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Nielsen coincidence numbers, Hopf invariants
and spherical space forms

ULRICH KOSCHORKE

Given two maps between smooth manifolds, the obstruction to removing their co-
incidences (via homotopies) is measured by the minimum numbers. In order to
determine them we introduce and study an infinite hierarchy of Nielsen numbers
Ni , i D 0; 1; : : : ;1 . They approximate the minimum numbers from below with
decreasing accuracy, but they are (in principle) more easily computable as i grows.
If the domain and the target manifold have the same dimension (eg in the fixed point
setting) all these Nielsen numbers agree with the classical definition. However, in
general they can be quite distinct.

While our approach is very geometric, the computations use the techniques of homo-
topy theory and, in particular, all versions of Hopf invariants (à la Ganea, Hilton or
James). As an illustration we determine all Nielsen numbers and minimum numbers
for pairs of maps from spheres to spherical space forms. Maps into even dimen-
sional real projective spaces turn out to produce particularly interesting coincidence
phenomena.

55M20; 55Q25, 55Q40

Dedicated to Karl-Otto Stöhr on the occasion of his 70th birthday.

1 Introduction

Consider (continuous) maps f1; f2W X ! Y between connected smooth manifolds
without boundary, of dimensions m and n, resp., X being compact. We are interested
in “essential” aspects of their coincidence set

(1.1) C D C.f1; f2/ WD fx 2X j f1.x/D f2.x/g;

ie in those features which are preserved by homotopies fi � f
0

i , i D 1; 2. Such
essential phenomena can be measured to some extent by the minimum numbers (of
coincidence points and path–components, resp.)

(1.2) MC.f1; f2/ WDmin
˚
#C.f 01; f

0
2/
ˇ̌
f 01 � f1; f

0
2 � f2
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1542 Ulrich Koschorke

and (even better)

(1.3) MCC.f1; f2/ WDmin
˚
#�0.C.f

0
1; f

0
2//

ˇ̌
f 01 � f1; f

0
2 � f2

	
:

Eg both numbers vanish precisely if the maps f1; f2 can be deformed until they are
coincidence free; in this case we say that the pair .f1; f2/ is loose.

Example 1.4 (Topological fixed point theory) Here X D Y , f2 D idX , and the
principal object of study is the minimum number of fixed points

MF.f / WDmin
˚
#C.f 0; idX /

ˇ̌
f 0 � f

	
DMC.f; idX /

for maps f W X !X (cf Brown [3, page 9]; see also Brooks [2]). If it vanishes then
so does the Lefschetz number, but the converse conclusion fails to hold in general.
A powerful tool for a better understanding of minimum numbers was introduced by
Jakob Nielsen in the 1920s when he described a lower bound N.f / of MC.f; idX /.
This “Nielsen number” turned out to coincide with the minimum fixed point number
precisely when X is not a surface with strictly negative Euler characteristic. (For an
account of the spectacular history of this result see [3].)

In general coincidence theory, the geometry of generic coincidence phenomena, is
much richer. Eg, when X m;Y n are smooth manifolds of dimensions m> n, then C

is generically an (m� n)–manifold (and not just a finite set of isolated points).

In this paper we introduce an infinite hierarchy of (integer) Nielsen coincidence numbers
which are lower bounds for the minimum numbers:

(1.5) .MC�MCC� / N #
�N0 �N1 �N2 � � � � �Nr � � � � �N1 � �N � 0

This hierarchy interpolates between the sharpest (“nonstabilized”) Nielsen number
N0 WDN # introduced in Koschorke [11] and the (“fully stabilized”) Nielsen number
N1 WD �N (cf Koschorke [14]; �N was introduced and discussed originally under the
name N in Koschorke [10] and also in Koschorke [11; 12; 13]).

For every pair f1; f2W X ! Y of maps and r D 0; 1; 2; : : : ;1, the Nielsen number
Nr .f1; f2/DNr .f2; f1/ 2Z depends only on the homotopy classes of f1 and f2 . It
is extracted from the bordism class

(1.6) !r .f1; f2/D
�
.ir W C.f

0
1; f

0
2/�X �Rr ; zg; xgr /

�
;

which captures the geometric coincidence data of a generic pair .f 0
1
; f 0

2
/ approximating

.f1; f2/: the vector bundle isomorphism

xgr WD xg
#
� idW �.ir /D �.i0/�Rr Š

�! f �1 .T Y /�Rr
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(compare [11, (13)]) describes the normal bundle �.ir / of the coincidence set C.f 0
1
; f 0

2
/,

considered as a submanifold of X �Rr , and the map

zgW C.f 01; f
0

2/!E.f1; f2/

into the so–called homotopy coincidence space E.f1; f2/ of .f1; f2/ involves the
constant paths at f 0

1
.x/D f 0

2
.x/, x 2 C.f 0

1
; f 0

2
/ (for details see [10, Section 2, (3.2)

and (4.2); 11, 1.6]).

The decomposition of E.f1; f2/ into its path–components induces the Nielsen decom-
position

(1.7) C.f 01; f
0

2/D
a

A2�0.E.f1;f2//

zg�1.A/:

Given r , we call a path-component A of E.f1; f2/ essential if the corresponding
triple �

ir jW zg
�1.A/�X �Rr ; zgj; xgr j

�
of restricted coincidence data is nullbordant. Define Nr .f1; f2/ to be the number
of these essential path-components. (For more details compare [10; 11; 14], as well
as Sections 2 and 3 below.) Clearly Nr .f1; f2/ vanishes if .f1; f2/ is loose (ie,
homotopic to a coincidence free pair).

In the “stable” dimension range m < 2n� 2, the Nielsen numbers Nr .f1; f2/ are
independent of r (and agree even with MCC.f1; f2/; cf [10, Theorem 1.10]). Moreover
in the setting of fixed point theory our Nielsen numbers Nr (cf (1.5)) all coincide with
the classical Nielsen number. However, in general they can be quite distinct: often
they get weaker but also more easily computable as r increases (see eg Example 1.15
below).

The following 2–step program suggests itself.

(I) Decide when MCC.f1; f2/ is equal to a Nielsen number Nr .f1; f2/ (and for
which r ). In topological fixed point theory this was the central unsolved problem
for nearly 60 years. In general coincidence theory, complete answers have been
given only in some simple settings; often they involve deep notions of differential
topology and homotopy theory such as Kervaire invariants, all versions of Hopf
invariants or the elements in the stable homotopy of spheres defined by invariantly
framed Lie groups (cf Koschorke [14] and Koschorke and Randall [16]).

(II) Determine the Nielsen numbers Nr .f1; f2/.

Algebraic & Geometric Topology, Volume 14 (2014)
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In this paper we concentrate our attention mainly on this step (II) and on the important
special case when the domain of the maps f1; f2 is a sphere. Again all types of Hopf
invariants (à la Ganea, Hilton, James) turn out to play an important role.

We need some preliminary explanations. Choose an oriented compact n–dimensional
ball B (with boundary sphere @B ), embedded in the universal covering space zY of Y .
Let

(1.8) bW zY ! zY �
�
zY � VB

�
D B�@B Š Sn

denote the collapsing map. Moreover let

(1.9) HC W
�
Sm; zY

�
Š �m. zY /! �m.S

n[ zY /

be the Hopf–Ganea invariant homomorphism based on the cofibration

CW @B � zY n VB! zY

(cf Cornea, Lupton, Oprea and Tanré [6, 6.44 and 6.45]); here Sn[ zY denotes the
homotopy fiber of the inclusion of the one-point union Sn_ zY into Sn� zY (cf Ganea
[7, (9)] and Cornea, Lupton, Oprea and Tanré [6, Section 6.7]).

In the appendix of this paper we present and use an explicit geometric description of
partial suspension homomorphisms

(1.10) er
W �m.S

n[ zY /! �mCr .S
nCr [ zY /; r D 0; 1; 2; : : : ;1;

very closely related to those discussed by H J Baues (compare [1, Chapter 3]).

Theorem 1.11 Let Y be a connected smooth n–dimensional manifold without bound-
ary and write k WD #�1.Y / for the order of the fundamental group. Also let 0� r �1

and assume m� 2. Given Œf1�; Œf2� 2 �m.Y;y0/, let Œ zf1�; Œ zf2� 2 �m. zY ; zy0/ be liftings
to the universal covering space zY of Y .

Case 1 �1.Y / is infinite or Y is not compact or m< n Then MCC.f1; f2/D 0

and all Nielsen numbers vanish.

Case 2 2� k<1 Choose a map a�W . zY ; zy0/! . zY ; zy0/ that is freely homotopic
to a fixed point free selfmap a of zY (eg to a covering transformation a¤ identity map).
Then precisely one of the following four conditions holds (compare (1.8) and (1.9)):

.�k/ HC. zf1/¤HC. zf2/ or b ı zf1 6� b ı zf2 6� b B a�
ı zf1

.�k�1/ HC. zf1/DHC. zf2/ and b ı zf1 6� b ı a�
ı zf1 � b ı zf2

.�1/ HC. zf1/DHC. zf2/ and b ı a�
ı zf1 6� b ı zf1 � b ı zf2

.�0/ HC. zf1/DHC. zf2/ and b B a�
ı zf1 � b B zf1 � b ı zf2

Algebraic & Geometric Topology, Volume 14 (2014)
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If the condition .�i/ is satisfied for i D 0; 1; k � 1 or k , then

N #.f1; f2/D i:

Precisely the analogous result holds for Nr .f1; f2/, r D 0; 1; 2; : : : ;1, when we
replace HC by er

ıHC (cf (1.10)) and b ı zf by the r –fold (standard) suspension
Er .Œb ı zf �/ 2 �mCr .S

nCr / (for zf D zfi , a�
ı zfi , i D 1; 2).

Case 3 Y is simply connected and admits a fixed point free map a Deform a to
a base point preserving map a�W .Y;y0/! .Y;y0/. Then

Nr .f1; f2/

D

�
1 if er .HC.f1//¤ er .HC.a

�
ıf2// or Er .Œb ıf1�/¤Er .Œb ı a�

ıf2�/;

0 otherwise.

