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Full-featured peak reduction
in right-angled Artin groups

MATTHEW B DAY

We prove a new version of the classical peak reduction theorem for automorphisms
of free groups in the setting of right-angled Artin groups. We use this peak reduction
theorem to prove two important corollaries about the action of the automorphism
group of a right-angled Artin group A� on the set of k –tuples of conjugacy classes
from A� : orbit membership is decidable, and stabilizers are finitely presentable.
Further, we explain procedures for checking orbit membership and building presenta-
tions of stabilizers. This improves on a previous result of the author. We overcome
a technical difficulty from the previous work by considering infinite generating sets
for the automorphism groups. The method also involves a variation on the Hermite
normal form for matrices.

20F36; 20F28, 15A36

1 Introduction

1.1 Background

Let F denote a finite-rank free group with automorphism group Aut.F /. Peak reduction
is a technique in the study of Aut.F / that is a key ingredient in the solution of several
important problems. J H C Whitehead invented the technique in the 1930s in [21] to
provide an algorithm that takes in two conjugacy classes (or more generally, k –tuples
of conjugacy classes) from F and determines whether there is an automorphism in
Aut.F / that carries one to the other. In a series of papers in the 1970s [14; 15; 16],
McCool used peak reduction methods to reprove Nielsen’s result that Aut.F / is finitely
presented, and to prove that the stabilizer in Aut.Fn/ of a tuple of conjugacy classes
in F is also finitely presented.

Given a finite simplicial graph � , the right-angled Artin group A� is the group given
by the finite presentation whose generators are the vertices of � , and whose only
relations are that two generators commute if and only if they are adjacent as vertices
in � . These groups are also called “partially commutative groups” and “graph groups”.
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Free groups are extreme examples of right-angled Artin groups, but this class of groups
also contains free abelian groups and many other groups.

The goal of this paper is to generalize the peak reduction method to right-angled
Artin groups. In a previous paper [9], the author found a weak generalization of peak
reduction and used it to prove that Aut.A�/ is finitely presented for every � . That
paper and its sequel [10] used peak reduction to prove that the stabilizers of certain
specific tuples of conjugacy classes in A� are finitely generated, and to investigate
an analogue of mapping class groups of surfaces inside Aut.A�/. There is also a
version of peak reduction for right-angled Artin groups from recent work of Charney,
Stambaugh and Vogtmann [3]; they use peak reduction to study an outer space for
Aut.A�/ (a contractible cell complex that Aut.A�/ acts on geometrically). We relate
their theorem to our results after we state them below. However, the other applications
of peak reduction do not seem to follow directly from either of the peak reduction
theorems just mentioned. The present paper proves a strong generalization of peak
reduction to right-angled Artin groups and uses it to prove two important corollaries of
peak reduction.

1.2 Results

First we state two corollaries of peak reduction. Let A� be a right-angled Artin group.

Theorem 1.1 There is an algorithm that takes in two tuples U and V of conjugacy
classes from A� and either produces an automorphism ˛ 2 Aut.A�/ with ˛ �U D V

or determines that no such automorphism exists.

Theorem 1.2 There is an algorithm that takes in a tuple W of conjugacy classes
from A� and produces a finite presentation for its stabilizer Aut.A�/W .

These results follow from our result on peak reduction, which will take a few definitions
to state. Let X denote the vertex set of � . The length juj of an element u 2A� is the
usual length in terms of the generating set X . The length jwj of a conjugacy class w is
the minimum length of a representative, and the length jW j of a tuple W of conjugacy
classes is the sum of the lengths of its entries.

For a 2X , the star st.a/ is the subset of X consisting of a and all vertices adjacent
to a. For a and b in X , a and b are in the same adjacent domination equivalence
class if st.a/D st.b/. We denote the adjacent domination equivalence class of a by Œa�;
if b 2 Œa� with a¤ b , then a is necessarily adjacent to b . It is entirely possible that
Œa�D fag. We define the set of generalized Whitehead automorphisms with multiplier
set Œa�, denoted �Œa� , to be the subgroup of automorphisms in Aut.A�/ such that
˛ 2�Œa� if and only if
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� for each b 2X n Œa�, there are u; v 2 hŒa�i with ˛.b/D ubv ,

� for each b 2 Œa�, we have ˛.b/ 2 hŒa�i.

In general each �Œa� is an infinite group. We define the permutation automorphisms P

to be the finite subgroup of Aut.A�/ with ˛ in P if and only if ˛ restricts to a
permutation of X[X�1 . We define the set of generalized Whitehead automorphisms �
to be the union of P with all the �Œa� as a varies over the vertices of � . It follows
from a result of Laurence [12] (see Theorem 2.1 below) that � is a generating set for
Aut.A�/.

Theorem 1.3 (Peak reduction) Suppose ˛ 2Aut.A�/ and W is a tuple of conjugacy
classes in A� . Then there is a factorization

˛ D ˇmˇm�1 � � �ˇ2ˇ1

with ˇ1; : : : ; ˇm in �, such that the sequence of intermediate lengths

k 7! jˇk � � �ˇ1 �W j for k D 0; : : : ;m

strictly decreases from k D 0 to k D k1 for some k1 with 0� k1 �m, stays constant
from k D k1 to k D k2 for some k2 with k1 � k2 � m and strictly increases from
k D k2 to k Dm. Further, there is an algorithm to find such a factorization.

A major difference between this formulation and the one for free groups is that the
set � is finite in that setting, but is usually infinite in this setting. Since the classic
applications rely on this set being finite, we need some additional results to get the
applications to work.

Proposition 1.4 There is an algorithm that takes in two tuples U and V of conjugacy
classes from A� and a vertex a in � , and produces an automorphism ˛ in �Œa� with
˛ �U D V or determines that no such automorphism exists. In particular, it is possible
to determine whether a tuple U can be shortened by an automorphism from �Œa� .

Proposition 1.5 There is an algorithm that takes in a tuple U of conjugacy classes
from A� and a vertex a in � , and produces a finite presentation for the stabi-
lizer .�Œa�/U .

It turns out that the groups �Œa� embed in integer general linear groups, and the key
to these propositions is a modified version of the Hermite normal form for integer
matrices.

The following example motivates the use of the infinite generating sets.
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Example 1.6 This is Example 4.1 from Day [9], which shows that no finite generating
set will work for a peak reduction theorem formulated for the entirety of Aut.A�/.
In this example, � is the four-vertex path graph with vertices a, b , c and d in that
order. In [9, Proposition C], we show that for k 2 Z, the conjugacy class w D adk

in this A� is fixed by an automorphism ˛ with ˛.a/ D ack and ˛.d/ D c�1d and
with ˛ fixing b and c . Further, we show that there is no peak-reduced factorization
of ˛ with respect to w by automorphisms that are simpler in a specific sense. This
contradicts the existence of a certain formulation of peak reduction theorem, because
such a theorem could be used to produce such factorizations with automorphisms taken
from a fixed finite set; however, such a set cannot work for all choices of k . But since
the automorphism ˛ is in our set �Œc� for any k , this example does not contradict
Theorem 1.3.

The results in the present paper are somewhat similar to certain other results. However,
Theorems 1.1 and 1.2 do not appear to be a direct consequence of any results in the
literature. First we compare Theorem 1.3 to Day [9, Theorem B]. Although part (3)
of Theorem B is a peak reduction theorem, it applies only to a proper subgroup of
Aut.A�/ (in general) and there does not appear to be a straightforward way to apply
that theorem to characterize orbits or stabilizers under the entirety of Aut.A�/.

Next we note that there is a peak reduction theorem for right-angled Artin groups in a
recent preprint of Charney, Stambaugh and Vogtmann [3]. Theorem 5.19 of that paper
proves that Aut.A�/ has peak reduction using a finite generating set, but only with
respect to a specific kind of tuple of conjugacy classes: tuples containing all conjugacy
classes of length one or two, and the images of such tuples under automorphisms.
Their proof is elegant, but the methods do not seem to apply to other kinds of tuples of
conjugacy classes (in particular, Example 1.6 is still a problem).

We also note another special case where results like these are previously known. Collins
and Zieschang have a series of papers [5; 6; 7; 8] on the Whitehead method for free
products of groups. If � is a disjoint union of complete graphs, then A� is a free
product of free abelian groups, and results of Collins–Zieschang, similar to Theorems 1.1
and 1.2, apply. Their methods do not extend to A� for general � since A� is freely
indecomposable if � is connected.

Remark Another potential application of results of this paper is to the algebraic geom-
etry of groups. Casals-Ruiz and Kazachkov define an algorithm in [1] for parametrizing
solutions to systems of equations in right-angled Artin groups, and our Theorem 1.2 is
relevant to that algorithm. Specifically, a system of equations over a right-angled Artin
group A� corresponds to tuple W of conjugacy classes (those which are set equal to 1)
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in A� �Fn , a free product of A� with a finite-rank free group. This free product is
another right-angled Artin group A� . Theorem 1.2 gives us a finite presentation, in an
effective way, for the stabilizer .A�/W , and this stabilizer maps to the automorphism
group of the coordinate group of the system of equations. Casals-Ruiz and Kazachkov
have informed the author that the finite presentability of these groups could be used to
make improvements to their algorithm. This connection is not pursued in the present
paper.

1.3 Organization of the paper

We postpone the proofs of the more technical results to later sections in the paper.
Section 2 contains preliminary facts about right-angled Artin groups. We reduce
Propositions 1.4 and 1.5 to propositions about linear groups in Section 3, and we prove
our two main application theorems in Section 4. Section 5 proves the propositions
about linear groups and we finally prove the peak reduction theorem in Section 6.

2 Preliminaries

2.1 Combinatorial group theory of right-angled Artin groups

The survey by Charney [2] is a good general reference for right-angled Artin groups.
We recall a few facts here that are important for understanding the paper. As mentioned
above, the length of an element u of A� is always the minimal length of an expression
for u as a product of generators from � and their inverses. Servatius [19] points out
that a word in the generators representing u is of minimal length if and only if it is
graphically reduced, meaning that there is no subword xvx�1 where x is a generator
or inverse generator and v is a word in those generator that commute with x . Further,
Servatius shows that it is possible to get between any two minimal-length representatives
for a word by a sequence of commutation moves. Normal forms found by VanWyk [20]
and by Hermiller and Meier [11] are a convenient way to check whether two words
represent the same element. Algorithms for checking conjugacy have been described
by Liu, Wrathall and Zeger [13], and by Wrathall [22].

One important result is the centralizer theorem of Servatius, from [19]. It states that for
any u 2A� , we can find an element v with u0 D vuv�1 cyclically reduced (minimal
length in its conjugacy class), and for u0 cyclically reduced, its centralizer is exactly
what one would guess. Specifically, u0 can be written as a graphically reduced product
t
k1

1
� � � t

km
m , where each ti is not a proper power and every vertex of � used in writing ti

commutes with every vertex of � used in writing tj for each i¤ j . Then the centralizer
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of u0 is generated by the ftigi together with each vertex in � that commutes with all
the vertices appearing in u0 . The centralizer of the original u is of course the conjugate
of the centralizer of u0 by the same conjugating element v .

2.2 Generating automorphisms

If a and b are vertices in � and every vertex that is adjacent to b commutes with a, we
say that a dominates b . This can happen whether or not a is adjacent to b . Domination
is important because it determines whether certain maps defined on generators actually
extend to automorphisms. The following definitions are originally from Servatius [19].

� If a and b are distinct vertices in � and a dominates b , then there is an
automorphism in Aut.A�/ sending b to ba and fixing all other vertices in � .
This is a dominated transvection. If a is not adjacent to b , then there is a
different automorphism sending b to ab and fixing all other generators; this is
also a dominated transvection. When we need to distinguish between these, we
refer to right- and left-dominated transvections.

� If a is a vertex in � and Y is a connected component of � n st.a/, then there
is an automorphism in Aut.A�/ sending each c in Y to aca�1 and fixing all
other vertices in � . This is a partial conjugation.

� If � is a symmetry of the graph � , then there is an automorphism in Aut.A�/
sending each generator x to its image �.x/. This is called a graphic automor-
phism.

� For each vertex a in � , there is an automorphism sending a to a�1 and fixing
all other generators. This is the inversion in a.

If a is adjacent to b then the right- and left-dominated transvections are the same.
Dominated transvections generalize Nielsen moves and also those elementary matrices
with a single nonzero off-diagonal entry of one. It is well known that transvections
and inversions generate automorphism groups of free groups and general linear groups
over the integers, but for general right-angled Artin groups, there are nontrivial partial
conjugations and graphic automorphisms that cannot be expressed as products of
inversions and transvections. However, these four kinds of automorphisms generate
the automorphism group.

Theorem 2.1 (Laurence [12]) For any � , the group Aut.A�/ is generated by the
finite set consisting of all dominated transvections, partial conjugations, graphic auto-
morphisms, and inversions.
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2.3 Labeled directed graphs

A labeled directed graph is a directed multigraph, with self-loops allowed, so that each
directed edge carries a label from a prespecified label set. In this paper, the label sets
are always subsets of groups, and we use the convention that a directed edge from
a vertex v1 to a vertex v2 with label g is also a directed edge from v2 to v1 with
label g�1 . Since all directed edges are considered directed in both directions (with
different labels) this means that edge paths are the same as in the underlying undirected
graph. In particular, the connected components of a labeled directed graph are the same
as the connected components of the underlying undirected graph.

Again we emphasize that in this paper, edge labels are always elements of a prespecified
group. By the composition of edge labels of an edge path p in a labeled directed graph,
we mean the following: for each edge e on p , we record the label of e in S if the
orientations of e and p agree, and if the orientations disagree, we record the inverse
of the label of e ; the composition of edge labels is then the composition of these
labels and inverses that we recorded, in the order that p traverses them. Or since we
consider reversed edges to be labeled with the inverse group element, we can take the
composition of edge labels of p simply to be the composition of the labels on the
edges in p , interpreted with orientation agreeing with p .

One note: we compose automorphisms like functions, but we compose edge labels on
paths in the opposite order, like the usual convention for fundamental groups. This
means that if � is a directed graph with labels in an automorphism group, then the
composition of edge labels along a path labeled with ˛1 � ˛2 � � � � � ˛k in � is
˛k � � �˛2˛1 .

Let S be a set of elements of an arbitrary group G and let H be a subgroup of G .
The Schreier graph of H in G with respect to S is the labeled, directed multigraph
whose vertex set is the set of left cosets of H in G and with an edge labeled by c in S

from coset aH to bH if and only if caH D bH . Note that since we are not supposing
that S [H generates G , it will not generally be the case that these Schreier graphs
are connected.

Lemma 2.2 Suppose S is a set of elements of G and � is the Schreier graph of H

in G with respect to S . Suppose p is an edge path in �, starting at a vertex aH

and ending at a vertex bH . Let c be the composition of edge labels along p . Then
caH D bH .

The proof is an induction argument using the definitions, and is omitted.
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In our arguments we need to be able to promote a presentation from a finite-index
subgroup of a group to the entire group. Although it is common knowledge that this
is possible, we could not find a reference on how to do it. So for completeness, we
provide an argument.

Lemma 2.3 Suppose H is a finite-index subgroup of a group G and we are given
a finite presentation H D hSH jRH i and a finite set SG � G such that the Schreier
graph � of H in G with respect to SH [SG is connected. Suppose we are also given
an explicit description of � as a labeled directed multigraph. Then we can write down
a finite presentation for G .

Proof Let p1; : : : ;pk be generators for the fundamental group of � based at H .
Since � is a finite graph, this is a finite set (generators can be found by selecting a
maximal subtree of �). Let ui be the composition of edge labels along pi for each i ;
each ui is a word in SH [ SG . By Lemma 2.2, we know that ui 2 H . Let wi be
a word in SH representing the same element as ui . Let RG be the set of relations
fu1w

�1
1
; : : : ;ukw

�1
k
g. Let G0 D hSH [SG jRH [RGi.

Let �W G0!G send each generator to the element of the same name. Since � sends
relators to the identity, it is a well-defined group homomorphism. We claim that it is
an isomorphism. The group G0 acts on � through � ; since SG �G is in the image
of � , this action is transitive. Let K be the stabilizer of the vertex H of � in G0 .
We note that � is then isomorphic to the Schreier graph of K in G0 , and therefore
the fundamental group of � based at H surjects to K by reading off edge labels. In
particular, K is generated by the elements u1; : : : ;uk . Since G0 contains relations RG

turning the generators u1; : : : ;uk into words in SH , it follows that K is the subgroup
of G0 generated by SH . The map � restricts to a map K! G ; since K fixes the
vertex H in �, the image of this map is in H . We have a map H !G0 sending each
generator the generator of the same name; since H fixes the vertex H in �, the image
of this map lies in K . So we have natural maps H !K and K! H ; since these
are defined by sending generators to generators of the same name, they are inverses of
each other. This implies that � is injective: anything in the kernel acts trivially on H

and is therefore in K , but G0!G restricts to an isomorphism on K .

