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A geometric interpretation of the homotopy
groups of the cobordism category

MARCEL BÖKSTEDT

ANNE MARIE SVANE

The classifying space of the embedded cobordism category has been identified by
Galatius, Tillmann, Madsen and Weiss [6] as the infinite loop space of a certain Thom
spectrum. This identifies the set of path components with the classical cobordism
group. In this paper, we give a geometric interpretation of the higher homotopy
groups as certain cobordism groups where all manifolds are now equipped with a
set of orthonormal sections in the tangent bundle. We also give a description of the
fundamental group as a free group with a set of geometrically intuitive relations.

57R90; 55Q05

1 Introduction

Consider the embedded cobordism category Cd introduced in [6]. The objects are
smooth closed .d�1/–manifolds embedded in .0; 1/nCd�1 . A morphism from M0 to
M1 is a smooth compact d –dimensional manifold W embedded in .0; 1/nCd�1�Œ0; 1�

that is cylindrical near the boundary @W , where

@W DW \ ..0; 1/nCd�1
� f0; 1g/DM0 � f0g[M1 � f1g:

There is also a version of Cd where all manifolds have orientations.

The main result about the cobordism category is the identification of its classifying
space BCd proved by Galatius, Tillmann, Madsen and Weiss in [6]. In Section 2, a
more detailed definition of the cobordism category and the statement of their theorem
is given.

It is immediate from the definition of the cobordism category that �0.BCd / is the usual
Thom cobordism group �d�1 of .d � 1/–dimensional manifolds. The goal of this
paper is to give a geometric interpretation of the higher homotopy groups �r .BCd /,
r > 0.

Let M0 and M1 be closed .d � 1/–manifolds with r pointwise linearly independent
sections given in TM0˚R and TM1˚R, respectively. By a vector field cobordism
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from M0 to M1 we shall mean a cobordism with r independent sections in T W

extending the ones given on the boundary where T WjMi
is identified with TMi ˚R

using the inward normal for i D 0 and the outward normal for i D 1. The purpose of
Sections 3 and 4 below is to show:

Theorem 1.1 Let Cd�r be either the oriented or the unoriented cobordism category.
If d is odd or r < d

2
, vector field cobordism is an equivalence relation and �r .BCd�r /

is isomorphic to the group of equivalence classes. For all r , the latter is true for the
equivalence relation generated by vector field cobordism.

For d even or r < d
2

, every equivalence class in �r .BCd�r / is represented by a closed
.d �1/–manifold M with r �1 independent sections in TM together with the normal
section.

In Bökstedt, Dupont and Svane [2], obstructions to independent tangent vector fields
on manifolds are studied and Theorem 1.1 plays a key role in the identification of the
top obstruction.

In the last two sections of the paper, we obtain a description of �1.BCd / in terms of
generators and relations:

Theorem 1.2 �1.BCd / is an abelian group generated by the diffeomorphism classes
ŒW � of closed d –manifolds W . The only relations are as follows: If W1 and W2 are
cobordisms from ∅ to M and W3 and W4 are cobordisms from M to ∅, then

ŒW1[M W3�C ŒW2[M W4�D ŒW1[M W4�C ŒW2[M W3�:

Under the isomorphism of Theorem 1.1, ŒW � corresponds to the equivalence class of
W with the single section ".

Here [M denotes the composition of morphisms given by glueing along a common
boundary.

Remark 1.3 Theorems 1.1 and 1.2 hold more generally for a cobordism category with
tangential structure satisfying (i) and (ii) in Theorem 3.5. The more general versions
are stated in Theorem 4.3 and Theorem 6.2, respectively. It is unclear to the authors
exactly when the Conditions (i) and (ii) are satisfied, but see Remarks 4.5 and 4.8 below
for some special cases.
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2 The cobordism category and related spectra

We first recall the embedded cobordism category, following the definition in Galatius
and Randal-Williams [5]. Let G.d; n/ denote the Grassmannian consisting of all d –
dimensional subspaces of RnCd . The splitting RnCdCl Š RnCd ˚Rl induces an
inclusion j W G.d; n/!G.d C l; n/.

Definition 2.1 Let � W X ! BO.d C l/ be a fibration. As a set, ‰�d
.RnCd / consists

of all pairs .M; x�/ where M �RnCd is an embedded d –dimensional manifold without
boundary such that M is a closed subset of RnCd and x� is a lift of the classifying map

�W M !G.d; n/
j
�!G.d C l; n/

under � . A suitable topology on ‰�d
.RnCd / is given in [5].

Let  �d
.nCd; k/ be the subspace consisting of those M contained in .�1; 1/nCd�k�

Rk .

Definition 2.2 Let � W X ! BO.d/ be a fibration. The cobordism category C�
d;nCd

is
a topological category with object space  �d�1

.nCd �1; 0/. The space of morphisms
is the disjoint union of the identity morphisms and a subspace of  �d

.nCd; 1/�.0;1/.
A pair .W; a/ is a morphism from M0 to M1 if W 2  �d

.nC d; 1/ is such that for
some � > 0,

W \ .RnCd�1
� .�1; �//DM0 � .�1; �/;

W \ .RnCd�1
� .a� �;1//DM1 � .a� �;1/;

such that the � –structures agree. Composition of the morphisms .W; a/ and .W 0; a0/
is given by .W ıW 0; aCa0/, where W ıW 0 is the union of W \.RnCd�1�.�1; a�/

and W 0\ .RnCd�1 � Œ0;1//C aenCd .

We leave the a out of the notation for the morphisms when it plays no significant role.
The splitting R1CnCd D R˚RnCd defines an inclusion i W G.d; n/! G.d; 1C n/

and hence an inclusion of categories C�
d;nCd

! C�
d;1CnCd

. We usually let n tend to
infinity and denote the resulting category by C�

d
with objects Ob.C�

d
/ and morphisms

Mor.C�
d
/. The subspace consisting of the morphisms from M0 to M1 is denoted by

C�
d
.M0;M1/.

Let Nk.C�d / be the k th nerve of the category. Then the classifying space BC�
d

is the
topological space G

Nk.C�d /��
k=� :

Algebraic & Geometric Topology, Volume 14 (2014)



1652 Marcel Bökstedt and Anne Marie Svane

Here
F

is disjoint union, �k is the standard k –simplex, and the equivalence relation �
is given by the face and degeneracy operators; see eg May [9] for the precise relations.

The Galatius–Tillmann–Madsen–Weiss theorem is now the following theorem, proved
in [6] and, in the above set-up, in [5]:

Theorem 2.3 There is a weak homotopy equivalence

˛d;� W BC�d !�1Cd�1��MTO.d/:

Here ��MTO.d/ is the spectrum defined as follows: Let Ud;n ! G.d; n/ be the
universal bundle with complement U?d;n . Then MTO.d/ is the spectrum with nth

space the Thom space Th.U?
d;n
/. The spectrum maps are induced by the inclusion i :

†Th.U?d;n/D Th.i�U?d;1Cn/! Th.U?d;1Cn/

Note that the grading of the spectrum is shifted by d compared to [6] and [5].

Given a fibration � W X ! BO.d/, the spectrum ��MTO.d/ is defined similarly with
nth space Th.��U?

d;n
! ��1.G.d; n///. Two important special cases are X D BO.d/

and X D BSO.d/. Since most constructions below work the same way in both cases,
we shall write MT.d/ for the spectrum, B.d/ and G.d; n/ for the corresponding
classifying spaces, and Cd for the cobordism category whenever there is no essential
difference.