In particular, the values which our Nielsen numbers may possibly assume are severely
restricted. In fact, only two or at most three different values can occur:

Proposition 1.12 Let 0� r �1, m� 2, Y and k WD #�1.Y /, as well as Œf1�; Œf2� 2

�m.Y / be as in Theorem 1.11.

Then Nr .f1; f2/ 2 f0; 1; kg. Furthermore, if Nr .f1; f2/ … f0; kg, then the following
restrictions must all be satisfied:

(i) n is even and m� n� 4, or else mD 2 and Y DRP.2/.

(ii) The manifold Y is closed, not orientable and not a product of two manifolds with
strictly positive dimensions. �1.Y /Š Z2 . �.Y /¤ 0. Y admits no fixed point
free selfmap. Also the homomorphism i�W �m.Y n f�g/! �m.Y / (induced by
the inclusion of Y , punctured at some point �) is not surjective. Moreover, the
composed homomorphism

E ı @Y W �m.Y /
@Y
�! �m�1.S

n�1/
E
�! �m.S

n/

is nontrivial; here @Y denotes the boundary homomorphism in the homotopy
sequence of the tangent sphere bundle ST.Y / over Y and E is the Freudenthal
suspension.

A typical example of a manifold Y that may satisfy all these restrictions is even
dimensional real projective space RP.n/D Sn�Z2 �a, the orbit space of the antipodal
involution a. Section 4 below presents a detailed discussion of the more general case
where Y D Sn�G is an arbitrary spherical space form, ie, the orbit manifold of a
smooth free action of a finite group G on the n–sphere. Combining Theorem 1.11
with the results of our appendix we can express all Nielsen numbers Nr .f1; f2/ of
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maps f1; f2W S
m! Sn�G explicitly in terms of the more familiar Hopf invariants à

la Hilton and James, and of the standard Freudenthal suspension. This allows many
concrete computations. As a side result we note that all these Nielsen numbers do not
depend on the G –action itself but only on the order #G of the group G . Furthermore,
for many values of the codimension m� n we have N1.f1; f2/ 2 f0; #Gg.

We are particularly interested on those settings where the Nielsen numbers can possibly
assume three distinct values (compare Proposition 1.12). Thus let n� 2 be even and
G Š Z2 . In several important cases we are able to carry out our 2–step program and
compute all Nielsen numbers as well as the minimum number MCC.

Example 1.13 (m � 2n� 1, n � 2 even) Given maps f1; f2W S
m! Sn�Z2 , all

Nielsen numbers agree, Nr .f1; f2/DN #.f1; f2/ for 0� r �1, and are determined
by Corollary 4.4(ii) or, equivalently, by Corollary 4.5 below.

If m� 2n� 3, then MCC.f1; f2/DN #.f1; f2/.

If mD 2n�2, then MCC.f1; f2/DN #.f1; f2/ except precisely if nD 16; 32; 64 (or
maybe 128), and f1 � f2 DW f , and N #.f; f /D 0, but the lifting zf W S2n�2! Sn

of f has a nontrivial Kervaire invariant K. zf /D 1.

If mD 2n� 1, then MCC.f1; f2/DN #.f1; f2/ except precisely if n� 2.4/; n� 6,
f1 � f2 DW f , N #.f; f /D 0, and the Hopf invariant of the lifting zf W S2n�1! Sn

of f is not divisible by 4.

More details about this and the next example can be found in Section 5 below.

Example 1.14 (m � nC 3, n � 2 even) Given maps f1; f2W S
m! Sn�Z2 and

0� r �1, we have

MCC.f1; f2/DN0.f1; f2/D � � � DNr .f1; f2/D � � � DN1.f1; f2/:

Ie, the Nielsen numbers do not depend on r and agree with the minimum number
MCC; they are determined by Corollary 4.4(ii) or, equivalently, by Corollary 4.5 below.

When the domain and target manifolds of f1; f2 have the same dimension mD n (eg
in fixed point theory) and also in Examples 1.13 and 1.14, our Nielsen numbers are
independent of r . However, they can be quite distinct in general (and lose strength,
but gain in computability as r increases).

Given Y; r;m and X D Sm as in Theorem 1.11, a standard stability argument shows
that Nr � NrC1 � � � � � N1 for r � m � 2nC 2; thus the number of possibly
different Nielsen number functions Nr is limited by the so-called “degree of instability”
m� 2nC 3 (cf [16, 1.12]). This number is nearly attained in the following example.

Algebraic & Geometric Topology, Volume 14 (2014)
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Example 1.15 (mD 16, Y D S6�Z2 ) Here the Nielsen numbers Nr determine
five distinct functions on pairs f1; f2W S

16! S6�Z2 of maps:

MC�MCC�N0 6�N1 �N2 6�N3 6�N4 6�N5 �N6 � � � � �N1

(Stability arguments would not allow more than seven distinct such functions anyway.)

In Section 5 below we present criteria for compairing a Nielsen number Nr to NrC1 .
Then we discuss the dimension setting of Example 1.15 in detail, tabulating value
distributions of the Nielsen numbers and determining the loose pairs .Œf1�; Œf2�/ 2

�16.S
6�G/2 , G D Z2 or f0g.

In Section 6 below we finally come back to the central objects of study in topological
coincidence theory: the minimum numbers MC and MCC of coincidence points and of
coincidence path-components, resp. (cf (1.2), (1.3), and compare [3, page 9]). Given
maps f1; f2W S

m ! Sn�G we show that MC.f1; f2/ D MCC.f1; f2/ whenever
MC.f1; f2/ is finite; moreover we give finiteness criteria for MC.f1; f2/ in terms of
Hopf–Hilton invariants.

Problem 1.16 Let f1; f2W X ! Y be maps between arbitrary smooth connected
manifolds, X being compact.

Is MC.f1; f2/ D MCC.f1; f2/ whenever MC.f1; f2/ < 1? Also, give general
complete criteria for MC.f1; f2/ being finite.

Recall that the case nD 2 may play a special role here (cf [11, Theorem 1.2(iii)]).

When the domain X of the maps f1; f2 is a sphere Sm , a generic coincidence manifold
can be contracted to a point within Sm . In the construction of the coincidence invariant
!r .f1; f2/ (cf (1.6)), this allows us to replace E.f1; f2/ by the loop space �Y of
the target manifold Y ; furthermore, xgr becomes a trivialisation of the normal bundle
�.ir / (compare [10], [11] and also Section 2 below). Then the Pontryagin–Thom
procedure transforms the bordism class Œir ; xg; zg� of geometric coincidence data (cf
(1.6)) into an element of the homotopy group �mCr .S

nCr ^ .�Y /C/, where .�Y /C

denotes the loop space �Y with one disjointly added point. Moreover the transition
from !r .f1; f2/ to !rC1.f1; f2/ corresponds to applying the standard Freudenthal
suspension.

For all our calculations it is crucial to understand these groups and suspension homo-
morphisms in depth for r D 0; 1; : : : ;1. The necessary homotopy theoretical tools
are provided in the appendix at the end of the paper where we interpret Sq ^ .�Y /C

as the fiber of a Serre fibration for q � 1.
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Conventions and notation Throughout this paper m; n � 1, and Y is a smooth
connected n–dimensional manifold (Hausdorff, having a countable base) without
boundary and with basepoint y0 . Let �Y D�.Y;y0/ (and .�Y /C , resp.) denote the
loop space (with a single disjoint point added, resp.). E stands for the Freudenthal
suspension. Ty.Y / is the tangent space of Y at a point y 2 Y . If pW zY ! Y denotes
the universal covering we equip zY with a basepoint zy0 2 p�1.fy0g/. Identity maps
are denoted by id. The symbols � (or 6�, resp.) mean freely homotopic (or not, resp.).
#S is the cardinality of a set S .
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2 The coincidence invariants !r and Hopf–Ganea homomor-
phisms

In this section we discuss our !–invariants and their homotopy theoretical interpretation
– via the isomorphism j� (cf Proposition A.8 in the appendix below) – in terms of
suspensions and Hopf–Ganea invariants.

Assume that n� 2. Fix a local orientation of the n–manifold Y at its basepoint y0 and
an embedded path 
 in Y from y0 to some point �2 Y , �¤ y0 . (Constant maps with
value � will also be denoted by �). Then, given Œf1�2�m.Y;�/ and Œf2�2�m.Y;y0/,
we can use the Pontryagin–Thom procedure to interpret !#.f1; f2/D !0.f1; f2/ (cf
(1.6)) as an element in �m.S

n ^ .�Y /C/ (cf [11, Proposition 2.5]); more generally,

(2.1) !r .f1; f2/DEr .!#.f1; f2// 2 �mCr .S
nCr
^ .�Y /C/; r D 0; 1; : : : ;1;

(compare (1.6) and (2.1 0 ) below) since the inclusion RmCi �RmCiC1 , i � 0, induces
the suspension homomorphism E . In addition

(2.2) !r .f1Cf
0

1; f2Cf
0

2/D !r .f1; f2/C!r .f
0

1; f
0

2/

for all Œf1�; Œf
0

1
� 2 �m.Y;�/, Œf2�; Œf

0
2
� 2 �m.Y;y0/ (cf [11, 6.1]).

Let us describe these invariants more explicitly in the case when f1 � �. Given
Œf � 2 �m.Y;y0/; we may assume that f W Sm! Y is smooth with regular value �.
Then !#.�; f / is the nonstabilized bordism class of the triple .C; zg; xg#/ consisting of:

(i) The embedded smooth submanifold C WD f �1.f�g/ of Rm�Rm[f1gDSm .
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(ii) The map zg from C to the loop space �Y , defined as follows: pick a homotopy
GW C �I ! Sm from the inclusion C � Sm to the constant map with value 1
(= the basepoint of Sm ). Then zg.x/ is the (concatenated) loop 
 � f .G.x;�//,
x 2 C .

