

��RX;

be functorial cofibrant and fibrant replacements in V, respectively. Moreover, denote
internal morphism objects in V by HomV .

The dual of Y is Y _ D HomV.Y;RI/. The object Y is perfect if the composition of
the two vertical morphisms in the following diagram is a weak equivalence in V:

Y ˝Y _ D HomV.I;Y /˝HomV.Y;RI/
�

q�I˝id
// HomV.QI;Y /˝HomV.Y;RI/

˝

��

HomV.QI˝Y;Y ˝RI/

.rY˝RI/�
��

HomV.Y;Y /D HomV.I˝Y;Y ˝ I/
�

x
// HomV.QI˝Y;R.Y ˝RI//;
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where x D HomV.qI ˝ idY ; rY˝RI.idY ˝rY //. In this case, this diagram yields
an isomorphism Y ˝ Y _ Š HomV.Y;Y / in Ho V. An arbitrary Y is perfect if a
fibrant–cofibrant replacement is perfect.

If A is a commutative algebra, we can replace V with Mod.A/ and I with A in the
previous paragraphs. This yields the notions of dual and perfect A–module.

Theorem 5.17 Let O be an admissible operad in V, A a commutative algebra in V

and M a perfect A–module. The stack MapOp.V/.O; EndMod.A/.M // is affine.

We need a technical result in order to prove this theorem. Recall that a sequence is an
object in the product model category VN D

Q
n�0 V. There is a Quillen pair

VN
F
//Op.V/;

forget
oo

where the right adjoint is the forgetful functor O 7! fO.n/gn�0 and the left adjoint F
is the free operad functor [20, Section 5].

Lemma 5.18 Any operad in V is weakly equivalent to the target of a relative cell
complex from a free operad on a cofibrant sequence with respect to a set of cofibrations
between free operads on cofibrant sequences.

Proof Any operad is weakly equivalent to a cell complex with respect to the set of
generating cofibrations in Op.V/. The initial operad is free on a cofibrant sequence:
the initial sequence. Generating cofibrations are maps between free operads, actually
they are free maps; see the proof of [20, Theorem 1.1]. The underlying sequences of
these free operads need not be cofibrant. However, if the tensor unit I is cofibrant,
we can apply the trick at the beginning of the proof of [21, Proposition 4.2] to use
cofibrant sequences instead.

If the tensor unit is not cofibrant, the previous trick only allows us to use sequences U D

fU.n/gn�0 with U.n/ cofibrant for n¤ 1 and I–cofibrant for nD 1; see [20, Corol-
lary C.3]. Such sequences can be replaced with cofibrant sequences as follows. Let
zU
�� U be a cofibrant resolution in VN . The induced morphism F. zU /! F.U / is

a weak equivalence by [21, Corollary A.14 and Lemma A.15], since a free operad is
built from coproducts of tensor products of the objects in the underlying sequence;
see [20, Section 5]. Finally, we can apply the gluing lemma in the cofibration category
of operads with underlying pseudocofibrant sequence to replace F.U / with F. zU /;
see [21, Proposition C.8 and Corollary 5.2].
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Proof of Theorem 5.17 By Remark 5.15 and Lemma 5.18, it is enough to prove the
theorem for OD F.U / a free operad on a cofibrant sequence U D fUngn�0 .

We can suppose without loss of generality that A is a cofibrant commutative algebra
and M a fibrant–cofibrant A–module. We define a stack F over RSpec.A/ in the
sense of Remark 5.13 as follows. Given a commutative A–algebra B , ie a morphism
of commutative algebras A! B ,

F.B/D
Y
n�0

MapMod.A/.Un˝M˝An
˝A M_;B/:

This stack is clearly represented by the free commutative A–algebra C generated bya
n�0

Un˝M˝An
˝A M_:

Notice that, by adjunction

F.B/'MapOp.V/.F.U /; EndMod.B/.CM ˝A B //;

where CM ˝A B denotes a fibrant replacement of the cofibrant B –module M ˝A B ;
see [26, Proposition 1.2.3.7] and its preceding paragraphs. However, we cannot define F

by the right hand side of the previous equation since it is not functorial in B .