The inclusion G.d; n/!G.d C 1; n/ is d –connected for n large, so lim
�!d

MT.d/ is
the Thom cobordism spectrum. Thus the Pontryagin–Thom Theorem identifies the
lower homotopy groups �k.MT.d// as the oriented or unoriented cobordism group
�k , respectively, when k < d . See eg Stong [12] for more on classical cobordism
theory.

In the proof of Theorem 1.1, we shall consider the fibration

Vd;r ! Vr .Ud /
ir
�! B.d/:

Here Vd;r is the Stiefel manifold consisting of ordered r –tuples of orthonormal vectors
in Rd . For any vector bundle E!X , Vr .E/!X will denote the fiber bundle with
fiber over x 2X the set of ordered r –tuples of orthonormal vectors in Ex .

The corresponding cobordism category will be denoted Cr
d

. The objects are embedded
compact .d � 1/–dimensional manifolds M equipped with r orthonormal sections
in TM ˚R. The morphisms are embedded cobordisms with r orthonormal tangent
vector fields extending the ones given on the boundary.

Algebraic & Geometric Topology, Volume 14 (2014)
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Reading through the definition of the map ˛d;� in Theorem 2.3, one sees that there is
a commutative diagram:

(1)

BCr
d

BF //

˛d;r

��

BCd

˛d

��

�1Cd�1i�r MT.d/
ir // �1Cd�1 MT.d/

Here BF is the map induced by the functor F that forgets the tangential structure.

There is an inclusion B.d � r/ ! Vr .Ud / taking P � RnCd�r to P ˚ Rr �

RnCd�r˚Rr with the r standard basis vectors in Rr as r –frame. This is a homotopy
equivalence, as it is the fiber inclusion for the fibration

B.d � r/! Vr .Ud /! V1;r ;

where V1;r D lim
�!n

VnCd;r is contractible. Thus the inclusion MT.d�r/! i�r MT.d/
is a homotopy equivalence. This yields the isomorphisms

�rC1.BCd�r /Š �d .MT.d � r//Š �1.BCr
d /:

This reduces the proof of Theorem 1.1 to a study of �1.BCr
d
/. Hence the rest of this

paper will only be concerned with the fundamental group of BC�
d

.

3 Representing classes in �1.BC�
d
/ by closed manifolds

In this section, we shall consider a general cobordism category corresponding to a
fibration � W X ! BO.d/.

Definition 3.1 Let .W; a/ 2 C�
d
.M0;M1/. The 1–simplex f.W; a/g � �1 inside

BC�
d

defines a path .W ;a/ between the points corresponding to M0 and M1 . A
concatenation of finitely many such paths and their inverses (denoted x.W ;a/ ) will be
called a zigzag of morphism paths.

The goal of this section is to find conditions on the category C�d such that all elements
of �1.BC�

d
/ can be represented by a single morphism path .W ;a/ for some closed

manifold W , considered as a morphism from the empty manifold to itself. We start
out by showing that elements of �1.BC�

d
/ are represented by zigzags.

First some notation. A path ˛W Œ0; 1�! Ob.C�
d
/ that is smooth in the sense of [5] and

constant near the endpoints determines a morphism .W˛; 1/ such that W˛ �R1�1�R
with W˛ \ .R1�1 � ftg/D ˛.t/ for all t 2 Œ0; 1� and such that the projection W˛!

f0g �R is a submersion. We want to see that ˛ ' W˛ in BC�
d

.
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Lemma 3.2 The concatenation of a non-identity morphism path .W ;a/ and a smooth
path ˛W I !Ob.C�

d
/ that is constant near endpoints, is homotopic relative to endpoints

inside Ob.C�
d
/[ .Mor.C�

d
/��1/ to the morphism path .W ıW˛;aC1/ .

Proof Recall from [5, Theorem 3.9] that there are homotopy equivalences of categories

(2) C�d
c
 �D?�

i
�!D� :

See [5, Definition 3.8] for the precise definitions of the categories D?
�

and D� .

The morphism .W ıW˛; aC1/ corresponds to the morphism .W ıW˛; 0� aC1/ in
the category D� . In Mor.D� /,

t 7! .W ıW˛; 0� aC t/

is a path from .W ıW˛; 0� a/ to .W ıW˛; 0� aC 1/ because all aC t 2 Œa; aC 1�

are regular values for the projection W ıW˛! f0g �R.

This lifts to a path .Wt ; 0 � aC t/ in Mor.D?
�
/ under the inverse of the homotopy

equivalence i . This just stretches W ıW˛ near W ıW˛ \ .R1�1 � faC tg/ and
leaves the rest fixed. In particular, Wt \ .R1�1 � faC tg/D ˛.t/.

Now, c.Wt ; 0� aC t/D .W 0t ; aC t/ defines a path from .W; a/ to .W ıW˛; aC 1/

with W 0t \.R
1�1�faC tg/D˛.t/. Thus .W 0t ;aCt/ �˛jŒt;1� is a homotopy from W �˛

to W ıW˛ .

Lemma 3.3 A smooth path ˛W Œ0; 1� ! Ob.C�
d
/ that is constant near endpoints is

homotopic relative to endpoints to W˛ inside BC�
d

.

Proof Let M D ˛.0/. Then W DM �R is a morphism. By Lemma 3.2, W �˛ is
homotopic to W ıW˛ . There is a 2–simplex inside BC�

d
making W ıW˛ homotopic

to W � W˛ . Composing with xW proves the claim.

Theorem 3.4 Any path between two objects in BC�
d

is homotopic relative to endpoints
to a zigzag of morphism paths.

Proof Let f W Œ0; 1�! BC�d be given such that f .f0; 1g/� Ob.C�d /. First we deform
f relative to the endpoints to have image in Ob.C�

d
/[ .Mor.C�

d
/��1/. Such an f

may again be deformed to a composition of finitely many morphism paths, inverse
morphism paths, and paths in the object space.

By [5, Lemma 2.18], each path ˛W I !Ob.C�
d
/ is homotopic to a smooth path ˛0 that

is constant near endpoints. By Lemma 3.3, this is homotopic to W˛0
.
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We are now ready to give conditions under which every element of �1.BC�
d
/ may be

represented by a single morphism path.

Theorem 3.5 Assume:
(i) Any morphism W 2 C�

d
.∅;∅/ has an inverse W � 2 C�

d
.∅;∅/ such that the

disjoint union W ıW � 2 C�
d
.∅;∅/ defines a null-homotopic loop in BC�

d
.

(ii) If W 2 C�
d
.M0;M1/, then there exists a morphism W 2 C�

d
.M1;M0/ in the

opposite direction.

In this case, any element of �1.BC�
d
/ can be represented by a morphism path W for

some closed � –manifold W 2 C�
d
.∅;∅/.

In Galatius and Randal-Williams [4], a � –structure is called reversible if (ii) can be
satisfied by a W whose underlying manifold is the reflection of W . We do not require
this.

From Theorem 3.4 we know that we can always represent an element of �1.BC�
d
/ as a

zigzag of morphisms. In general, the closed manifold cannot be chosen diffeomorphic
to the one defined by glueing together the underlying manifolds in the zigzag, since
this may not allow a � –structure.

Proof Let  W I !BC�
d

be a path from the empty manifold to itself. By Theorem 3.4,
we can assume that  is represented by a zigzag.

Given a pair of composable morphisms .W1;W2/ 2N2.C�d /, there is a corresponding
2–simplex f.W1;W2/g ��

2 inside BC�
d

defining a homotopy

(3) W1
� W2

' W1ıW2
:

Thus we may assume that  is an alternating zigzag of morphism paths  D W1
�

xW2
� W3

� � � xWn
. Of course, it could also happen that the first path is an inverse path

or that n is odd. These cases are similar.

