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Algebraic ranks of CAT.0/ groups

RAEYONG KIM

We study the algebraic rank of various classes of CAT.0/ groups. They include
right-angled Coxeter groups, right-angled Artin groups, relatively hyperbolic groups
and groups acting geometrically on CAT.0/ spaces with isolated flats. As one of our
corollaries, we obtain a new proof of a result on commensurability of Coxeter groups.

57M07; 20F55, 20F65

1 Introduction

Let M be a complete Riemannian manifold of nonpositive sectional curvature. The
geometric rank of a geodesic 
 in M , denoted by rk.
 /, is the dimension of the vector
space of parallel Jacobi fields along 
 . Then the geometric rank of M is defined to be
the minimum of rk.
 / over all geodesics 
 in M .

The celebrated rank-rigidity theorem, due to Ballmann [1] and to Burns and Spatzier
[4], states that if M has bounded nonpositive sectional curvature and finite volume,
then the universal cover �M is a flat Euclidean space, a symmetric space of non-compact
type, a space of rank 1 or a product of such spaces.

In [26], Prasad and Raghunathan introduced the notion of the algebraic rank, rank.G/,
of a group G . (See Section 2 for the definition.) Ballmann and Eberlein proved that
if � is the fundamental group of a complete Riemannian manifold M of bounded
nonpositive sectional curvature and of finite volume, then rank.�/ is equal to the
geometric rank of M (see Ballmann and Eberlein [2]). By combining this with
the rank-rigidity theorem, we have that, for a complete Riemannian manifold M of
bounded nonpositive sectional curvature and of finite volume, if �M does not have an
Euclidean factor and � D �1.M / has higher algebraic rank, either (1) � is a lattice
in a semi-simple Lie group of higher rank, (2) it has a finite-index subgroup which
splits as a direct product, ie, � is a virtually product, or (3) it acts on a product without
being a virtual product.

There is an analogous notion of geometric rank for CAT.0/ spaces. A geometric flat of
dimension n in a complete CAT.0/ space X is a closed convex subset of X that is
isometric to the Euclidean n–space. A geodesic line L is said to have rank one if it
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does not bound a flat half-plane. A complete CAT.0/ space X is said to have higher
geometric rank if no geodesic in X has rank one.

Let X be a complete CAT.0/ space and G be a group acting geometrically (ie, properly
and cocompactly by isometries) on X . In view of the Ballmann and Eberlein’s result,
it is natural to ask a similar question for CAT.0/ spaces:

Conjecture G has higher algebraic rank if and only if X has higher geometric rank.

In this paper, we study the algebraic rank of various CAT.0/ groups. They include
right-angled Coxeter groups, right-angled Artin groups, relatively hyperbolic groups
and groups acting geometrically on CAT.0/ spaces with isolated flats. In Section 3,
we prove that if W is an infinite irreducible non-affine right-angled Coxeter group,
then rank.W / D 1. As a corollary, we obtain a new proof for the question posed
by M Davis in [7], namely, W cannot be commensurable to any uniform lattice in a
higher rank non-compact connected semi-simple Lie group. In Section 3.2, we prove
that a right-angled Artin group associated to a non-join graph has an algebraic rank
of 1. In Section 4, we study algebraic rank of groups that act on CAT.0/ spaces with
isolated flats. More precisely, if a group G acts geometrically on CAT.0/ space with
isolated flats F and jF j ¤ 1, then rank.G/� 1. It is well known that such a group G

is hyperbolic relative to a family of stabilizers of flats in F . We use the dynamics of a
relatively hyperbolic group acting on the boundary of a ı–hyperbolic space to prove
that the algebraic rank of a relative hyperbolic group is at most 1 if there are at least
two peripheral subgroups containing elements of infinite order. It follows immediately
that rank.G/� 1.
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2 Algebraic rank of groups

Definition 2.1 For a given group G , let Ai.G/ be the set consisting of elements such
that the centralizer contains a free abelian subgroup of rank at most i as a subgroup of
finite index. Define r.G/ to be the minimum i such that G can be expressed as the
union of finitely many translates of Ai.G/. In other words,

r.G/Dmin
n

i
ˇ̌
there are finitely many elements gj 2G such that GD

[
j

gjAi.G/
o
:
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Finally, the algebraic rank of G , rank.G/, is the supremum of r.G�/ over all finite-
index subgroups G� of G .

We allow the possibility that rank.G/D 0. For example, if G is a finite group, then
rank.G/D 0. On the other hand, if G is torsion-free, then rank.G/ > 0: Suppose that
rank.G/D 0. In particular, r.G/D 0. Then the set A0.G/ must be non-empty. But
A0.G/ is a subset of the set of finite order elements in G .

We set rank.G/D1 if the sets Ai.G/ are empty, or if G cannot be covered by finitely
many translates of any of the sets Ai.G/. For example, if a group G has an infinitely
generated free abelian center, then rank.G/D1. In fact, there exist finitely presented
examples of such groups. More specifically, Hall obtained in [16] the existence of a
finitely generated group which has infinitely generated free abelian center. Using the
result of Ould Houcine [25], we can obtain a finitely presented group having infinitely
generated free abelian center.

Remark r.G/ is not necessarily equal to rank.G/. Following [2], we present an
example of a group satisfying r.G/ < rank.G/. See [2, Section 4] for more examples.

Let G be the fundamental group of a flat Klein bottle, acting on E2 by isometries. (In the
simplest case G is generated by �1W .x;y/! .xC1;�y/ and �2W .x;y/! .x;yC1/.)
The set A1.G/ consists of all elements of G that reverse the orientation of E2 . Then
G D A1.G/ [ 
A1.G/, for any 
 2 A1.G/. Therefore, r.G/ < 2 D rank.G/ D
rank.E2/.