Theorem 4.6 shows that, pointwise, RSpec.C /'F is the homotopy pullback of �F.U /

along g . It is only left to define a map of stacks RSpec.C /! AlgV.O/ realizing the
pointwise inclusion of the homotopy fiber. One can check that it is enough to take a
map determined by an O–algebra structure on the C –module CM ˝A C corresponding
to the connected component of the identity in

MapOp.V/.F.U /; EndMod.C /.CM ˝A C //

' F.C /'RSpec.C /.C /DMapComm.V/.C;C /:

One application of Theorem 5.17 is to obtain geometric substacks of AlgV.O/. The
stack QCoh is too big to have nice geometric properties. To this end, it is necessary to
restrict to smaller substacks.

Definition 5.19 Given a stack G , a substack of G is a stack F such that, for any X

in AffV , F.X /�G.X / is a simplicial subset formed by certain connected components
of G.X / and the inclusions define a morphism F !G .

Example 5.20 Below we give examples of 1–geometric substacks F � QCoh in
different HAG contexts. In each case, we give a name for F and specify the property that
an A–module must satisfy so the corresponding component of QCoh.A/'jwMod.A/j
lies in F.A/.
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(1) The substack Vectn of rank n vector bundles, n� 0, for any HAG context where
the tensor unit I is finitely presented in V in the sense of [26, Definition 1.2.3.1],
and such that all smooth morphisms of commutative algebras belong to P ;
see [26, Corollary 1.3.7.12]. An A–module M is a rank n vector bundle if there
is a covering fA!Aigi2I in � such that each M ˝L

A
Ai is weakly equivalent

to the (derived) product Ai�
h n
� � � �hAi .

(2) The substack Perf of perfect modules in the sense of Definition 5.16, in the weak
HAG context for complicial algebraic geometry [26, 2.3.2]; see [26, Proposi-
tion 2.3.3.1].

(3) The substack PerfŒa;b� of locally cellular modules of amplitude contained in
a finite interval Œa; b� in the sense of [26, Definition 2.3.5.2], in the stronger
HAG context for complicial algebraic geometry [26, 2.3.4]; see [26, Proposi-
tion 2.3.5.4].

Example (1) still holds if I is not finitely presented but P contains all formally smooth
morphisms. Examples (2) and (3) have versions in brave new algebraic geometry;
see [26, 2.4.1].

Definition 5.21 Let O be an admissible operad in V and F a substack of QCoh. We
define the restricted stack of O–algebras AlgF .O/ as the following pullback:

AlgF .O/ //

�O
F

��

pull

AlgV.O/

�O

��

F
incl.

// QCoh

This diagram includes the definition of the map �O
F
W AlgF .O/! F .

Remark 5.22 The pullback square in Definition 5.21 is a homotopy pullback since
the bottom horizontal arrow is a fibration of simplicial presheaves for obvious reasons.
Therefore AlgF .O/ is indeed a stack.

Proposition 5.23 In the conditions of Definition 5.21, if F is n–geometric and for
any commutative algebra A in V, the connected components of F.A/ are represented
by perfect A–modules, then AlgF .O/ is n–geometric.

Proof Theorem 5.17 shows that �O
F
W AlgF .O/! F is an affine morphism. Hence

AlgF .O/ is n–geometric by [26, Proposition 1.3.3.4].
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6 Spaces and stacks of (unital) A–infinity algebras

Let V be a symmetric monoidal model category. Assume further that V is simplicial
or complicial, ie a symmetric model Set�

op
–algebra or Ch.k/–algebra. Recall from

Example 2.3 the canonical map �W Ass! uAss from the associative operad to the
unital associative operad which models the forgetful functor from unital associative
algebras to associative algebras. We proved in [19] that � is a homotopy epimorphism
in Op.V/ in the sense of the following definition; compare [26, Remark 1.2.6.2]
and [19, Section 2].

Definition 6.1 A map of simplicial sets gW K!L is a homotopy monomorphism if
it corestricts to a weak equivalence between K and a subset of connected components
of L. This is equivalent to say that the homotopy fibers of g are empty or weakly
contractible.