Now we claim that � is surjective. If not, there is some g 2G not in �.G0/. But G0

acts transitively on �, so there is g0 2G0 with g0 �H D gH . Then �.g0/g�1 is not
in �.G0/, however, it fixes H and is therefore in H . But � maps K maps surjectively
to H , a contradiction.
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3 Reduction to linear problems

3.1 Structure of generalized Whitehead automorphisms

In this section we fix a vertex a and consider the set �Œa� of generalized Whitehead
automorphisms with multiplying set Œa�. As defined in the introduction, this is the
subgroup of Aut.A�/ consisting of automorphisms that multiply elements not in Œa� on
the right and left by elements of Œa�, and send elements of Œa� to products of elements
of Œa�. Let dom.a/ denote the set of vertices that a dominates, including a itself.

We define ZŒa� to be the free abelian group generated by the following symbols:
� for each vertex b in st.a/\ dom.a/, a generator rb

� for each vertex b in dom.a/ n st.a/, two generators rb and lb

� for each connected component Y of � n st.a/ with at least two vertices, a
generator rY

We define a map �W �Œa�! Aut.ZŒa�/ as follows, given ˛ 2�Œa� .
� For b in st.a/\ dom.a/ and c in Œa�, the coefficient of rc in �.˛/.rb/ is the

sum exponent of c in ˛.b/, if b 62 Œa� then the coefficient of rb in �.˛/.rb/ is
one, and the coefficients of all other generators in �.˛/.rb/ are zero.

� For b in dom.a/nst.a/ and c in Œa�, the coefficient of rc in �.˛/.rb/ is the sum
exponent of c in v and the coefficient of rc in �.˛/.lb/ is the sum exponent of c

in u, where ˛.b/D ubv ; the coefficient of rb in �.˛/.rb/ is one, the coefficient
of lb in �.˛/.lb/ is one, and coefficients of all other basis elements in �.˛/.rb/

and �.˛/.lb/ are zero.
� For Y a connected component of � n st.a/ with at least two vertices and c

in Œa�, the coefficient of rc in �.˛/.rY / is the sum exponent of c in u where
˛.x/D u�1xu for some x in Y ; the coefficient of rY in �.˛/.rY / is one and
the coefficients of all other basis elements in �.˛/.rY / are zero.

Our next goal is to show that � is well-defined and describe its image. Let nD jŒa�j and
let k D dim.ZŒa�/� n. To describe this image precisely, we pick an isomorphism be-
tween ZŒa� and ZnCk to identify Aut.ZŒa�/ with a matrix group. Let Œa�Dfa1; : : : ; ang.
We map the basis elements ra1

; : : : ; ran
to the first n basis elements of ZnCk , and we

map the remaining basis elements of ZŒa� to the remaining basis elements of ZnCk

arbitrarily.

Throughout the paper, we use GL.n;R/ to denote the general linear group of invertible
n� n matrices with entries in a ring R, and we use Mn;k.A/ to denote the abelian
group of n� k matrices with entries in an abelian group A.

Algebraic & Geometric Topology, Volume 14 (2014)



1686 Matthew B Day

Lemma 3.1 The map � is a well-defined injective homomorphism.

Further, we can describe its image. Under the identification of ZŒa� with ZnCk above,
the image of � is the set of block upper-triangular matrices of the form�

A B

O I

�
;

where A is in GL.n;Z/, B is in Mn;k.Z/, O is the zero matrix and I is the k � k

identity matrix. Here the matrix A records the coefficients of rb for b 2 Œa� and the
matrix B records the remaining coefficients.

Proof Since ˛ 2 �Œa� sends each element b of Œa� to some ˛.b/ 2 hŒa�i, and the
elements of Œa� commute, the image of �.˛/.rb/ is well-defined for each b 2 Œa�. For
each b 2 dom.a/\st.a/n Œa�, we know that ˛.b/ is bu for some u2 hŒa�i, since we can
commute elements of Œa� to the right side of b . Since elements of Œa� commute, again
�.˛/.rb/ is well-defined. For each b 2 dom.a/n st.a/, we know ˛.b/D ubv for some
u; v 2 hŒa�i. These elements u and v are well-defined because we cannot commute
elements of Œa� across this b . Again the coefficients are well-defined because hŒa�i is
abelian.

Now consider Y a connected component of �nst.a/ with at least two vertices. For any b

in Y there is some c in Y such that b commutes with c . We know ˛.b/D u1bv1 and
˛.c/D u2cv2 , with ui ; vi 2 hŒa�i. It must be the case that ˛.b/ commutes with ˛.c/.
We consider the centralizer of ˛.b/, as indicated by the Servatius centralizer theorem
(see Section 2.1). If u1 ¤ v

�1
1

, then the cyclically reduced form of ˛.b/ contains b

and elements of Œa�. This means that there is an element of hŒa�i that conjugates ˛.c/
into hst.b/\ st.a/i. However, this is impossible: any such conjugate of ˛.c/ would
have c in it, which is not in st.a/. So this implies that u1 D v

�1
1

, and of course a
parallel argument implies that u2 D v

�1
2

. Further, the centralizer theorem then implies
that u1 D u2 . Repeating this argument on all adjacent pairs in Y , we see that there is
a fixed u 2 hŒa�i, depending only on ˛ , such that ˛.b/D u�1bu for any b in Y . Then
since hŒa�i is abelian, the image �.˛/.rY / is well defined.

It is straightforward computation to check that � is a homomorphism.

To see that � is injective and has the specified image, we construct an inverse map � .
Really there is only one way to do this: given a matrix M in the specified image, we
read off the first n entries in each column and multiply together elements of Œa� with
these exponents to get nC k elements of hŒa�i. For each basis element, let ub be the
element determined by the column for rb , let vb be determined by the column for lb ,
and let uY be determined by the column for rY . We construct an automorphism �.M /
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that sends b 2 Œb� to ub ; �.M / sends b 2 dom.a/\ st.a/ n Œa� to bub ; �.M / sends
b2dom.a/nst.a/ to vbbub ; and �.M / sends each c in a connected component Y with
at least two vertices to u�1

Y
cuY . In fact this completely specifies �.M / on generators;

�.M / extends to an endomorphism of A� because the images of generators still satisfy
the defining relations for A� , and �.M / specifies an automorphism of A� because
�.M�1/ is its inverse. Since these maps are clearly inverses of each other, this finishes
the proof.

Let m; n; k be integers with k � 0 and n;m� 1. In light of Lemma 3.1, we define the
group G1 to be GL.n;Z/ËMn;k.Z/ and we state versions of Propositions 1.4 and 1.5
in this setting. The reason for the subscript 1 will be clear later; we will consider other
versions of this group where the subscript denotes a common denominator for certain
rational matrix entries.

Proposition 3.2 There is an algorithm that takes in matrices A and B in MnCk;m.Z/,
and returns a matrix D in G1 with DADB , or determines that there is no such matrix.

Proposition 3.3 Suppose A is in MnCk;m.Z/. Then there is an algorithm that pro-
duces a finite presentation for the stabilizer of A in G1 .

The proofs of these propositions are postponed to Section 5.

3.2 Algorithms for groups of generalized Whitehead automorphisms

In this section we prove Propositions 1.4 and 1.5 modulo Propositions 3.2 and 3.3,
which we prove later. We again fix a 2 � . The following definition is not only central
to this section but is also important for much of the rest of the paper.

Definition 3.4 A syllable in A� with respect to a is a graphically reduced product of
the form cud 2A� , where u is an element of hst.a/i, and c and d are elements of
.� n st.a//˙1 or c D d D 1. It is a linear syllable if c ¤ 1 and d ¤ 1, and a cyclic
syllable if c D d D 1. If cud is a linear syllable, then c and d are the endpoints.

If w is a conjugacy class in A� , a decomposition of w into syllables with respect to a

is either of the following:

� If the conjugacy class w has a representative element u in hst.a/i, then u itself
is a cyclic syllable, and the singleton .u/ is a decomposition of w into syllables.
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� If w does not have a representative in hst.a/i, then a decomposition of w into
syllables is a k –tuple of linear syllables for some k ,

.c1u1c2; c2u2c3; : : : ; ckukc1/;

such that the product

c1u1c2u2c3u3 � � � ckuk 2A�

is a graphically reduced and cyclically reduced product representing the class w .

The products u or c1u1 � � � ckuk above are the representatives associated with the
decomposition.

If W D .w1; : : : ; wk/ is a k –tuple of conjugacy classes in A� , a decomposition of W

into syllables with respect to a is the concatenation, into a single tuple, of some choice
of decompositions of the wi into syllables. Given a decomposition of W into syllables,
the representative associated to the decomposition is the tuple of elements of A�
consisting of the representatives associated with the decompositions of the wi .

We give some specific examples of syllable decompositions in Example 3.9 below.
To clarify the definition, we note a couple of unusual cases. If c and d are distinct
elements not in st.a/, and u2hst.a/i, then .cd; duc/ is a syllable decomposition for the
conjugacy class of cdu. Likewise, .cuc/ is a syllable decomposition for the conjugacy
class of cu. Generally, syllable decompositions are far from being unique; however,
it is not hard to see that certain aspects of syllable decompositions are determined by
the tuples being decomposed. First of all, for a given conjugacy class, it is either the
case that it has a unique decomposition as a cyclic syllable, or that all of its syllable
decompositions are tuples of linear syllables. Second, if a conjugacy class decomposes
into linear syllables, then the number of linear syllables in the decomposition is the
number of instances of letters from X nst.a/ appearing in any cyclically and graphically
reduced representative. In particular, the number of syllables in a decomposition is the
same for all decompositions.

If w is a conjugacy class in A� , there are two possible kinds ambiguities that come
up in decomposing w into syllables. First of all, if T is a decomposition of w into
syllables, then any cyclic permutation of T is also a decomposition of w into syllables.
Second, if we take the representative associated with a decomposition and get a different
graphically reduced product by commuting some letters across syllable boundaries, the
resulting product will be associated with a different decomposition of w . These two
kinds of ambiguities also come up in decomposing tuples of conjugacy classes into
syllables. As we will see below, this second kind of ambiguity is not very important.
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The purpose of decomposing things into syllables with respect to a is that it gives us a
convenient way to encode the action of �Œa� and to keep track of its effect on lengths.
We recall the free abelian group ZŒa� from Section 3.1. We define a map � to ZŒa�

from the set of syllables in A� with respect to a.

� If u is a cyclic syllable then �.u/ is
P

b2st.a/\dom.a/ nbrb , where nb is the sum
exponent of b in u for each b 2 st.a/\ dom.a/.

� If cud is a linear syllable then �.cud/ is vc C vd C
P

b2st.a/\dom.a/ nbrb ,
where nb is the sum exponent of b in u for each b 2 st.a/\ dom.a/, and
– if c is a positive generator and c 2 dom.a/, then vc D rc ,
– if c�1 is a positive generator and c�1 2 dom.a/, then vc D�lc ,
– otherwise c or c�1 is in Y , a connected component of � n st.a/ with two

or more vertices, and vc D rY ;
– if d is a positive generator and d 2 dom.a/, then vd D lc ,
– if d�1 is a positive generator and d�1 2 dom.a/, then vd D�rd ,
– otherwise d or d�1 is in Y , a connected component of � n st.a/ with two

or more vertices, and vd D�rY .

The map � extends diagonally to define a map � from tuples of syllables to tuples of
vectors of ZŒa� . Note that � makes no record of the letters in cud from st.a/ndom.a/.
In fact, the map � gets rid of one of the ambiguities possible in decomposing a class
into syllables.

Lemma 3.5 Suppose w is a conjugacy class in A� and T and T 0 are decompositions
of w into syllables with respect to a. Then the tuple �.T / is a cyclic permutation of
the entries of the tuple �.T 0/. Further, if W is a tuple of conjugacy classes and T

and T 0 are decompositions of W , then �.T / is a permutation of �.T 0/.

Proof As mentioned in Section 2.1, any graphically reduced word representing a given
element can be transformed into any other by a sequence of commutations. Further,
any graphically and cyclically reduced word representing a conjugacy class can be
transformed into any other by a sequence of commutations and cyclic permutations. This
observation has a corollary for decompositions of w into syllables. Any decomposition
T D .c1u1c2; : : : ; ckukc1/ of w into syllables can be turned into any other by a
sequence of the following moves.

� If some uqDu0qu00q (possibly with u0qD1 or u00qD1) and for some p�q we have
that cp commutes with cq , u0q , up , and all ci and ui for i D pC 1; : : : ; q� 1,
and none of the intervening ci are equal to c˙1

p , then we can replace the syl-
lable cp�1up�1cp with cp�1up�1upcpC1 , delete cpupcpC1 from the list, and
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break cquqcqC1 into two adjacent syllables cqu0qcp and cpu00qcqC1 . In the case
that p D q , we simply replace cp�1up�1cp with cp�1up�1u0pcp and replace
cpupcpC1 with cpu00pcpC1 .

� The previous move can be done in reverse.

� If some up D u0pxu00p and for some q > p we have uq D u0qu00q (possibly with
any of u0p;u

00
p;u
0
q;u
00
q equal to 1) such that x commutes with u00p , cq , u0q and

all ci and ui for i DpC1; : : : ; q�1, then we can replace the syllable cpupcpC1

with cpu0pu00pcpC1 and replace cquqcqC1 with cqu0qxu00qcqC1 .

� The previous move can be done in reverse.

� We can cyclically permute the entries of T .

One issue that needs to be addressed with these moves is the fact that they send a well-
formed syllable decomposition to a well-formed syllable decomposition. This follows
from the fact that syllables are graphically reduced products. If one of the replacements
above results in a syllable that is not graphically reduced, for example, where the ci

cancels with the ciC1 , then the original syllable was not graphically reduced. By virtue
of moving things only across things they commute with, if a cancellation is possible
after the replacement, it was also possible in the first place.

We consider the effect the first move has on �.T / in the case that p < q . This
replaces cp�1up�1cp with cp�1up�1upcpC1 . Since cp commutes with up , but cp

is not adjacent to a, no generator from st.a/ \ dom.a/ appears in up . Since cp

commutes with cpC1 , and neither is adjacent to a, this means a dominates nei-
ther one and they are in the same component Y of � n st.a/. These facts imply
that �.cp�1up�1cp/ D �.cp�1up�1upcpC1/. The syllable cpupcpC1 is deleted, but
since cp and cpC1 are both in Y and since no generator from st.a/ \ dom.a/ ap-
pears in up , we have �.cpupcpC1/ D 0. The intervening syllables ciuiciC1 for
i DpC1; : : : ; q�1 commute entirely with cp ; this implies for each i that ui contains
no generators from st.a/\ dom.a/ and that both ci and ciC1 are in Y ; this implies
that for each i , �.ciuiciC1/D 0. So although a syllable is deleted before this sequence,
thus shifting this sequence forward, there is no effect because this is a sequence of
zeros. The syllable cquqcqC1 is broken into cqu0qcp and cpu00qcqC1 . For the same
reason as the intervening syllables, we see �.cqu0qcp/D 0. Similarly, cq and cp must
both be in Y , and u0q makes no contribution, so �.cquqcqC1/ D �.cpu00qcqC1/. So
the effect of the move on �.T / is to replace the entry in position p with the same
entry, replace zero entries from position pC 1 to position q� 1 with zero entries, and
replace the entry in position q with an identical entry. Therefore the first move does
not affect �.T / if p < q .
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If p D q , the first move replaces cp�1up�1cp with cp�1up�1u0pcp and replaces
cpupcpC1 with cpu00pcpC1 . Since u0p commutes with cp it contains no generators
from st.a/\ dom.a/, and we deduce that �.cp�1up�1cp/ D �.cp�1up�1u0pcp/ and
�.cpupcpC1/D �.cpu00pcpC1/. So the move has no effect on �.T / in this case as well.