We close the section by mentioning that algebraic rank of groups behaves well under
products and taking finite-index subgroups.

Proposition 2.2 [2, Proposition 2.1] Let G be an abstract group.

(1) If G0 is a finite-index subgroup of G , then r.G/ � r.G0/ and rank.G/ D
rank.G0/.

(2) If G DG1 � � � � �Gn , then r.G/D
nP

iD1

r.Gi/ and rank.G/D
nP

iD1

rank.Gi/.

3 Right-angled Coxeter groups and Artin groups

3.1 Coxeter groups

A Coxeter system .W;S/ is a group W and a set S D fs1; s2; : : : g of generators such
that W has the following presentation

W D hS j .sisj /
mij D 1; si ; sj 2 Si;
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where mii D 1 and if i ¤ j , then mij D mji is a positive integer greater than or
equal to 2, or 1 (in which case we omit the relation between si and sj ). W is
called a Coxeter group. A Coxeter system .W;S/ is called irreducible if S cannot be
partitioned into two nonempty disjoint subsets S 0 and S 00 such that each element in
S 0 commutes with each element in S 00 . The cardinality jS j of S is called the rank of
W and we assume that jS j is finite in this section. A Coxeter group W is spherical if
W is finite and affine if W has a finite-index free abelian subgroup.

For any subset J � S , we denote by WJ the subgroup of W generated by J . We
call WJ a standard parabolic subgroup, and any conjugate of a standard parabolic
subgroup is called a parabolic subgroup. For any subset A�W , the parabolic closure
Pc.A/ of A is the smallest parabolic subgroup containing A. An element 
 is called
essential if Pc.
 /DW .

Associated to any Coxeter group W , there is a CAT.0/ polyhedral cell complex †W ,
which is called the Davis complex, upon which W acts properly discontinuously and
cocompactly by isometries. †W can be cellulated by so called Coxeter polytopes
and, with a natural Euclidean metric on each Coxeter polytope, inherits a piecewise
Euclidean metric. It was Gromov (right-angled case [15]) and Moussong (general case
[23]) who showed that †W , with this metric, is CAT.0/. See Davis [8] for details.
An element 
 2W is said to have rank one if it is hyperbolic and if some (and hence
any) of its axes in †W has rank one. In [5], Caprace and Fujiwara study rank-one
elements in Coxeter groups. In particular, an element 
 has rank one if and only if its
centralizer is virtually infinite cyclic. In other words, any rank-one element is contained
in A1.W /.

Right-angled Coxeter groups are Coxeter groups for which mij D 2 or 1 for i ¤ j .
In this case, the Davis complex †W is a CAT.0/ cubical complex. In this subsection,
we prove that any infinite irreducible non-affine right-angled Coxeter group has an
algebraic rank of 1.

Remark (1) Any spherical Coxeter group has an algebraic rank of 0; see Section 2.

(2) It is a consequence of Selberg’s Lemma that every infinite Coxeter group W

has a torsion-free subgroup of finite index. Therefore, such groups satisfy
rank.W /� 1.

(3) If W is infinite, irreducible and affine, then rank.W /D jS j � 1.

(4) Suppose that W is infinite and reducible, W DWT1
�WT2

� � � � �WTn
. By

Proposition 2.2, rank.W /D
Pn

iD1 rank.WTi
/. Therefore, rank.W / > 1 unless

W is virtually cyclic.
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Hereafter, we assume that W is an infinite irreducible non-affine right-angled Coxeter
group. Tits’ solution to the word problem for Coxeter groups states that any two reduced
expressions represent the same element in W if and only if one can be transformed
into the other by a series of replacements of the alternating subword st by the subword
ts . (See Davis [8, Section 3.4].) This implies:

Lemma 3.1 For w 2W , let S.w/ be the set of generators appearing in some (and
hence any) reduced expression for w . If s 2 S.w/ appears an odd (respectively, even)
number of times in some expression for w , then s appears an odd (respectively, even)
number of times in any expression for w .

Let H be the set of rank-one elements in W . It is not difficult to find rank-one elements
in W . For example, any essential element in W has virtually infinite cyclic centralizer;
therefore, it has rank one. (See Krammer [21, Corollary 6.3.10].)

Lemma 3.2 Let w be an element such that some (and hence any) reduced expression
for w has the following property: all generators appear, and each generator appears an
odd number of times. Then w is essential, and hence, w has rank one.

Proof Suppose that Pc.w/D uWJ u�1 for some u and some J � S . Suppose that
s … J . Then any reduced expression for words in uWJ u�1 contains s an even number
of times. Lemma 3.1 gives a contradiction and we can conclude that s 2 J . This proves
that J D S .

Proposition 3.3 r.W /� 1

Proof Recall H�A1.W /. Let SDfs1 � � � sk j si 2S; distinct; k�ng, where nDjS j.
In other words, S is the set of all possible products of distinct generators. We prove
that for any element t 2W nH , there exists g 2 S such that gt 2H .

Let t 2W nH be given and consider any reduced expression t for t . Multiply t by all
generators appearing an even (including zero) number of times in t:

.si1
� � � sin

/t

Then the resulting word, and hence any reduced expression, has the property that all
generators appear and each generator appears an odd number of times. Therefore, the
element represented by this word is essential, and hence, it has rank one.

W DH[
� S̨
2S
˛H

�
:

This proves that r.W /� 1.
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In order to prove that rank.W /D 1, we need to show r.T / � 1 for any finite-index
subgroup T of W . But it seems that the above argument does not work for T . Because,
in the proof of Proposition 3.3, .si1

� � � sin
/ does not necessarily represent an element

in T . Once one takes powers on .si1
� � � sin

/ to get an element in T , the argument fails
to apply. In particular, if the index ŒW W T � is even, all generators in .si1

� � � sin
/ŒW WT �

appear an even number of times. As an example, one can consider the commutator
subgroup of W . Since the commutator subgroup misses all all-odd elements, it does
not contain elements of type appeared in Lemma 3.2. Therefore, we take a different
approach to prove r.T /� 1.