A morphism f W X ! Y in a model category M is a homotopy epimorphism if for
any object Z in M the induced map f �W MapM.Y;Z/!MapM.X;Z/ is a homotopy
monomorphism.

A map f W X!Y is a homotopy monomorphism in M if it is a homotopy epimorphism
in Mop . This is the same as saying that the derived codiagonal, which is the map
�D

�
1X

1X

�
W X !X �h

Y
X to the homotopy product of X with itself over Y , is a weak

equivalence.

The two notions of homotopy monomorphism of simplicial sets coincide.

In particular, if C is a model V–algebra and Y is a fibrant–cofibrant object in C, the
map

(6-1) ��W MapOp.V/.uAss; EndC.Y // �!MapOp.V/.Ass; EndC.Y //

is a homotopy monomorphism.

Proposition 6.2 The map jwAlgC.uAss/j ! jwAlgC.Ass/j induced by the forgetful
functor is a homotopy monomorphism.

This result is a consequence of Theorem 4.6 and Lemma 6.3 below. It also follows
from [16, Theorem 5.2.3.5], which actually goes further, characterizing the essential
image; see Proposition 6.6 below.
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Lemma 6.3 Let
K

f

%%
g

��

M

L
h

99

be a commutative triangle of simplicial sets. Denote by Ff;x and Fh;x the homotopy
fibers of f and h at x 2M0 , respectively. The following statements are equivalent.

(1) The map g is a homotopy monomorphism.

(2) For any x 2 M0 the map gx W Ff;x ! Fh;x induced by g is a homotopy
monomorphism.

Proof The square
Ff;x //

gx

��

K

g

��

Fh;x
// L

is a homotopy pullback. This lemma follows from the fact that parallel arrows in a
homotopy pullback have essentially the same homotopy fibers. Let us spell out what
this means in this case. We are interested in the vertical arrows. The homotopy fiber
of gx at a vertex y of Fh;x coincides with the homotopy fiber of g at the image of y

along Fh;x ! L. Moreover, the homotopy fiber of g at a vertex z of L coincides
with the homotopy fiber of gh.z/ at any vertex y of Fh;h.z/ which maps to the same
component as z in L.

The image of the injective map �0jwAlgC.uAss/j ,! �0jwAlgC.Ass/j has a friendly
characterization.

Definition 6.4 An associative algebra X in C with underlying fibrant–cofibrant object
is quasiunital if there exists a map uW zIC ! X , where qIC

W zIC
�

! IC is a cofibrant
replacement of the tensor unit in C that we do not require to be a fibration, such that
the maps

zIC˝X
u˝X
���!X ˝X

mult.
���!X;

X ˝zIC
X˝u
���!X ˝X

mult.
���!X;

are homotopic to zIC ˝X
qIC˝X
�����!
�

IC ˝X Š X and X ˝ zIC

X˝qIC
�����!
�

X ˝ IC Š X ,
respectively.
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If the associative algebra X does not have an underlying fibrant–cofibrant object, we
say that X is quasiunital if a (and hence any) fibrant–cofibrant replacement of X

in AlgC.Ass/ is quasiunital. Such a fibrant–cofibrant replacement has an underlying
fibrant–cofibrant object in C by [21, Corollary D.3].

Remark 6.5 An associative algebra in C with underlying fibrant–cofibrant object sat-
isfies the condition of being quasiunital with respect to some cofibrant replacement qIC

of the tensor unit in C if and only if it satisfies that condition with respect to any such
cofibrant replacement.

Proposition 6.6 The image of �0jwAlgC.uAss/j ,! �0jwAlgC.Ass/j consists of the
connected components of quasiunital associative algebras.

This proposition follows from [16, Theorem 5.2.3.5], which is a deep and complicated
result. We have not found any elementary proof for this proposition. There is an
elementary proof in case VD CD Ch.k/ is the category of chain complexes over a
field k and z is the identity functor. This proof uses the existence of minimal models
for A–infinity algebras, compare [19, Remark 6.8]. The result for k an arbitrary
commutative ring, first proved by Lyubashenko in [17], is already very complicated.