(iii) .�1/ � xg# is the isomorphism from the normal bundle of C in Rm to the trivial
bundle (over C ) with fiber T�.Y /Š Ty0

.Y /ŠRn , induced by the tangent map
of f and the chosen path 
 .

We use the Pontryagin–Thom procedure to identify the group of nonstabilized bordism
classes of such triples with the homotopy group �m.S

n^ ..�Y /C// (for more details,
see [11]).

If we forget about embeddings and consider C only as an abstract .m�n/–dimensional
manifold, equipped with the map zg and with the stable framing determined by xg# , we
obtain the framed bordism class

(2.10) !1.�; f /D ŒC; zg; xg1� 2�
f r
m�n.�Y /D lim

r!1
�mC1.S

nCr
^ .�Y /C/;

which was discussed in detail in [10].

Now let B � Y be a smoothly embedded compact n–ball with center point � such
that y0 lies in the boundary sphere @B and B contains the image of 
 . We obtain a
pinching map

pinchW Y D .Y � VB/[@B B! Y �@B Š Sn
_Y;

which collapses @B to a point.

Theorem 2.3 If Y is a simply connected, oriented n–dimensional manifold, n � 2,
the diagram of homomorphisms

�m.Y /

!#.�;�/

��

pinch�� inclY � ıp2�ıpinch�

++
�m.S

n ^ ..�Y /C//
j�B�

Š // Kerm;n.Y /� �m.S
n _Y /

commutes. (Here j� is as defined in the appendix below, cf (A.7) and Proposition A.8;
moreover � denotes the involution induced by .�1/ times the identity map on Rn �

Sn DRn[f1g.)
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Proof The corresponding result for general Y (with arbitrary finite fundamental
group) was established in [11, Theorem 7.2]. Here we give a different geometric proof
for the special case Y D Sn (which is relevant for spherical space forms).

Given Œf � 2 �m.S
n/, we may assume that f has the following standard form: there

exists a smoothly embedded tubular neighbourhood

T D C �Bn
�Rm

� Sm

such that f jT is the projection

C �Bn
! Bn�@Bn

D Sn
DRn

[f1g

and f .x/ D y0 D 1 for all x … T . In the spirit of Pontryagin–Thom we may
interpret pinch�.Œf �/ by the framed link CqC 0�Rm consisting of the (neighbouring
“parallel”) components C D C � f0g D f �1.f�g/ and C 0 D C � fz0g for some
z0 2

VBn n f0g. Then inclY � ıp2 ı pinch�.Œf �/ corresponds to the translated framed
submanifold C 00 D C 0C v0 �Rm , pushed away by some big vector v0 2Rm , so that
it does not link with C �Bn anymore.

Consider the homotopy

(2.4) G0W C 0 � I !Rm; G0.x; t/ WD xC tv0;

and the embedding

EW C 0 � I �Rm
� I; E.x; t/ WD .xC tv0; t/;

.x; t/ 2 C 0 � I . We may assume that � 2 Sn is a regular value of f ıG0 so that
E.C 0 � I/ intersects C � I transversely in an embedded submanifold

K � C � .0; 1/�Rm
� .0; 1/:

Pick ı > 0 such that the ı–neighbourhood of K is still embedded, and so is the ı � t –
neighbourhood of .c; t/ 2K , growing as t > 0 increases from one intersection of E

with fcg�I to a higher one, for any c 2C . Now remove the ı � t –ball B0�E.C 0�I/

around each point .c; t/ 2K and replace it by the cylinder @B0 � Œt; 1��Rm � I .

After smoothing corners we obtain an embedded framed bordism in .Rm n C / � I

from C 0 � f0g to the disjoint union of C 0 � f1g with a framed submanifold yC �
Rm � f1g that lies in the ı–neighbourhood of C � f1g (see Figure 1). But the link
C q yC �Rm represents j� ı �.!

#.�; f //. This follows from Proposition A.11 below
if we construct !#.�; f / using the homotopy G0 (cf (2.4)) as well as the straight path
between 0 and z0 in Bn and a local isotopy along this path. Therefore pinch�.Œf �/D
inclY � ıp2� ı pinch�.Œf �/C j� ı �.!

#.�; f //.

Algebraic & Geometric Topology, Volume 14 (2014)
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yC

T � I

T � I

C 0 � f1g

C � f0gC 0 � f0g

Rm � I

Rm � I

Rm � f1g

Rm � f0g

E.
C
0 � I/

Figure 1: The bordism that proves Theorem 2.3 in the case Y D Sn

For all m; q � 1 there exists a canonical decomposition

(2.5) Kerm;q.Y /D �m.S
q/˚�m.S

q[Y /;

where Sq[Y denotes the homotopy fiber of the inclusion Sq _Y � Sq �Y (cf [7, (9);
6, 6.7]).

Corollary 2.6 Let B be a compact n–ball embedded in the 1–connected oriented
manifold Y (as in Theorem 2.3). For all Œf � 2 �m.Y /,

j� ı �.!
#.�; f //D .Œb ıf �;HC.f // 2 �m.S

n/˚�m.S
n[Y /;

where b and HC are defined as a (1.8) and (1.9).

Thus our basic coincidence invariant !#.�; f / turns out to be an enriched Hopf–Ganea
invariant. For a proof and further details, see [11, (63)–(65)].

Corollary 2.7 For all r D 0; 1; : : : ;1 and Œf � 2 �m.Y / we have

j�.E
r .�.!#.�; f ////D .Er .Œb ıf �/; er .HC.f ///2�mCr .S

nCr /˚�mCr .S
nCr [Y /:

In particular, !r .�; f /D 0 if and only if Er .Œb ıf �/D 0 and er .HC.f //D 0.

Proof This follows from the fact that j� is injective and compatible with suspensions
(cf Theorem A.15(a) below). Moreover, !r DEr

ı!# (cf (2.1)) agrees with Er
ı � ı!#

up to an involution on ��.SnCr ^ .�Y /C/ of the form .d ^ id/� , where the map
d W SnCr ! SnCr has degree .�1/n .
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3 Computing Nielsen numbers

In this section we prove Theorem 1.11 and Proposition 1.12

Let pW zY ! Y be a universal covering map of the n–dimensional manifold Y , n� 2,
and pick a basepoint zy0 2

zY such that p.zy0/ D y0 . Also denote the number of
path–components of the loop space �Y D�.Y;y0/ by

k WD #�1.Y /D #�0.�Y /; 1� k �1:

Given homotopy classes Œf �; Œf1�; Œf2�; : : :2�m.Y;y0/, m� 2, let Œ zf �; Œ zf1�; Œ zf2�; : : :2

�m. zY ; zy0/ be their liftings.

Recall that the Nielsen number Nr .f1; f2/ is extracted from the coincidence data
.ir ; zg; xgr / of a generic coincidence manifold C (cf (1.1)) as follows, r D 0; 1; : : : ;1.
Since the domain of f1; f2 is a sphere, zg maps C into the loop space �Y (after
suitable homotopies; cf [10, 2.4], and compare also Section 1 above). Thus C is the
disjoint union of the Nielsen classes CAD zg

�1.A/, A2�0.�Y /. Such a Nielsen class
CA is called nonessential or essential, according to whether or not the coincidence data
.ir ; zg; xgr /, when restricted to CA , form a nullbordant triple. By definition Nr .f1; f2/2

f0; 1; : : : ; kg is the number of essential Nielsen classes.

Clearly Nielsen numbers do not depend on the choice of the local orientation of Y at
y0 and of the path 
 , which play a role in the construction of !r .f1; f2/ (compare
the proof of Corollary 2.6).

Proof of Theorem 1.11 In Case 1 of the theorem, our claim follows from [12, Propo-
sition 1.3].

If k is finite and n� 2, consider first the coincidence data of a pair of the form .�; f /

where, � ¤ y0 and Œf � 2 �m.Y;y0/. After suitable isotopies of zY and deformations
of zf we may assume that:

(i) There is a smoothly embedded open n–ball VB � zY n fzy0g that contains all the
points p�1.f�g/D fz� D z�1; z�2; : : : ; z�kg �

zY over � 2 Y .

(ii) zf is smooth with regular value z� D z�1 and maps a tubular neighbourhood

zC � VB D VT �Rm
�Rm

[f1g D Sm

of zC WD zf �1.fz�g/ to VB via the obvious projection.

(iii) zf .Sm n VT /� zY n VB .
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Then the generic coincidence manifold C WD f �1.f�g/ D zf �1.fz�1; z�2; : : : ; z�kg/

consists of the (“parallel”) Nielsen classes

zCi D
zC � fz�ig �

zC � VB � Sm; i D 1; : : : ; k;

which are simultaneously either all nonessential or essential, according to whether the
coincidence data of zC D zC � f�1g are nullbordant (or, equivalently !r .z�; zf / D 0)
or not. Indeed, given a homotopy GW zC � I ! Sm from the inclusion zC � Sm to a
constant map at 1, base the construction of the !–invariant on the concatenation of
G with the straight path zci from fz�ig to fz�g in VB , i D 1; : : : ; k (see the beginning of
our Section 2 above). Since the loops p ı zci in Y are pairwise nonhomotopic we get
the Nielsen decomposition C D

`
zCi with equally strong components.

In contrast, the coincidence data Œir ; zg; xgr � of a pair of the form .f; f / have the special
property that zg is homotopic to a constant map (cf [11, (21)]). Thus the !–invariants
of .f; f / and . zf ; zf / are equally strong and nontrivial precisely if the path-component
of the trivial loop in �Y corresponds to an essential Nielsen class.