For each i , choose an opposite W i of Wi , guaranteed by assumption (ii). Then

 D W1
� xW2

� W3
� � � xWn

' W1
� .W 2

� W3
� � � W n

/ � .W 2
� W3

� � � W n
/ � xW2

� .xW 3
� � � xWn

/

� .xW 3
� � � xWn

/ � � � Wn�1
� .W n

/ � .W n
/ � xWn

D .W1
� W 2

� W3
� � � W n

/ � .xW n
� � � xW3

� xW 2
� xW2

� xW 3
� � � xWn

/

� .Wn
� � � W 3

� W3
� � � W n

/ � � � .Wn
� W n�1

� Wn�1
� W n

/ � .xW n
� xWn

/

' .W1ıW 2ıW3ı���ıW n
/ � .xWnı���ıW 3ıW2ıW 2ıW3ı���ıW n

/

� .Wnı���ıW 3ıW3ı���ıW n
/ � � � .WnıW n�1ıWn�1ıW n

/ � .xWnıW n
/:

Algebraic & Geometric Topology, Volume 14 (2014)



1656 Marcel Bökstedt and Anne Marie Svane

The idea is here that we first run along W1
as we are supposed to. Then we follow

morphism paths in the positive direction all the way to the empty manifold and go
back again, now following paths in the inverse direction. We run W2

backwards as we
are supposed to and then follow paths in the inverse direction back to the base point
and go back again. Continuing this way, we end up with a path that is homotopic to
the original one. But this new path has the property that we always run from the base
point to itself along paths that are either all positively directed or all negatively directed.
Thus we may glue the manifolds together by (3).

This yields an expression for  involving only paths of closed manifolds. We now
apply assumption (i) to all the paths that are still traveled in the wrong direction. Finally
we apply (3) again to write  as a path corresponding to a single morphism:

 ' .W1ıW 2ıW3ı���ıW n/
� .Wnı���ıW 3ıW2ıW 2ıW3ı���ıW n/�

� .Wnı���ıW 3ıW3ı���ıW n/
� � � .WnıW n�1ıWn�1ıW n/

� .WnıW n/�

' .W1ıW 2ıW3ı���ıW n/ı.Wnı���ıW 3ıW2ıW 2ıW3ı���ıW n/�

ı.Wnı���ıW 3ıW3ı���ıW n/ı���ı.WnıW n�1ıWn�1ıW n/ı.WnıW n/�

4 Geometric interpretation of the homotopy groups

We first consider a general cobordism category with � –structure � W X!BO.d/ and let

�r W i
�
r X ! Vr .Ud /

ir
�! BO.d/

denote the pullback fibration. The corresponding cobordism category is denoted C�;r
d

.

Theorem 4.1 There are weak homotopy equivalences

BC�;rCk
dCk

!�kBC�;r
d
!�1CdCk�1��MT.d � r/:

In the case k D 1, assume M 2 Ob.C�;rC1
dC1

/ with r tangent vector fields and the
.r C 1/st vector field equal to the positively directed normal ". Then the component
of M in �0.BC�;rC1

dC1
/ is mapped to the morphism path in �1.BC�;r

d
/ corresponding

to M , now considered as a morphism in C�;r
d
.∅;∅/ with the r tangent vector fields.

Both correspond to the Pontryagin–Thom element in �d .�
�MT.d � r//.
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Proof We have the following commutative diagram for each n:

(4)

�kBCr
d;n

// �k r
d
.n; 1/

��

// �nCk�1 r
d
.n; n/

��

BCrCk
dCk;nCk

// �k rCk
dCk

.nC k; kC 1/ // �nCk�1 rCk
dCk

.nC k; nC k/

The vertical maps take a manifold M �Rn with r vector fields to M �Rk �Rn�Rk

with the r vector fields from M together with the k standard vector fields in the Rk

direction. The horizontal maps are the homotopy equivalences from [5].

The diagram

(5)

 r
d
.n; n/

��

// Th.i�r U?
d;n�d

! Vr .Ud;n�d //

��
 rCk

dCk
.nC k; nC k/ // Th.i�

rCk
U?

dCk;n�d
! VrCk.UdCk;n�d //

also commutes. The horizontal maps take a manifold M to �p in the fiber over TpM

with the vector fields evaluated at this point, where p is the point on M closest to the
identity (whenever this is defined). Hence commutativity follows. Some details have
been omitted; see [5] for the precise definition of the horizontal maps.

If we let n tend to infinity, the right vertical map in (5) is a homotopy equivalence,
since the diagram

Th.U?
d�r;n�d

!G.d � r; n� d// //

++

Th.i�r U?
d;n�d

! Vr .Ud;n�d //

��
Th.i�

rCk
U?

dCk;n�d
! VrCk.UdCk;n�d //

commutes and the two maps to the left define homotopy equivalences of spectra since
the connectivities of the maps of base spaces go to infinity for n!1.

Now let k D 1 and let M � .�1; 1/n be as in the theorem. This corresponds to
the manifold M � R in  rC1

dC1.nC 1; 1/ with the induced vector fields. The first
lower horizontal map in (4) takes this to a loop RC !  rC1

dC1
.nC 1; 2/ given by

t 7!M �R� .0; : : : ; 0; t; 0/. But this is the image of the loop RC!  r
d
.n; 1/ given

by t 7!M � .0; : : : ; 0; t/ under the vertical map. This is again homotopic to the image
of the morphism path for M in BCr

d;n
under the map �BCr

d;n
!� r

d
.n; 1/, as one

may see by checking the definitions.

Algebraic & Geometric Topology, Volume 14 (2014)
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Going to the right in the upper part of (4) shows that M corresponds to the map
.Rn/C! .n; n/ given by t 7!M � t . Going through the definition of the horizontal
maps in (5), one realizes that this corresponds to the Pontryagin–Thom maps.

The case with � –structure is similar.

From this theorem we obtain a geometric interpretation of the homotopy groups
�d .�

�MT.d � r//Š �rC1.BC�
d
/.

Definition 4.2 Let M0;M1 2 Ob.C�;r
d
/. We say that M0 is vector field cobordant to

M1 if C�;r
d
.M0;M1/ is non-empty.

Theorem 4.3 Let � be a tangential structure such that �r satisfies Condition (ii) of
Theorem 3.5. Then vector field cobordism is an equivalence relation and �r .BC�

d�r
/

is isomorphic to the group of equivalence classes. For all � –structures, the latter is true
for the equivalence relation generated by vector field cobordism.

If both Conditions (i) and (ii) in Theorem 3.5 are satisfied, every equivalence class in
�r .BC�

d�r
/ is represented by a closed .d �1/–dimensional � –manifold M with r �1

independent sections in TM together with the normal section.

Proof of Theorem 4.3 For the equivalence relation, symmetry follows from Condition
(ii) and transitivity is given by composing morphisms.

By Theorem 4.1, �r .BC�
d�r

/Š�0.BC�;r
d
/. If two manifolds are vector field cobordant,

they obviously belong to the same path component of BC�;r
d

. Conversely, if M0 and
M1 belong to the same path component, there is a zigzag of morphisms relating them
by Theorem 3.4. Thus they are vector field cobordant.

By Theorem 3.5, any element of �r .BC�
d�r

/Š�1.BC�;r�1
d�1

/ is represented by a closed
morphism. This corresponds to an object of C�;r

d
with the r th vector field equal to "

by Theorem 4.1.

We now specialize to the oriented and unoriented cobordism category with vector fields.
We start out by investigating when Cr

d
satisfies Condition (i) and (ii) of Theorem 3.5.