Definition 3.4 Let w be a reduced word in S . For any generator s appearing in w,
let

wD w0sw1s � � � swkswkC1;

where wi does not contain s for all 0� i � kC1. Note that w0 and wkC1 are allowed
to be empty, but each wi ¤∅ for 1� i � k .

(1) w is said to be s–minimal if each subword wi , for 1 � i � k , contains a
s–blocker, ie, a generator s0 2 S such that ss0 ¤ s0s . We consider w to be
vacuously s–minimal if s appears only once in w.

(2) w is said to be s–good if w is s–minimal and wkC1w0 contains a s–blocker
for k � 1. In the case that k D 0, w is considered to be s–good.

Remark Any reduced word w is s–minimal for all generators s appearing in w. For
a generator s appearing in w, let

wD w0sw1s � � � swkswkC1:

If wi does not contain a s–blocker for some 1 � i � k , then swis D wi , which is a
contradiction.

Lemma 3.5 Let w be a reduced word which is s–good for all s 2S . Then the element
represented by w is essential.

Proof Suppose that s appears once in w. In other words, w D w0sw1 . Suppose
the element represented by w is in u�1WJ u for some u 2W and J � S . Then the
element represented by uwu�1 lies in WJ , where u is any reduced expression for u.
In some (any) reduced expression of uwu�1 , s appears an odd number of times. In
particular, s appears. Therefore, s 2 J .

Suppose s appears at least twice in w. In other words,

wD w0sw1s � � � swkswkC1;
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for k � 1. Suppose that the element represented by w is in u�1WJ u for some u 2W

and J � S . Then the element represented by

uwu�1
D uw0sw1s � � � swkswkC1u�1

lies in WJ , where u is any reduced expression of u.

Assume that s … J . Then u must contain s . We prove that one of two s ’s in u and
u�1 cannot be cancelled off. By way of contradiction, let us assume that both can be
cancelled.

Since w is s–good, there exists at least one s–blocker in w0 or wkC1 . Without loss of
generality, we assume that an s–blocker lies in w0 . (A symmetric argument applies if
it lies in wkC1 .) Take the first s–blocker in w0 and call it s1 . It follows that u must
contain s1 and the last s1 occurs after the last s in u. We have

uwu�1
D .� � � s � � � s1 � � � /.� � � s1 � � � /sw1s � � � swkswkC1.� � � s1 � � � s � � � /:

In order for the last s to be cancelled off, s1 must occur in wkC1 . We have

uwu�1
D .� � � s � � � s1 � � � /.� � � s1 � � � /sw1s � � � swks.� � � s1 � � � /.� � � s1 � � � s � � � /;

where the s1 2 wkC1 written above is the last occurrence of s1 in wkC1 . So before
being able to cancel the first and the last s , we need to cancel out the intermediate
blocker s1 .

Now w is s1 –good. Therefore, there exists an s1 –blocker on the left of the first
s1 2 w0 or on the right of the last s1 2 wkC1 . Take the first s1 –blocker in w0 or the
last s1 –blocker in wkC1 and call it s2 . Note that s2 ¤ s and before canceling the s1 ,
we must first be able to cancel out the s1 –blocker s2 . As in the last paragraph, this
forces uwu�1 to be of the form

.� � � s1 � � � s2 � � � /.� � � s2 � � � s1 � � � /sw1s � � � swks.� � � s1 � � � s2 � � � /.� � � s2 � � � s1 � � � /:

Note that w is s2 –good, and hence, there exists an s2 –blocker (not equal to s; s1 ) on
the left of the first s2 or on the right of the last s2 in w. But since jS j<1, this process
must stop in finitely many stages, which proves that one of s ’s in u and u�1 cannot
be cancelled off. Therefore, s 2 J . The element represented by w is essential.

Let T be a proper finite-index subgroup of W . Assume that T is normal and let
nD ŒW W T � � 2. In order to prove that r.T / � 1, we need to consider two types of
generators for a given reduced word w representing an element in T : (1) a generator
s does not appear in w and (2) a generator s appears, but w is not s–good. We begin
with generators of type (1).
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Let w be a reduced word in S representing an element in T and assume that w misses
a generator s . Choose s0 2 S such that ss0 ¤ s0s . Note that such s0 always exists
because W is infinite irreducible. Next choose s00 2 S such that either ss00 ¤ s00s

or s0s00 ¤ s00s0 . Note that such s00 always exists, otherwise W DWfs;s0g �WSnfs;s0g ,
contradicting irreducibility (if jS j> 2) or non-affine (if jS j D 2).

Lemma 3.6 .1/ Suppose that ss00 ¤ s00s . Then any reduced expression r of
.s00ss0/nw has the following property:

(a) The element represented by r is in T . This is obvious.

(b) r is s–good.

(c) r is s0–good.

(d) For t ¤ s; s0; s00 , if w is t –good, then r is also t –good.

.2/ Suppose that s0s00 ¤ s00s0 . Then any reduced expression r0 of .s0s00ss0s00/nw has
the following property:

(a) The element represented by r0 is in T .

(b) r0 is s–good.

(c) r0 is s00–good.

(d) For t ¤ s; s0; s00 , if w is t –good, then r0 is also t –good.

Proof We prove the first statement only. The second statement can be proved by
exactly the same argument as the first one.