Next we consider the second kind of move. We replace cpupcpC1 D cpu0pxu00pcpC1

with cpu0pu00pcpC1 ; since x commutes with cpC1 , it is not in st.a/ \ dom.a/, and
therefore �.cpupcpC1/D �.cpu0pu00pcpC1/. We also replace cquqcqC1D cqu0qu00qcqC1

with cqu0qxu00qcqC1 ; for the same reason, �.cquqcqC1/ D �.cqu0qxu00qcqC1/. There-
fore �.T / is unchanged for this kind of move. Of course, if a kind of move leaves �.T /
unchanged, then the same kind of move in reverse will also leave it unchanged. So the
moves above can only change �.T / by cyclically permuting its entries.

If W is a tuple of cyclic words and T is a decomposition of W into syllables,
then of course, we can cyclically permute the decompositions of the entries in W .
Since T is a concatenation of these decompositions of entries, it is possible that
different decompositions of W will differ by more complicated permutations: ones
that cyclically permute the segments coming from different entries of W .

Definition 3.6 Fix a vertex a in � . We define an action of �Œa� on the set of
syllables with respect to a as follows: if ˛ 2�Œa� and s D cud where u 2 hst.a/i and
c; d 2 .� n st.a//˙1 and ˛.c/D w1cw2 and ˛.d/D w3dw4 , then define

˛ � s D cw2˛.u/w3d:

We extend this action diagonally to the set of k –tuples of syllables for each k .

This action loses the element that ˛ places on the left of the left endpoint of the syllable,
and loses the element that ˛ places on the right of the right endpoint of the syllable.
We recall the map �W �Œa�! Aut.ZŒa�/ from Section 3.1. Note that the action of �Œa�
on syllables just described is the same as the action of �.�Œa�/ on ZŒa� , in that the
injective map � intertwines the two actions.

Let fa1; : : : ; ang D Œa�. We note that any syllable with respect to a may be written
without loss of generality in the form ca

p1

1
� � � a

pn
n ud , where u 2 hst.a/ n Œa�i. This

is because in a general syllable cu0d , everything from Œa� in u0 can be commuted to
the left, since u 2 hst.a/i. The following result is a kind of equivariance between the
actions of �Œa� on syllables and on ZŒa� .

Lemma 3.7 Suppose ca
p1

1
� � � a

pn
n ud is a syllable of A� with respect to a, and

suppose ˛ 2�Œa� . Let p0i be the coefficient of rai
in ˛ ��.ca

p1

1
� � � a

pn
n ud/. Then there

are elements v1; v2 2 hŒa�i with

˛.ca
p1

1
� � � apn

n ud/D v1ca
p0

1

1
� � � a

p0n
n udv2:
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Proof This is a computational exercise in manipulating the definitions.

Lemma 3.8 Suppose W is a tuple of cyclic words and

T D .c1a
p1;1

1
� � � a

p1;n

n u1d1; : : : ; cma
pm;1

1
� � � a

pm;n

n umdm/

is a decomposition of W into syllables, with each ui 2 hst.a/ n Œa�i. Suppose ˛ 2�Œa� .
Let p0i;j be the coefficient on raj

in the i th coordinate of �.˛/ ��.T /, for i D 1; : : : ;m

and j D 1; : : : ; n. Then

˛ �T D .c1a
p0

1;1

1
� � � a

p0
1;n

n u1d1; : : : ; cma
p0

m;1

1
� � � a

p0m;n

n umdm/;

and ˛ �T is a syllable decomposition of ˛ �W .

Proof This follows from repeated application of Lemma 3.7. In the case that w is a
cyclic word and .c1u1c2; : : : ; cmumc1/ is its decomposition, we rewrite the represen-
tative associated to this decomposition as

c1u1c2 � c
�1
2 � c2u2c3 � c

�1
2 � � � cmumc1 � c

�1
1 :

We apply ˛ to each factor in this product separately. Lemma 3.7 applies to each
syllable factor in the product. When we act on a standalone c�1

i factor in the product,
we cancel away the leading and trailing elements from hŒa�i from the preceding and
following syllables (the v1 and v2 elements from Lemma 3.7). From the resulting
product, in which the exponents on the ai –factors inside the syllables are from the
action of �.˛/ (as in Lemma 3.7), it is easy to see that the corresponding syllable
decomposition T 0 from the lemma statement is a decomposition of ˛ �w . The case
that W is a tuple of cyclic words follows by applying the same argument to each entry
in the tuple separately.

Example 3.9 This example illustrates why we need to take a little care with the
algorithms for Propositions 1.4 and 1.5. Suppose for this example that � is the graph
with four vertices fa; b; c; dg, with an edge from a to b and an edge from c to d (so A�
is Z2 � Z2 ). Consider the conjugacy classes u and v represented by cacbcb and
cbcabcb respectively. Choosing syllable decompositions with respect to a arbitrarily,
we might choose T D .cac; cbc; cbc/ for u and T 0 D .cbc; cabc; cbc/ for v . The
group ZŒa� is generated by ra , rb and rY , where Y D fc; dg, and �.T /D .ra; rb; rb/

and �.T 0/D .rb; rbCra; rb/. To check whether �.T / and �.T 0/ are in the same orbit,
we apply the algorithm from Proposition 3.2, after choosing an appropriate identification
between ZŒa� and Z3 . We find that �.T / and �.T 0/ are not in the same orbit. However,
T 00 D .cabc; cbc; cbc/ is also a syllable decomposition for v with respect to a, and
it is not hard to see that �.T / and �.T 00/ are in the same orbit under �.�Œa�/: the
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automorphism sending a to ab�1 and fixing the other generators sends one to the other.
This automorphism also sends u to v . This example illustrates the need to consider
permutations of a syllable decomposition, instead of only considering a single arbitrary
decomposition.

Now consider the conjugacy class u represented by cacb in the same group. One
syllable decomposition for the conjugacy class is T D .cac; cbc/. The automorphism ˛

sending a to b and b to a and fixing the other generators is in �Œa� , and ˛ � uD u.
However, �.˛/ � �.T /¤ �.T /. This illustrates the possibility of automorphisms fixing
a conjugacy class but not a particular syllable decomposition of that class.

For our finite presentation result, we need refined versions of Propositions 1.4 and 1.5.
Specifically, we need to perform the algorithms in these propositions while respecting
certain restrictions on the support of automorphisms, which we now define.

Definition 3.10 The support of a generalized Whitehead automorphism ˛ 2�Œa� is
the subset of X˙1 such that

� for b adjacent to or equal to a, b and b�1 are both in supp.˛/ if ˛.b/¤ b and
neither b nor b�1 is in supp.˛/ if ˛.b/D b ,

� for b not adjacent to a with ˛.b/D ubv , b 2 supp.˛/ if and only if v ¤ 1 and
b�1 2 supp.˛/ if and only if u¤ 1.

For a2X and S � .X nst.a//˙1 , we define �Œa�;S to be the subset of �Œa� consisting
of automorphisms ˛ with supp.˛/\S D¿.

Suppose a2X and S � .X nst.a//˙1 . Now we consider the image of �Œa�;S under �.
Say that a basis element of ZŒa� does not intersect S if it is of the form rb or lb with
b 62 S [ Œa�, or of the form rY with Y \S D¿. Suppose jŒa�j D n, and there are k

basis elements of ZŒa� not intersecting S , and l remaining basis elements for ZŒa� .
Suppose we identify ZŒa� with ZnCkCl so that the basis elements of the form rb with
b 2 Œa� map to the first n basis elements, the basis elements not intersecting S map
to the next k basis elements, and the remaining basis elements map to the remaining
basis elements.

Lemma 3.11 With a, S as above, �Œa�;S is a subgroup of �Œa� . Identifying Aut.ZŒa�/

with GL.nC kC l;Z/ using the identification of ZŒa� with ZnCkCl above, the image
of �Œa�;S under � is the set of matrices of the form0@ A B On;l

Ok;n Ik Ok;l

Ol;n Ol;k Il

1A ;
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where A 2 GL.n;Z/, B 2Mn;k.Z/, and the O ’s and I ’s represent zero and identity
blocks of the indicated dimensions.

Proof The assertion that this subset is a subgroup is left as an exercise for the reader.

For ˛ 2�Œa� , the definition of � tells us that � counts the sum exponent of elements
of Œa� on the right and left sides of elements of X . If supp.˛/\S D¿, then for any
element of S , all of these counts are zero. As explained in the proof of Lemma 3.1,
the sum exponents are the same for both sides of all elements in the same connected
component of X n st.a/, if that component has at least two vertices. So if a basis
element intersects S , then our counts of sum exponents are all zero for ˛ 2 �Œa�;S ,
which explains the shape of the matrix.

To see that any matrix of this shape is in the image, we use the same argument as in
Lemma 3.1.

Lemma 3.12 There is an algorithm to check whether two matrices in MnCkCl;m.Z/
are in the same orbit under the group G of block matrices of the form0@ A B On;l

Ok;n Ik Ok;l

Ol;n Ol;k Il

1A ;
where A 2 GL.n;Z/, B 2Mn;k.Z/, and the O ’s and I ’s represent zero and identity
blocks of the indicated dimensions.

Further, there is an algorithm that returns a presentation for the stabilizer of a matrix in
MnCkCl;m under the action of G .

Proof Suppose C and D are two matrices in MnCkCl;m . If the last l rows of C do
not match the last l rows of D , then they cannot be in the same orbit. So we suppose
these last l rows match. Next we consider C 0 and D0 in MnCk:m , where each is C

or D respectively with the last l rows omitted. The group G above is isomorphic to
the group G1 of Proposition 3.2, by the mapping that omits the last l rows and the
last l columns, and C is in G �D if and only if C 0 is in G1 �D

0 . Of course, this is
exactly what Proposition 3.2 checks.

Similarly, the stabilizer of C in G will be isomorphic to the stabilizer of C 0 in G1 ,
and Proposition 3.3 provides a presentation for this.

So instead of proving Proposition 1.4, we prove the following. Proposition 1.4 is the
special case where the set S is empty.
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Proposition 3.13 There is an algorithm that takes in two tuples U and V of conjugacy
classes from A� , a vertex a of � and a subset S of .X n st.a//˙1 , and produces an
automorphism ˛ 2�Œa�;S with ˛ �U D V , or determines that no such automorphism
exists.

Proof Suppose U and V are two tuples of conjugacy classes of A� . The first step in
the algorithm is to form syllable decompositions T of U and T 0 of V . If the syllable
decompositions T and T 0 do not have the same number of entries, then U and V are
not in the same orbit (this follows from Lemma 3.8, since the decomposition of ˛ �W
is the same length as the decomposition of W ). So we suppose that T and T 0 have
the same number of entries. We consider all the permutations of the entries of T 0 and
select from these the ones T 0

1
; : : : ;T 0m that are also syllable decompositions of V .

Suppose that

T D .c1a
p1;1

1
� � � a

p1;k

k
u1d1; : : : ; cma

pm;1

1
� � � a

pm;k

k
umdm/:

We fix an r from 1 through m, and suppose

T 0r D .c
0
1a

p0
1;1

1
� � � a

p0
1;k

k
u01d 01; : : : ; c

0
ma

p0
m;1

1
� � � a

p0
m;k

k
u0md 0m/:

We define a tuple yTr to be T with the exponents of the ai replaced by those from T 0r :

yTr D .c1a
p0

1;1

1
� � � a

p0
1;k

k
u1d1; : : : ; cma

p0
m;1

1
� � � a

p0
m;k

k
umdm/:

At this point, we check whether yTr is a decomposition of V (this amounts to finding
the representative associated to yTr and checking whether it represents the V ).

If the answer is yes, we use the algorithm from Proposition 3.2 to check whether
there is A 2 �.�Œa�/ with A � �.T /D �. yTr / and with A in the image of �Œa�;S . By
Lemma 3.11 we know that �.�Œa�;S / is G1 with the last l columns (without loss of
generality) zeroed out in its upper-right block (for some l ) and we use the modification
of the algorithm from Proposition 3.2 described in Lemma 3.12 to check for such
automorphisms.

If our algorithm finds such a matrix A, let ˛ 2�Œa�;S map to A. By Lemma 3.8, we
have that yTr is a representative for ˛ �U . Of course, in that case, we have ˛ �U D V

and the algorithm returns ˛ .

If we get negative answers (either there is no matrix A as above or yTr does not
represent V ), we increment r and check the next Tr . If we try this for each Tr and
none of them have a matrix A as above, we declare that U and V are in different
orbits.
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To show the correctness of the algorithm, we suppose that we have ˛ 2�Œa�;S with
˛ �U D V . We want to show that the algorithm finds an automorphism sending one
tuple to the other. We take the coefficients from �.˛/ ��.T / and substitute them into the
exponents of T to get a tuple T 00 ; by Lemma 3.8, T 00 is a syllable decomposition for V .
By the argument in Lemma 3.5, T 00 will differ from other syllable decompositions
for V by a sequence of permutations and commutation of elements not in dom.a/
across each other. This means that one of the T 0r will differ from T 00 only by the
positions of elements not in dom.a/. In particular, yTr D T 00 . This means that the
algorithm will catch that yTr is a representative for V , and then will catch that there
is some ˇ 2 �Œa�;S with �.ˇ/ � �.T / D �. yTr / (of course this is true for ˇ D ˛ , but
there is no guarantee that the algorithm will catch the same automorphism). So by the
contrapositive, if the algorithm does not catch any such automorphism, then no such
automorphism exists.

Our next goal is to prove Proposition 1.5. Again, we need a slight refinement of the
proposition for our argument for finite presentability of stabilizers. So we prove the
following, which implies Proposition 1.5 as a special case.

Proposition 3.14 There is an algorithm that takes in a tuple U of conjugacy classes
from A� , and an element a 2 X and a subset S � .X n st.a//˙1 and returns a
presentation for the stabilizer .�Œa�;S /U .

Proof Let U be a tuple of conjugacy classes in A� . Let T1 in ZM
Œa�

be a syllable de-
composition of U with respect to a. Let T1; : : : ;Tm be all the permutations of T1 that
are also syllable decompositions of U . The group �Œa�;S acts on ZM

Œa�
and a given �.Ti/

may or may not be in the orbit of �.T1/ under this action. We reorder T1; : : : ;Tm so
that the intersection of the f�.Ti/gi with the orbit of �.T1/ is �.T1/; : : : ; �.Tk/ for
some k . If ˛ 2 �Œa�;S with ˛ �U D U and i D 1; : : : ; k , then by Lemma 3.8, the
element ˛ � �.Ti/ is the image under � of a syllable decomposition of U . Then by
Lemma 3.5, the element ˛ � �.T1/ is one of �.T1/; : : : ; �.Tk/. Therefore .�Œa�;S /U
acts on the finite set f�.T1/; : : : ; �.Tk/g, and by construction, it acts transitively. Then
.�Œa�;S /�.T1/ is a finite index subgroup of .�Œa�;S /U .

The observations we just made make it possible to see the correctness of the following
algorithm. First we find a syllable decomposition T1 of U . Then we enumerate all the
permutations of T1 that are also syllable decompositions of U , say T1; : : : ;Tm . Then
we use the algorithm from Proposition 3.2 and its modification in Lemma 3.12 to go
through the list �.T1/; : : : ; �.Tm/ to determine which of these are in the same �Œa�;S –
orbit as �.T1/. By relabeling the list, we assume that these are �.T1/; : : : ; �.Tk/.
Also, as we use the algorithm to check which �.Ti/ are in the same orbit, we record an
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example automorphism in �Œa�;S that sends �.T1/ to �.Ti/, for each i from 1 to k .
Let S1 denote the set of these automorphisms.

Next we use the algorithm from Proposition 3.3 and its modification from Lemma 3.12 to
find a presentation for .�Œa�;S /�.T1/ . Let S2 denote the generating set for .�Œa�;S /�.T1/

from this presentation. For each �.Ti/ for i from 1 to k , we check where each element
of S1[S2 sends it (since .�Œa�;S /U acts on f�.T1/; : : : ; �.Tk/g, the image will be one
of these). We construct the finite graph whose vertices are �.T1/; : : : ; �.Tk/ and whose
edges are labeled by the elements of S1 [S2 , with an edge labeled by ˛ 2 S1 [S2

from �.Ti/ to �.Tj / if and only if ˛ � �.Ti/ D �.Tj /. It is not hard to see that this
graph is isomorphic to the Schreier graph of .�Œa�;S /�.T1/ in .�Œa�;S /U with respect
to S1 [S2 . Note that by the choice of S1 , this Schreier graph is connected. Using
this Schreier graph together with the presentation for .�Œa�;S /�.T1/ , we then construct
a finite presentation for .�Œa�;S /U using the procedure in Lemma 2.3.

4 Applications

4.1 A useful finite graph

In this section we prove our two applications, Theorems 1.1 and 1.2, modulo the
technical results that we prove in the later sections.