Theorem 4.4 Let d be odd or r < d
2

. Let W 2 Cr
d
.M0;M1/. Then there exists a

morphism W 2 Cr
d
.M1;M0/ in the opposite direction.
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Proof Suppose .W; a/ 2 Cr
d
.M0;M1/ is given. That is, W � .�1; 1/n � R is a

d –dimensional manifold with a section vW W ! Vr .T W /. Let

�a
W .�1; 1/n �R! .�1; 1/n �R

be the reflection �a.x; t/D .x; a�t/. After reversing the orientation in the oriented case,
�a.W / 2 Cd .M1;M0/. However, �a.W / does not define an element of Cr

d
.M1;M0/

yet, since the induced vector fields on M0 and M1 are the reflections in the normal
direction of the original ones. They must be reflected once more to get the correct
vector fields on the objects. Thus it is enough to extend the reflected vector fields on
M0 and M1 to W0 DW \ .�1; 1/n � Œ0; a�.

For this, choose a normal vector field on @W0 and extend this to a unit vector field

V W W
.d�1/

0
! T W

jW
.d�1/

0

on the .d � 1/–skeleton W
.d�1/

0
. This is always possible by standard obstruction

theory; see Steenrod [11]. This defines a map

�V W W
.d�1/

0
!O.T W /

jW
.d�1/

0

:

Here O.T W / is the bundle over W with fiber over x the orthogonal group O.TxW /,
and �V .x/ is defined to be the reflection of TxW that takes V .x/ to �V .x/ and
leaves V .x/? fixed.

With this definition, �V acts on the given vector fields by multiplication

�V .x/ � v.x/D w.x/W W
.d�1/

0
! Vr .T W

jW
.d�1/

0

/

for all x 2W
.d�1/

0
. On @W0 , �V is the reflection of the normal direction, so w is an

extension of the reflected vector fields on @W0 to the .d � 1/–skeleton.

It remains to extend w over each d –cell D �W0 . This may not be possible. The idea
is to take the connected sum of W0 and a suitable manifold in the interior of D such
that w extends to the glued in manifold.

Choose a trivialization T WjD ŠD �Rd . We may assume that vj@D W Sd�1! Vd;r

is constant equal to v0 since it extends to D . Then w is given on @D by

wj@D W S
d�1 �V
��!O.d/

h
�! Vd;r ;

where h is evaluation on v0 .

In the trivialization, Vj@D is a map Vj@D W S
d�1! Sd�1 . Let �d W S

d�1!O.d/ be
the map that takes x 2 Sd�1 to the reflection of the line spanned by x . Note that is
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also the clutching function for TSd . Then

�V D �d ıVj@D and wj@D D h ı �d ıVj@D :

By possibly dividing D into smaller cells, we may assume that the degree of Vj@D is
either 0 or ˙1.

If the degree of Vj@D is zero, then �V is homotopic to a constant map. Hence, so is
wj@D , and the vector fields extend to all of D .

If the degree is C1, then V is homotopic to the identity map. This means that �V is
the reflection in the normal direction. Choose r independent vector fields on the torus
T d . Cut out a disk D0 . The vector fields on @D0 are now homotopic to vj@.W nD/ ,
since both extend over a disk. Thus, after reflecting vj@.W nD/ in the normal direction,
we can form the connected sum of W and T d in the interior of D with r independent
vector fields extending wj@.W nD/ over T dnD0 .

If the degree of Vj@D is �1 and d is odd, V is homotopic to minus the identity. Since
�V D ��V , we may do as in the degree C1 case.

We are now left with the case where d D 2k is even and the degree is �1. In this case
we would like to take the connected sum with a product of two spheres, rather than a
torus.

First look at what happens to the vector fields when they are reflected in a map of
degree �1. Consider the diagram where the middle vertical sequence is exact and p is
the map that forgets the first r � 1 vectors:

(6)

�d�1.S
d�1/

V@D

��

�d .S
d /

ı

�� ıd ((

�2

++
�d�1.S

d�1/
�d //

��

�d�1.O.d//
h //

��

�d�1.Vd;r /
p // �d�1.S

d�1/

�d�1.S
d /D 0

�dC1 // �d�1.O.d C 1//

It follows that �d maps into the image of ı . The composition pıhı�d maps x 2Sd�1

to the reflection of a fixed vector in the x–direction. This is the obstruction to a zero-
free vector field on Sd , hence the degree is the Euler characteristic �.Sd /D 2; see
[11]. Thus �d .Œ1�/D ı.Œ1�/, and therefore

Œwj@D �D h ı �d .Œ�1�/D ıd .Œ�1�/:

Here and in the following, Œm� 2 �l.S
l/ denotes the class of degree-m maps.
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Consider
Sk
�Sk if k is even,

Sk�1
�SkC1 if k is odd.

For simplicity, we write this product as S i�Sj in the following. Choose r vector fields
with one singularity on each sphere. This is possible because r < k by assumption. We
may assume that these vector fields are given outside small open disks Di and Dj by

u1W S
i
nDi
! Vr .TS i ; /

u2W S
j
nDj

! Vr .TSj /;

respectively. This defines r vector fields on S i � Sj with one singularity inside
Di �Dj via the formula

u.x;y/D
u1.x/Cu2.y/

p
2

on S inDi �SjnDj and

u.x;y/D
1
p

2

�
jxju1

�
x

jxj

�
Cjyju2

�
y

jyj

��
on Di �Sj [S i �Dj . On the boundary of Di �Dj , this is the join

u1jS i�1 ?u2jSj�1 W S i�1 ?Sj�1
! Vd;r :

This map represents the obstruction to r independent vector fields on S i �Sj .

Now look at the diagram

(7)

�i.S
i/��j .S

j /

ıi�ıj

��

�d .S
d /

ıd

��

�2

((

�i�1.Vi;r /��j�1.Vj ;r /
? //

�i��j

��

�d�1.Vd;r /
p //

�d

��

�d�1.S
d�1/

�i�1.ViC1;rC1/��j�1.VjC1;rC1/ �d�1.VdC1;rC1/

For l D i; j ; d , the class ıl.Œ1�/ is the obstruction to r independent vector fields on
S l . Thus the homotopy class of u1jS i�1 ? u2jSj�1 is ıi.Œ1�/ ? ıj .Œ1�/. By James [8,
Formula (2.12 b)],

�d .ıi.Œ1�/ ? ıj .Œ1�//D �i.ıi.Œ1�// ? ı
0
j .Œ1�/:
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Here ı0j W �j .S
j /! �j�1.Vj ;rC1/ is the boundary map. This is well-defined because

r < j . But �i ı ıi D 0, so ıi.Œ1�/ ? ıj .Œ1�/ is in the image of ıd . Furthermore,

p.ıi.Œ1�/ ? ıj .Œ1�//D Œ4�;

being the obstruction to a single zero-free vector field on S i�Sj , which is �.S i�Sj /D

4. Thus ıi.Œ1�/ ? ıj .Œ1�/D ıd .Œ2�/.

Summarizing the above, there are independent vector fields on S i �SjnDi �Dj and
@.W n int.D// given on the boundaries of the removed disks by ıd .Œ2�/ and ıd .Œ�1�/,
respectively. We can take the connected sum if the vector fields agree after reflecting
the ones on @.Di �Dj /. That is, it remains to show �d � ıd .Œ2�/D ıd .Œ�1�/.

Note that

(8) p.�d � ıd .Œm�//D �d �p.ıd .Œm�//D �d � Œ2m�D Œ2� 2m�:

The last equality follows because if we consider Sd as a union of two disks with
common boundary Sd�1 , a degree 2m map Sd�1! Sd�1 extends to a vector field
on Sd with two zeros, one of index Œ2m� and one of index �d � Œ2m�. The sum of the
indices is always equal to �.Sd /D 2 by obstruction theory.