Consider .s00ss0/n w D .s00ss0/.s00ss0/ � � � .s00ss0/w D .s00/s.s0s00/s.s0 � � � s00/s.s0w/.
Since ss0 ¤ s0s , and ss00 ¤ s00s , an s0 or s00 before the last occurrence of s cannot be
cancelled. Since s does not appear in w, r is s–good. Let wD w00s0w01s0 � � �w0ls

0w0lC1
and consider

.s00ss0/nwD .s00s/s0.s00s/s0 � � � s0.s00s/s0w00s0w01s0 � � �w0ls
0w0lC1 :

Note that if the subword w00 does not contain s0–blocker, then s0w00s0 is reduced to w00 .
But s is an s0–blocker. Therefore, there exists at least one s0–blocker in the reduced
expression of .s00ss0/w00s0w01 , even if w00 does not contain s0–blocker. (Recall that the
letter s does not appear in w00 and w01 , so it cannot be cancelled off.)

Suppose that w is t –good for t ¤ s; s0; s00 . If neither s , s0 or s00 is t –blocker, then r
is obviously t –good. Consider the case that either s , s0 or s00 is a t –blocker. We have

.s00ss0/nwD .s00ss0/.s00ss0/ � � � .s00ss0/w000 tw001 t � � �w00mtw00mC1:
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Note that s is not in w and n� 2. Therefore, there exists at least one t –blocker in the
reduced expression of .s00ss0/.s00ss0/ � � � .s00ss0/w000 . It follows that r is t –good.

Remark (1) In Lemma 3.6, r is not necessarily s00–good. Similarly, r0 is not
necessarily s0–good. Therefore, the number of good generators of r or r0 might
be equal to the number of good generators of w. But note that s appears in r
and r0 , and all letters appearing in w still appear in r and r0 .

(2) Let w be a reduced word in S representing an element in T . By multiplying
words as in Lemma 3.6, we can obtain w0 WDykyk�1 � � � y1w such that the element
represented by w0 is in T and all generators appear in w0 .

(3) There exists a finite set R of words such that for any reduced word w representing
an element in T , there exists some r 2R for which rw represents an element
in T and all generators appear in rw.

Next, we consider generators of type (2).

Definition 3.7 Let w be a reduced word in S such that all generators appear. Define
B.w/ be the set of generators for which w is not good, ie, B.w/ consists of all the
“bad” generators. For B � S , a word v is called a B –cancellator if, for any w such
that B D B.w/, any reduced expression of vw is s–good for all s 2 S .

The following lemma tells us that B –cancellators exist and can be chosen to represent
an element in T . Note that there are only finitely many subsets of S . Therefore, we
can form finitely many cancellators.

Let w be a reduced word in S such that all generators appear and w represents an
element in T . Suppose that w is not s–good. Choose s0 2 S such that ss0¤ s0s . Note
that such s0 always exists because W is infinite irreducible. Also we choose s00 2 S

such that either ss00 ¤ s00s or s0s00 ¤ s00s0 . Note that such s00 always exists, otherwise
W DWfs;s0g �WSnfs;s0g .

Lemma 3.8 .1/ Suppose that ss00 ¤ s00s . Then any reduced expression r of
.s00ss0/nw has the following property:

(a) The element represented by r is in T . This is obvious.

(b) r is s–good.

(c) r is s0–good.

(d) r is s00–good.

(e) For t ¤ s; s0; s00 , if w is t –good, then r is also t –good.
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.2/ Suppose that s0s00 ¤ s00s0 . Then any reduced expression r0 of .s0s00ss0s00/nw has
the following property:

(a) The element represented by r0 is in T .

(b) r0 is s–good.

(c) r0 is s0–good.

(d) r0 is s00–good.

(e) For t ¤ s; s0; s00 , if w is t –good, then r0 is also t –good.

Proof Again, we prove the first statement only. The second statement can be proved
by exactly the same argument as the first one.

Let wD w0sw1s � � � swkswkC1 and consider

.s00ss0/nwD .s00/s.s0s00/ � � � .s0s00/s.s0w0/sw1s � � � swkswkC1:

In the reduced expression of ss0w0s , since s and s0 don’t commute, s0 is s–blocker.
(Note that w0 does not contain s0 , since, by assumption, s 2 B.w//. Also the first s00

is an s–blocker. Hence r is s–good. We have

.s00ss0/nwD .s00s/s0.s00s/s0 � � � .s00s/s0w00s0w01s0 � � �w0ms0w0jC1:

Secondly, note that s and s0 don’t commute. Since w is not s–good, the first s0 in w
should occur after the first s in w, ie, s 2 w00 . It follows that s is an s0–blocker in w00 .
Hence r is s0–good. We have

.s00ss0/nwD s00.ss0/s00.ss0/ � � � s00.ss0w000 /s
00w001s00 � � �w00i s00w00iC1:

Note that s and s00 don’t commute. Since w is not s–good, the last s00 in w should
occur before the last s in w, ie, s2w00iC1 . It follows that w00iC1 contains an s00–blocker s .
r is s00–good.

Suppose that w is t –good for t ¤ s; s0; s00 . If neither s; s0 or s00 is t –blocker, then r
is t –good. Let

.s00ss0/nwD .s00ss0/.s00ss0/ � � � .s00ss0/w0000 tw0001 t � � �w000h tw000hC1:

If s is a t –blocker, the first t occur after the first s in w, ie, s 2 w0000 . Furthermore,
this s cannot be cancelled off, because s and s0 do not commute. It follows that
there exists at least one t –blocker in the reduced expression of .s00ss0/w0000 . r is t –
good. Next, suppose that s0 or s00 is t –blocker. The s in the last .s00ss0/ cannot be
cancelled off. Therefore, there exists at least one t –blocker in the reduced expression
of .s00ss0/.s00ss0/ � � � .s00ss0/w0000 . r is t –good.
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Corollary 3.9 For a given B � S , a B–cancellator vB exists and can be chosen to
represent an element in T .