Next consider an arbitrary pair .f1; f2/, Œf1�; Œf2� 2 �m.Y;y0/. Use the chosen path

 from y0 to � (cf Section 2) and a small neighbourhood of the basepoint 1 in Sm

to deform f1 to a map f 0
1
W .Sm;1/! .Y;�/. According to (2.2),

.!r .f1; f2/D / !r .f
0

1; f2/D !r .f
0

1; f1/�!r .�; f1/C!r .�; f2/:

Applying our previous discussion to Œf �D Œf1��Œf2�, we see that the nontrivial elements
of �0.�Y /Š �1.Y / yield essential Nielsen classes if and only if

(3.1) !r .z�; zf1/¤ !r .z�; zf2/:

The trivial element of �0.�Y / contributes an essential Nielsen class precisely if

(3.2) !r . zf
0

1;
zf1/�!r .z�; zf1/C!r .z�; zf2/¤ 0:

Now assume that zY allows a fixed point free selfmap a. It is freely homotopic to a
basepoint preserving map

a�
W . zY ; zy0/! . zY ; zy0/:

Then !r . zf
0

1
; a�
ı zf1/D !r . zf1; a ı zf1/D 0 and

(3.3) !r . zf
0

1;
zf1/D !r . zf

0
1;
zf1/�!r . zf

0
1; a

�
ı zf1/D !r .z�; zf1/�!r .z�; a

�
ı zf1/:

Therefore condition (3.2) takes the form

(3.2.a) !r .z�; a
�
ı zf1/¤ !r .z�; zf2/:
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This agrees with condition (3.1) if the Euler characteristic of zY vanishes (eg when n

is odd); indeed, a vector field without zeros yields a fixed point free selfmap a of zY
that is isotopic to the identity map a� D id.

Finally apply the isomorphism j� to the conditions (3.1) and (3.2.a) and use Corol-
laries 2.6 and 2.7. Also note that HC. zf1/ D HC.a

�
ı zf1/ since !r . zf

0
1
; zf1/, and

j�.!r . zf
0

1
; zf1//, resp., lie already in the subgroup �m.S

n/ of �m.S
n ^ .� zY /C/, and

of Kerm;n. zY /, resp. (compare (2.5) and [13, 5.6]). This completes the proof of
Theorem 1.11.

Proof of Proposition 1.12 We need to study only the arguments in the previous
proof that deal with Case 2 of Theorem 1.11. All Nielsen classes are simultaneously
essential or nonessential (ie, Nr .f1; f2/2f0; kg) except possibly when !r . zf1; zf1/¤0

(cf (3.2)). But in this case also !r .f1; f1/D Er .!#.f1; f1// and hence !#.f1; f1/

are nontrivial. Thus all the restrictions listed in Proposition 1.12 follow from [12,
Proposition 1.3; 14, Theorem 1.32].

4 Spherical space forms

In this section we illustrate Theorem 1.11 with examples where Y is an arbitrary
spherical space form Sn�G . Here our criteria can be expressed in terms of the
Hopf–Hilton invariant homomorphisms

(4.1) h0j W �m.S
n/! �m.S

nCj.n�1//; j D 1; 2; : : : ;

which correspond to the basic Whitehead products

(4.2) w0j WD Œ�2; : : : ; Œ�2; Œ�1; �2� � � � � � 2 �nCj.n�1/.S
n
_Sn/

with one factor �1 and j factors �2 (cf Hilton [8]). Define

(4.10) h0 WD .h01; h
0
2; : : : /W �m.S

n/!
M
j�1

�m.S
nCj.n�1//

and h WD .id; h0/. Thus, eg,

Er
ı h WD .Er ;Er

ı h01;E
r
ı h02; : : : / :

Theorem 4.3 Let G be a finite group acting smoothly and freely on the sphere Sn

and let Y D Sn�G be the resulting orbit space. Assume m; n � 2 and 0 � r �1.
Also let � 2 �n.S

n/ be represented by the identity map id.

For all homotopy classes Œfi � 2 �m.S
n�G;y0/ and their liftings Œ zfi � 2 �m.S

n; zy0/,
i D 1; 2, we have:
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If n is odd, then

Nr .f1; f2/D

�
#G if Er

ı h.Œ zf1�/¤Er
ı h.Œ zf2�/;

0 otherwise:

If n is even and G D 0, then

Nr .f1; f2/D

�
1 if Er

ı h.Œ zf1�/¤Er
ı h..��/ ı Œ zf2�/I

0 otherwise:

If n is even and G Š Z2 , then

Nr .f1; f2/

D

8̂̂̂̂
<̂
ˆ̂̂:

2 if Er
ı h0Œ zf1�¤Er B h0Œ zf2� or Er Œ zf1� …

˚
Er Œ zf2�; Er ..��/ ı Œ zf2�/

	
;

1 if Er
ı h0Œ zf1�DEr B h0Œ zf2� and Er Œ zf1� 2

˚
Er Œ zf2�;E

r ..��/ ı Œ zf2�/
	
;

but Er Œ zf2�¤Er ..��/ B Œ zf2�/;

0 if Er
ı h0Œ zf1�DEr B h0Œ zf2� and Er Œ zf1�DEr Œ zf2�DEr ..��/ ı Œ zf2�/:

In particular, all these Nielsen numbers depend only on the order #G of the group G

and not on the G –action itself.

Note that #G � 2 when n is even (as seen by a simple argument involving Euler
characteristics).

Corollary 4.4 (Case r D 0) Recall that N0�N # (cf (1.5)). Let aW Sn!Sn denote
the antipodal map.

(i) Suppose that n is odd or G D 0. Then

N0.f1; f2/D

�
#G if zf1 6� a ı zf2 ;

0 if zf1 � a B zf2 :

In particular, if n� 3 is odd then N0.f1; f2/ takes the value 0 or #G according
to whether zf1 is (freely) homotopic to zf2 or not, respectively.

(ii) Suppose that n is even and G Š Z2 . Then

N0.f1; f2/D

8̂<̂
:

2 if zf1 6�
zf2 and zf1 6� a B zf2 ;

1 if zf1 �
zf2 or zf1 � a ı zf2; but zf2 6� a B zf2 ;

0 if zf1 �
zf2 � a ı zf2 :
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Corollary 4.5 (Case r � 1) Here Er ..��/ ı Œ zf2�/ D �Er .Œ zf2�/. We get, eg, for n

even, G Š Z2 :

Nr .f1; f2/

D

8̂<̂
:

2 if Er
ı h0. zf1/¤Er

ı h0. zf2/ or Er . zf1/¤˙Er . zf2/;

1 if Er
ı h0. zf1/DEr B h0. zf2/ and Er . zf1/D˙Er . zf2/ has order more than 2;

0 if Er
ı h0. zf1/DEr B h0. zf2/ and Er . zf1/D˙Er . zf2/ has order at most 2:

Note that Hopf invariants play no role here in our criteria for the basic Nielsen number
N # DN0 . However they are often decisive when r � 1.

Example 4.6 (m D 3, n D 2 and G D 0) For all maps f1; f2W S
3 ! S2 and

0� r �1 we have: Nr .f1; f2/ equals 0 or 1, resp., according to whether f1 � f2

or f1 6� f2 , resp. When r � 1, this is detected only by Er h0 DEr h0
1

or, equivalently,
by the classical Hopf invariant H . Indeed,

h0.fi/D˙H.fi/ ı � 2 �3.S
3/Š Z; i D 1; 2

(cf Whitehead [18, XI, 8.17]) persists under all iterated suspensions; in contrast, Er .fi/

measures only values modulo 2 in �rC3.S
rC2/Š Z2 when r � 1.

Corollary 4.7 (Case r D1) For all Œf1�; Œf2� 2 �m.S
n/, m; n� 2, we have

N1.f1; f2/D

�
0 if E1 ı 
j .Œf1�/DE1 ı 
j ...�1/nC1 � �/ ı Œf2�/ for all j � 1;

1 otherwise.

Here E1 ı 
j W �m.S
n/! �S

m�1�j.n�1/
is defined by the infinitely suspended Hopf–

James invariant, j D 1; 2; : : :.

This was proved already in [10, Section 8] by interpreting E1 ı 
j via (j � 1)–tuple
self-intersections of framed immersions.

Corollary 4.8 Let Y D Sn�G and m; n � 2 be as in Theorem 4.3. Assume that
2˛D0 for all ˛2�S

m�n (according to the tables in Toda [17] this holds eg when m�nD

1; 2; 4; 5; 6; 8; 9; 12; 14; 16 or 17). Then N1.f1; f2/ 2 f0; #Gg for all Œf1�; Œf2� 2

�m.S
n�G/.

Hopf–James invariants occur not only in the criteria which determine Nielsen numbers
(as eg in Corollary 4.7). They play also an important role – via EHP–sequences – in
the computations needed to decide whether these criteria are fulfilled.
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Proof of Theorem 4.3 and Corollaries 4.4, 4.5 and 4.7 We adopt the arguments in
the proof of Theorem 1.11; thus zY D Sn . In view of the criteria (3.1) and (3.2.a),
we need to apply Theorem 2.3 only to (lifted) homotopy classes z' 2 �m.S

n/. For
the calculation of Nielsen numbers, we may assume that the n–ball B � Sn (used in
(1.8), (1.9) and in the construction of the pinching map in Theorem 2.3) is a suitable
half-sphere, endowed with the standard orientation of Sn . Then b � id in (1.8) and

(4.9) pinch�.z'/D .�1C �2/ B z' 2 �m.S
n
_Sn/;

where �1 and �2 are represented by the two obvious inclusions of Sn onto Sn _Sn .
Using Hilton’s choice of basic Whitehead products and applying his [8, Theorem A],
we conclude that

(4.10) .pinch���2� ıp2� ı pinch�/.z'/D �1 ı z'C
X
j�1

w0j ı h0j .z'/C
X

w00k ı h00k.z'/ I

here the last two sums to the right involve those basic Whitehead products of �1 and �2
that contain �1 precisely once (cf (4.2)), and at least twice, respectively.