Also note that
�d .�d � ıd .Œ2�//D �

0
d � .�d ı ıd .Œ2�//D 0

where �0
d

is the composition of �d with O.d/!O.d C 1/ and hence trivial by (6).
Thus �d � ıd .Œ2�/ is in the image of ıd because the middle column in (7) is exact, ie,
�d � ıd .Œ2�/D ıd .Œk�/ for some k . According to (8),

p.ıd .Œk�//D p.�d � ıd .Œ2�//D Œ�2�:

On the other hand, it follows from (7) that

p.ıd .Œ�1�//D Œ�2�:

Since p ı ıd is injective, k D�1 as claimed.

This proof was inspired by [5, Proposition 4.23].

Remark 4.5 In the case where Sd allows r independent vector fields (see Adams [1])
it is possible to choose W diffeomorphic to W . This is because we may glue in disks,
rather than tori, when constructing W .

If Sd does not allow r independent vector fields, the disk Dd is an example of a
morphism such that Dd cannot be chosen diffeomorphic to Dd . Otherwise they would
glue together to a sphere with r independent vector fields.
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The above proof would work more generally to show that C�
d

satisfies (ii) of Theorem 3.5
for any � –structure such that Sd�1 with any � –structure bounds a � –manifold. For
d odd, it would also suffice that Sd allows a � –structure.

Example 4.6 Consider the case d D 2 and r D 1. A surface of genus g > 1 allows a
vector field with only one singularity. Cut out a disk containing the singularity. This
defines a morphism from ∅ to S1 . If there were a morphism in the opposite direction,
they would glue together to a closed surface of genus at least g > 1 with a zero-free
vector field, which is impossible.

This shows that the condition r < d
2

is not always redundant. We do not know whether
it is best possible.

Theorem 4.7 For r � 0, all morphisms in Cr
d
.∅;∅/ have inverses in the sense of

Theorem 3.5(i).

Proof Let W be a closed d –dimensional manifold with r orthonormal vector fields
v1; : : : ; vr W W ! T W . Assume d is odd or r � 1. We consider W as an object
of CrC1

dC1
with the positive normal vector field " as the .r C 1/st vector field. Then

there are r C 1 vector fields on W �R, given on W � Œ0; 1� as follows: Choose a
zero-free vector field vW W ! T W . If r � 1, we simply choose this to be vr . If d is
odd and r D 0, we may choose v arbitrarily. Define r C 1 orthonormal vector fields
w1; : : : ; wrC1 on W � Œ0; 1� by

wi.x; t/D vi.x/;

wr .x; t/D cos.� t/v.x/C sin.� t/".x/;

wrC1.x; t/D� sin.� t/v.x/C cos.� t/".x/:

Extend these trivially to W �R. Embed W �R as a cobordism from W �f0; 1g to ∅
in CrC1

dC1
. Thus W � f0; 1g belongs to the base point component of BCrC1

dC1
. Let W �

be W � f1g with the induced vector fields and, in the oriented case, orientation.

Under the isomorphism from Theorem 4.1 �1.BCr
d
/! �0.BCrC1

dC1
/, W � f0; 1g lifts

to W ıW � , so this must be null-homotopic.

In the remaining case where d is even and r D 0, we may still view W as an object in
C1

dC1
with vector field ". As before, we seek another manifold such that the disjoint

union with W bounds a manifold with a zero-free vector field extending the inward
normal. By Reinhart [10], it is enough to find a manifold W � that is a cobordism
inverse to W and has Euler characteristic

(9) �.W �/D��.W /:
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Let W 0 be a copy of W . In the oriented category, give it the opposite orientation. Then
W 0 is a cobordism inverse of W . Taking the disjoint union with a sphere increases
the Euler characteristic by 2, and taking the disjoint union with a connected sum of
two tori decreases the Euler characteristic by 2. Thus, defining W � to be the disjoint
union of W 0 and a suitable bounding manifold, (9) is satisfied.

Remark 4.8 Let � W X ! BO.d C 1/ and �k;r W i
�
r X ! BO.k/ for k D d; d C 1

where ir W B.d C 1� r/! BO.d C 1/. The proof of Theorem 4.7 generalizes to the
category C�d;rC1

d
when d is odd or r � 1 because it shows that a vector field on W

yields a homotopy of bundle maps

T W ˚R� Œ0; 1�! Ud ˚R

switching the R–direction. A lift of W �I!BO.d/ under �d;rC1 extending the one
given on W � f0g yields a path of bundle maps

T W ˚R� Œ0; 1�! ��d;rC1Ud ˚R! ��dC1;rC1UdC1;

which defines a �dC1;rC1 –structure on W �R such that the argument carries through.

From these theorems we obtain a geometric interpretation of �d .MT.d � r// Š

�1.BCr
d
/.

Corollary 4.9 For d odd or r < d
2

, any class in �1.BCr
d
/ may be represented by a

morphism path.

Proof This follows from Theorems 3.5, 4.4 and 4.7.

Theorem 1.1, stated in the introduction, is a special case of Theorem 4.3.

Proof of Theorem 1.1 This follows from Theorems 4.3, 4.4 and 4.7 above.

In particular, �d .MT.d//Š �0.BC1
dC1/ is the group of Reinhart cobordism classes

of d –dimensional manifolds. A Reinhart cobordism from M d to N d is a cobordism
with a zero-free vector field that is inward normal at M and outward normal at N .
The equivalence classes are determined in [10].

Corollary 4.10 Let d odd or r < d
2

. The image of �d .MT.d � r//! �d .MT.d//
is the group of Reinhart cobordism classes containing a manifold that allows r inde-
pendent tangent vector fields.
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Proof Let ˇ be a Reinhart cobordism class. If ˇ lifts to ˛ 2 �d .MT.d � r//, this
is represented by a morphism loop in �1.BCr

d
/ by Corollary 4.9. This morphism

is a closed d –dimensional manifold with r independent tangent vector fields and it
represents ˇ by (1).

A diagram similar to (1) yields an interpretation of the maps

�d�1.MT.d � r � k//! �d�1.MT.d � r//:

Corollary 4.11 Suppose d is odd or r < d
2

. Under �0.BCrCk
d

/ ! �0.BCr
d
/, a

component containing a manifold M with r orthonormal sections in TM ˚R is in the
image if and only if there is a cobordism with r orthonormal vector fields from M to
some M 0 such that the r sections in TM 0˚R extend to r C k orthonormal sections.

If d is even or r < d�1
2

, the image of �0.BCrC1
d

/! �0.BCr
d
/ is the subgroup of

the vector field cobordism group containing all manifolds with r orthonormal tangent
vector fields.

5 Equivalence of zigzags

We saw in Theorem 3.4 that all elements of �1.BC�
d
/ are represented by zigzags of

morphism paths. In this section we find necessary and sufficient conditions for two
such zigzags to be homotopic.

First some notation. We picture a zigzag of morphisms � � � xWi
� WiC1

� � � by

(10) � � � !Mi
Wi
 ��MiC1

WiC1

����!MiC2 � � � � :

Moreover, @i W Mor.C�
d
/! Ob.C�

d
/ will denote the boundary maps, which are defined

for W 2 C�
d
.M0;M1/ by @i.W /DMi for i D 0; 1.

The main theorem of this section is:

Theorem 5.1 Two zigzags represented by a diagram like (10) are homotopic relative
to endpoints if and only if they are related by a finite sequence of moves of the following
two types:

(I) Any sequence of arrows from Mi to Mj in the diagram

M0

W1

��

W1ıW2

!!
M1

W2

// M2

may be replaced by any other such sequence.
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(II) Suppose W;W 0 2 C�
d
.M0;M1/. Then W may be replaced by W 0 in the zigzag

if there exists a path  W I ! Mor.C�
d
/ from W to W 0 such that @i ı  W I !