Proof Let w be a reduced word in S , with all generators appearing, such that
B.w/ D B . Choose a generator s1 2 B.w/. Apply the lemma to obtain a word v1
representing an element in T such that any reduced expression r1 of v1w is s1 –good.
Consider r1 . From Lemma 3.8, B.r1/ � B.w/ and jB.r1/j < jB.w/j. Choose a
generator s2 2B.r1/ and apply the lemma to obtain a word v2 representing an element
in T such that any reduced expression r2 of v2r1 is s2 –good. Continuing this process,
at most jB.w/j number of times, we obtain a word vkvk�1 � � � v1w; k � jB.w/j whose
reduced expression is s–good for all s 2 S . Such a vkvk�1 � � � v1 is the desired B–
cancellator.

Corollary 3.10 r.T /� 1

Proof Let HT D H
T

T . For g 2 HT , the centralizer CW .g/ in W is virtually
infinite cyclic, and hence, CT .g/ is also virtually infinite cyclic. It follows that
HT �A1.T /.

Let g0 2 T nHT be given. By the remark following Lemma 3.6, and Corollary 3.9,
we can find a r 2 R and a cancellator v such that any reduced expression of vrw0

is s–good for all s 2 S , where w0 is any reduced expression for g0 . Note that vrw0

represents an element in HT . Therefore,

T D
[

B�S;r2R

r�1vB
�1HT ;

where each vB is a B –cancellator.

Proposition 3.11 Let W be an infinite, irreducible, and non-affine right-angled Cox-
eter group. Then rank.W /D 1.

Proof By Proposition 3.3, it suffices to show that r.W 0/ � 1 for any finite-index
subgroup W 0 of W . By taking the normal core, we obtain a finite-index normal
subgroup W 00 of W and, by Corollary 3.10, r.W 00/ � 1. Finally, Proposition 2.2
implies that r.W 0/� 1.

We close the subsection by introducing two corollaries of Proposition 3.11. Two groups
G1 and G2 are said to be commensurable if there exist Hi , for i D 1; 2, such that
ŒGi WHi � <1 or ŒHi WGi � <1 and H1 is isomorphic to H2 . Davis proved that any
infinite irreducible non-affine Coxeter group W cannot be a uniform lattice � in a
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higher rank non-compact connected semi-simple Lie group (see [8, Corollary 10.9.8])
and conjectured W cannot be commensurable to � (see Davis [7]). The conjecture is
known to be true; see for example, Cooper, Long and Reid [6], Gonciulea [14], and
Singh [27]. Proposition 3.11 provides a new proof of the conjecture for right-angled
Coxeter groups.

Corollary 3.12 Let W be an infinite irreducible non-affine right-angled Coxeter group.
Then W is not commensurable to any uniform lattice in a higher rank non-compact
connected semi-simple Lie group G .

Proof Let ƒ be a uniform lattice in G . By [2, Theorem 3.11], rank.ƒ/D rank.G/�2.
Applying Proposition 2.2, we obtain that any group � commensurable to ƒ satisfies
rank.�/D rank.ƒ/� 2. On the other hand, for any finite-index subgroup W 0 of W ,
rank.W /D rank.W 0/D 1. Therefore, W and ƒ cannot be commensurable.

The other corollary follows from the quasi-isometry rigidity theorem due to Kleiner
and Leeb [19], and Eskin and Farb [12].

Corollary 3.13 Let W be an infinite irreducible non-affine right-angled Coxeter group.
Then W is not quasi-isometric to any uniform lattice in a higher rank non-compact
connected semi-simple Lie group G .

Proof By the quasi-isometry rigidity theorem, if W is quasi-isometric to a uniform
lattice in a higher rank non-compact connected semi-simple Lie group, W should be
commensurable to a lattice. By Corollary 3.12, W cannot be commensurable to the
lattice.

3.2 Algebraic rank of right-angled Artin groups

An Artin group A is a group with the presentation

AD hs1; � � � ; sn j sisj � � �„ƒ‚…
mij

D sj si � � �„ƒ‚…
mij

for all i ¤ j i;

where mij Dmji is an integer greater than or equal to 2 or mij D1, in which case
we omit the relation between si and sj . As one can see, by adding relations si D s�1

i

to the presentation, we obtain a Coxeter group. Right-angled Artin groups are those
Artin groups for which all mij D 2 or 1 for i ¤ j .

One of the easy ways of defining a right-angled Coxeter group or a right-angled Artin
group is via the defining graph � . This is the graph whose vertices are labeled by
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S D fs1; : : : ; sng, and two vertices si and sj are connected if mij D 2. We denote by
A� (W� , respectively) the right-angled Artin group (the right-angled Coxeter group,
respectively) associated to a finite simplicial graph � . For example, if � consists of n

vertices and no edges, then A� is the free group on n generators. At the other extreme,
if � is a complete graph with n vertices, A� is the free abelian group of rank n.

Analogous to the Coxeter group situation, there is a CAT.0/ space associated to a
right-angled Artin group A� , which can be constructed by the following process: Begin
with a wedge of circles attached to a point x0 and labeled by the generators s1; : : : ; sn .
For each edge connecting si and sj in � , attach a 2–torus with boundary labeled by the
relator sisj s�1

i s�1
j . For each triangle connecting si ; sj ; sk in � , attach a 3–torus with

faces corresponding to the tori for the three edges of triangle. Continuing this process,
attach a k –torus for each set of k mutually commuting generators. The resulting cube
complex is called a Salvetti complex for A� and denoted by S� . It is easy to verify
that the fundamental group of S� is A� and the link of the unique vertex x0 is a flag.
It follows from Gromov’s criterion that the universal cover X� of the complex S� is a
CAT.0/ cube complex, and A� acts on X� freely and cocompactly.