Now according to Theorem A.15(a) below and Theorem 2.3,

!r .z�; z'/DEr .!#.z�; z'//D 0

or, equivalently, Er .�.!#.z�; z'/// D 0 (cf Theorem 2.3) if and only if the iterated
partial suspension homomorphism er annihilates the right hand term in Equation (4.10).
Denote this term by � . It vanishes precisely if its first summand and hence z' itself
does (by [8, Theorem A]). When r � 1 Theorem A.15(b) and Corollary A.16 in our
appendix, together again with Hilton’s result (applied to SnCr _Sn ), imply that

er .�/D �1 ıEr .z'/C
X
j�1

er .w0j / ıEr .h0j .z'//D 0

if and only if Er .z'/D 0 and ˙Er
ı h0j .z'/D 0 for all j � 1, ie, Er

ı h.z'/D 0.

Finally, put z' WD Œ zf1�� .˙�/ ı Œ zf2� and apply our criteria (3.1) and (3.2.a); note also
that the antipodal map a is freely homotopic to a representative a� of the generator
.�1/nC1 � � of �n.S

n;y0/. Theorem 4.3 and its corollaries, 4.4 and 4.5, follow. For
Corollary 4.7 compare also Brown and Schirmer [4, Theorem 4.18].

Remark 4.11 The discussion following formula (3.3) implies, in particular, that

h0.Œf �/D h0...�1/nC1
� �/ ı Œf �/

for all Œf � 2 �m.S
n/, m; n � 2. This has been used to simplify the criterion in

Example 4.6.
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Proof of Corollary 4.8 As in the proof of Proposition 1.12 we need to show only that
!1. zf1; zf1/ vanishes (compare (3.2)) or, in the language of [10, Theorem 1.14], that

z!j . zf1; zf1/ WD hj .z!. zf1; zf1//D 0; j D 1; 2; : : : :

When j � 2, the “Hopf invariant component” hj .z!. zf1; zf1// is indeed trivial in
this selfcoincidence situation (since z!. zf1; zf1/ lies already in the subgroup �f r

m�n of
�f r

m�n.�Y /. Similarly

z!1. zf1; zf1/D edeg1. zf1/˙ edeg1. zf1/ 2 �
S
m�n

(cf [10, Theorem 1.14]) vanishes in view of our assumption 2 ��S
m�n D 0.

Note that this assumption cannot be dropped. Eg, if nD4; 8; 12; 14; 16 or 20, then there
exist infinitely many homotopy classes Œf � 2 �2n�1.RP.n// such that !1.f; f /¤ 0

or, equivalently, N1.f; f / D 1. Indeed, apply Corollary 4.5 to desuspensions of
elements of order greater than 2 in �S

n�1
(see also [12, Example 1.26]).

5 Examples

In this section we use Theorem 4.3 to establish the claims in Examples 1.13, 1.14, and
to discuss Example 1.15 in detail.

The first claim in Example 1.13 follows from Theorem 4.3 or its corollaries since

E1 ı hD .E1;E1 ı h0/W �m.S
n/! �S

m�n˚�
S
m�2nC1

(cf (4.1)ff) is injective here. Indeed, in the stable range m � 2n � 2, already E1

is an isomorphism; when mD 2n� 1 the needed injectivity follows from the exact
EHP–sequence

Z
�Œ�n;�n�
�����! �2n�1.S

n/
E1

���! �S
n�1

(cf [18, Chapter XII, (2.3) and (2.4)]) and from the fact that the classical Hopf invariant

H W �2n�1.S
n/

E1 ıh0
1

������! �S
0 � Z

(cf [18, Chapter XI, (8.17)]) takes the value 2 on Œ�n; �n� (cf [18, Chapter XI, (2.5)]).

According to the generalized “Wecken theorem” 1.10 in [10], the minimum number
MCC agrees always with N0 � N1 when m < 2n � 2. The remaining claims in
Example 1.13 follow from [14, Theorems 1.12, 1.27 and 1.29] and from [16, Theo-
rems 1.13 and 1.16].
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Next let us prove the claims in Example 1.14. When n � 2 is even and m � nC 3,
then n� 2n� 1 (and hence E1 ı h is injective by the preceding proof) or else nD 2

and mD 4 or 5 (and then already E1 alone is injective (cf [17, Propositions 5.3, 5.6
and Theorem 14.1.i]). Thus again all Nielsen numbers agree among themselves, and
also with MCC (by [14, Theorems 1.12 and (the last claim in) 1.19]).

In view of Theorem 4.3 suspensions of the Hopf–Hilton homomorphism h (cf (4.1)ff)
play possibly a decisive role also in arbitrary dimensions m; n.

Lemma 5.1 .# Ker.Er
ı h//rD0;1;::: is a nondecreasing sequence of finite integers

that are at most #�m.S
n/. In fact, we have more: if #�m.S

n/D1, then E1 ı h is
injective and # Ker.Er

ı h/D 1 for all r � 0.

The second claim is obvious when m D n and was established in the preceding
discussion when mD 2n� 1 and n� 0.2/.

Next we compare the Nielsen number functions Nr and NrC1 , r � 0. To distinguish
them, we define

(5.2) #i
r .m;Y / WD #f.Œf1�; Œf2�/ 2 .�m.Y //

2
jNr .f1; f2/D ig 2 f0; 1; 2; : : : ;1g

for i D 0; 1; : : : . These cardinalities sum up to the square of #�m.Y / and vanish when
i … f0; 1; k WD #�1.Y /g (cf Proposition 1.12). Clearly, #0

r .m;Y /� #0
rC1.m;Y / and

#k
r .m;Y /� #k

rC1.m;Y /.

Proposition 5.3 Let m;Y D Sn�G and r be as in Theorem 4.3. Then the following
conditions are equivalent:

(i) Nr �NrC1 (ie, Nr .f1; f2/DNrC1.f1; f2/ for all f1; f2W S
m! Y )

(ii) # Ker.Er
ı h/D # Ker.ErC1

ı h/ (cf (4.1)ff)

(iii) #0
r .m;Y /D #0

rC1.m;Y /

(iv) # i
r .m;Y /D # i

rC1.m;Y / for all i D 0; 1; : : :

In particular, when comparing Nielsen number functions Nr , Nr 0 , 0� r , r 0 �1, it
suffices to count how often they vanish.

Proof If condition (ii) is satisfied then Ker.Er
ı h/D Ker.ErC1

ı h/ by Lemma 5.1
and E is injective, when restricted to Im.Er

ı h/. Hence the criteria for Nr and NrC1

in Theorem 4.3 agree and condition (i) holds. In turn this implies (iv) and (iii).
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On the other hand, if (ii) is not satisfied, then �m.S
n/ is finite by Lemma 5.1 and

contains a class Œ zf � such that

Er
ı h.Œ zf �/¤ 0DErC1

B h.Œ zf �/:

Thus according to Theorem 4.3,

Nr ..p ı /Œ zf �; 0/¤ 0DNrC1..p ı /Œ zf �; 0/

and therefore #0
r .m;Y / < #0

rC1
.m;Y /. This completes the proof.

Next we compute the cardinalities #i
r .m;Y / (cf (5.2)) in a particularly simple special

case.

Lemma 5.4 Given m, n � 2, n even, assume that h0 � 0 on �m.S
n/ (cf (4.1 0 )).

Consider the iterated suspension homomorphism Er W �m.S
n/! �mCr .S

nCr /, and
the (finite) cardinality Qr WD#f˛2Er .�m.S

n// j2˛D0g, 0� r �1. If Y DSn�Z2

as in Theorem 4.3, then

#0
r .m;Y /DQr � .# Ker Er /2;

#1
r .m;Y /D 2 � ..#Er .�m.S

n//�Qr / � .# Ker Er /2;

#2
r .m;Y /D .#.�m.S

n///2�#0
r .m;Y /�#1

r .m;Y /:

(All these cardinalities are finite except when mD n; in this case #0
r .m;Y /D 1, but

#1
r .m;Y /D #2

r .m;Y /D1).

In particular, the number of pairs .Œf1�; Œf2�/, fi W S
m! Sn�Z2 , i D 1; 2, such that

N0.f1; f2/ D 0, is equal to Q0 , ie, to the number of elements of order less than or
equal to 2 in �m.S

n/.

Proof Our assumption h0 � 0 simplifies the criteria in Theorem 4.3 considerably
and implies also that .��/ ı Œ zf2� D �Œ zf2� (cf [18, Chapter XI, (8.12)]). Thus the set
of pairs .Œf1�; Œf2�/ 2 �m.Y /

2 such that Nr .f1; f2/D 0 (or Nr .f1; f2/D 1, resp.) is
characterized by the following conditions:

(i) Er .Œ zf2�/ is an element of order at most 2, or not, resp., in Er .�m.S
n//.

(ii) Œ zf1� 2 .E
r /�1f˙Er .Œf2�/g.

The “number” of elements Œf2� 2 �m.Y / satisfying condition (i) is Qr � # Ker Er , and
..# Im Er /�Qr / � # Ker Er , respectively. Each such Œf2� can be paired with as many
as #f˙Er Œ zf2�g �# Ker Er homotopy classes Œf1� 2 �m.Y / in order to satisfy condition
(ii) also.
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If mD n, then Nr .f1; f2/D 0, or 1, or 2, resp., according to whether .Œf1�; Œf2�/D 0,
or lies in the remaining union of the diagonal and antidiagonal in �m.Y /

2ŠZ�Z, or
outside of this union, respectively.

Finally let us apply Lemma 5.4 to the case where mD 16, Y D S6�Z2 . We use the
computations in Toda’s book [17] (cf Theorems 7.3, 13.9 and the tables in Chapter
XIV) as well as Serre’s theorem (cf eg [17, (13.1)]).