We obtain as a corollary a similar characterization of the image of �0(6-1). Recall
that vertices in MapOp.V/.Ass; EndC.Y // do not correspond to associative algebra
structures on Y , but to A–infinity algebra structures, ie algebra structures over a
cofibrant resolution A1

�� Ass in Op.V/ of the associative operad Ass.

Corollary 6.7 Let Y be a fibrant–cofibrant object in C. The image of the injec-
tive map �0 MapOp.V/.uAss; EndC.Y // ,! �0 MapOp.V/.Ass; EndC.Y // consists of
the connected components of A–infinity algebra structures on Y which are weakly
equivalent in AlgC.A1/ to a quasiunital associative algebra.

This result follows from Proposition 6.6, Theorem 4.6 and an elementary computation
with the low-dimensional part of the long homotopy exact sequence of a homotopy
fibration.

Remark 6.8 Since we can strictify algebras over cofibrant resolutions of admissible
operads by using the Quillen equivalence (4-1), Corollary 6.7 gives a positive answer
to the question raised in [19, Remark 7.5].

Quasiunital associative algebras can be characterized in terms of operads.
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Definition 6.9 Given an object U in V and an integer m � 0, denote U Œm� the
sequence of objects in V whose mth term is U and whose other terms are the initial ob-
ject ¿. This construction defines a functor V!VN , left adjoint to fV .n/gn�0 7!V .m/.

Let qIV
W zIV

�

! IV be a cofibrant replacement of the tensor unit in V, that we do not
require to be a fibration. Choose a cylinder for zIV , which is a factorization of the
folding map

zIVq
zIV

i� C
p
�!
�

zIV:

The operad Assqu is defined as the following pushout in Op.V/:

F..zIVq
zIV/Œ1�/qF..zIVq

zIV/Œ1�/ //
F.iŒ1�/qF.iŒ1�/

//

.c1;c2/
��

push

F.C Œ1�/qF.C Œ1�/

��

AssqF.zIVŒ0�/ // // Assqu

The morphism c1 is defined by a map .c11; c12/W zIVq
zIV ! .AssqF.zIVŒ0�//.1/.

The map c11 is the composite

zIV

qIV
��!
�

IV D Ass.1/ �! .AssqF.zIVŒ0�//.1/;

where the second map is given by the inclusion of the first factor of the coproduct. The
map c12 is the composite:

zIV Š IV˝
zIV D Ass.2/˝F.zIVŒ0�/.0/

��

.AssqF.zIVŒ0�//.2/˝ .AssqF.zIVŒ0�//.0/

ı1
��

.AssqF.zIVŒ0�//.1/

Here the first arrow is given by the tensor product of the inclusions of the factors of the
coproduct. Similarly c2 is defined by a map .c21; c22/ such that c21 D c11 and c22 is
defined like c12 but replacing ı1 with ı2 .

Remark 6.10 Since zIV is cofibrant, the inclusion Ass� AssqF.zIVŒ0�/ of the first
factor is a cofibration, and so is the composite Ass� Assqu . In particular, Assqu is
admissible by [21, Corollary C.2]. More precisely, Assqu.0/ is cofibrant and Assqu.n/

is IV –cofibrant for all n> 0.
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Remark 6.11 An Assqu –algebra in C consists of an associative algebra X in C

together with a map uW z.zIV/!X and two maps z.C /˝X !X . These maps must
satisfy the following two conditions. The restriction of the first z.C /˝X ! X to
z.zIV/˝X q z.zIV/˝X Š z.zIVq

zIV/˝X along z.i/˝X must coincide with the
following pair of maps:

z.zIV/˝X
u˝X
���!X ˝X

mult.
���!X

z.zIV/˝X
z.qIV /˝X
�������!

�

z.IV/˝X Š IV˝X ŠX

Moreover, the restriction of the second z.C /˝X!X must coincide with the following
pair of maps:

z.zIV/˝X
�
ŠX ˝ z.zIV/

X˝u
���!X ˝X

mult.
���!X

z.zIV/˝X
�
ŠX ˝ z.zIV/

X˝z.qIV /
�������!