Given two graphs �1; �2 , their join is the graph obtained by connecting every vertex
of �1 to every vertex of �2 . If � is the join of �1 and �2 , then A� D A�1

�A�2

and X� DX�1
�X�2

.

�

r r
r

� 0

r rr
r rr

�
�
�
�
�
�
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Proposition 3.14 If � is not a join, then rank.A�/D 1.

Remark If � is the join of �1 and �2 , then

rank.A�/D rank.A�1
/C rank.A�2

/� 2:

The proof of Proposition 3.14 is a direct consequence of a theorem due to Davis and
Januszkiewicz [9]. For a given graph � , we define two graphs � 0 and � 00 as follows:
The vertex set of � 00 is I � f0; 1g, where I is the vertex set of � . Two vertices .i; 1/
and .j ; 1/ in I � 1 are connected by an edge in � 00 if and only if the corresponding
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vertices i and j span an edge in � . Any two distinct vertices in I � 0 are connected
by an edge. Finally, vertices .i; 0/ and .j ; 1/ are connected by an edge if and only if
i ¤ j . The vertex set of � 0 is I �f�1; 1g. The subsets I � .�1/ and I � 1 both span
copies of � . A vertex .i;�1/ in I � .�1/ is connected to .j ; 1/ in I � 1 if and only
if i ¤ j and the vertices i and j span an edge of � . (See above for an example.)

Theorem 3.15 [9] A� and W� 0 are subgroups of W� 00 of index 2I .

Lemma 3.16 � is a join if and only if � 0 is a join.

Proof For any subset I 0 � I , let �I 0 be a full subgraph of � whose vertex set is I 0 .
It is obvious that if � is a join, then � 0 is a join. Namely, if � is a join of �I1

and
�I2

, then � 0 is a join of �
0

I1�f�1;1g and �
0

I2�f�1;1g . Conversely, suppose � 0 is a join
of �

0

I 0
1

and �
0

I 0
2

. Note that a vertex .i; 1/ 2 �
0

I 0
1

if and only if .i;�1/ 2 �
0

I 0
1

. Therefore,
� 0 is a join of �

0

I1�f�1;1g and �
0

I2�f�1;1g for some I1; I2 � I and � is a join of �I1

and �I2
.

Proof of Proposition 3.14 Suppose that � is not a join. By Lemma 3.16, the
corresponding graph � 0 is not a join. It follows that W� 0 is irreducible. If W� 0

has a finite-index free abelian subgroup K , then K \A� is also a finite-index free
abelian subgroup of A� . But this is impossible: Since � is assumed to be not a
join, there are two vertices in � that are not joined by an edge and they generate a
non-abelian free subgroup of A� . Call the generators a and b . On the other hand, since
K\A� is of finite index in A� , there exist N1 and N2 such that aN1 ; bN2 2K\A�
and aN1bN2 D bN2aN1 . This contradicts that a and b generate a free group. By
Proposition 3.11, rank.W� 0/D 1, and hence, rank.A�/D 1.

Corollary 3.17 If � is not a join, then A� is not commensurable (or quasi-isometric)
to any uniform lattice in a non-compact connected semi-simple Lie group of higher
rank.

4 Relatively hyperbolic groups

Relatively hyperbolic groups are a generalization of hyperbolic groups. They were
introduced by Gromov [15] and many equivalent definitions have been developed by
different authors in different contexts. See, for example, Farb [13], Bowditch [3],
Yaman [30], Druţu and Sapir [11], Osin [24], Druţu [10], and Mineyev and Yaman [22].
In this paper, we shall use Bowditch’s definition via geometrically finite convergence
groups. We recall briefly some basic facts about geometrically finite groups, relatively
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hyperbolic groups and the existence of an invariant collection of disjoint horoballs. The
author refers to Bowditch [3] and Xie [29] for details.

Suppose that M is a compact metrizable topological space and a group G acts by
homeomorphisms on M . We say that G is a convergence group if the induced action
on the space of distinct triples is properly discontinuous. An element g 2 G is a
hyperbolic element if it has infinite order and fixes exactly two points in M . We say
that a subgroup H of G is parabolic if H is infinite, fixes some point in M , and
contains no hyperbolic elements. A fixed point of a parabolic subgroup is unique, and
we call the point parabolic point. The stabilizer of a parabolic point � , Stab.�/, is
necessarily a parabolic subgroup. A parabolic point � is a bounded parabolic point if
Stab.�/ acts properly and cocompactly on M n f�g. A point � 2M is a conical limit
point if there exists a sequence fgng in G and two distinct points �; � 2M such that
gn.�/! � and gn.�

0/! � for all � 0 ¤ � . Finally, we say that a convergence group G

on M is a geometrically finite group if each point of M is either a conical limit point
or a bounded parabolic point.

Definition 4.1 A group G is hyperbolic relative to a family of infinite finitely generated
subgroups G if it acts properly discontinuously by isometries on a proper geodesic
hyperbolic space X such that the induced action on @X is of convergence, geometrically
finite, and such that the maximal parabolic subgroups are exactly the elements of G .
Elements of G are called peripheral subgroups.

It is known that all the definitions mentioned above are equivalent, provided that the
group G and all peripheral subgroups are infinite and finitely generated. But some
authors do not assume that peripheral subgroups are infinite and finitely generated. In
fact, it has been shown in Yaman [30] that the finite generation of peripheral subgroups
can be dispensed with. Also some definitions allow the elements of G to be finite.
But, in [24], Osin proved that one can make G smaller so that all peripheral subgroups
are infinite (or possibly empty). The following are well-known examples of relatively
hyperbolic groups.