�16Cr .S
6Cr / #Ker.Er / Er .�16.S

6//

�16.S
6/

E ����

Š Z8

Š

��

˚ f0g ˚ Z2

Š
��

˚ Z9

����
�17.S

7/

E ��

Š Z8

Š

��

˚ f0g ˚ Z2
Š

��

˚ Z3

Š

��
�18.S

8/

E ����

Š Z8

�˙2   

˚ Z8
Š

��

˚ Z2

Š

��

˚ Z3

Š

��

˚ Z3

�19.S
9/

E ����

Š Z8

����

˚ Z2

Š

��

˚ Z3

Š

��
�20.S

10/

E ����

Š Z4

����

˚ Z2

Š

��

˚ Z3

Š

��
�21.S

11/

E ����

Š Z2 ˚ Z2

Š

��

˚ Z3

Š

��
�22Cj .S

12Cj /; Š Z2 ˚ Z3

1 Z8˚Z2˚Z9

3 Z8˚Z2˚Z3

3 Z8˚Z2˚Z3

6 Z4˚Z2˚Z3

12 Z2˚Z2˚Z3

24 Z2˚Z3

24 Z2˚Z3

j � 0

Table 1: The suspension homomorphisms on the groups �16Cr .S
6Cr / , r �0 ,

as described by Toda [17]. The cyclic direct summands in the i th row,
i D 1; 2; 3; 4 , are generated by �6Cr ı �9Cr , �6Cr ı �13Cr , �6Cr ı�7Cr and
ˇ1.6C r/ , respectively.

In particular, the suspension homomorphism from �15.S
5/ to �16.S

6/ is both onto
and injective. This implies not only that h0�0 on �16.S

6/, but also that MC.f1; f2/D

MCC.f1; f2/DN0.f1; f2/ for all pairs f1; f2W S
16!S6�Z2 (cf Theorems 6.1 and

6.4 below, or else [11, Corollary 6.10 and Theorem 6.14] as well as [14, Theorem 1.19]).
Moreover we can extract the explicit description of the groups �16Cr .S

6Cr /, r D

0; 1; : : : , and of the relevant suspension homomorphism as listed in Table 1. Eg, it
follows from [17, (4.4) and (7.19)] that

E.�8 ı �11/D˙2 �9 ı �16 :
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Now the data in Table 2 and the claims in Example 1.15 follow immediately from
Lemma 5.4, Table 1 and Proposition 5.3.

r 0 1; 2 3 4 r � 5

# Ker.Er
ı h/ 1 3 6 12 24

#0
r .16;S6�Z2/ 4 36 144 576 1152

#1
r .16;S6�Z2/ 280 792 1440 2304 4608

#2
r .16;S6�Z2/ 20452 19908 19152 17856 14976

#0
r .16;S6/ 144 432 864 1728 3456

Table 2: The value distributions of the Nielsen numbers Nr for pairs of
maps from S16 to S6�Z2 and to S6 . Here the suspension Er

ı h D

.Er ; 0/W �16.S
6/! �rC16.S

rC6/ is equally relevant in both cases.

Moreover we conclude that there are precisely four “loose” pairs

.Œf1�; Œf2�/ 2 �16.S
6�Z2/

2

(ie, MCC.f1; f2/ D 0 or, equivalently, f1 and f2 can be deformed away from one
another); they have the form .Œf1�; Œf2�/ D .Œp ı zf �; Œp B zf �/ where p denotes the
projection and Œ zf � lies in the subgroup

Z2.4�6 ı �9/˚Z2.�6 ı�7/� �16.S
6/Š Z8˚Z2˚Z9

(compare [17, Theorem 7.3]).

Similarly, according to Theorem 4.3

#0
r .16;S6/D#�16.S

6/ � # Ker Er :

Therefore Table 1 (together with [11, 6.10 and 6.14]) also yields the claims in:

Example 5.5 (mD 16, Y D S6 ) Here there are again five distinct Nielsen numbers
(as in Example 1.15):

MC�MCC�N0; N1 �N2; N3; N4 and N5 � � � � �N1 :

They take only the values i D 0 and 1. The precise value distribution is given in
Table 2. (Note that #0

r .16;S6/C #1
r .16;S6/D .#�16.S

6//2 D 20736 ).

Moreover, precisely the 144 pairs of the form .Œ zf �;�Œ zf �/; Œ zf � 2 �16.S
6/, are loose;

unless 2Œ zf �D 0 they do not project to loose pairs in S6�Z2 (compare Example 1.15).
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6 The minimum numbers MC and MCC

What can we say about the minimum numbers of coincidence points and coincidence
path-components for maps into spherical space forms, once the Nielsen numbers – or
at least N0 – are understood?

Theorem 6.1 Let the finite group G act smoothly and freely on Sn and consider
(basepoint preserving) maps

f1; f2W S
m
! Y D Sn�G; m; n� 1:

When Y Š Sn then MCC�N0 (ie, MCC.f1; f2/DN0.f1; f2/ for all f1; f2 ).

When #G � 2 then MCC�N0 if and only if the “Wecken condition”

(6.2) 0D @.�m.S
n//\Ker.EW �m�1.S

n�1/! �m.S
n//

holds; here @ WD @Sn denotes the boundary homomorphism in the exact homotopy
sequence of the tangent sphere bundle ST.Sn/ fibred over Sn (as in Proposition 1.12).

Clearly condition (6.2) is satisfied when n is odd, or nD 2, or m< n, or m< 2n� 2

(the “stable range”). But it can already fail to hold when mD 2n� 2 or mD 2n� 1.
This explains the appearance of the Kervaire invariant and of the mod 4 Hopf invariant
in the criteria in Example 1.13. For information concerning the next six nonstable
dimension settings, see [16]. For the many geometric consequences of (a possible
failure of) condition (6.2), see eg [14, Corollary 1.21].

Theorem 6.1 follows from [14, Corollary 1.20], except when Y is a sphere. But if
Y D Sn and a�W .Sn;y0/! .Sn;y0/ is freely homotopic to the antipodal map and
Œf � WD Œf1�� a�

�Œf2�, then

MCC.f1; f2/DMCC.f;y0/DN0.f;y0/DN0.f1; f2/:

Indeed, if n� 2 as well, then

.Œf1�; Œf2�/D .Œf �;y0/C .a
�
�Œf2�; Œf2�/ and MCC.a ıf2; f2/D 0I

moreover, MCC.f;y0/ � 1 vanishes precisely when Œf �D 0 or, equivalently, when
N0.f;y0/ D 0 (since by construction !#.f;y0/ 2 �m.S

n ^ .�Sn/C/ determines
Œf � 2 �m.S

n/).

If Y D S1 , then our claim follows from Theorem 1.13 in [10]. This completes the
proof of our Theorem 6.1.
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Once the minimum number MCC of coincidence path-components is determined, what
about the minimum number MC of coincidence points? The answer for spherical space
forms involves Hopf invariants in a decisive way. Indeed, let

(6.3) h0W �m�1.S
n�1/! �m�1.S

2n�3/˚�m�1.S
3n�5/2˚�m�1.S

4n�7/3˚ � � �

denote the total Hopf–Hilton homomorphism (which involves all basic Whitehead
products and not just a selection as in (4.1 0 ); note also the different dimensions here).

Theorem 6.4 Given maps f1; f2W S
m! Y D Sn�G , m; n� 1, as in Theorem 6.1,

we have:

(i) If MC.f1; f2/ <1, then MC.f1; f2/DMCC.f1; f2/.

(ii) If nD 1 or m< n, then MC.f1; f2/DMCC.f1; f2/ <1.

If m; n� 2, then

MC.f1; f2/ <1” Œ zf � 2

�
E.Ker.h0// if #G � 3;

E.�m�1.S
n�1// if #G � 2:

Here Œ zf � WD Œ zf1�� Œ zf2� 2 �m.S
n/, where Œ zfi � is obtained by lifting Œfi � 2 �m.Y;y0/,

i D 1; 2.

Proof We may assume that m� n since otherwise �m.S
n/D 0 and MC�MCC� 0.

The same holds if m > nD 1. If mD nD 1 and we denote the mapping degree of
fi W S

1! S1 by d0.fi/, i D 1; 2, and put d0 WD d0.f1 � f
�1

2
/D d0.f1/� d0.f2/,

then
MC.f1; f2/DMCC.f1; f2/D

ˇ̌
d0.f1/� d0.f2/

ˇ̌
<1

since f1 �f
�1

2
is homotopic to the map z! zd0

, z 2 S1 , whose roots of unity belong
to pairwise different Nielsen classes.

If m > n D 2 and MCC.f1; f2/ <1, then MC.f1; f2/ DMCC.f1; f2/ D 0 since
each isolated coincidence point has an “index” in �m�1.S

n�1/D 0 and hence may be
eliminated by small deformations (cf [11, (28)]). If mD nD 2, then claim (i) follows
from [9, Theorem 4.0].

Now we can deduce the full claim (ii) in our Theorem 6.4 from [11, Corollary 6.10]
applied to Œf � WD Œf1� � Œf2�: just note that jMC.f1; f2/ �MC.Œf1� � Œf2�;y0/j �

MC.f2; f2/� 1 (cf [11, Proposition 6.2; 14, Theorem 1.19]). In order to also complete
the proof of claim (i) we may assume that m; n� 3 and – in view of [11, Theorem 1.2] –
that MC.f1; f2/� #G . If MC.f1; f2/¤MCC.f1; f2/, then obviously N0.f1; f2/ <

#G and hence (by Corollary 4.4) f1 � f2 or f1 � a ıf2 and therefore MC.f1; f2/D

MCC.f1; f2/D 0 or 1 (cf [14, Theorem 1.19]). This is a contradiction.
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Since Hopf invariants vanish on suspended maps, we have the inclusions

(6.5) E2.�m�2.S
n�2//�E.Ker.h0//�E.�m�1.S

n�1//� Ker h0 � �m.S
n/;

at least when n� 3 (cf (4.1 0 ) and (6.3)).

Corollary 6.6 Assume n� 2.

(i) If MC.f1; f2/ <1 then h0.Œ zf1�/D h0.Œ zf2�/. If n is even and m� 3n� 4, then

MC.f1; f2/ <1” h0.Œ zf1�/D h0.Œ zf2�/:

(ii) Now assume that n is odd. Then

MC.f1; f2/DMCC.f1; f2/D

�
#G if zf1 6�

zf2 ;

0 if zf1 �
zf2 ;

provided Œ zf1�� Œ zf2� lies in E.�m�1.S
n�1// when #G � 2 or in E.Ker.h0//

when #G � 3. If this condition fails to hold, then MCC.f1; f2/ D #G but
MC.f1; f2/ is infinite.