�

X ˝ z.IV/ŠX ˝ IV ŠX

Lemma 6.12 Let X be an associative algebra in C with underlying fibrant–cofibrant
object. Then X is quasiunital if and only if the map Ass! EndC.X / defining the
associative algebra structure factors as Ass� Assqu! EndC.X /.

Proof Let qIV
be a choice of cofibrant replacement for the tensor unit in V, that we

use to define the operad Assqu in Definition 6.9. According to Remark 6.5, we can
take qIC

D z.qIV
/ in Definition 6.4.

Suppose X is an Assqu –algebra. Then the underlying associative algebra is quasiunital.
Indeed, the map u in Remark 6.11 satisfies the properties in Definition 6.4, since
z.C /˝X is a cylinder for z.zIV/˝X ŠX ˝ z.zIV/ and the maps z.C /˝X !X in
Remark 6.11 are explicit homotopies between the maps that Definition 6.4 demands to
be homotopic.

Conversely, suppose that X is a quasiunital associative algebra. Choose a particular u

satisfying Definition 6.4. Since z.C /˝X is a cylinder for z.zIV/˝X ŠX˝z.zIV/ we
can choose homotopies z.C /˝X !X between the maps that Definition 6.4 requires
to be homotopic. Such homotopies together with u extend the associative algebra
structure of X to an Assqu –algebra structure, according to Remark 6.11.

The universal property of a pushout shows the existence of a unique map

 W Assqu
�! uAss

such that the composite Ass� Assqu  
! uAss is � , defined by

zIV

qIV
��!
�

IV D uAss.0/; C
p
�!
�

zIV

qIV
��!
�

IV D uAss.1/;
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on both copies of C .

Proposition 6.13 For any fibrant–cofibrant object Y in C, the map

 �W MapOp.V/.uAss; EndC.Y // �!MapOp.V/.Assqu; EndC.Y //

admits a retraction in the homotopy category of simplicial sets.

Proof The composite
MapOp.V/.uAss; EndC.Y //

 �

��

MapOp.V/.Assqu; EndC.Y //

��

MapOp.V/.Ass; EndC.Y //

is the homotopy monomorphism in (6-1), which it induces a weak equivalence between
the source and a subset of connected components of the target. By Corollary 6.7 and
Lemma 6.12, the image of the second map lies on those connected components. Here
we use that we can strictify algebras over cofibrant resolutions of admissible operads
by using the Quillen equivalence (4-1). Hence we are done.

Now, let us place ourselves in a HAG context, as in the previous section. The notion of
substack in Definition 5.19 is too strict, since it is not homotopy invariant. The follow-
ing lemma shows that homotopy monomorphisms of stacks are homotopy invariant
replacements of inclusions of substacks.

Lemma 6.14 Given a morphism of stacks f W F ! G , the following statements are
equivalent:

(1) f .A/W F.A/!G.A/ is a homotopy monomorphism of simplicial sets for any
commutative algebra A in V.

(2) f is a homotopy monomorphism in SPr.AffV/.

(3) f is a homotopy monomorphism in Aff�;�V .

Proof Homotopy limits in SPr.AffV/ are computed pointwise, hence .1/ , .2/

follows. The equivalence .2/, .3/ is a consequence of the fact that the homotopy
product F �h

G
F in Aff�;�V coincides with the corresponding homotopy product in

SPr.AffV/.
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Recall from the previous section that �W Ass! uAss induces a morphism of stacks

(6-2) AlgV.�/W AlgV.uAss/ �! AlgV.Ass/:

Moreover, if A is a commutative algebra and M is an A–module, � also induces a
morphism of stacks

(6-3) ��W MapOp.V/.uAss; EndMod.A/.M // �!MapOp.V/.Ass; EndMod.A/.M //:

Proposition 6.15 The homotopy pullback of the morphism AlgV.�/ along any map
gW RSpec.A/ ! AlgV.Ass/ represented by an associative algebra with underlying
perfect A–module M is an affine stack.