Ob.C�
d
/ is constant for i D 0; 1.

A more geometric interpretation of the relation (II) is given by the following:

Lemma 5.2 Two morphisms W0 and W1 may be joined by a path  W I !Mor.C�
d
/

with @i ı  constant if and only if there is a diffeomorphism between them that fixes
@iWj pointwise for i; j D 0; 1 and preserves the equivalence class of � –structures.

By an equivalence class of � –structures we mean an element of �0.Bun.T W; ��Ud //

where Bun.T W; ��Ud / is the space of bundle maps T W ! ��Ud . The proof is
straightforward from the way the topology on Mor.C�

d
/ is defined; see [5].

Lemma 5.3 Let  W Œ0; 1�!Mor.C�d / be a smooth path from W0 to W1 that is constant
near 0; 1. Let W@i be the morphisms determined by @i ı  W Œ0; 1� ! Ob.C�

d
/ for

i D 0; 1. Then W0ıW@1
and W@0

ıW1
differ only by a Type (II) move.

Proof Again we use the diagram (2) and the notation from [5].

Look at the morphisms .W@0 ; 0� 1/ and .W@1 ; 0� 1/ in the category D�
d

. There
are paths in Mor.D�

d
/ given by .W@0 ; 0� t/ and .W@1 ; t � 1/ for t 2 .0; 1/. These

lift to paths 0 and 1 in Mor.C�
d
/ under the homotopy equivalences (2) satisfying

0.t/ 2 C�d .M0; @0. .t///; 1.t/ 2 C�d .@1. .t//;M1/:

Thus the composition of morphisms 0.t/ı .t/ı1.t/2C�d .M0;M1/ is a well-defined
path in the morphism space for t 2 .0; 1/. This naturally extends to all t 2 Œ0; 1�, and
this is the desired path from W0 ıW@1 to W@0 ıW1 .

The next two proofs consider homotopy groups with multiple base points. If X is a
topological space and X0 is a discrete subset, �1.X;X0/ denotes the set of homotopy
classes of paths in X starting and ending in X0 . The path composition makes this into
a groupoid where the identity elements correspond to the constant paths.

Theorem 5.4 Any two zigzags that are homotopic inside Ob.C�
d
/[ .Mor.C�

d
/��1/

are related by a sequence of Type (I) and (II) moves.
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Proof First choose a set of objects Mi for i 2 I , one in each path component
of Ob.C�

d
/. Then choose a Wj , j 2 J , in each component of Mor.C�

d
/ such that

@".Wj / 2 fMi ; i 2 Ig for all j 2 J and "D 0; 1. These will serve as the base point
sets. By construction, the source and target maps are base point preserving.

To describe �1.Ob.C�
d
/[ .Mor.C�

d
/��1//, we need a generalized version of the van

Kampen Theorem. This is the main theorem of Brown and Salleh [3]. For this, let
b 2 int.�1/ and

U1 D Ob.C�d /[ .Mor.C�d /� .�
1
nfbg//;

U2 DMor.C�d /� int.�1/;

U1\U2 DMor.C�d /� .int.�1/nfbg/;

X0 D f.Wj ; "/ j j 2 J; "D 0; 1g;

X 00 D fMi j i 2 Ig:

Here .Wj ; "/, "D 0; 1, should be interpreted as the points

..Wj ; a/; ı/ and ..Wj ; a/; 1� ı/

in Mor.C�
d
/� .int.�1/nfbg/, respectively.

According to [3], �1.Ob.C�
d
/[ .Mor.C�

d
/��1/;X0/ D �1.U1 [U2;X0/ is the co-

equalizer in the category of groupoids of the diagram

�1.U1\U2;X0/� �1.U1;X0/t�1.U2;X0/! �1.U1[U2;X0/:

We begin by describing the first three groupoids in the diagram.

The map �1.U1;X0/! �1.U1;X
0
0
/ induced by .Wj ; "/ 7! @".Wj / is a vertex and

piecewise surjection in the sense of Higgins [7], and thus it is a quotient map, according
to [7, Proposition 25]. The kernel is the inverse image of the identity elements, ie the
set

N D
G
i2I

f..Wj1
; "1/; .Wj2

; "2// j j1; j2 2 J; "1; "2 2 f0; 1g; @"1
Wj1
D @"2

Wj2
DMig

with multiplication

..Wj1
; "1/; .Wj2

; "2//..Wj2
; "2/; .Wj3

; "3//D ..Wj1
; "1/; .Wj3

; "3//:

A basepoint .Wj ; "/ in X0 can be thought of as the point .Wj ; "C .�1/" 1
4
/ 2 U1 .

Joining this to @".Wj / D .Wj ; "/ in the natural way yields the map �1.U1;X0/!

�1.U1;X
0
0
/ and ..Wj1

; "1/; .Wj2
; "2// can be interpreted as the path from .Wj1

; "1/

to @"1
.Wj1

/ followed by the path from @"1
Wj1
D @"2

Wj2
to .Wj2

; "2/.

Algebraic & Geometric Topology, Volume 14 (2014)



1668 Marcel Bökstedt and Anne Marie Svane

If �1.U1;X0/ is replaced by �1.U1;X
0
0
/ in the coequalizer diagram, �1.U1[U2;X0/

must be replaced by the quotient of this with the normal subgroupoid generated by N ,
cf [7, Proposition 27]. But N is also the kernel of the quotient map

�1.U1[U2;X0/! �1.U1[U2;X
0
0/;

so the new coequalizer diagram becomes

�1.U1\U2;X0/� �1.U1;X
0
0/t�1.U2;X0/! �1.U1[U2;X

0
0/:

We compute:

�1.U1\U2;X0/D
G
j2J

�1.Mor.C�d /;Wj /� f0; 1g

�1.U1;X
0
0/D

G
i2I

�1.Ob.C�d /;Mi/

�1.U2;X0/D
G
j2J

�1.Mor.C�d /;Wj /�G

Here GD f.i; j / j i; j D 0; 1g is the groupoid with multiplication .i; j /.j ; k/D .i; k/.

By [7], the coequalizer, viewed as a category, is given as follows. The object set is just
the set of base points X 0

0
. A morphism is represented by a sequence x1 � � �xn , where

each xi is an element of either �1.U1;X
0
0
/ or �1.U2;X0/ such that the target of xi

coincides with the source of xiC1 in X 0
0

. Two such sequences are equivalent if and
only if they are related by a sequence of relations of the following three types:

(i) If e is an identity element in either �1.U1;X
0
0
/ or �1.U2;X0/, then

� � �xiexiC1 � � � ' � � �xixiC1 � � � :

(ii) If the product xixiC1 D x makes sense in either �1.U1;X
0
0
/ or �1.U2;X0/,

then
� � �xixiC1 � � � ' � � �x � � � :

(iii) Let i1W �1.U1\U2;X0/!�1.U1;X
0
0
/ and i2W �1.U1\U2;X0/!�1.U2;X0/

denote the inclusions. Then for x 2 �1.U1\U2;X0/,

� � � i1.x/ � � � ' � � � i2.x/ � � � :

The next step is to canonically identify such a sequence x1 � � �xn with a zigzag rep-
resenting the same homotopy class. To each xi we associate a part of a zigzag
representing xi in �1.U1[U2;X

0
0
/ in the following way. If xi 2�1.Ob.C�

d
/;Ml/, let

˛W I !Ob.C�
d
/ be a smooth representative. This corresponds to a morphism W˛ with
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˛ ' xMl�R � W˛ by Lemma 3.2. Otherwise xi has the form .Œ �; .k; l// for some
Œ � 2 �1.Mor.C�

d
/;Wj / and k; l 2 f0; 1g. We choose the following assignments:

Œ˛� �
˛.0/�R
 ����� �

W˛
��! �

.Œ �; .0; 0// �
@0.0/�R
 ������� �

W@0

����! �

.Œ �; .1; 1// �
W@1

����! �
@1.0/�R
 ������� �

.Œ �; .0; 1// �
@0.0/�R
 ������� �

W@0

����! �
Wj
��! �

.Œ �; .1; 0// �
Wj
 �� �

@0.0/�R
 ������� �

W@0

����! �

These zigzags have the correct homotopy type due to Lemma 3.2. Note that the mani-
folds W˛ depend on the choice of representative ˛ . A different choice of representative
yields a morphism that differs from W˛ by a Type (II) move. Hence the assignment is
canonical up to Type (II) moves.