Thus if n is odd and E.Ker.h0// ¤ E.�m�1.S
n�1//, the finiteness of MC.f1; f2/

depends strongly on #G .

Proof (i) Assume that n is even and m� 3n� 4. Then #G � 2 and h0 fits into the
exact EHP–sequence (cf [18, Chapter XII, 2.3])

�m�1.S
n�1/

E
�! �m.S

n/
HDh0

����! �m.S
2n�1/ �! � � � :

Indeed, �m.S
2m�1/ is stable and hence the Hopf–James invariant H agrees with the

Hopf–Hilton invariant h0 (cf [4, Theorem 4.18]).

(ii) If n is odd then MCC.f1; f2/ D N0.f1; f2/ (cf Theorem 6.1) is described in
Corollary 4.4(i); here a � id.

Example 6.7 Let m D 2n� 2 and n D 3, 5 or 9, respectively. Then �m.S
n/ is a

cyclic group of order 2, 24 or 240, resp., and

E.Ker.h0//D 2 ��m.S
n/¤ �m.S

n/DE.�m�1.S
n�1//:

If #G � 2 then MC.f1; f2/ <1 for all maps f1; f2W S
m ! Sn�G . However, if

#G � 3 and Œ zf1�� Œ zf2� … 2�m.S
n/ then MC.f1; f2/D1.

Algebraic & Geometric Topology, Volume 14 (2014)



1566 Ulrich Koschorke

Indeed here h0W �m�1.S
n�1/! Z coincides with the classical Hopf invariant homo-

morphism (cf [18, Chapter XI, 8.17]) and is onto. According to the first argument in
Section 5 above the Freudenthal suspension epimorphism E is injective when restricted
to Ker h0 , ie, to the torsion subgroup of �m�1.S

n�1/. An inspection of Toda’s [17,
Table I, page 186] now shows us that E.Ker.h0// is a subgroup of index 2 of the cyclic
group E.�m�1.S

n�1//D �m.S
n/.

Finally let us take a look at maps into surfaces.

Example 6.8 (m > n D 2) Given maps f1; f2 from Sm , m > 2, into any closed
surface Y , we have

MC.f1; f2/D

�
1 if f1 6� f2 ;

0 if f1 � f2 ;

MCC.f1; f2/DN0.f1; f2/D

�
#�1.Y / if f1 6� f2 ;

0 if f1 � f2 :

The same result holds for maps from Sm into an n–dimensional spherical space form
whenever m; n� 2 and �m�1.S

n�1/D 0, eg when Œf1�; Œf2� 2 �22.S
10�G/Š Z12 .

Since all closed surfaces but S2 and RP.2/ are aspherical, these claims follow from:

Proposition 6.9 Assume that �m�1.S
n�1/D 0 where m; n � 2. Then we have for

all maps f1; f2W S
m! Sn�G :

(i) If f1 � f2 , then MC.f1; f2/ D MCC.f1; f2/ D Nr .f1; f2/ D 0 for all r D

0; 1; : : : ;1.

(ii) If f1 6� f2 , then MC.f1; f2/D1 but MCC.f1; f2/DN0.f1; f2/D #G .

Proof If MC.f1; f2/<1, the maps fi may be deformed until they have only isolated
coincidence points. Each of these can be removed by a further local deformation since
its index (very similar to the index of a vector field at an isolated zero; cf [11, (28)])
lies in �m�1.S

n�1/D 0. Thus MC.f1; f2/ vanishes (and so do MCC.f1; f2/ and the
Nielsen numbers). According to Theorem 6.4 this happens precisely when Œf 0

1
�D Œf 0

2
�,

where f 0i is any basepoint preserving map freely homotopic to fi , i D 1; 2. Hence
f1 � f2 ; in turn, MC.f1; f2/ � 1 whenever f1 � f2 (cf [14, Theorem 1.19]). The
previous argument shows also that MC.f2; f2/ D 0 even when f1 6� f2 . Thus the
pairs .f1; f2/ and .Œf 0

1
�� Œf 0

2
�; 0/ have the same minimum and Nielsen numbers (cf

[11, 6.2]). Claim (ii) follows now from Theorem 6.1 and Corollary 4.4.
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It is a curious consequence of the last proof that each map f W Sm!Sn is homotopic to
its composite a ıf with the antipodal map a whenever m; n� 2 and �m�1.S

n�1/D 0.
Indeed, clearly MC.f; a ıf /D 0.

When the target manifold of our maps is not a spherical space form, certain finiteness
conditions for the minimum number MC can still be expressed in terms of Hopf–Ganea
invariants (cf Corollary 7.4 and Theorem 7.6 in [11]).

In the case when the target manifold is a (real, complex or quaternionic) projective
space, a detailed discussion of minimum numbers and certain Nielsen numbers was
carried out in [13; 15].

Appendix: The group �m.S
q ^ .�Y /C/ and the partial sus-

pension homomorphism e

In our discussion of Nielsen numbers a central role is played by Thom spaces of the form
Sq ^ ..�Y /C/. In this appendix we interpret these as fibers of appropriate fibrations.
This allows us to study their homotopy groups, as well as suspension homomorphisms,
which are important in coincidence theory.

Fix integers m; q � 1 and base points 12 Sq;y0 2 Y . Then the obvious collapsing
map

(A.1) p2W S
q
_Y ! Y

can be transformed (up to homotopy equivalences) into the fibration ev1 in the top line
of the homotopy commutative diagram:

(A.2)

F
� � //

quot

�

��

Z
ev1 //

�

��

Y

Sq ^ ..�Y /C/
j

// Sq _Y
p2

// Y
inclYoo

Here

(A.3) Z WD
˚
.x; �/ 2 .Sq

_Y /�Y I
ˇ̌
�.0/D p2.x/

	
is homotopy equivalent to Sq_Y (via the first projection); the fiber map ev1 evaluates
the path � at 1 2 I WD Œ0; 1�. The fiber

(A.4) F D
˚
.x; �/ 2 .Sq

_Y /�Y I
ˇ̌
�.0/D p2.x/; �.1/D y0
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contains the contractible subspace P D f.x; �/ 2 F j x 2 Y g, and the quotient map

(A.5) quotW F ! F=P D Sq
^ ..�Y /C/

is a homotopy equivalence (compare Cornea [5, page 2769] and Koschorke [11, Lemma
7.1]). Its inverse (when composed with the fiber inclusion) yields the map

(A.6) j W Sq
^ ..�Y /C/! Sq

_Y:

Obviously the collapsing map p2 (cf (A.1)) allows a canonical right inverse. Thus the
exact homotopy sequence of the fibration ev1 splits and takes the following form:

(A.7) 0 // �m.S
q ^ ..�Y /C//

j� // �m.S
q _Y /

p2� // �m.Y /
inclY �
oo // 0

We conclude:

Proposition A.8 The map j (cf (A.6)) induces the isomorphism

j�W �m.S
q
^ ..�Y /C//

Š
�! Kerm;q.Y / WD Ker.p2�W �m.S

q
_Y /! �m.Y //:

It will be useful to describe j� geometrically. Let Bq.r/ (and @Bq.r/, resp.), r > 0,
denote the compact ball (and sphere, resp.) of radius r in Rq , and use an (orienta-
tion preserving) standard identification Bq.r/�@Bq.r/ D Sq . Given a base point
preserving map

uW Sm
DRm

[f1g! .Bq.1/��Y /�.@Bq.1/��Y /D Sq
^ ..�Y /C/

we may deform it until we have the following standard situation (as in Pontryagin–Thom
theory): there is a smoothly embedded tubular neighbourhood T3 WDBq.3/�C �Rm

of C WD u�1.f0g ��Y / such that

(A.9) u.x/D

��
.v; �u.c//

�
if x D .v; c/ 2 Bq.1/�C;

1 if x … VBq.1/�C:

Here 1 also denotes the base point of the Thom space .Rq ��Y /[ f1g D Sq ^

..�Y /C/, and �u.c/ D u.0; c/ 2�Y .D f0g ��Y /. Thus u maps all normal slices
VBq.1/�fcg in T3 by the same diffeomorphism to the corresponding fibers Rq�f�u.c/g

in the Thom space, c 2 C:

Next consider the map

u0W Sm
! Sq

_Y
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defined by

(A.10) u0.x/

D

8̂<̂
:
Œv� 2 Bq.1/�@Bq.1/D Sq if x D .v; c/ 2 Bq.1/�C;

�u.c/.kvk� 1/ 2 Y if x D .v; c/ 2
�
Bq.2/ n VBq.1/

�
�C;

wedge point of Sq _Y if x … Bq.2/�C:

y0

y0

y0

y0

y0

y0
Y

y0

�u.c/�u.c/

�u.c/

�u.c/

�u.c/

u0
Sq

Bq.1/�fcg

Figure 2: The image of u0 on any normal slice Bq.3/� fcg , c 2 C .

Proposition A.11 j�.Œu�/D Œu
0�

Proof We need only to lift u0 to a map

zu0W Sm
! F �Z

such that quot ı zu0 � u (compare diagram (A.2)). In view of the standard form of u

and u0 , we can do so slice by slice. Given c 2 C , let x D .v; c/ lie in the normal
slice Bq.3/� fcg in the tubular neighbourhood T3 . Then we must find a path � in Y

starting from p2.u
0.x// and ending at y0 . If kvk� 1, then p2.u

0.x//Dy0 and we put
�D �u.c/ (compare (A.9) and (A.10)). If 1�kvk�2, then p2.u

0.x//D �u.c/.kvk�1/,
and we define � to be the path that first goes back to y0 along �u.c/ and then traverses
the full loop �u.c/ . In particular, if kvk D 2, then � is ��1

u.c/
followed by �u.c/ . We

use the remaining parameter 2� kvk � 3 in the outer part .Bq.3/ nBq.2//� fcg of
our normal slice to deform ��1

u.c/
� �u.c/ in �.Y / to the constant loop.