Proof The homotopy pullback of �AssW AlgV.Ass/ ! QCoh along the compos-
ite �Assg is the affine stack MapOp.V/.Ass; EndMod.A/.M //. The homotopy pullback
of �uAss along �Assg is the affine stack MapOp.V/.uAss; EndMod.A/.M //. Hence

MapOp.V/.uAss; EndMod.A/.M //
(6-3)

//

��

MapOp.V/.Ass; EndMod.A/.M //

��

AlgV.uAss/
AlgV.�/

// AlgV.Ass/

is a homotopy pullback, and the homotopy pullback of AlgV.�/ along g coincides with
the homotopy pullback of (6-3) along RSpec.A/!MapOp.V/.Ass; EndMod.A/.M //,
the morphism defined by the universal property of a homotopy pullback. Now, the
result follows from the fact that a homotopy pullback of affine stack is affine.

Assume from now on that the base category V of our HAG context is simplicial or
complicial.

Theorem 6.16 The morphisms (6-2) and (6-3) are homotopy monomorphisms of
stacks.

This result follows from Lemma 6.14, Proposition 6.2, and the fact that (6-1) is a
homotopy monomorphism.

Definition 6.17 [26, Definition 1.2.3.1] An object X in a model category M is
homotopically finitely presented if the mapping space functor MapM.X;�/ preserves
filtered homotopy colimits. A morphism X ! Y in M is homotopically finitely
presented if it is homotopically finitely presented as an object in the comma model
category X #M.
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Retracts of homotopically finitely presented objects are also homotopically finitely
presented.

Theorem 6.18 Assume that V is compactly generated in the sense of [26, Defini-
tion 1.2.3.4(3)] and that the tensor unit is homotopically finitely presented. Suppose M

is a perfect A–module. Then the morphism of affine stacks (6-3) is represented by a
homotopically finitely presented morphism of commutative A–algebras.

Assuming that V is compactly generated is not a very strong hypothesis. It is sat-
isfied by any model category which is locally finitely presentable (see Adámek and
Rosický [1, Definition 1.9]) and finitely generated (see [13, Definition 2.1.17]). All
the underlying model categories of the HAG contexts considered in [26] satisfy these
properties. Neither is very strong to assume that the tensor unit is homotopically finitely
presented. This assumption is also used in [26] to show that the general linear group
is a Zariski open affine substack of the affine stack of matrices in a HAG context;
see [26, Propositions 1.2.9.4, 1.3.7.10].

In the proof of Theorem 6.18, we use the following proposition.

Proposition 6.19 For any commutative algebra A and any A–module M , the map

 �W MapOp.V/.uAss; EndMod.A/.M // �!MapOp.V/.Assqu; EndMod.A/.M //

admits a retraction in the homotopy category of stacks.

This result follows in the same way as Proposition 6.13, using Remark 5.14.

Proof of Theorem 6.18 We can suppose without loss of generality that A and M are
fibrant and cofibrant. By Definition 6.9, Remark 5.15 and the proof of Theorem 5.17,
if B is a fibrant and cofibrant commutative A–algebra representing

MapOp.V/.Ass; EndMod.A/.M //

then a commutative A–algebra D representing the affine stack

MapOp.V/.Assqu; EndMod.A/.M //

can be defined as a certain homotopy pushout

SymA..
zIqzI/˝M ˝A M_/

q

SymA..
zIqzI/˝M ˝A M_/

��

//

htpy. push

SymA.C ˝M ˝A M_/

q

SymA.C ˝M ˝A M_/

��

BqSymA.
zI˝M_/ // D
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in the category of commutative A–algebras. Here SymA denotes the free commutative
A–algebra functor.

Since V is compactly generated, derived change of coefficient functors along commuta-
tive algebra morphisms preserve homotopically finitely presented objects by [26, Propo-
sition 1.2.3.5]. Since I is homotopically finitely presented in V, then so is A in
Mod.A/ and more generally any perfect A–module; see [26, Proposition 1.2.3.7].
Therefore all free commutative A–algebras in the previous homotopy pushout are
homotopically finitely presented. Hence, the map B!D is homotopically finitely
presented.

By Proposition 6.19, any B –algebra representing MapOp.V/.uAss; EndMod.A/.M // is
a homotopy retract of D , hence also homotopically finitely presented.