Suppose W is an M –tuple of cyclic words in A� and W is of minimal length in its
Aut.A�/–orbit. We construct a directed, labeled multigraph � associated to W as
follows.

� The vertices of � are the set of M –tuples of cyclic words of A� of the same
length as W .

� For each pair of vertices W1 and W2 , possibly with W1 DW2 , and for each
permutation automorphism ˛ 2 P with ˛ �W1 DW2 , there is a directed edge
from W1 to W2 labeled by ˛ .

� For each pair of distinct vertices W1 and W2 and each generator a 2X , if there
is an automorphism in �Œa� sending W1 to W2 , then there is a directed edge
from W1 to W2 labeled by some ˛ 2�Œa� with ˛ �W1 DW2 (this involves a
choice).

� For each vertex W1 and each generator a 2X , there are edges from W1 to W1

labeled by a finite generating set for the stabilizer .�Œa�/W1
(this also involves

choices).
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Lemma 4.1 The graph � associated to the minimal tuple W is finite and can be
effectively constructed.

Proof First of all, � has finitely many vertices because there are finitely many tuples
of a given length. We construct � by finding the required edges and attaching them
to the 0–skeleton. There are finitely many permutation automorphisms, so we can
explicitly check which ones send which vertices to which vertices. For each generator
a 2 X and each pair of vertices, we use Proposition 1.4 to check whether there is
an automorphism in �Œa� sending one to the other, and if there is, we add an edge
labeled by such an automorphism (Proposition 1.4 gives us one if one exists). For
each generator a and each vertex W1 , we use Proposition 1.5 to get a finite generating
set for the stabilizer .�Œa�/W1

. These last two steps are effective since there are only
finitely many generators in X and vertices in �.

Lemma 4.2 If ˛ is the composition of edge labels on a path from a vertex W1 to a
vertex W2 in �, then ˛ �W1 DW2 .

Proof This is true for paths of length one by construction and true in general by
Lemma 2.2.

Lemma 4.3 Suppose W0 is a vertex in � and W0 is minimal length in its automor-
phism orbit. If W 0 is also a vertex in � and ˛ 2Aut.A�/ with ˛ �W0DW 0 , then there
is a path p in � from W0 to W 0 such that the composition of edge labels along p

is ˛ .

Proof We peak reduce ˛ with respect to W0 by elements of �, which is pos-
sible by Theorem 1.3. Suppose ˛ D ˛k � � �˛1 is the resulting factorization. Let
Wi D ˛i � � �˛1 �W0 for i D 1; : : : ; k , so that Wk DW 0 . Since W0 is minimal length,
the factorization being peak reduced means that jWk j D jW0j for i D 0; : : : ; k . Then
each Wi is a vertex in �. If ˛i is a permutation automorphism, then there is an
edge from Wi�1 to Wi labeled by ˛i by construction. If ˛i 2�Œa� for some a, then
there is an edge from Wi�1 to Wi labeled by ˇi for some ˇi 2 �Œa� . Then ˇ�1

i ˛i

stabilizes Wi�1 . By construction, the edge loops at Wi�1 contain generators for that
stabilizer, and there is a path pi in the loops at Wi�1 whose edge labels compose to
be ˇ�1

i ˛i . So following pi and then the edge labeled by ˇi gives a path p0i from Wi�1

to Wi such that the composition of labels on p0i is ˛i . Composing these paths as i

goes from 1 to k gives a path from W0 to Wk whose edge label composition is ˛ .
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4.2 Orbit membership and finite generation

Lemma 4.4 Suppose W is a tuple of conjugacy classes from A� . Then W is minimal
length in its Aut.A�/–orbit if and only if it cannot be shortened by any element of �Œa�
for any a 2X .

Proof It is clear that a minimal-length tuple cannot be shortened, so we prove the
other direction. Suppose for contradiction that there is some W 0 with jW 0j < jW j
and some ˛ 2 Aut.A�/ with ˛ �W DW 0 . We peak reduce ˛ with respect to W by
Theorem 1.3. Then ˛ D ˇk � � �ˇ1 with ˇi 2� for all i , where k 7! jˇk � � �ˇ1 �W j

is a sequence of lengths that decreases, stays level, and then increases (with any of
these phases possibly omitted). Since j˛ �W j< jW j, the decreasing phase cannot be
omitted, and therefore jˇ1 �W j< jW j. This contradiction proves the lemma.

Proof of Theorem 1.1 Let U and V be two M –tuples of conjugacy classes from A� ;
we want to check whether they are in the same Aut.A�/–orbit. We start by enumerating
the tuples of conjugacy classes from A� that are strictly shorter than jU j. Of course
there are only finitely many such conjugacy classes (even so, this step is a disappointing
bottleneck in the algorithm). For each U 0 strictly shorter than U , and each class Œa�
with a 2 � , we use Proposition 1.4 to check whether U 0 is in the same orbit as U

under �Œa� . If it is, we replace U by U 0 and repeat the previous step again, checking
whether one of the f�Œa�ga can shorten U . We stop when we have verified that none
of these sets of automorphisms can shorten U . By Lemma 4.4, this resulting U is of
minimal length.

After we shorten U as much as possible, we do the same to V . If the minimal lengths
are different, we declare that the orbits are different. Now we suppose that U and V

are both minimal length in their automorphism orbits with jU j D jV j; let � be the
graph from Section 4.1 above, constructed using U (the vertices of � are tuples of
length jU j). At this point, we check whether U and V are in the same connected
component of � (this is doable since � is a finite graph). By Lemma 4.2, if U

and V are in the same component, then there is an automorphism ˛ 2 Aut.A�/ with
˛ �U D V , and we can find such an ˛ by composing the edge labels on a path from U

to V . Conversely, if there is an automorphism ˛ sending U to V , then there is a path
from U to V in � and both are in the same connected component. This is true by
Lemma 4.3, which uses Theorem 1.3.

At this point we can quickly prove an intermediate result. By �1.�;W / we mean the
fundamental group of � based at W ; this may be interpreted either combinatorially or
topologically.
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Proposition 4.5 Suppose W is a tuple of cyclic words in A� . Then there is an
algorithm to find a finite generating set for the stabilizer Aut.A�/W .

Proof Altering W by an automorphism sends Aut.A�/W to a conjugate, so we are
free to replace W with a representative of its orbit of minimal length. We find such an
element using Lemma 4.4 and Proposition 1.4. Now assuming that W has minimal
length in its orbit, we construct the graph � as above. Then composition of edge labels
defines a homomorphism �1.�;W /! Aut.A�/ (this cannot fail because the domain
is free). By Lemma 4.2 (with W1 DW2 DW ), the image of this homomorphism lies
in Aut.A�/W . By Lemma 4.3 (with W0 DW 0 DW ), this homomorphism surjects
on Aut.A�/W .

4.3 Relations

Our next goal is to show that stabilizers of tuples of conjugacy classes are finitely
presentable. Before we start, we need to record some relations that hold among the
generalized Whitehead automorphisms. First we mention relations between classic
Whitehead automorphisms. In our terminology, a classic Whitehead automorphism is
either
� a permutation automorphism from P (an automorphism that restricts to a per-

mutation of X˙1 ) or
� an automorphism ˛ with a special element a of X , called its multiplier, such

that ˛ sends a to a and sends each b 2� nfag to one of b , ba, a�1b or a�1ba.

The relations between classic Whitehead automorphisms from [9, Definition 2.6] play
a limited role in the current paper. We can essentially treat these as a black box.

We also need peak reduction of long-range Whitehead automorphisms, which we
likewise can treat as a black box. A generalized Whitehead automorphism ˛ in �Œa� is
short-range if ˛.b/D b for all b not adjacent to a (but ˛ may do anything to st.a/). It
is long-range if the restriction of ˛ to st.a/˙1 is a permutation of that set (but ˛ may
do anything to X n st.a/). More generally, an automorphism in Aut.A�/ is long-range
if and only if it can be factored as a product of long-range dominated transvections,
partial conjugations, inversions and graphic automorphisms. The important fact about
long-range automorphisms is the following.

Theorem 4.6 (Day [9, Theorem A]) If W is a tuple of conjugacy classes in A� and
˛ 2 Aut.A�/ is a long-range automorphism, then ˛ has a factorization by classic long-
range Whitehead automorphisms and permutation automorphisms that is peak reduced
with respect to W (that is, ˛ has a factorization by these kinds of automorphisms that
satisfies the conclusions of Theorem 1.3).
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We need the following relations. These are like the Steinberg relations from algebraic
K–theory.

Lemma 4.7 Suppose a; b 2 � with Œa� ¤ Œb�, and we have ˛ 2 �Œa� , and ˇ 2 �Œb� .
Further suppose that ˛ restricts to the identity on Œb�. Then ˛ˇ˛�1 2 �Œb� and
˛ �ˇ �˛�1 D .˛ˇ˛�1/ is an identity among generalized Whitehead automorphisms if
either of the following is true:

� a is adjacent to b .

� supp.˛/\ supp.ˇ/D¿ and ˇ restricts to the identity on Œa�.

We further note that if ˇ restricts to the identity on Œa�, then in fact ˛ˇ˛�1 D ˇ .

Proof of Lemma 4.7 This follows by straightforward computations, which we de-
scribe in broad strokes. Let  denote ˛ˇ˛�1 and suppose that c is in X ; we need
to show that  .c/ is in hŒb�i if c 2 Œb�, and that  .c/D u1cu2 with u1;u2 2 hŒb�i if
c 62 Œb�. If c 2 Œb�, then it is clear that  .c/D ˇ.c/. If c 2 Œa�, then in all three cases it
is straightforward to show that  .c/D ucv for some u; v in hŒb�i. The reasons for this
are different in the three cases above. Now suppose that c 62 Œa�[ Œb�. Of course, there
are u1 and u2 in hŒa�i with ˛.c/D u1cu2 and v1 and v2 in hŒb�i with ˇ.c/D v1cv2 .
Then ˛ˇ˛�1 sends c to

˛ˇ˛�1.u�1
1 /v1u1cu2v2˛ˇ˛

�1.u�1
2 /:

In the first case, ˛ˇ˛�1.u1/ differs from u1 by an element of hŒb�i and u1 and v1

commute, so the result follows. In the second case, either ui or vi is trivial for i D 1; 2

and the result follows.

4.4 The stabilizer presentation complex

Let W be an M –tuple of cyclic words in A� that is minimal length in its automorphism
orbit. To prove Theorem 1.2, we build a finite cellular 2–complex Z whose fundamental
group is the stabilizer Aut.A�/W . The 1–skeleton Z1 is like the graph � defined
earlier, but with some extra edges. In order to define a map �1.Z;W /! Aut.A�/,
we give Z1 the structure of a labeled multigraph.

� The vertices Z0 are the M –tuples of cyclic words in A� of the same length
as W and in the same orbit.

� For each pair of vertices (not necessarily distinct) W1 and W2 and each classic
Whitehead automorphism ˛ , we add an edge from W1 to W2 labeled by ˛ if
˛ �W1 DW2 . This includes the cases where ˛ is a permutation automorphism.
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� For each pair of distinct vertices W1 and W2 , each generator a 2X and each
subset S � .X n st.a//˙1 , if there is an element of �Œa�;S sending W1 to W2 ,
then we make sure there is an edge from W1 to W2 labeled by some such
element.

� For each vertex W1 , each generator a 2X and each subset S � .X n st.a//˙1 ,
the labels on edges from W1 to itself must include a generating set from a
presentation for the stabilizer .�Œa�;S /W1

.

Like �, the graph Z1 can be effectively constructed using Propositions 3.13 and 3.14.
Instead of checking whether a tuple is in the same length as W to decide whether
to use it as a vertex, it may be more efficient to construct � as above, discard other
connected components, and then add extra edges to form Z1 . Since we only consider
vertices in the same orbit as W , Z1 is automatically connected and each vertex W1

of Z is minimal length in its orbit.

Next we define the several situations where we add 2–cells to Z . When we say a
2–cell “reads off” a word starting at a given vertex, we mean that we glue in the 2–cell
so that its boundary follows the path whose edge labels form that word.

(C1) For each vertex W1 , each generator a 2X and each subset S � .X n st.a//˙1 ,
the self-edges at W1 labeled by elements of �Œa�;S give a generating set for .�Œa�;S /W1

by construction. We add 2–cells reading off the relations between these elements, and
we add enough 2–cells so that the subcomplex of Z spanned by these edges forms a
presentation complex for .�Œa�;S /W1

. This is possible by Proposition 3.14.

(C2) Suppose there is an edge starting at the vertex W1 with label ˛ , where ˛ is a long-
range generalized Whitehead automorphism but not a classic Whitehead automorphism.
We find a path from W1 to ˛ �W1 with label sequence 1�2�� � ��k , where each i

is a classic long-range Whitehead automorphism, and glue in a 2–cell reading off the
difference between these two paths. This is possible by Theorem 4.6: we peak-reduce ˛
with respect to W1 to get the factorization ˛D k � � � 1 ; since the factorization is peak
reduced and W1 is minimal length, each intermediate image i � � � 1 �W1 is also a
vertex of Z and this word defines an edge path.

(C3) Whenever we find an edge loop in Z whose labels read off one of the relations
between classic Whitehead automorphisms from Day [9, Definition 2.6], we add a 2–
cell bounding this edge loop. These relations fall into ten classes, are easily recognizable,
and each such relation has length at most five.

(C4) Suppose W1 is in Z0 , ˛ is a generalized Whitehead automorphism labeling an
edge starting at W1 , and ˇ is an inner automorphism that is also a classic Whitehead
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automorphism. Then there is a factorization ˛ˇ˛�1 D k � � � 1 , where the i are also
inner classic Whitehead automorphisms. The inner classic Whitehead automorphisms
label loops in Z1 and we glue in a 2–cell reading off the difference between these two
factorizations starting at ˛ �W1 . We repeat this for each such W1 , ˛ and ˇ .

(C5) Suppose W1 is in Z0 and there is a closed edge path p starting at W1 whose
edge labels ˛; ˇ;  are in �Œa� for some a 2 X . Then ˇ˛ 2 .�Œa�/W1

. Since the
labels on the loops at W1 include generators for .�Œa�/W1

, we know that there is
an edge path w consisting of loops at W1 whose composition represents the same
automorphism as ˇ˛ . Then we add a 2–cell to Z whose boundary follows p and
then follows w backwards. We add such a cell for each vertex W1 on each such path p

involving at least two vertices.

(C6) Suppose W1 is in Z0 , ˛ 2 P and ˇ 2�Œb� for some b , and both ˛ and ˇ are
edge labels on edges starting at W1 . Then since ˛ is a permutation automorphism,
˛ˇ �W1 is also a vertex of W1 . It is easy to see that the element ˛ˇ˛�1 is in �Œ˛.b/�
and sends ˛ �W1 to ˛ˇ �W1 . By construction, there is an edge in Z1 labeled by some
 2�Œ˛.b/� with ˛ �W1D˛ˇ �W1 , and therefore ˛ˇ�1˛�1 is in .�Œ˛.b/�/W1

. Since
the loop edge labels at W1 include a generating set for .�Œ˛.b/�/W1

, we have a path w
in these loops where the composition of edge labels represents ˛ˇ�1˛�1 . Then we
add a 2–cell to Z whose boundary, starting at ˛ �W1 , follows ˛�1 then ˇ then ˛
then �1 , and then w . We repeat this for each vertex W1 and each such pair ˛ and ˇ .

(C7) Suppose W1 is in Z0 and a; b 2 X and ˛ 2 �Œa� and ˇ 2 �Œb� are edge
labels on edges starting at W1 and ˛ and ˇ satisfy the hypotheses of Lemma 4.7
(so ˛jŒb� is the identity, and either a is adjacent to b , or ˇjŒa� is also the identity
and supp.˛/\ supp.ˇ/ D ¿). Then Proposition 6.7 below implies that ˛ˇ �W1 is
the same length as W1 and therefore is a vertex in Z0 . So by construction, there
is an automorphism  2 �Œa� labeling an edge from ˇ �W1 to ˛ˇ �W1 (˛ is such
an automorphism, but there is no guarantee that our construction of Z1 found this
particular automorphism.) Further, ˛ˇ˛�1 is in �Œb� by Lemma 4.7, and ˛ˇ˛�1 sends
˛ �W1 to ˛ˇ �W1 . By construction of Z1 , there is ı 2�Œb� sending ˛ �W1 to ˛ˇ �W1 ,
and there is an edge in Z1 labeled by ı from ˛ �W1 to ˛ˇ �W1 . We note that ˛�1

fixes ˛ˇ �W1 , and therefore there is a path w1 in the edge loops at ˛ˇ �W1 where the
composition of the edge labels represents ˛�1 . Similarly, ı˛ˇ�1˛�1 fixes ˛ˇ �W1

and there is a path w2 in the edge loops at ˛ˇ �W1 where the composition of these edge
loops represents ı˛ˇ�1˛�1 . We glue a 2–cell into Z whose boundary, starting at W1 ,
follows ˇ , then  , then w1 , then w2 , then ı�1 , and finally ˛�1 . We repeat this for
each vertex W1 and each pair ˛; ˇ at W1 satisfying the hypotheses of Lemma 4.7.
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This completes the construction of Z . We note that in principle, Z can be effectively
constructed from � , since in each of the cases (C1) through (C7), there are only finitely
many cases in which we may have to add a 2–cell.