To each sequence x1 � � �xn this associates a zigzag. We need to see that the relations (i)–
(iii) on sequences correspond to performing Type (I) and (II) moves on the associated
zigzags. This is a straightforward check, and we will only show some of the relations.

(i) If e is the identity element in �1.Ob.C�
d
/;Ml/, We DMl �R. Hence this relation

just removes a

�
Ml�R
 ���� �

Ml�R
����! �

from the zigzag. This is a Type (I) move.

(ii) If xi ;xiC1 2 �1.Ob.C�
d
/;Ml/ are represented by smooth loops ˛i and ˛iC1 , the

relation becomes:

�
Ml�R
 ���� �

W˛i
���! �

Ml�R
 ���� �

W˛iC1

����! � ' �
Ml�R
 ���� �

W˛i �˛iC1

������! �

But W˛i �˛iC1
is equal to W˛i

ıW˛iC1
up to a Type (II) move, so the zigzags differ

only by Type (I) and (II) moves.

If xi ;xiC1 2 �1.Mor.C�
d
/;Wj /�G , there are various special cases to check. We shall

check only the case xi D .Œi �; .1; 0// and xiC1 D .ŒiC1�; .0; 1// here. Then xixiC1

defines the following part of a zigzag:

�
Wj
 �� �

@0.Wj /�R
 ������� �

W@0i
����! �

@0.Wj /�R
 ������� �

W@0iC1

������! �
Wj
��! �
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By Type (I) and (II) moves, this is equivalent to:

�
W@1i
����! �

W@1i
 ���� �

Wj
 �� �

W@0i
����! �

W@0iC1

������! �
Wj
��! �

By Lemma 5.3, this is again equivalent to:

�
W@1i
����! �

Wj
 �� �

W@0i
 ���� �

W@0i
����! �

Wj
��! �

W@1iC1

������! �

Removing the middle part by Type (I) moves yields:

�

W@1.i �iC1/

���������! �
@1.Wj /�R
 ������� �

This corresponds to the product .Œi �; .1; 0// � .ŒiC1�; .0; 1//D .Œi � iC1�; .1; 1//.

(iii) This is obvious from the definitions.

We are now ready to prove the theorem. Let a zigzag be given. For each morphism

(11) � � �
W
�! � � � ;

we do as follows. First choose a smooth path  from W to the base point Wj in the
W component of Mor.C�

d
/. Then (11) is homotopic and equivalent to

� � �
@0.W /�R
 ������� �

W@0

����! �
Wj
��! �

@1.W /�R
 ������� �

W
@1

����! � � �

by Lemma 5.3 and 3.2. But this zigzag is associated to a sequence x1 � � �xn . Given
another zigzag homotopic to this one, it is also equivalent to a zigzag coming from
a sequence x0

1
� � �x0n0 . We know that these sequences are related by the operations

(i)–(iii), and this corresponds to doing Type (I) and (II) moves on the zigzags.

Proof of Theorem 5.1 The relation (I) certainly holds, since there is a 2–simplex in
the classifying space having W1

, W2
and W1ıW2

as its sides. The relation (II) holds
because the path  determines a homotopy between the two zigzags.

To see that these are the only relations, we apply the generalized van Kampen Theorem
once again. Note that the inclusion

�1.Ob.C�d /[ .Mor.C�d /��
1/[ .N2.C�d /��

2//! �1.BC�d /

is an isomorphism. This time, let b 2 int.�2/ and define

U1 D Ob.C�d /[ .Mor.C�d /��
1/[ .N2.C�d /��

2
nfbg/;

U2 DN2.C�d /� int.�2/;

U1\U2 DN2.C�d /� int.�2/nfbg:
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As base point set X0 , choose one representative xl D .W
l

1
;W l

2
/ for each element

in �0.N2.C�d // such that @0.W
l

1
/ 2X 0

0
, where X 0

0
is as in the proof of Theorem 5.4.

Then
�1.U1;X0/D �1.Ob.C�d /[ .Mor.C�d /��

1/;X0/;

�1.U2;X0/D
G
l2L

�1.N2.C�d /;xl/;

�1.U1\U2;X0/D
G
l2L

�1.N2.C�d /;xl/�Z:

There is a map X0! X 0
0

given by .W l
1
;W l

2
/ 7! @0.W

l
1
/. Again, this allows us to

replace �1.U1;X0/ by �1.U1;X
0
0
/ and �1.U1[U2;X0/ by �1.U1[U2;X

0
0
/.

Let K D
F

l2Lfxlg �Z be the kernel of i2W �1.U1\U2;X0/! �1.U2;X0/. Since
i2 is vertex and piecewise surjective in the sense of [7, Chapter 12], it is a quotient
map. Thus i2W �1.U1\U2;X0/=K! �1.U2;X0/ is an isomorphism.

Now we want to apply Proposition 27 of [7] to compute the coequalizer of the diagram.
Let N1.K/ denote the normal subgroupoid of �1.U1;X

0
0
/ generated by the image

of K , and let N2.K/D
F

l2Lfxlg be the trivial normal subgroupoid of �1.U2;X0/.
Then there is a diagram

K�N1.K/tN2.K/:

The coequalizer is the trivial normal subgroupoid, so by the proposition, there is a new
coequalizer diagram

�1.U1\U2;X0/=K� �1.U1;X
0
0/=N1.K/t�1.U2;X0/! �1.U1[U2;X

0
0/:

But since i2W �1.U1\U2;X0/=K! �1.U2;X0/ is an isomorphism, the coequalizer
simply becomes �1.U1;X

0
0
/=N1.K/. This means that �1.U1[U2;X

0
0
/ is �1.U1;X

0
0
/,

which we computed in Theorem 5.4, with the only new relations being the Type (I)
relations determined by the xl 2K .

6 The chimera relations

In this section we give another description of �1.BC�
d
/ in terms of generators and

relations.

Let F denote the free abelian group generated by diffeomorphism classes of d –
dimensional manifolds with an equivalence class of � –structures. Let ŒW � denote the
class of W . Since BC�

d
is a loop space by [6], its fundamental group is abelian. Hence

the homomorphism

(12) F ! �1.BC�d /
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taking ŒW � to the homotopy class of W is well-defined by Lemma 5.2.

Let W1;W2 2 C�d .∅;M / and W3;W4 2 C�d .M;∅/. The following loops are clearly
homotopic in BC�

d
:

W1ıW3
' W1

� W3
' W1

� W4
� xW4

� xW2
� W2

� W3
' W1ıW4

� xW2ıW4
� W2ıW3

Since �1.BC�
d
/ is abelian, this implies:

Proposition 6.1 For W1;W2 2 C�d .∅;M / and W3;W4 2 C�d .M;∅/, the identity

(13) ŒW1 ıW3�C ŒW2 ıW4�D ŒW1 ıW4�C ŒW2 ıW3�

holds in �1.BC�
d
/.