Corollary 6.20 The homotopy pullback of AlgV.�/ along any gW RSpec.A/ !
AlgV.Ass/ represented by an associative algebra with underlying perfect A–module M

is an affine stack represented by a homotopically finitely presented A–algebra.

Proof In the proof of Proposition 6.15 we showed that the homotopy pullback in the
statement can be obtained as a homotopy pullback along (6-3). Hence this result follows
from Theorem 6.18 and the fact that the cobase change of a homotopically finitely
presented morphism is homotopically finitely presented [26, Proposition 1.2.3.3(3)].

We end this section with an example showing that the affine stack of associative
algebra structures MapOp.V/.Ass; EndMod.A/.M // need not be homotopically finitely
presented over RSpec.I/, even for M perfect. This is a big contrast with the classical
situation.

Let us place ourselves in any of the two complicial algebraic geometry contexts
in [26, Section 2.3]. We will use homological notation for complexes X� , so differ-
entials have degree �1, d W Xn!Xn�1 , ie our complexes are chain complexes, not
cochain complexes. We write jxj D n if x 2Xn .

Consider kDQ, ADQ and M D†mQ the m–fold suspension of Q. Denote e the
degree m generator of †mQ. In order to compute a commutative differential graded
algebra (CDGA) representing the affine stack MapOp.Ch.Q//.Ass; EndCh.Q/.†

mQ//
we need a cofibrant resolution of Ass in Op.Ch.Q//. The following operad is a
well-known cofibrant resolution.

Definition 6.21 The differential graded A–infinity operad A1 is defined as follows.
The underlying graded operad of A1 is freely generated by

�n 2 A1.n/n�2; n� 2;
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and the differential is given by

d.�n/D
X

pCq�1Dn
1�i�p

.�1/qpC.q�1/i�p ıi �q:

The operad A1 is Stasheff’s operad [24]. It is fibrant and cofibrant, and the morphism
A1! Ass, defined by �2 7! 12QD Ass.2/ and �n 7! 0, n> 2, is a trivial fibration.

Let A be any CDGA. An A1–algebra structure on the A–module †mQ˝QAŠ†mA

is determined by degree n� 2 morphisms of graded Q–modules,

�nW †
mQ˝Q

n
� � � ˝Q†

mQ �!†mQ˝Q A; n� 2;

satisfying certain equations. These morphisms are determined by the structure constants
in A,

(6-4) xn; jxnj D n� 2Cmn�m; n� 2;

such that
�n.e; n: : :; e/D xne:

One can straightforwardly check that a choice of structure constants determines an
A1–algebra structure if and only if the following equations hold in A,

(6-5) d.xn/D
X

pCq�1Dn
1�i�p

.�1/.q�1/iC.pCm.i�1//.qC1/mxqxp; n� 2:

Hence we deduce the following result.

Proposition 6.22 The stack MapOp.Ch.Q//.Ass; EndCh.Q/.†
mQ// is isomorphic to

RSpec.Bm/ in the homotopy category of stacks, where Bm is the CDGA whose
underlying graded commutative algebra is freely generated by the symbols (6-4) and
such that the differential is defined by (6-5).

Proposition 6.23 For m��2, the CDGA Bm is not homotopically finitely presented.

Proof In this range, Bm is a minimal Sullivan algebra in the sense of Félix, Halperin
and Thomas [11, Section II.12]. Let Bm;r � Bm , r � 2, be the subalgebra generated
by the xn with n� r . Notice that the differential of Bm restricts to Bm;r , so Bm;r is
actually a sub-CDGA of Bm . These sub-CDGA are also minimal Sullivan algebras.
They define an increasing filtration of Bm such that

Bm D

[
r�2

Bm;r D colimr Bm;r D hocolimr Bm;r :
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This is indeed a homotopy colimit since the inclusions Bm;r �Bm;rC1 are cofibrations
of CDGAs.