Lemma 4.8 There is a surjective homomorphism �1.Z;W /! Aut.A�/W defined
by composition of edge labels.

Proof The proof of Lemma 4.2 goes through with � replaced by Z1 , since the extra
edges in Z1 still indicate the action by their labels. Then we have a well-defined
homomorphism �1.Z

1;W /! Aut.A�/W for the same reasons as in the proof of
Proposition 4.5. By Lemma 4.3 (with W0 DW 0 DW ), this homomorphism surjects
on Aut.A�/W . By the Seifert–Van Kampen theorem, the kernel of the natural map
�1.Z

1;W /! �1.Z;W / is normally generated by the boundary loops of the 2–cells.
By construction, each of these boundary loops maps to the trivial automorphism. Then
the homomorphism descends to a homomorphism �1.Z;W /! Aut.A�/W , which is
necessarily surjective.

The following proposition is the key to Theorem 1.2.

Proposition 4.9 Suppose p is an edge loop in Z based at W that maps to the trivial
automorphism. Then p can be homotoped relative to W to an edge loop whose edge
labels consist entirely of permutation automorphisms and inner automorphisms.

Since the proof of Proposition 4.9 uses the structure of the proof of Theorem 1.3, we
postpone it to Section 6. This statement is all we need to prove the finite presentation
result.

Proof of Theorem 1.2 Suppose W is a tuple of conjugacy classes in A� . First
we find a minimal-length representative of the orbit of W using Proposition 1.4 and
Lemma 4.4. Of course, replacing W with an image of itself under an automorphism
will not change the isomorphism type of Aut.A�/W , it will only replace it with a
corresponding conjugate of itself in Aut.A�/. So we replace W with a minimal
representative of its orbit.

We construct the complex Z with respect to W as described above, and consider
the map �1.Z;W /! Aut.A�/W from Lemma 4.8. If this map is an isomorphism,
then the Seifert–Van Kampen theorem implies that the stabilizer is finitely presented,
since Z is a finite complex. To prove the theorem, it is enough to show that the map is
injective, since it is already surjective by Lemma 4.8.
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To show injectivity, we assume we have an edge loop p based at W , such that the com-
position of the edge labels of p yields the trivial homomorphism. By Proposition 4.9,
we assume we have homotoped p to an edge loop whose edge labels are permutation
automorphisms and inner automorphisms. We use the 2–cells of type (C6) to slide
these inner automorphisms past the permutation automorphisms. Then the inner
automorphisms label loops at the base vertex W . The multiplication table of the
group P is included in the relations that the (C3) cells bound, so we can eliminate all
the permutation automorphisms from p by homotoping across these cells. Then p

reads off a product of inner automorphisms representing the trivial automorphism.
We can rewrite any inner automorphism in � as a product of inner automorphisms
that are also classic Whitehead automorphisms by homotoping across (C1) cells. The
group of inner automorphisms of A� is isomorphic to another right-angled Artin group
(A� 0 , where � 0 is � with all the vertices representing central generators deleted).
Further, this isomorphism carries the inner classic Whitehead automorphisms to the
standard generating set of the right-angled Artin group. So any word in the inner classic
Whitehead automorphisms that represents the trivial automorphism can be eliminated
by applying commutation relations. These commutation relations are given by 2–cells
in Z (redundantly as (C3) or (C7) cells), so we can homotope p to the trivial edge
path at W .

5 Orbits of matrices

In this section we prove Propositions 3.2 and 3.3.

5.1 Partly rational linear problems

We fix n� 1 and k � 0 and consider block upper-triangular matrices of the form�
A B

O I

�
;

with A in GL.n;Z/ and B in Mn;k.Q/. This is GL.n;Z/Ë Mn;k.Q/, the semidi-
rect product, where GL.n;Z/ acts on Mn;k.Q/ on the left by multiplication. We
will vary the kinds of entries we wish to consider in the upper-right block, so we
let GQ denote GL.n;Z/Ë Mn;k.Q/, and for a positive integer d , we let Gd denote
GL.n;Z/Ë Mn;k.

1
d

Z/. We deliberately restrict the coefficients in the upper-left block
to Z, so that Gd will always be a finite-index subgroup in G1 (we discuss this more
below). A key tool in our discussion will be the following modified version of the
Hermite normal form for integer row reduction. For more on the Hermite normal form,
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see Cohen [4, Section 2.4.2]. Note that Cohen describes Hermite normal form for
column reduction, whereas we use Hermite normal form for row reduction.

Definition 5.1 Suppose A is a matrix in MnCk;m.Q/. Roughly speaking, A is in
GQ –normal form if

� Q–linear combinations of rows nC1 through nCk have been added to rows 1

through n to reduce them as much as possible,

� there is a multiple of the block of rows 1 through n that is a matrix in Hermite
normal form for integer row reduction.

Precisely, AD .aij / is in GQ –normal form if

� for each j , 1� j �m, if there is a linear combination of rows nC 1 through
nC k that is nonzero in column j but is zero in all previous rows, then every
entry in column j from row 1 through row n is zero;

� there is an increasing sequence p1; : : : ;pl of pivot column positions, for some l

with 0� l � n, such that for each i from 1 through l ,
– the entry ai;pi

is positive,
– the entries ai;1; : : : ; ai;pi�1 in row i preceding column pi are all 0,
– for each i 0 , i 0 D 1; : : : ; i � 1, the entry ai0;pi

satisfies 0 � ai0;pi
< ai;pi

(the entries above the pivot position are nonnegative and less than the pivot);

� rows from l C 1 through n contain only zero entries.

We want to show that every matrix is equivalent to a unique one in this form, and to
understand the stabilizer of a matrix in this form. First we prove uniqueness.

Lemma 5.2 Suppose A and B are matrices in MnCk;m.Q/ in GQ –normal form
and Q is in GQ with B DQA. Let d be the smallest positive integer with Q 2Gd .
Then QDQ1Q2 with Q2 2 fIgË Mn;k.

1
d

Z/ and Q1 2 GL.n;Z/Ë fOg, such that
Q2ADA and such that the first l columns of Q2 are the same as those of the identity
matrix, where l is the number of pivots in A. In particular, AD B .

Proof Since GQ cannot alter rows nC 1 through nC k by multiplication on the
left, we see the bottom k rows of B and A must be identical. In particular, for each
position j , if there is a linear combination of the bottom k rows in A that is trivial in
columns 1 through j � 1 but nontrivial in column j then there is one for B as well,
and vice versa. Then the set of columns that are forced to be trivial by the first condition
in the definition of GQ –normal form is the same in both A and B . The matrix Q
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can be factored as Q1Q2 , where Q2 2 fIgË Mn;k.
1
d

Z/ and Q1 2 GL.n;Z/Ë fOg,
because Gd is an internal semidirect product of these two subgroups. Then Q2 fixes A,
since Q2 can only change an entry in A forced to be zero by the definition, and Q1

cannot change the set of columns that only have zero entries in their first n rows.

So we have BDQ1A, with Q1 2GL.n;Z/ËfOg. The uniqueness of Hermite normal
form implies AD B , since Q1 only changes the top n rows of A and the top n� k

blocks of A and B are already rational multiples of matrices in Hermite normal form.
But our statement about the form of Q1 is stronger, so we prove the lemma as stated.

Let p1; : : : ;pl be the pivots of A. We perform induction on the hypothesis that for i

with i � l , columns 1 through piC1� 1 of A and B match and columns 1 through i

of Q1 are the same as those of identity matrix. The hypothesis is true for i D 0 since
columns 1 through p1�1 of A are trivial and the equation B DQ1A is only possible
if the corresponding columns of B are also trivial. Now we fix an i with 1� i � l and
consider column pi of A and B . Certainly entries iC1 through n of column pi of B

are zero, since B is in GQ –normal form and column pi is left of the .i C 1/st pivot
column of B (if it exists). Consider i 0 with i < i 0� n. By the inductive hypothesis, the
first i�1 entries of the i 0th row in Q1 are zero. We dot this row i 0 with the column pi

in A to get an entry in B that we know to be zero. Since entries i C 1 through n of
column pi in A are zero, the only possibly nonzero term in this dot product is the
product of the i 0; i entry of Q1 with the i;pi entry of A. So entry i 0; i of Q1 is
zero, and varying i 0 , we see that every below-diagonal entry in Q1 in column i is
zero. Next we note that if the diagonal entry i; i of Q1 were zero, then Q1 would
have determinant zero. So this entry is nonzero, and therefore position i;pi in B has
a nonzero entry and is the pivot there. Since the pivot entries are positive, the fact
that Q1 has determinant ˙1 implies that the i; i entry of Q1 is 1. Then position i;pi

matches in A and B . If any above-diagonal entry in column i of Q1 is nonzero, then
an entry in column pi of B above the pivot will not be reduced modulo the pivot entry.
This then implies that all the columns before piC1 of A and B match, since these
columns have only zero entries in positions i C 1 through n.

The induction continues until we reach the last pivot position of A, showing that the
first l columns of Q1 match those of the identity matrix. Since rows l C 1 through n

of A are zero rows, this is enough to deduce that B DA.

Now we show existence of matrices in normal form.

Proposition 5.3 For every matrix A in MnCk;m.Q/ there exists a matrix B in
MnCk;m.Q/ in GQ –normal form, with ADQB for some Q 2GQ . The matrix B is
unique.
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Proof We prove existence by supplying an algorithm; of course uniqueness is then
the result of Lemma 5.2. The algorithm is a row reduction algorithm. Multiplication
on the left by elements of GQ allows us to replace any of the top n rows of A by
itself plus a rational linear combination of the bottom k rows, or to replace any row
in the top n by itself plus an integer linear combination of the other top n rows, or to
permute the top n rows, or to multiply any of the top n rows by �1.

The first part of the algorithm is to use the bottom k rows of A to simplify A as much
as possible; this is step 1 below. The second part is to perform integer row reduction
and reduce the entries above the pivots as much as possible.

Step 1 We start by setting j D 1; j is the position of the column we are trying to
simplify. We consider the map Qk !Qj�1 that sends a k –tuple of coefficients to
the corresponding linear combination of the bottom k rows of A, restricted to their
first j � 1 columns. We find generators for the kernel of this map. Each generator
gives us a linear combination of the bottom k rows of A that is zero in its first j � 1

entries; if some generator’s linear combination is nonzero in the j th column, we add
rational multiples of this linear combination to the top n rows of A to zero out their j th

column entries. Of course this leaves the previous columns unaffected. (In the case
that j D 1, we simply check whether some row in the bottom k rows has a nonzero
entry in its first column, and if so, we use its multiples to zero out the top n entries of
the first column.) So we replace A with an equivalent matrix with the first n entries of
column j zeroed out if possible. We then replace j with j C 1 and repeat this step.
We do this until we have tried it for all columns of A.

After completing the previous step, we perform the procedure to turn the top n�m

block of A into a rational multiple of a matrix in Hermite normal form for integer row
reduction. Although this is standard, we include it here for completeness.

Step 2 If the top n�m block of A is now the zero matrix, then A is in GQ –normal
form and we are done. Otherwise we start the second part by setting j to be the first
column with a nonzero entry in its first n rows. We initialize our sequence of pivots by
setting l D 0, so that there are no pivots in the pivots sequence p1; : : : ;pl .

Step 3 By construction, j > l and all entries in row lC1 through row n in columns 1

through j �1 are zero. We look the entries of column j from row lC1 through row n,
and choose a row i whose column j entry has minimal nonzero absolute value among
these (if all the entries were zero, we would increment j and loop, but the choice
of j should prevent this). We add integer multiples of row i to each row from l C 1

through n in order to diminish the sum of the absolute values of the entries in column j .
We continue this until either another row’s j th entry becomes smaller in absolute value
than that of row i , or else row i becomes the only entry from position lC1 through n
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with a nonzero entry. If another row’s j th entry becomes smaller in absolute value
than that of row i , then we replace i with the position of that row and repeat this step.
If position i becomes the only entry in column j from position l C 1 through n that
is nonzero, then we proceed to the next step.

Step 4 The entry in position i is the unique nonzero entry in column j among rows
from lC1 through n. We permute rows lC1 through n of A so that this nonzero entry
is now in row lC1. We replace l with lC1 and set the new pivot position pl to be j .
We replace row l with its multiple by ˙1 to ensure that the pivot entry in position l;pl

is positive. We then add integer multiples of row l to rows 1 through l � 1 to make
sure that these entries are nonnegative and strictly less than the pivot entry. Since all
entries to the left of the pivot entry are zero, this does not affect the previous columns
of the matrix. We then set j to be the next column with a nonzero entry in rows l C 1

through n and return to step 3. If no such column exists, we are done. This finishes
the algorithm.

It is clear that this procedure terminates. The loop in step 1 repeats once for each
column. After step 1, the least common denominator of the entries of A does not
change; call this number d . The loop in step 3 always terminates because we decrease
the sum of the absolute values of the entries of column j of A by at least 1=d with
each iteration. The loop going back from step 4 to step 3 can be repeated at most m

times since it requires a new column each time.

It is also clear that the output of this procedure is a matrix in GQ –normal form. The
matrix coming out of step 1 satisfies the first property in the definition: if there were a
way to use the bottom k rows to zero out the top n in the j th column without disturbing
the previous columns, we would have used it already. This is not disturbed by the
remainder of the algorithm, which never changes a column with only zeros in its first n

rows to one with a nonzero entry there. The output of the algorithm has its list of pivot
columns, and by construction, the pivots satisfy the conditions in the definition. Of
course, we only stop producing pivots when all the remaining rows in the first n are
zero rows, so we satisfy the last condition in the definition.

Let A denote the matrix input to the procedure and B the output, which is in GQ –
normal form. Keeping track of the row moves performed in this algorithm and com-
posing them gives us a matrix Q in GQ with B DQA.

Now we turn our attention to stabilizers in Gd . We need the following.

Lemma 5.4 Suppose the group G acts on the group H , G has the presentation
hSG j RGi, H has the presentation hSH j RH i, and we have a set RC consisting
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of words gh�1g�1wg;h for all g 2 SG and h 2 SH , where wg;h is a word in SH

representing ghg�1 . Then

hSG [SH jRG [RH [RC i

is a presentation for the semidirect product G Ë H .

The proof is left as an exercise for the reader.

Proposition 5.5 Suppose d is a positive integer and A is a matrix in MnCk;m.
1
d

Z/
in GQ –normal form. Then there is an effective procedure to give a finite presentation
for the stabilizer .Gd /A .

Proof First we pin down the stabilizer; then we will find a presentation for it. Let l

be the number of pivot rows of A. Suppose Q 2 Gd and ADQA. By Lemma 5.2,
we have QDQ1Q2 where Q2 2 fIgËMn;k.

1
d

Z/, Q1 2GL.n;Z/ËfOg, Q2ADA

and the first l columns of Q1 are the same as those of the identity matrix. This tells
us that the nontrivial block of Q1 is in Ml;n�l.Z/Ì GL.n� l;Z/, in other words the
nontrivial block of Q1 is itself a block upper-triangular matrix of the form�

I B

O C

�
;

where B 2Ml;n�l.Z/, C 2 GL.n� l;Z/, I is the l � l identity matrix and O is the
.n� l/� l zero matrix. The configuration of blocks implies that GL.n� l;Z/ acts on
Ml;n�l.Z/ on the right, as the semidirect product notation reflects.

The matrix Q2 is in the stabilizer of A in fIgË Mn;k.
1
d

Z/. Each row of Q2 acts
by adding a rational linear combination of rows nC 1 through nC k of A to some
row of A in the top n, and being in the stabilizer means that each such rational linear
combination has trivial value. So each row of the upper-right n� k block of Q2 is an
element of the kernel of the group homomorphism . 1

d
Z/k!Qm that sends a k –tuple

of coefficients to its corresponding linear combination of rows nC 1 through nC k

of A. Letting K � . 1
d

Z/k denote this kernel, we see that the stabilizer of A in
fIgË Mn;k.