Example 1 � Hyperbolic groups: These are hyperbolic relative to G D∅.

� Geometrically finite isometry groups of Hadamard manifolds of negatively
pinched sectional curvature: These are hyperbolic relative to the maximal para-
bolic subgroups.

� Free products of finitely many finitely generated groups: These are hyperbolic
relative to the factors, since the action on the Bass–Serre tree satisfies the second
definition of Bowditch. See Bowditch [3, Definition 2].
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� Groups G acting geometrically on a CAT.0/ space X , which has the isolated
flats property: In this case, X is an asymptotically tree-graded space and G is
hyperbolic relative to the collection of virtually abelian subgroups of rank at
least two. (See Hruska and Kleiner [17].)

In the next subsection, we will prove that if G is a relatively hyperbolic group with
jGj � 2, and at least one peripheral subgroup contains an element of infinite order,
then rank.G/� 1. The following theorem of Bowditch on the existence of an invariant
collection of disjoint horoballs provides the crucial tool in our proof.

Let X be a ı–hyperbolic geodesic metric space for some ı > 0 and � 2 @X . A function
hW X ! R is a horofunction about � if there exist constants c1 D c1.ı/, c2 D c2.ı/

such that if x; a 2X and d.a;x�/� c1 for some geodesic ray x� from x to � , then
jh.a/� h.x/� d.x; a/j � c2 . A closed set B �X is a horoball about � if there is a
horofunction h about � and a constant c D c.ı/ such that h.x/ � �c for all x 2 B

and h.x/� c for all x 2X nB . In this case � is called the center of the horoball and
is uniquely determined by B .

Proposition 4.2 [3, Proposition 6.13] Let G be a relatively hyperbolic group and X

a space on which G acts as in Definition 4.1. Let … be the set of all bounded parabolic
points in @X . Then …=G is finite. Moreover, for any r > 0, there is a collection of
horoballs B D fB� j � 2…g indexed by … with the following properties:

(1) B is r –separated, that is, d.B� ;B�/� r for all � ¤ � 2….

(2) B is G –invariant, that is, g.B�/D Bg.�/ for all g 2G and � 2….

(3) Y .B/=G is compact, where Y .B/DX n
S
�2…

int.B�/.

Note that the intersection of any two peripheral subgroups is finite and there are finitely
many conjugacy classes of peripheral subgroups.

4.1 Algebraic rank of relatively hyperbolic groups

In order to prove that a group has an algebraic rank of at most 1, we need to figure out
the set A1.G/ and show that the group can be covered by finitely many translates of
A1.G/. Also the procedure needs to be repeated for all finite-index subgroups. We
introduce two lemmas that enable us to find the elements such that the group can be
covered by translates of A1.G/ by those elements.

For a finite set of isometries F of a metric space X and x 2 X , let �.x;F / D
maxfd.f .x/;x/ j f 2 Fg.
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Lemma 4.3 (Koubi [20]) Let X be a ı–hyperbolic geodesic metric space and G

a group of isometries of X with a finite generating set S . If �.x;S/ > 100ı for all
x 2X , then G contains a hyperbolic element g such that dS .id;g/D 1 or 2.

Hereafter, suppose that G is a relatively hyperbolic group with jGj � 2 and X a proper
ı–hyperbolic geodesic space on which G acts as in Definition 4.1. Also we assume
that there is a peripheral subgroup in G containing elements of infinite order. Note that
the existence of such a peripheral subgroup implies that there are two or more such
subgroups by conjugation by hyperbolic elements. Proposition 4.2 implies that there is
a 200ı–separated invariant collection of horoballs B centered at the parabolic points
such that Y .B/=G is compact.

Lemma 4.4 [29, Lemma 3.1] There exists a positive integer k1 with the following
property: For any infinite-order element 
 2 G and any x 2 Y .B/, there is some k ,
1� k � k1 , such that d.
 k.x/;x/� 200ı .

Let H be the set of hyperbolic elements.

Proposition 4.5 H�A1.G/

Proof Let g 2 H be given and A the two fixed points of hgi in @X . If h 2 G

commutes with g , then h fixes A (see Tukia [28, Corollary 2O]). Combining this with
the fact that hgi is of finite index in the stabilizer H D fq 2 G j qAD Ag (see [28,
Theorem 2I]), the centralizer of g in G , CG.g/, has a free abelian group of rank at
most one as a finite-index subgroup. Therefore, H�A1.G/.

Choose two elements of infinite order from two different peripheral subgroups and
denote them by h1 and h2 . We also denote the horoball stabilized by hi by Bi ,
i D 1; 2. Since hi is chosen to be of infinite order, Bi is the only horoball stabilized
by hi , i D 1; 2.

Proposition 4.6 Let g 2G nH be an infinite order parabolic element. Then hk
i g is

hyperbolic for some i D 1; 2 and for some k; 1 � k � k1 , where k1 is the constant
appearing in Lemma 4.4.

Proof Without loss of generality, h1 and g are contained in different peripheral sub-
groups. Following Lemma 4.4, consider K D hhk

1
;gi. We prove that �.x; fhk

1
;gg/ >

100ı for any x 2 X . Suppose that there exists some x 2 B for some B 2 B
such that �.x; fhk

1 ;gg/ � 100ı . Then hk
1.B/ D B and g.B/ D B (Note that B

is 200ı–separated.) It follows that the center of B is fixed by K . Since hk
1 and g fix
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two different centers, this is a contradiction. By the choice of k , d.hk
1
.x/;x/� 200ı .

Therefore, �.x; fhk
1 ;gg/� 200ı . Lemma 4.3 implies that hk

1g or ghk
1 is hyperbolic.