If Bm were homotopically finitely presented, the identity in Bm would factor up to
homotopy through the inclusion of a certain Bm;r �B . This factorization would induce
a quasi-isomorphism from the linear part of Bm to itself by [11, Proposition II.14.13].
This is impossible, since the linear part of Bm is the unbounded graded Q–module
with basis fxngn�2 and trivial differential, and the linear part of Bm;r is bounded. It
is actually the subcomplex spanned by fxngr�n�2 .

The stack Vectn of rank n vector bundles, n� 0, is 1–geometric in the complicial alge-
braic geometry contexts since they satisfy the assumptions recalled in Example 5.20(1).
We consider the substack VectnŒm�� QCoh, m 2 Z, such that, for any CDGA A, the
connected components of VectnŒm�.A/ correspond to the m–fold suspensions of rank n

vector bundles. Obviously, suspension defines an isomorphism VectnŒm� Š Vectn ,
m 2 Z, in the homotopy category of stacks, hence VectnŒm� is 1–geometric.

Corollary 6.24 For m� �2, the affine morphism between 1–geometric stacks

�Ass
Vect1Œm�

W AlgVect1Œm�.Ass/! Vect1Œm�

is not categorically locally finitely presented in the sense of [26, Definition 1.3.6.4 (1)].

Proof This follows from the fact that the homotopy pullback of �Ass
Vect1Œm�

along the
essentially unique morphism

RSpec.Q/! Vect1Œm�;

represented by †mQ, is the affine stack MapOp.Ch.Q//.Ass; EndCh.Q/.†
mQ//, which

is not homotopically finitely presented.

Appendix A: The very strong unit axiom

In this short appendix we consider a strengthening of Hovey’s unit axiom and its
consequences. Here, unlike in Definition 2.1 and the rest of the paper, monoidal model
categories are not assumed to satisfy the strong unit axiom, but just Hovey’s unit axiom.

Definition A.1 A monoidal model category C satisfies the very strong unit axiom
if for any object X and any cofibrant replacement qW zI

�� I of the tensor unit, the
morphisms X ˝ q and q˝X are weak equivalences.
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This axiom has been implicitly used by Batanin and Berger in the proof of [4, Propo-
sition 1.15]. The name ‘very strong unit axiom’ was coined by Berger in private
communication.

Remark A.2 If the very strong unit axiom holds for a certain cofibrant resolution of I
then it holds for any cofibrant resolution of I . In particular, it is satisfied when I is
cofibrant.

The strong unit axiom considered in [21, Definition A.9] is a weaker version where X

runs only over the pseudocofibrant objects. Recall that X is pseudocofibrant if the
functors X ˝� and �˝X preserve cofibrations. This is equivalent to say that X ˝�

and �˝X are left Quillen functors; see [21, Remark A.2]. Cofibrant objects are
pseudocofibrant by the pushout product axiom. The paradigm of pseudocofibrant object
which need not be cofibrant is the tensor unit I . Moreover, objects X for which there
exists a cofibration I� X are also pseudocofibrant; see [21, Remark B.2]. These
objects are called I–cofibrant.

The following three lemmas can be proved as [21, Lemmas A.11, A.12 and A.13],
respectively, using the very strong unit axiom instead of the strong unit axiom.

Lemma A.3 Suppose that, for qW zI
�� I a cofibrant resolution of the tensor unit, the

functors zI˝� and �˝zI preserve weak equivalences. Then the very strong unit axiom
holds.

Remark A.4 In particular, the very strong unit axiom holds in monoidal model
categories where cofibrant objects are flat. Recall that this means that the functors
X ˝� and �˝X preserve weak equivalences if X is cofibrant.

The converse is also true, even something stronger holds.

Lemma A.5 If the very strong unit axiom holds, a morphism f W U ! V is a weak
equivalence if and only if f ˝zI is a weak equivalence for some cofibrant replacement zI
of the tensor unit. The same is true replacing f ˝zI with zI˝f .

The following result is used to show that module categories in a HAG context are
algebras over the base symmetric monoidal model category.

Lemma A.6 Let C be a monoidal model category satisfying the very strong unit
axiom. If f W U

�

! V is a weak equivalence with pseudocofibrant source and target
and X is any object, then f ˝X and X ˝f are weak equivalences.
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