We will refer to (13) as the chimera relations.1 Let C be the subgroup of F generated
by the chimera relations. Then (12) induces a homomorphism

(14) F=C ! �1.BC�d /:

We can now state the main theorem of this section.

Theorem 6.2 Assume that C�
d

satisfies (ii) of Theorem 3.5. Then (14) is an isomor-
phism.

Assuming (ii) in Theorem 3.5, (14) is surjective. Indeed, the alternating zigzag

�
W0
��! �

W1
 �� � � �

Wn
��! �

is homotopic to the image of

(15) ŒW0 ıW 1 ı � � � ıWn�C

nX
iD1

i even

ŒWn ıW n�1 ı � � � ıWi ıW i ı � � � ıW n�

�

nX
iD1
i odd

ŒWn ıW n�1 ı � � � ıW i ıWi ı � � � ıW n�

by the proof of Theorem 3.5. Similarly, if the zigzag starts with a morphism path in
the opposite direction, just switch all signs in the sum. If n is odd, the bars over the
Wn ’s should be switched. If the zigzag is not alternating, insert identity morphisms to
make it alternating and apply the formula.

We want to see that the formula (15) defines an inverse of (14). We break the proof up
in lemmas.

1This very descriptive name is due to Søren Galatius.
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Lemma 6.3 The formula (15) obtained from an alternating zigzag only depends on
the choice of opposite morphisms W i up to chimera relations.

Proof Let an alternating zigzag of the form

�
W0
��! �

W1
 �� � � �

Wk
 �� � � �

Wn
 �� �

be given. We choose opposites W i of Wi for all i . Assume W 0
k

is a different choice
of opposite to Wk . Define

L0 DW0 ıW 1 ı � � � ıW k ı � � � ıW n;

N0 DW0 ıW 1 ı � � � ıW 0k ı � � � ıW n;

and for 1� i � n and i odd,

Li DWn ıW n�1 ı � � � ıWk ı � � � ıWi ıW i ı � � � ıW k ı � � � ıW n;

Ni DWn ıW n�1 ı � � � ıWk ı � � � ıWi ıW i ı � � � ıW 0k ı � � � ıW n:

For i even, Li and Ni are defined by the same formulas except the bars over the
middle Wi ’s should be switched.

Using W k as opposite, (15) is given by

(16)
nX

iD0

.�1/i ŒLi �;

while using W 0
k

, it is

(17)
nX

iD0

.�1/i ŒNi �:

Note that Ni DLi for i > k . For i � k , we cut all Li between Wk�1 and W k and all
Ni between Wk�1 and W 0

k
. Denote the parts by L.j/i and N .j/

i for j D 1; 2 such that
the j D 2 parts contain W k or W 0

k
. Then for i; l � k , L.2/i D L.2/

l
, N .2/

i DN .2/
l

,
L.1/i DN .1/

i . Thus there is a chimera relation

ŒLi �� ŒLiC1�D ŒL
.1/
i ıL

.2/
i �� ŒL

.1/
iC1
ıL

.2/
iC1

�

� ŒL
.1/
i ıN

.2/
i �� ŒL

.1/
iC1
ıN

.2/
iC1

�D ŒNi �� ŒNiC1�:

Since k is odd, the two sums (16) and (17) differ by kC1
2

applications of this relation.
This takes care of the case where k is odd, n is odd, and the first path is traveled in
the positive direction.
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Changing the direction of all arrows in the zigzag only changes the signs in (16) and
(17). If n is increased by one, an extra LnC1 DNnC1 is added. This does not change
the argument. Finally, if k is even, then L0DN0 and the remaining Li and Ni are as
before. There is now an even number of 1� i � k , so the Li and Ni still pair up.

Lemma 6.4 If two zigzags differ only by the relation (I), the corresponding sums (15)
are related by chimera relations.

Proof Let a zigzag be given. After inserting identity morphisms if necessary, we
assume that it is alternating of the form:

(18) �
W0
��! �

W1
 �� � � �

Wn
��! �

We choose opposites of all Wi and define

L0 DW0 ıW 1 ı � � � ıW k ı � � � ıW n;

Li DWn ıW n�1 ı � � � ıWk ı � � � ıWi ıW i ı � � � ıW k ı � � � ıW n:

Then the zigzag (18) corresponds to the class

(19)
nX

iD0

.�1/i ŒLi �:

We first consider a special case of how apply the relation (I). Let k be odd and
Wk ıU DWkC1 for some U . After inserting identity morphisms, the original zigzag
is equivalent to:

�
W0
��! �

W1
 �� � � �

Wk�1
����! �

1@1.Wk�1/

 ������� �
U
�! �

WkC2

 ���� � � �
Wn
��! �

(If Wk�1 was an inserted identity morphism, we should really remove two identity
morphisms, but this does not change (15).) Let

N0 DW0 ıW 1 ı � � � ıWk�1 ıU ıW kC2 ı � � � ıW n;

Ni DWn ıW n�1 ı � � � ıWkC2 ıU ıW k�1 ıWk�2 ı � � �

ıWi ıW i ı � � � ıWk�1 ıU ıW kC2 ı � � � ıW n;

for 0< i � k � 1 and

Nk DNkC1 DWn ıW n�1 ı � � � ıWkC2 ıU ıU ıW kC2 ı � � � ıW n:

For kC 2� i � n, let Ni DLi . Then the new zigzag corresponds to

(20)
nX

iD0

.�1/i ŒNi �:
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We may choose U DW kC1 ıWk . For 0� i � k � 1, we cut all Li between Wk�1

and W k and all Ni between Wk�1 and U . Then there are chimera relations

ŒLi �C ŒNiC1�� ŒLiC1�C ŒNi �

for all 0� i � k � 2. There is an even number of i � k � 2. Moreover,

ŒNk�1�C ŒLk �� ŒLk�1�C ŒLkC1�

by another chimera relation. Finally, Nk DNkC1 and Ni DLi for i � kC 2. Hence
the two sums (19) and (20) are equivalent under the chimera relations.

If we consider the case Wk D WkC1 ı U instead and choose U D W k ıWkC1 ,
ŒL0�D ŒN0� and there is a chimera relation

ŒLk �C ŒNkC1�� ŒLkC1�C ŒNk �:

From these cases, the statement is easily deduced for n odd, k even, and the case
where all arrows are switched.

We could also apply (I) to replace

�
Wk
��! �

1@1.Wk /

 ����� �
WkC1

����! � by �
WkıWkC1

�������! � :

This only removes two identical terms with opposite signs from the sum (15).

All other applications of (I) may be given as a sequence of the moves considered
above.

Lemma 6.5 A Type (II) move does not change the sum (15).

Proof Let a zigzag

�
W0
��! � � �

Wk
��! � � �

Wn
��! �

be given.

If Wk is replaced by some W 0
k

by a Type (II) move, we may choose W 0
k

equal to
W k . Hence by Lemma 5.2, replacing Wk by W 0

k
does not change the diffeomorphism

classes in (15).

Proof of Theorem 6.2. We need to see that the surjection F=C ! �1.BC�
d
/ is

injective. Consider the composition

�1.BC�d /
�
�! F=C ! �1.BC�d /;
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where � is defined by the formula (15). This is well-defined by Theorem 5.1 and
Lemmas 6.3, 6.4 and 6.5. The composition is the identity so it is enough to see that �
is surjective.

Let x 2 F=C . The chimera relations imply that ŒW1�C ŒW2�D ŒW1 tW2�. Thus we
can represent x by an element ŒW �� ŒW 0� 2 F . This is �.W � xW 0/, since we may
choose W 0 D∅.
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