1
d

Z/ is isomorphic to Kn .

This makes it easy to see that the stabilizer of A in Gd is

.Ml;n�l.Z/Ì GL.n� l;Z//Ë Kn;

since each element of this group stabilizes A and any Q stabilizing A is certainly in
this group by the above argument.
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Since K is the kernel of a map . 1
d

Z/k!Qm , it is a finite-rank free abelian group and
we can find a basis for K . This in turn yields a basis for Kn , which is also free abelian.
Likewise Ml;n�l.Z/ is a free abelian group with an obvious basis. Of course, this
means that Kn and Ml;n�l.Z/ have obvious finite presentations, where the generators
are the given bases and the relations state that all pairs of basis elements commute. The
group GL.n� l;Z/ has a generating set given by transvections (elementary matrices
with a single nonzero off-diagonal entry of 1) and inversions (matrices sending a
single basis element to its inverse and fixing the others). The finite presentation for
SL.n� l;Z/ from Milnor [17, Chapter 10], can easily be modified to give a finite
presentation for GL.n � l;Z/. The conjugate of a generator of Ml;n�l.Z/ by a
generator of GL.n� l;Z/ can easily be written down as a product of generators of
Ml;n�l.Z/. We can tabulate this data for all choices of pairs of generators. Using
Lemma 5.4, this data together with the presentations for GL.n� l;Z/ and Ml;n�l.Z/
can be combined into a finite presentation for Ml;n�l.Z/Ì GL.n� l;Z/. Finally, we
can tabulate the action of generators of Ml;n�l.Z/ÌGL.n� l;Z/ on generators of Kn

(again in terms of generators of Kn ). This data, together with the obvious presentation
for Kn and the presentation for Ml;n�l.Z/Ì GL.n� l;Z/, can be combined to give a
presentation for the stabilizer of A in Gd , again using Lemma 5.4.

5.2 Integer linear problems

Let d be a fixed positive integer. To exploit our rational results in the previous
section, we use a crossed homomorphism to keep track of the cosets of Gd in G1 . Let
�W Gd !Mn;k.Z=dZ/ be the composition

Gd D GL.n;Z/Ë Mn;k.
1
d

Z/!Mn;k.
1
d

Z/!Mn;k.Z/!Mn;k.Z=dZ/;

where the maps are the second coordinate projection from the semidirect product, then
multiplication by d , then reduction modulo d .

Lemma 5.6 The map � is a crossed homomorphism: for A;B 2Gd , we have

�.AB/DA � �.B/C �.A/;

where Gd acts on Mn;k.Z=dZ/ via the projection Gd ! GL.n;Z/ and the standard
left action of GL.n;Z/ on Mn;k.Z=dZ/.

The kernel of � is G1 and further, the set of preimages of elements of Mn;k.Z=dZ/
under � is precisely the set of left cosets of G1 in Gd .
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Proof We consider the definition of the product operation in GL.n;Z/ËMn;k.Z=dZ/,

.A;B/ � .C;D/D .AC;ADCB/:

Of course this means that the projection Gd!Mn;k.
1
d

Z/ is a crossed homomorphism
with respect to the action via the canonical left action of GL.n;Z/. Since the map
Mn;k.

1
d

Z/!Mn;k.Z=dZ/ is equivariant with respect to this action, the map � is a
crossed homomorphism.

If A 2Gd is in the kernel of � , this means that the entries in its upper-right block are
divisible by d after being multiplied by d , in other words that they are integers. So the
kernel of � is G1 . Now suppose B 2Mn;k.Z=dZ/. We can pick representatives for
the residue classes of the entries of B to get an element zB in Mn;k.Z/ mapping to B .
Then � maps .I; 1

d
zB/ in Gd to B . We claim that ��1.B/ is the coset .I; 1

d
zB/ �G1 .

If .C;D/ is in G1 , then

�..I; 1
d
zB/.C;D//D �. 1

d
zB/C �.D/D BC 0:

This implies the coset is a subset of the preimage. On the other hand, if �..C ;D//DB ,
then D� 1

d
zB is in Mn;k.Z/, and .C ;D� 1

d
zB/2G1 with .C ;D/D.I; 1

d
zB/.C ;D� 1

d
zB/.

In other words, the preimage is a subset of the coset. This shows that every preimage
is a coset.

Now suppose that .A;B/G1 is a coset. Let xB D �..A;B//. If .C;D/ 2 G1 , then
�..A;B/.C;D//DB ��.D/C�.B/D 0C xB , so this coset is a subset of this preimage.
If .C;D/2Gd and �..C;D//D xB , then .C;D/D .A;B/.A�1C;A�1.D�B// with
.A�1C;A�1.D�B// 2G1 , so this preimage is a subset of this coset. So every coset
is a preimage.

Now we can prove our proposition on determining orbit membership under the action
of G1 on MnCk;m.Z/.

Proof of Proposition 3.2 Let A and B be in MnCk;m.Z/; we wish to find a matrix
D 2 G1 with DA D B , or show that no such matrix exists. We start by computing
the GQ –normal forms of A and B , using the algorithm in Proposition 5.3. If these
normal forms are different, then A and B are in distinct GQ –orbits (by uniqueness
of the normal form, Lemma 5.2). Certainly if A and B are in different GQ –orbits,
then they are also in different G1 –orbits. So we suppose that A and B have the
same GQ –normal form N 2MnCk;m.Q/. Suppose Q;R 2GQ with N DQA and
N D RB . Let d be the least common denominator of the entries of N , Q and R.
Let S be the generating set from the presentation for the stabilizer of N in Gd from
Proposition 5.5. Let � be the Schreier graph of G1 in Gd with respect to S .
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Claim A and B are in the same G1 –orbit if and only if the vertices QG1 and RG1

are in the same connected component of �.

First we suppose that QG1 and RG1 are in the same connected component of �.
Let C 2 Gd be the composition of edge labels on an edge path from QG1 to RG1 .
Then CQG1 D RG1 by Lemma 2.2. In particular, R�1CQ is in G1 , and R�1CQ

sends A to B .

Conversely, we suppose that there is D in G1 with DADB . Then RDQ�1 fixes N .
By Proposition 5.5, RDQ�1 is a word in S . Starting at QG1 , we form an edge path
in � by following the edges labeled by this expression for RDQ�1 . This is possible
and unambiguous since �, being a Schreier graph, has exactly one edge with each
label entering and leaving each vertex. Then by Lemma 2.2, the terminus of the path is
RDQ�1QG1 DRG1 . This proves the claim.

The algorithm should then be clear at this point. First we compute the GQ –normal
forms of A and B and report that A and B are in different G1 –orbits if these GQ –
normal forms differ. If the normal forms are the same matrix N , we find matrices Q

and R with QA D N and RB D N and find the lowest common denominator d

of the entries of Q, R and N . Then we find a generating set S for the stabilizer
of N in Gd and construct the Schreier graph � of G1 in Gd with respect to S . This
is possible since � is finite by Lemma 5.6. The crossed homomorphism � gives a
convenient way to construct �: CDG1 DEG1 if and only if �.CD/D �.E/, if and
only if C�.D/C�.C /D �.E/ for any D;E 2Gd and C 2 S . Next in the algorithm,
we check whether QG1 and RG1 are in the same connected component. If not, we
report that A and B are in different G1 –orbits. If they are in the same connected
component, we take C to be the composition of edge labels along a path from QG1

to RG1 , and report that R�1CQ is a matrix in G1 sending A to B .

Now we find a presentation for the stabilizer in G1 of a matrix A in MnCk;m.Z/.

Proof of Proposition 3.3 Let N be the GQ –normal form of A and let Q 2GQ be
an element with N DQA, as found using Proposition 5.3. Let d be the least common
denominator of the entries of N and Q. Let S be a generating set for the stabilizer
of N in Gd , as given by Proposition 5.5. Let � be the Schreier graph of G1 in Gd

with respect to S . Let S 0 be fQ�1CQ j C 2 Sg; note that S 0 � .Gd /A . Finally,
let �0 be the Schreier graph of .G1/A in .Gd /A with respect to S 0 . The proof of the
proposition will follow from the following claim.

Claim As a directed multigraph, �0 is isomorphic to the connected component
of Q�1G1 in �, by an isomorphism that sends edge labels in S 0 to their conjugates
by Q in S .
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To prove the claim, we start by defining a map on vertices from �0 to �. Let
B 2 .Gd /A . We send the vertex B � .G1/A of �0 to the vertex Q�1BG1 of �.
This map is well-defined: if C is also in .Gd /A with B � .G1/A D C � .G1/A , then
B�1C 2 .G1/A � G1 and therefore Q�1BG1 DQ�1C G1 . Conversely, the map is
injective: given B;C 2 .Gd /A with Q�1BG1 DQ�1C G1 , we see that B�1C 2G1 ;
since .G1/A D .Gd /A \ G1 , this means that B�1C 2 .G1/A and therefore that
B � .G1/A D C � .G1/A . Suppose there is an edge labeled by C in S 0 from B � .G1/A
to B0 � .G1/A in �0 . Then there is an edge labeled by Q�1CQ in S 0 from Q�1BG1

to Q�1B0G1 . This is immediate from the definition of the Schreier graph. The reverse
implication also holds, so the map is an isomorphism of directed multigraphs and
respects labels as described.

All that is left in the claim is to show that �0 is connected. Suppose B � .G1/A is a
vertex of �0 . Of course this means that B 2 .Gd /A . Then QBQ�1 2 .Gd /N , and
by the definition of S , QBQ�1 can be expressed as a product of elements of S . Of
course, this means that B can be expressed as a product of elements of S 0 . Since �0

is a Schreier graph, we can trace out a unique edge path starting at .G1/A using the
labels from the given expression for B as a product of elements of S 0 . By Lemma 2.2,
the terminus of this path is B � .G1/A . Since B was arbitrary, this means that �0 is
connected. This proves the claim.

Now we use the claim to finish the proposition. Let Z be the presentation 2–complex
for .Gd /N using the finite presentation from Proposition 5.5. Of course, the generating
set for this presentation is S . The inner automorphism of Gd given by conjugating
by Q�1 sends .Gd /N to .Gd /A and sends S to S 0 . Therefore we can also view Z

as a presentation 2–complex for .Gd /A with generators S 0 . Let zZ be the cover of Z

with fundamental group .G1/A . Since �0 is a finite graph, zZ is a finite-sheeted cover
and is therefore a finite complex. Then we use the Seifert–Van Kampen theorem to
write down a finite presentation for the fundamental group of zZ , which is .G1/A .
Since every step in this construction can be done effectively, this is an algorithm to
produce a finite presentation.

Example 5.7 We consider a concrete example to illustrate the above algorithms. It also
happens that this is an example where the Schreier graph we describe is disconnected,
and where a pair of matrices are in the same Gd –orbit but in different G1 –orbits.
Consider the matrices

AD

0@ 1

0

2

1A ; N D

0@ 0

0

2

1A ; QD

0@ 1 0 �1
2

0 1 0

0 0 1

1A :
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Then A;N 2M3;1.Z/ and Q 2 G2 D GL.2;Z/Ë M2;1.
1
2
Z/. We see that A is not

in GQ –normal form, but N is, and N DQA. The stabilizer of N in G2 is a copy of
GL.2;Z/ generated by S D fa; b; cg with

aD

0@ 1 1 0

0 1 0

0 0 1

1A ; b D

0@ 1 0 0

1 1 0

0 0 1

1A ; c D

0@ �1 0 0

0 1 0

0 0 1

1A :
Using the fact that SL.2;Z/ is the amalgamated free product .Z=4Z/�Z=2Z .Z=6Z/
(see for example, Serre [18, page 35]) with the elements of order 4 and 6 given
by ba�1b and a�1b respectively, it is straightforward to derive a presentation for
GL.2;Z/D .G2/N as

ha; b; c j c2
D 1; .a�1b/3 D .ba�1b/2; .a�1b/6 D 1; cac D a�1; cbc D b�1

i:

�
0
0

� �
1
0

�

�
1
1

��
0
1

�
c c

cc
a a

a

a

b

b

b b

Figure 1: The Schreier graph of GL.2;Z/ Ë M2;1.Z/ in GL.2;Z/ Ë
M2;1.

1
2
Z/ with respect to fa; b; cg: each vertex is labeled by the image

of its coset under � ; the vertex Q�1G1 is labeled
�

1
0

�
.

As usual, G1DGL.2;Z/ËM2;1.Z/. The Schreier graph � of G1 in G2 with respect
to S is displayed in Figure 1. By inspecting �, we learn that the fundamental group
of the connected component of Q�1G1 , based at Q�1G1 , is generated by the seven
elements

fa; c; b2; bcb�1; ba2b�1; baca�1b�1; baba�1b�1
g:

Therefore the stabilizer .G1/A is generated by the conjugates of these seven elements
by Q�1 :8<:a; c;

0@ 1 0 0

2 1 �1

0 0 1

1A ;
0@ �1 0 1

�2 1 1

0 0 1

1A ;
0@ �1 2 1

�2 3 1

0 0 1

1A ;
0@ �3 2 2

�4 3 2

0 0 1

1A ;
0@ 3 �1 �1

4 �1 �2

0 0 1

1A9=;
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There is a presentation 2–complex for .G1/A that has the connected component of QG1

in � as its 1–skeleton, and which is a three-sheeted cover of the presentation 2–complex
for .G2/N corresponding to the presentation given above. In particular, .G1/A has a
finite presentation with seven generators and fifteen relators.

There is another interesting observation we can make by looking at �. Even though A

and N are both in M3;1.Z/ and A and N are in the same orbit under G2 , the
vertices G1 and QG1 are in different connected components of � and therefore A

and N are in different orbits under the action of G1 . This shows that it is not enough
simply to check whether matrices are in the same GQ –orbit.

6 Peak reduction

6.1 Preliminary notions

Throughout this section we use the generalized Whitehead automorphisms � defined
in the introduction. The definition of peak here does not exactly match the definition
used in Day [9], but the current definition is more symmetric.

Definition 6.1 A peak is a triple .W; ˛; ˇ/, where W is a tuple of conjugacy classes
and ˛ and ˇ are automorphisms of A� and

j˛ �W j � jW j; jˇ �W j � jW j;

with at least one of these inequalities being strict. The height of a peak is jW j. In this
paper, the automorphisms ˛ and ˇ in a peak are assumed to be in �.

A lowering of a peak .W; ˛; ˇ/ is a factorization

ˇ˛�1
D k � � � 1

of ˇ˛�1 by automorphisms 1; : : : ; k , such that all the lengths of the intermediate
images of ˛ �W are strictly lower than that of W , ie

ji � � � 1˛ �W j< jW j;

for i D 1; : : : ; k � 1. In this paper, the automorphisms in a lowering factorization of a
peak are always elements of �.

The goal of this section is to prove the following lemma.

Main Lemma 6.2 Suppose .W; ˛; ˇ/ is a peak and ˛ and ˇ are generalized White-
head automorphisms. Then this peak can be lowered using a factorization of ˇ˛�1 by
generalized Whitehead automorphisms.
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Theorem 1.3 follows immediately from this lemma.

Proof of Theorem 1.3 from Main Lemma 6.2 This is a standard argument; it appears
in detail as the “Proof of part (3) of Theorem B” in [9, pages 836–837]. In short, we
express ˛ as a product of generalized Whitehead automorphisms (for example, as
a product of Laurence–Servatius generators using Laurence’s Theorem) and then
repeatedly alter the factorization using Main Lemma 6.2. Whenever we see a peak of
maximal height, we replace it with a peak-lowering factorization. Each application of
the Main Lemma reduces either the number of peaks of maximal height or reduces
the maximum of the heights of the peaks in the factorization. The procedure will
terminate with a factorization of ˛ as product of automorphisms from � such that
no peaks appear in the sequence of lengths of the intermediate images of W . Such a
factorization satisfies the conclusion of the theorem.

In our algorithm to lower peaks, we break into cases depending on the properties of the
automorphisms ˛ and ˇ in the given peak .W; ˛; ˇ/. We often consider the support
of automorphisms, defined in Definition 3.10. Using this, we can explain the structure
of a generalized Whitehead automorphism.