(Note that both hk
1 and g are parabolic.) Furthermore, if ghk

1 is hyperbolic, so is
its conjugate g�1.ghk

1/g D hk
1g . In fact, suppose that ghk

1 is hyperbolic and fixes
exactly two distinct points ˛ and ˇ ; then, hk

1g fixes hk
1.˛/ and hk

1.ˇ/. Conversely,
suppose hk

1g fixes a point 
 ¤ hk
1.˛/; h

k
1.ˇ/. Choose 
 0 such that hk

1.

0/D 
 . Note

that 
 0 ¤ ˛; ˇ . But hk
1
ghk

1
.
 0/D hk

1
.
 0/) ghk

1
.
 0/D 
 0 . Therefore, 
 0 D ˛ or ˇ ,

which is a contradiction.

Theorem 4.7 Suppose that G is hyperbolic relative to a family G of infinite finitely
generated subgroups. If jGj � 2 and at least one subgroup in G contains an element of
infinite order, then rank.G/� 1.

Proof We decompose the set of torsion elements into Eq E 0 as follows. A torsion
element g 2 E if and only if g stabilizes both B1 and B2 . Otherwise, g 2 E 0 . Suppose
that g 2 E 0 . Without loss of generality, assume that g does not stabilize B1 . Then we
have �.x; fhk

1
;gg/ � 100ı . In particular, d.g.x/;x/ � 100ı for x 2 B1 . The same

argument as in Proposition 4.6 implies that hk
1
g is hyperbolic. Since the intersection

of two distinct peripheral subgroups is at most finite, jE j<1, say E D fl1; : : : ; lng.
Choose any hyperbolic element h 2G and let ti D lih

�1 for i D 1; : : : ; n.

By combining with Proposition 4.6,

G DH[
� k1[

iD1

h�i
1 H

�
[

� k1[
iD1

h�i
2 H

�
[

� n[
iD1

tiH
�
:

Therefore, r.G/� 1.

Next we need to prove that r.T /� 1 for any finite-index subgroup T in G . By taking
the normal core of T , it suffices to show that r.T / � 1 for any finite-index normal
subgroup T in G . Recall r.G0/ � r.G/ if G0 is a finite-index subgroup of G . Let
T be a finite-index normal subgroup in G and mD ŒG W T �. Also let HT DH\T .
Recall that H is the set of hyperbolic elements in G . Then HT �A1.T /. It can be
easily verified that all arguments in proving r.G/ � 1 apply without any change to
prove r.T /� 1, namely:

� hm
i 2 T is an infinite-order parabolic element and stabilizes a horoball Bi for

i D 1; 2.

� For any g 2 T nHT of infinite order, .hm
i /

kg 2HT for some i D 1; 2.
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� One can decompose the set of torsion elements in T as follows: g 2 ET if and
only if g stabilizes both B1 and B2 . Otherwise g 2 E 0T . For any element g

in E 0T , .hm
i /

kg 2 HT for some i D 1; 2. Since ET is finite, one can choose
any hyperbolic element in T such that E 0T can be covered by finitely many
translates of HT .

4.2 CAT.0/ spaces with isolated flats

CAT.0/ spaces with isolated flats were first introduced by Kapovich and Leeb, and
Wise, independently. In [18], Kapovich and Leeb study a class of CAT.0/ spaces
in which the maximal flats are disjoint and separated by regions of strictly negative
curvature. Since then, they have been studied by a number of authors, in particular,
because of their strong connections to relatively hyperbolic groups.

Throughout this subsection, a k –flat is an isometrically embedded copy of Euclidean
space Ek for k � 2. In particular, we do not consider a geodesic line as a flat. Let
Flat.X / be the space of all flats in X with the topology of uniform convergences on
bounded sets. A CAT.0/ space X with a geometric group action has isolated flats
if it contains an equivariant collection F of flats such that F is closed and isolated
in Flat.X /, and each flat F � X in the space is contained in a uniformly bounded
tubular neighborhood of some F 0 2 F . See Hruska and Kleiner [17, Theorem 1.2.3]
for equivalent formulations of CAT.0/ spaces with isolated flats.

Let X be a CAT(0) space with isolated flats and G be a group acting geometrically
on X . One of main results in [17] is:

Theorem 4.8 [17, Theorem 1.2.1] The following are equivalent.

(1) X has isolated flats.

(2) X is a relatively hyperbolic space with respect to a family of flats in F .

(3) G is a relatively hyperbolic group with respect to a collection of virtually abelian
subgroups of rank at least two.

Remark � In the second statement above, the term “relatively hyperbolic” for
metric spaces was introduced by Druţu and Sapir. In [11], they used the term
“asymptotically tree graded” for such spaces and proved that the metric and
group theoretic notions of being relatively hyperbolic are equivalent for a finitely
generated group with a word metric.

� If X has isolated flats with respect to F , then F is locally finite. Combining
this with the Bieberbach Theorem shows that each flat in F is G –periodic with
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virtually abelian stabilizer. Note that the geometric action of G on X induces a
quasi-isometry and being relatively hyperbolic with respect to quasi-flats is a
geometric property. (See [11, Theorem 5.1].) This quasi-isometry takes F to
the left cosets of a collection of virtually abelian subgroups of rank at least two.
See [17, Section 3, 4] for details.

Proposition 4.9 Let G be a group acting geometrically on a CAT.0/ space with
isolated flats and jF j � 2. Then rank.G/� 1.

Proof By Theorem 4.8, G is hyperbolic relative to a collection of virtually abelian
subgroups of rank at least two. Since we assume that jF j � 2, there are at least two
peripheral subgroups in G . Theorem 4.7 implies that rank.G/� 1.

Remark In the case that F consists of a single flat F , one can conclude that G acts
geometrically on F . Therefore, rank.G/ is equal to dim.F /� 2 by [2].
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