This procedure allows us to construct a continuous lifting of u0 on the whole tubular
neighbourhood T3 DBq.3/�C , and it can be extended trivially to all of Sm . All but
the innermost part Bq.1/�C of T3 gets mapped to P (cf (A.5)) so that quot ı zu0D u

and j�.Œu�/D .j ı quot/�.Œzu0�/D Œu0�, as required.
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Next we construct a partial suspension homomorphism1

(A.12)

eW Kerm;q.Y /

�

// KermC1;qC1.Y /

�

�m.S
q _Y / �mC1.S

qC1 _Y /

(compare Proposition A.8), which suspends Sq but leaves Y unchanged. We use the
same approach and notations as in (A.9) and (A.10).

Given Œw� 2 Kerm;q.Y /, we may assume that

(A.13) wW Sm
DRm

[f1g! .Bq.1/�@Bq.1//_Y D Sq
_Y

has the following standard form: there is a tubular neighbourhood T1DBq.1/�C �Rm

of C D f0g �C such that

(i) wjT1 is the obvious composed projection from Bq.1/�C to Bq.1/�@Bq.1/D

Sq � Sq _Y , and

(ii) w
�
Sm n

�
VBq.1/�C

��
� Y � Sq _Y .

Pick a base point preserving nullhomotopy W W Sm � Œ0; 1�! Y from p2 ıw to the
constant map, and define

eW j W R
m
� Œ�2; 2�! SqC1

_Y

(i) on T1 � Œ�1; 1�D .Bq.1/� Œ�1; 1�/�C by the obvious projection to

.Bq.1/� Œ�1; 1�/�@.Bq.1/� Œ�1; 1�/D SqC1
� SqC1

_Y;

(ii) on .Rm � T1/ � Œ�1; 1� by the projection to Rm � T1 , composed with the
restricted map wj into Y � SqC1 _Y ,

(iii) for .x;xmC1/ 2Rm �R with 1� jxmC1j � 2 by

eW .x;xmC1/DW .x; jxmC1j � 1/ 2 Y � SqC1
_Y:

These piecewise definitions fit well together and allow a trivial extension eW to all of
SmC1 D .Rm �R/[f1g.

The resulting homotopy class

(1:130) e.Œw�/ WD ŒeW � 2 �mC1.S
qC1
_Y /

1After I had written this paper M Golasinski drew my attention to the work of H J Baues, who had
introduced partial suspensions for suitable spaces A , B and Y (cf [1, Chapter 3]). My explicit geometric
construction turns out to agree with Baues’ homotopy theoretical definition for the case ADSm , BDSq .
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is independent of our choice of W . Indeed, given another nullhomotopy W 0 of p2 ıw ,
let ŒW �1 �W 0� 2 �mC1.Y /� �mC1.S

qC1 _Y / be defined by concatenation; then

ŒeW 0 �D�ŒW
�1
�W 0�C ŒeW �C ŒW

�1
�W 0�D ŒeW �:

Similarly, p2�.ŒeW �/D 0, again due to the symmetry property of our construction with
respect to the variable xmC1 .

Thus we obtain a well-defined partial suspension homomorphism e as in (A.12). Clearly
e restricts to the full (standard) suspension on the subgroup �m.S

q/ of �m.S
q _Y /.

Remark A.14 The representation of e.Œw�/ need not to be quite so specific as in
(1:130 ). Let

yT1 D BqC1.1/�C ,!Rm
�RDRmC1

� SmC1

be a tubular neighbourhood inclusion that extends the inclusion of T1 D Bq.1/�C

into Rm DRm � f0g and takes the last coordinate in BqC1 to xmC1 . Also, let�W W SmC1
n yT1! Y � SqC1

_Y

be any map that extends wjSm nT , maps the boundary @ yT1 of yT1 to the wedge-point,
and satisfies the symmetry condition�W .x;xmC1/D �W .x;�xmC1/

for all .x;xmC1/ 2 Rm � R � SmC1 , .x;xmC1/ … yT1 . Using a suitable ambient
deformation of yT1 into T1 � Œ�1; 1�, it is not hard to see that the map

e �W W SmC1
! SqC1

_Y;

defined by �W and the projection

yT1 D BqC1
�C ! BqC1.1/�@BqC1.1/D SqC1

� SqC1
_Y;

represents e.Œw�/.

Theorem A.15 The partial suspension homomorphism e has the following properties
(where E denotes (standard) full suspension homomorphisms and m;m0; q; q0 � 1):

(a) Compatibility with the isomorphism j� The diagram

�m.S
q ^ ..�Y /C//

Š

j�

//

E

��

Kerm;q.Y /

e

��
�mC1.S

qC1 ^ ..�Y /C//
Š

j�

// KermC1;qC1.Y /
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(cf Proposition A.8 and (A.12) ) commutes.

(b) Naturality
(a) Given a base point preserving map gW Sm0 ! Sm and Œw� 2 Kerm;q.Y /,

we have

e.Œw ıg�/D .e.Œw�// ı ŒE g� 2 Kerm0C1;qC1.Y /:

(b) Given base point preserving maps g1W S
q! Sq0 and g2W Y ! Y 0 between

manifolds, the map g1 _g2W S
q _Y ! Sq0 _Y 0 induces the commuting

diagram:

Kerm;q.Y /
e //

.g1_g2/�

��

KermC1;qC1.Y /
� � //

..Eg1/_g2/�

��

�mC1.S
qC1 _Y /

Kerm;q0.Y
0/

e // KermC1;q0C1.Y
0/
� � // �mC1.S

q0C1 _Y 0/

(c) Compatibility with Whitehead products
Given ˛ 2 �m.S

q _Y /D �m.Y /˚Kerm;q.Y / and ˇ 2 Kerm0;q.Y /, we have:

(i) If ˛ 2 �m.Y /, then e.Œ˛; ˇ�/D˙Œ˛; e.ˇ/� 2 KermCm0;qC1.Y /.
(ii) If ˛ 2 Kerm;q.Y /, then e.Œ˛; ˇ�/D 0.

Proof Given Œu� 2 �m.S
q ^ .�Y /C/, pick a representative u in standard form (as

in (A.9) ), based on a map gW C !�Y and on a framed embedding C �Rm . Then
we can represent the suspension E.Œu�/ by a map Eu in standard form, based on
the same g and on the composite embedding C � Rm � RmC1 . Now compare the
corresponding maps u0 and .Eu/0 in standard form (cf (A.10) and (A.13) ) and apply
Remark A.14 to w WD u0 . When we restrict .Eu/0 to the complement of the tubular
neighbourhood yT1 of C in SmC1 , we obtain a map �W as in Remark A.14. Thus

.e � j�.Œu�/D / e.Œu0�/D Œ.Eu/0� .D j� ıE.Œu�//:

This establishes our first claim.

Naturality follows similarly from the way e is defined or from Remark A.14.

For the proof of our third claim we use the geometric description of Whitehead products
suggested eg by Chapter X, (7.1) or Figure 10.2 in [18]. Write

RmCm0�1
DRm�1

�R�Rm0�1

and let S 0 � RmCm0�1 denote the unit sphere (with center 0) of Rm�1 �R � f0g,
framed in the standard fashion by the outward pointing vector and Rm0�1 . Similarly,
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let S � f0g �R�Rm0�1 be the framed unit sphere (with center em D .0; 1; 0/ 2 S 0 )
of the normal space of S 0 at em . Also let

T WD Bm
�S; T 0 D Bm0

�S 0 �RmCm0�1

denote compact tubular neighbourhoods of S and S 0 , resp., parametrized compatibly
with the framings and disjoint (but linked).

Now pick representatives a, b in standard form (cf (A.4)) of the homotopy classes
˛; ˇ 2 ��.S

q _Y /. Define

wa;bW S
mCm0�1

! Sq
_Y

on the tubular neighbourhood T and T 0 , resp., by composing a and b, resp., with the
obvious projections (eg compose ˛ with T D Bm �S ! Bm�@Bm D Sm ), and on
SmCm0�1� .T [T 0/ by the constant map. Then

Œwa;b�D˙Œ˛; ˇ�

and wa;b is again in standard form.

Now construct e.Œb�/D Œe �W � as in Remark A.14 and consider the map

yT 0 D Bm0C1
�S 0 �! Sm0C1

e �W
��! Sq

_Y;

which extends wa;bjT
0 to a tubular neighbourhood of S 0 in RmCm0 . If a maps Sm

fully into Y , we can also extend wa;bjT to a tubular neighbourhood yT D Bm � yS of
the unit sphere yS (around em ) in .f0g �R�Rm0�1/�R�RmCm0 by applying a to
each normal slice. We get a representative of e.Œ˛; ˇ�/ (as in Remark A.14), which
also represents ˙Œ˛; e.ˇ/�. This proves the first part of claim (c).

If ˛ 2 Kerm;q.Y / we do not need all of yS , but we can extend both wa;bjT and
wa;bjT

0 to tubular neighbourhoods of S;S 0�RmCm0�1 in RmCm0 . But these tubular
neighbourhoods are not linked and can be isotoped to disjoint xmCm0 –levels. Thus

e.Œ˛; ˇ�/D Œ0; e.ˇ/�C Œe.˛/; 0�D 0:

Corollary A.16 Let Œw� 2 ��.Sq _Y / be an iterated Whitehead product with factors
in ��.Y / and with at least one factor purely in ��.Sq/: If Œw� has precisely one factor
Œv� 2 ��.S

q/; then ˙e.Œw�/ equals the same Whitehead product, but with Œv� replaced
by the standard suspension E.Œv�/ 2 ��.S

qC1/; otherwise e.Œw�/D 0.

Proof This follows by applying Theorem A.15(c) and the anticommutativity of White-
head products repeatedly.
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