Lemma 6.3 Suppose ˛ 2�Œa� for some vertex a. Then ˛ is a product of dominated
transvections and partial conjugations with multipliers in Œa� and inversions in elements
of Œa�. In particular,

� if b is adjacent to a with Œb�¤ Œa� and ˛ does not fix b , then a dominates b ,

� if Y is a connected component of � nst.a/ with at least two elements, then either
Y ˙1\ supp.˛/D¿ or Y ˙1 � supp.˛/.

Proof We know that �Œa� is isomorphic to a semidirect product GL.k;Z/ËMk;l.Z/,
where the short-range dominated transvections between elements of Œa� and inversions
in Œa� generate the GL.k;Z/–factor and the other dominated transvections and partial
conjugations with multipliers in Œa� generate the Mk;l.Z/–factor. This Mk;l.Z/ is a
free abelian group. In particular, we can express ˛ as ˛2˛1 , where ˛1 acts trivially
on � n Œa� (it is in the GL.k;Z/–factor) and ˛2 acts trivially on Œa� (it is in the
Mk;l.Z/–factor).

If b is adjacent to a with Œb�¤ Œa�, then the only possible generators of �Œa� that can
alter b are transvections, if they exist. So if ˛ does not fix b , there is a dominated
transvection with multiplier a acting on b , and therefore a dominates b .

For Y a connected component of � n st.a/, the only possible generators of �Œa� that
do not leave Y pointwise fixed are the partial conjugations that conjugate Y by an
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element of Œa�. If one of these appears in a minimal-length factorization of ˛2 , then
Y ˙1 � supp.˛/. If none do, then Y ˙1\ supp.˛/D¿.

We need some basic observations about the interactions of Whitehead automorphisms,
which we gather together in the following lemma.

Lemma 6.4 Suppose a and b are vertices of � and ˛ 2�Œa� and ˇ 2�Œb� .

� If a is adjacent to b and ˛jŒb� is not the identity and ˇjŒa� is not the identity,
then Œa�D Œb�.

� If a is not adjacent to b and ˛ fixes each element of Œb� then ˛ fixes each
element of st.b/.

� If a is not adjacent to b then ˛ and ˇ both fix all of st.a/\ st.b/.

� If a is not adjacent to b and a dominates b , then ˇ is a long-range automor-
phism.

� If a is not adjacent to b and ˛jŒb� is not the identity and supp.˛/\ supp.ˇ/D¿
then ˇ is a long-range automorphism.

Proof For the first item, suppose for contradiction that Œa�¤ Œb�. We factor ˛ and ˇ
as products of Laurence generators. Since ˛jŒb� is not the identity, some factor of ˛
is a dominated transvection that replaces some c 2 Œb� with cd for some d 2 Œa�. In
particular, this means that b dominates a. Reversing the roles of ˛ and ˇ , we see
that a dominates b as well. Then by definition Œa�D Œb�, a contradiction.

For the second item, we write ˛ D ˛1˛2 where ˛1 is a product of partial conjuga-
tions and ˛2 is a product of transvections and of inversions of elements of Œa�. Let
x 2 st.b/ n Œb�. If ˛1 does not fix x , then x is not adjacent to a and ˛1 conjugates
the entire connected component of x in � n st.a/ by the same nontrivial element
of hŒa�i. Necessarily b is in the same connected component and is therefore not fixed
by ˛1 . But since x is adjacent to b but not to a, we know that a does not dominate b ,
and therefore ˛2 fixes b . This implies that ˛ does not fix b , a contradiction. If ˛2

does not fix x , then there is a transvection multiplying an element of Œa� onto x .
Then a dominates x . But since x is adjacent to b , this implies a is adjacent to b , a
contradiction. So neither ˛1 nor ˛2 can alter x , which was arbitrary, and therefore ˛
fixes st.b/.

The third item is similar. If ˛ does not fix an element x of st.a/\ st.b/, then there
must be a transvection multiplying an element of Œa� onto x , so that a dominates x .
But if a dominates x and x is adjacent to b , then a is adjacent to b , a contradiction.
Similarly ˇ must fix every element of st.a/\ st.b/.
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To show the fourth item, we suppose that a dominates b . If x is adjacent to b and ˇ
does not fix x , then there is a transvection factor of ˇ that multiplies an element of Œb�
onto x . Then b dominates x . Since a dominates b , this implies that a dominates x ,
and therefore that a is adjacent to b , because x is. This is a contradiction, so therefore ˇ
fixes every vertex adjacent to b .

Now we explain the fifth item. If ˛ does not fix b , then either a dominates b , or
the component Y of a in � n st.b/ has at least two elements and ˛ conjugates every
element of Y by the same nontrivial word in Œa�. If a dominates b , then we have
already shown that ˇ must be long-range. So we suppose Y has at least two elements.
Suppose x is adjacent to b . If ˇ does not fix x , then b dominates x (as explained in
the previous item). If x were adjacent to a, then b would be adjacent to a, which it is
not. So x is not adjacent to a, and therefore x is an element of Y . However, if x is
an element of Y , then x is in supp.ˇ/, a contradiction since supp.ˇ/\ supp.˛/D¿
and x 2 supp.˛/. So ˇ fixes each vertex adjacent to b .

The following observation is easy and needs no proof. It greatly reduces the cases we
need to consider.

Lemma 6.5 If .W; ˛; ˇ/ is a peak, then so is .W; ˇ; ˛/. If one of these peaks can be
lowered, then so can the other.

Now we outline the proof of Main Lemma 6.2, which is broken into lemmas filling out
the rest of this section.

Proof of Main Lemma 6.2 Since .W; ˛; ˇ/ is a peak, at least one of ˛ or ˇ short-
ens W . Since permutation automorphisms do not shorten W , at least one of ˛ or ˇ
is not a permutation automorphism. Since we may swap ˛ and ˇ , we assume that ˛
is not a permutation, so ˛ 2 �Œa� for some vertex a of � . If ˇ is a permutation
automorphism, then conjugate ˛ by ˇ to lower the peak as described in Lemma 6.10.

So we assume that neither ˛ nor ˇ is a permutation automorphism; then ˇ 2�Œb� for
some vertex b in � . If Œa�D Œb�, then we lower the peak by replacing the length-two
factorization ˇ˛�1 with the length-one factorization given by its product, as explained
in Lemma 6.11.

Next we suppose that a and b are adjacent to each other in � , but that Œa�¤ Œb�. By
Lemma 6.4, this implies that ˛jŒb� is the identity or ˇjŒa� is the identity. We suppose
that ˛jŒb� is the identity; then Lemma 6.12 shows how to lower the peak. This uses a
Steinberg relation explained in Lemma 4.7.
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So we assume that a and b are not adjacent in � . If a dominates b and b dominates a,
then by Lemma 6.4, both ˛ and ˇ are long-range automorphisms. In this case, we
can lower the peak (in fact, fully reduce it) using Theorem 4.6. So we suppose that b

dominates a but a does not dominate b . Again by Lemma 6.4, ˛ is a long-range
automorphism. Proposition 6.17 explains how to lower such a peak. Finally, we suppose
that b does not dominate a and a does not dominate b . Then Proposition 6.15 shows
that the peak can be lowered.

6.2 Change of length under generalized Whitehead automorphisms

To show that the algorithm for lowering peaks works as desired, we need to show that
certain factorizations really are peak lowering. To do this we need a good understanding
of the effect that generalized Whitehead automorphisms have on lengths of tuples of
cyclic words. Next we prove some results about this.

We recall the action of �Œa� on syllables with respect to a given in Definition 3.6.

Lemma 6.6 Suppose W is a tuple of cyclic words and T is a syllable decomposition
of W with respect to a and ˛ 2�Œa� . Then

j˛ �W j � jW j D j˛ �T j � jT j:

In particular, we can compute the difference j˛ �W j�jW j by computing the differences
j˛ � t j � jt j over all syllables t of T and summing.

Proof This is an easy corollary of Lemma 3.8; the details are left to the reader.

In the following, when we talk about an endpoint of a syllable cud being in the support
of an automorphism, we are only talking about whether c and d�1 are in the support,
but not about c�1 or d . This is because the action of automorphisms on syllables
has nothing to do with the action on the far sides of the endpoints. The following
proposition is used to show that factorizations coming from the relations in Lemma 4.7
can lower peaks.

Proposition 6.7 Let a and b be vertices of � with Œa�¤ Œb�. Suppose ˛ 2�Œa� and
ˇ 2 �Œb� satisfy the hypotheses of Lemma 4.7 (˛ fixes Œb�, and either a is adjacent
to b , or supp.˛/\ supp.ˇ/D ¿ and ˇ fixes Œa�). Let  D ˛ˇ˛�1 , which is in �Œb�
by Lemma 4.7. Suppose W is a tuple of conjugacy classes. Then

jW j � jˇ �W j D j˛ �W j � j˛ˇ �W j:

Further, if .W; ˛; ˇ/ is a peak, then j˛ �W j< jW j.

Since ˛ D ˛ˇ , we can also express ˛ˇ �W as ˛ �W in the equation above.
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Proof of Proposition 6.7 Let T D .t1; : : : ; tN / be a syllable decomposition of W

with respect to Œb�. We form a syllable decomposition T 0 of ˛ �W with respect to Œb�
by the following process: first we form the representative of W associated to T , then
we apply ˛ to this representative by inserting elements from Œa� where appropriate,
then we delete inverse pairs of elements of Œa� that commute with all intervening letters,
and then we split the resulting representative into syllables. We note that no collapsing
can happen in this process: if c 62 Œa� cancels with its inverse after we apply ˛ , then
it could have canceled before applying ˛ , thus contradicting the stipulation from the
definition of syllable decomposition that the associated representative be graphically
reduced. We prove the proposition by defining a relation f between the syllables in T

and the syllables T 0 . This f will be an injective partial function.

Consider syllable ti from T . Either ti is a linear syllable ti D civiuidi or a cyclic
syllable ti D viui , with vi 2 hŒb�i, ui 2 hst.b/ n Œb�i and ci ; di 2 .� n st.b//˙1 . We
consider what happens to ti in passing from W to ˛ �W . The hypotheses of Lemma 4.7
give us two cases for ˛ and ˇ . In the first case, a is adjacent to b , so acting by ˛
cannot alter syllable boundaries, and we define f to be the map that sends each syllable
in T to the corresponding syllable with the same boundaries in T 0 .

In the other case, a is not adjacent to b and supp.˛/\supp.ˇ/D¿. So by Lemma 6.4, ˛
fixes viui . In this case, ˇjŒa� is the identity. Also, if ci or d�1

i is in supp.ˇ/, it is not
in Œa� and is not in supp.˛/, so action by ˛ cannot cancel it away or insert an element
of Œa� between it and viui . So in the second case, if ci or d�1

i or any element of ui is
in supp.ˇ/ then all of these land in the same syllable of T 0 ; we declare f to send ti
to this syllable.

In the second case, if ci and d�1
i are not in supp.ˇ/ and ui does not contain any

elements of supp.ˇ/, then we leave ti out of the domain of f . This completes the
definition of f . We note that f is injective. This is obvious in the first case; in the
second case, if two or more syllables merge to form the syllable t 0j , then at most one
of them can be in the domain of f . This is because supp.˛/ \ supp.ˇ/ D ¿ and
because elements of st.a/\ st.b/ cannot be in supp.ˇ/: to break a syllable boundary,
we must have the far endpoint being in supp.˛/ and everything in st.b/ on one side of
the boundary in st.b/\ st.a/.

Claim If ti is in the domain of f , then jti j � jˇ � ti j D jf .ti/j � j �f .ti/j.

First we consider the case where a is adjacent to b . Then f .ti/ differs from ti in
that some elements of Œa� have been added and deleted from ui . We use u0i to denote
the part of f .ti/ that is a word from st.b/ n Œb�. The syllable ˇ � ti differs from ti
in that elements of Œb� have been added and deleted from vi . Let v0i denote the part

Algebraic & Geometric Topology, Volume 14 (2014)



1722 Matthew B Day

of ˇ � ti that is a word from Œb�. Since ˛D ˛ˇ , the syllable  �f .ti/ can be computed
by applying ˛ to the syllable ˇ � ti (in the same manner that we obtained f .ti/ by
applying ˛ to ti ). Since the elements of supp.˛/ in ti are in ci , d�1

i and ui (since ˛
fixes Œb�), these are unchanged in ˇ � ti , and therefore  � f .ti/ differs from ˇ � ti in
that ui is replaced by u0i (the same u0i as above). So the st.b/–parts of ti , ˇ � ti , f .ti/
and  � f .ti/ are uivi , uiv

0
i , u0ivi and u0iv

0
i respectively. Since these are reduced

products, this proves the claim in this case.

Next we consider the case where a is not adjacent to b , the supports of ˛ and ˇ
are disjoint, and ˇ fixes Œa�. In this case,  D ˇ . The elements of f .ti/ in supp.ˇ/
are exactly the same as those in ti , since, as noted above, any elements merged in
from other syllables cannot contain anything from supp.ˇ/. Similarly, parts merged in
from other syllables cannot contain elements of Œb�. By Lemma 6.4, ˛ fixes viui . Of
course, ˇ � ti differs from ti in that vi is replaced by v0i , where v0i is determined by vi

and the elements of ti in supp.ˇ/. Since f .ti/ contains the same Œb�–part vi and the
same elements of supp.ˇ/, it follows that ˇ � ti will be the same as f .ti/, but with vi

replaced by the same v0i just mentioned. In particular, the claim follows in this case.

Claim If ti is not in the domain of f , then ti D ˇ � ti , and if t 0j is not in the range
of f , then t 0j D  � t

0
j .

In the first case, f is a bijective total function and there is nothing to show. In the
second case, the statement about the domain of f is obvious: if ti is not in the domain,
then it contains nothing from supp.ˇ/, and therefore ˇ does nothing to it. In the
second case, if t 0j is some syllable in T 0 not in the range of f , then no part of it is in
supp.ˇ/. This is because ˛ did not create new elements of supp.ˇ/ in acting on W ,
and if some ti has some elements of supp.ˇ/, all these elements of supp.ˇ/ end up in
its correspondent under f . The action of  is to place cancelling copies of v and v�1

in the syllable, proving the claim.

Now we finish the proof of the proposition. Using Lemma 6.6, we have shown that

jW j � jˇ �W j D j˛ �W j � j˛ �W j;

since we have matched up all the syllables that change length on one side with the
syllables that change length on the other side, and shown that they change length by the
same amount. If we suppose that .W; ˛; ˇ/ is a peak, then by definition, we know that
2jW j< jˇ �W jC j˛ �W j (this is from summing the two inequalities in the definition
of a peak and using the stipulation that one of them is strict). Combining these two
statements, we obtain jW j> j˛ �W j.
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For the next proposition, we recall the technique from Day [9] for computing the
change in length of classic long-range Whitehead automorphisms. We defined classic
Whitehead automorphisms in Section 4.3. Fix a tuple of conjugacy classes W . For c in
a vertex of � and A and B subsets of X˙1 , we use the notation hA;BiW ;c to denote
the number of instances of subwords of the forms due�1 or eud�1 in a graphically
reduced representative for W , where d 2 A n st.c/, e 2 B n st.c/, and u is a word
in st.c/. This number is nonnegative and does not depend on the choices involved.
As a function of A and B , it is additive over disjoint sets in both inputs. Generally
we will work with a specific W and suppress W from the notation. Let  be a long-
range classic Whitehead automorphism with multiplier c and write C D supp. /C c .
We write c for fcg, “�” for differences of sets, “C” for disjoint unions and C 0 for
X˙1 n C in the following computations. This bracket has the useful property (see
Day [9, Lemmas 3.16,3.17])

jW j � j �W j D hc;C � cic � hC
0;C � cic :

Since hc; cic D 0 (W is graphically reduced), we can rewrite this as

jW j � j �W j D hc;X˙1
ic � hC

0;C ic :

We use this bracket to detect sets of vertices for constructing Whitehead automorphisms
for factorizations used in the peak reduction algorithm. The next result helps us do this.

Proposition 6.8 Suppose ˛ and ˇ are classic long-range Whitehead automorphisms
with multipliers a and b respectively. Suppose that a is not adjacent to b and b

dominates a. Finally, we suppose that ˛.b/ D b and a is in supp.ˇ/. Let W be a
tuple of conjugacy classes. Let A denote supp.˛/C a and let B denote supp.ˇ/C b .

� There is a classic long-range Whitehead automorphism ˇ1 with multiplier b�1

and support supp.ˇ1/DA0\B0� b�1 .
� There is a classic long-range Whitehead automorphism ˛1 with multiplier a and

support supp.˛1/DA\B � a.
� We have the following inequality for the changes in length of W under these

automorphisms:

.jW j � jˇ1 �W j/C .jW j � j˛1 �W j/� .jW j � jˇ �W j/C .jW j � j˛ �W j/:

Proof First we explain why the automorphisms ˇ1 and ˛1 exist. Since b domi-
nates a, b dominates every vertex that a dominates, and if Y is a connected component
of � n st.a/, Y is a union of vertices adjacent to b , vertices dominated by b , and
connected components of � n st.b/. Therefore ˇ1 can be expressed as a product of
Laurence generators and is a well-defined automorphism.

Algebraic & Geometric Topology, Volume 14 (2014)



1724 Matthew B Day

If a dominates b , then a and b dominate the same vertices nonadjacently and � nst.a/
and � n st.b/ have the same connected components with two or more vertices. Then
A\B � a is a union of vertices that a dominates nonadjacently and components of
� n st.a/ with two or more vertices, and therefore ˛1 can be expressed as a product of
Laurence generators with multiplier a and is well-defined. Now suppose that a does
not dominate b . Then since ˛ fixes b , ˛ must fix the entire connected component
of b in � n st.a/. If c is a vertex in A \ B and a does not dominate c , then the
entire connected component Y of c in � n st.a/ is in A. If b dominates c , then
there is a path from c to b outside of st.a/, and therefore b and c are both in Y .
However, this is a contradiction, since ˛ must conjugate every element of Y by a.
So b does not dominate c , which means that the entire connected component Z of c in
� n st.b/ is in B . Since Y �Z (since b dominates a), this means that Y �A\B . In
particular, ˛1 can be expressed as a product of Laurence generators and is well-defined.

Now we consider lengths of images of W . From the comments preceding the statement
of Proposition 6.8, we know that

jW j � j˛ �W j D ha;X˙1
ia� hA

0;Aia;

jW j � jˇ �W j D hb;X˙1
ib � hB

0;Bib;

jW j � jˇ1 �W j D hb
�1;X˙1

ib � hA
0
\B0; .A0\B0/0ib:

We expand:

hA0\B0; .A0\B0/0ib D hA
0
\B0;A\BibChA

0
\B0;A0\BibChA

0
\B0;A\B0ib

hB0;Bib D hA\B0;A\BibChA\B0;A0\BibChA
0
\B0;A\Bib

ChA0\B0;A0\Bib

In particular, we see that

.jW j � jˇ1 �W j/� .jW j � jˇ �W j/D hA\B;A\B0ib � hA
0
\B0;A\B0ib

ChA\B0;A0\Bib:

Let CW be the number of subwords of our graphically reduced representative for W

of the form auc�1 , where c is in A� a and u is in hst.b/i but not in hst.a/i (so u

contains some letter not commuting with a). Then

hA\B;A\B0ib D hA\B;A\B0iaCCW :

On the other hand, if cud�1 is counted by hA0 \B0;A \B0ib , ie if c 2 A0 \B0 ,
u 2 hst.b/i and d 2A�a, then we have that either u 2 hst.a/i and cud�1 is counted
by hA0 \B0;A\B0ia , or uD u1eu2 with u1 2 hst.a/i and e 2 st.b/ n st.a/. In the
latter case, cu1e is counted by hA0\B0;A\B0ia , since e is in A0\B0 (e is fixed by
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ˇ because ˇ is long range and by ˛ because otherwise ˛ would not fix b ). So each
subword counted by hA0\B0;A\B0ib is counted exactly once by hA0\B0;A\B0ia , so

hA0\B0;A\B0ib D hA
0
\B0;A\B0ia:

Then

.jW j � jˇ1 �W j/� .jW j � jˇ �W j/D hA\B;A\B0ia� hA
0
\B0;A\B0ia

CCW ChA\B0;A0\Bib:

By an argument parallel to the one for ˇ1 , we deduce

.jW j � j˛1 �W j/� .jW j � j˛ �W j/D hA\B0;A0\B0ia� hA\B;A\B0ia

ChA0\B;A\B0ia:

Summing the two equations, we see that

.jW j � jˇ1 �W j/� .jW j � jˇ �W j/C .jW j � j˛1 �W j/� .jW j � j˛ �W j/

D CW ChA\B0;A0\BibChA\B0;A0\Bia;

which is a nonnegative number.

In the following, when we write j˛jO we mean the minimum length of a representative
of the class of ˛ in Out.A�/ as a product of Laurence generators.

Corollary 6.9 Suppose .W; ˛; ˇ/ is a peak with ˛ 2�Œa� , ˇ 2�Œb� classic long-range
Whitehead automorphisms, with a not adjacent to b , and b dominating a, but a not
dominating b . Suppose a 2 supp.ˇ/ and ˛.b/D b . Then either
� there is a classic long-range Whitehead automorphism ˇ1 with multiplier b�1 ,

with jˇ�1
1
ˇjO < jˇjO as a product of Laurence generators, with ˇ1.a/ equal

to ba or a, and with jˇ1 �W j< jW j, or
� there is a classic long-range Whitehead automorphism ˛1 with multiplier a, with

supp.˛1/� supp.ˇ/, and with j˛1 �W j< jW j.

Further, if supp.˛/\ supp.ˇ/D¿, then the first option holds.

Proof We apply Proposition 6.8. Using the definition of a peak,

.jW j � jˇ1 �W j/C .jW j � j˛1 �W j/� .jW j � jˇ �W j/C .jW j � j˛ �W j/ > 0:

So one of ˛1 or ˇ1 strictly shortens W . Since ˛1 and ˇ1 satisfy the other properties
in the lemma, this proves the main statement of the lemma. If supp.˛/\ supp.ˇ/D¿,
then ˛1 is defined to be the trivial automorphism and cannot shorten W . Therefore in
this case, it is ˇ1 that shortens W .
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6.3 The algorithm: basic cases

Now we begin considering cases for lowering peaks. For the rest of this section, we
suppose we have peak .W; ˛; ˇ/ with ˛ and ˇ generalized Whitehead automorphisms.

Lemma 6.10 If ˛ is a permutation automorphism, then the peak .W; ˛; ˇ/ can be
lowered.

Proof Since ˛ is a permutation automorphism, ˛ �W is the same length as W . Then
the definition of a peak demands that jˇ �W j < jW j, and therefore ˇ 2 �Œb� for
some vertex b of � . Then ˇ˛�1 D ˛�1 � ˛ˇ˛�1 is a peak-lowering factorization:
˛ˇ˛�1 is in �Œ˛.b/� and j˛ˇ �W j D jˇ �W j< jW j (again because ˛ is a permutation
automorphism).

Lemma 6.11 If ˛ and ˇ are both in �Œa� for a vertex of � , then .W; ˛; ˇ/ can be
lowered.

Proof Set  D ˇ˛�1 . Then ˇ˛�1 D  is a peak-lowering factorization:  2 �Œa�
and the condition on intermediate lengths of images of W is vacuous for factorizations
of length one.

For the rest of this section we assume that .W; ˛; ˇ/ is a peak with ˛ 2 �Œa� and
ˇ 2�Œb� for distinct vertices a and b in � .

Lemma 6.12 Suppose a is adjacent to b and ˛Œb� is the identity. Then the peak
.W; ˛; ˇ/ can be lowered.

Proof By Lemma 4.7, we know that the element  D ˛ˇ˛�1 is in �Œb� . We use the
factorization ˇ˛�1 D ˛�1 . To show that this is peak-lowering, it is enough to show
that j˛ �W j< jW j. However, we have already done this in Proposition 6.7.

Lemma 6.13 Suppose a is not adjacent to b , supp.˛/ \ supp.ˇ/ D ¿ and ˛jŒb�
and ˇjŒa� are both identity maps. Then the peak .W; ˛; ˇ/ can be lowered.

Proof Again we use  D ˛ˇ˛�1 , which is in �Œb� by Lemma 4.7. Our hypotheses
imply that ˛ and ˇ commute, so that  D ˇ . Our peak-lowering factorization is

ˇ˛�1
D ˛�1ˇ:

To show this, of course we need to show that jˇ˛ �W j< jW j. We have already shown
this in Proposition 6.7.
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6.4 General cases with nonadjacent multipliers

Lemma 6.14 Suppose .W; ˛; ˇ/ is a peak with ˛ 2�Œa� and ˇ 2�, and  2�Œa� is
an inner automorphism of A� . Then ˛ and ˛ are both in �Œa� and .W; ˛; ˇ/ and
.W; ˛; ˇ/ are both peaks and can be lowered if and only if .W; ˛; ˇ/ can be lowered.

Proof The claim that ˛ and ˛ are in �Œa� is obvious. We note that ˛ D ˛ 0 for
a possibly different inner automorphism  0 2�Œa� , so it is enough to prove the lemma
for .W; ˛; ˇ/. Also, it is enough to show only the “if” direction of the statement.

First of all, if .W; ˛; ˇ/ is a peak, then .W; ˛; ˇ/ is as well, since action by inner
automorphisms has no effect on cyclic words. Now we suppose that ı1; : : : ; ık 2�
and

ˇ˛�1
D ık � � � ı1

is a lowering of .W; ˛; ˇ/. Let l be one of 1; : : : ; k such that ıl � � � ı1˛ �W is minimal
length among all ıi � � � ı1˛ �W . Since a conjugate of an inner automorphism by another
automorphism is still an inner automorphism, and since every inner automorphism is a
product of inner automorphisms from �, we can find inner automorphisms 1; : : : ; m

in � such that
ˇ˛�1�1

D ık � � � ılC1m � � � 1ıl � � � ı1:

Since inner automorphisms do not change the length of cyclic words, this is a lowering
of the peak .W; ˛; ˇ/.

If ˛ is a classic long-range Whitehead automorphism with multiplier a, we will
sometimes consider the complement of ˛ . This is the classic long-range Whitehead
automorphism with multiplier a, with the property that the union of the support of ˛
and the support of its complement is .� n st.a//˙1 . It follows that the product of ˛
and its complement is inner, so Lemma 6.14 implies that we may freely replace an
automorphism in a peak with its complement.

Proposition 6.15 Suppose a is not adjacent to b , b does not dominate a and a does
not dominate b . Then the peak .W; ˛; ˇ/ can be lowered.

Proof We prove the proposition by proving it in successively more general cases, with
each case building on the last. First we prove the following.

Case The proposition is true if ˇ is a classic long-range Whitehead automorphism with
multiplier b , ˇjŒa� is the identity, ˛jŒb� is not the identity and supp.˛/\ supp.ˇ/D¿.
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Since a does not dominate b , there is some nontrivial element v 2 hŒa�i such that
˛.b/D vbv�1 . We define a new automorphism ˛1 2�Œa� by ˛1.c/D v

�1˛.c/v for
every c 2 � . Then ˛1 and ˛ differ by an inner automorphism, and to prove the claim,
it is enough to show that the peak .W; ˛1; ˇ/ can be lowered.

Claim If c˙1 2 supp.ˇ/, then either a dominates c or Y ˙1 � supp.ˇ/, where Y is
the connected component of c in � n st.a/.

Suppose that c is a vertex of � with c or c�1 2 supp.ˇ/ and a does not dominate c .
Let Y be the connected component of c in � n st.a/. We want to show that Y is a
subset of a connected component of � n st.b/ with at least two vertices. This is enough,
since by Lemma 6.3 this implies that Y ˙1� supp.ˇ/. Then it is enough to show that b

does not dominate c and that Y does not contain an element of st.b/.

If b dominates c , then since a does not dominate c , either b is adjacent to c or
there is a vertex adjacent to b and c but not adjacent to a. If Y contains an element
of st.b/, then there is a path from c to b outside of st.a/. In any of these three cases, it
follows that b and c are in the same component of � n st.a/. However, this contradicts
Lemma 6.3: ˛ fixes c and c�1 since ˇ does not and supp.˛/\ supp.ˇ/D¿, but ˛
does not fix b . This proves the claim.

By the claim, supp.ˇ/ is a union of elements c˙1 where a dominates c , and sub-
sets Y ˙1 where Y is an entire connected component of � n st.a/. In particular, the
following automorphisms are products of Laurence generators and are well-defined.
Let ˛2.c/ be in fc; cv�1; vc; vcv�1g for each vertex c 2� , with supp.˛2/D supp.ˇ/,
and let ˛3 D ˛1˛

�1
2

.

Now our goal is to show j˛3 �W j< jW j. If this is true, then we will have that .W; ˛3; ˇ/

is a peak with ˇjŒa� and ˛3jŒb� being identity maps and supp.˛3/\supp.ˇ/D¿. In par-
ticular, Lemma 6.13 applies to lower .W; ˛3; ˇ/. Appending ˛�1

2
to this factorization

will give us a peak-lowering factorization for ˇ˛�1 .

In fact we show that

j˛1 �W j � j˛2 �W j � jvj.jW j � jˇ �W j/:

Let T be a syllable decomposition of W with respect to Œb�. For each syllable ti
in T , either ˇ � ti is longer that ti or shorter than ti or the same length. Let L1 be
the sum over syllables ti that ˇ lengthens of jˇ � ti j � jti j, and let S1 be the sum over
syllables ti that ˇ shortens of jti j � jˇ � ti j. Then

jW j � jˇ �W j D S1�L1:
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Let T 0 be a syllable decomposition of ˛1 �W with respect to Œa�, and similarly let L2

be the total increase in length of syllables ˛�1
2

lengthens and let S2 be the total decrease
in length of syllables that ˛�1

2
shortens. Then

j˛1 �W j � j˛3 �W j D S2�L2:

We assume without loss of generality that ˛1 � T and T 0 have the same associated
representative of ˛1 �W .

Suppose ti is a syllable in T that decreases in length under ˇ . Then ti contains b to a
nonzero power and exactly one endpoint of ti is in supp.ˇ/. Suppose ti D cbkud and
where u 2 hst.b/ n fbgi and without loss of generality assume c is in supp.ˇ/. Then
the initial part cb˙1 of ti is a syllable of W with respect to Œa�. The image of this
syllable under ˛1 is a syllable of ˛1 �W with respect to Œa�; it is of the form c˛1.b/

˙1 .
Clearly ˛3 �cb˙1 (acting on the syllable) is cv�1˛1.b/

˙1 . This is a syllable of ˛1 �W

in T 0 that shortens by jvj under the action of ˛�1
2

. In particular, summing over all
syllables in T that decrease in length under ˇ , we have

jvjS1 � S2:

Suppose t 0j is a syllable in T 0 that increases in length under ˛�1
2

. Suppose t 0j D cwud ,
where u 2 hst.a/ n Œa�i and w 2 hŒa�i. We note that ˛2 is like a classic Whitehead
automorphism in that ˛2.c/ must be one of fc; cv�1; vc; vcv�1g. In particular, since
˛�1

2
� t 0j is longer than tj , we must have exactly one of c and d�1 in supp.˛2/,

and it must be the case w ¤ 1 that the v or v�1 that is inserted by ˛�1
2

does not
cancel away completely into w . We assume without loss of generality that c is in
supp.˛2/ D supp.ˇ/ but d�1 is not. Clearly t 0j increases in length by at most jvj
under ˛�1

2
. We consider ˛�1

1
� t 0j , which is a syllable of W with respect to Œa�. Then

˛�1
1
� t 0j D cw0ud , where w0 2 hŒa�i. Since c 2 supp.ˇ/, we know c ¤ b˙1 . We note

that if d is b˙1 , then it must be that w0u contains a generator not in st.b/. If w0 is
trivial, then u contains elements adjacently dominated by a, which cannot be in st.b/
since a is not adjacent to b . If w0 is nontrivial, then w0 contains elements of Œa�
which are not adjacent to b . Further w0u contains no elements of supp.ˇ/ because ˇ
fixes st.a/. So whether d D b˙1 or not, the initial segment of cw0ud contains a
syllable with respect to Œb� starting with c (in supp.ˇ/) and ending with an element
not in supp.ˇ/. Such a syllable increases in length by one under ˇ . Then summing
over all syllables in T 0 that increase in length under ˛�1

2
, we have

L2 � jvjL1:

Summing these gives us
jvjS1CL2 � jvjL1CS2I
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in other words

jvj.jW j � jˇ �W j/D jvj.S1�L1/� S2�L2 D j˛1 �W j � j˛3 �W j:

We can rewrite this as

jW j � j˛3 �W j � jvj.jW j � jˇ �W j/CjW j � j˛1 �W j:

Since .W; ˛1; ˇ/ is a peak, we know jW j � jˇ �W j � 0 and jW j � j˛1 �W j � 0 with
at least one strict. In either case, it follows that j˛3 �W j< jW j. As explained above,
this means .W; ˛3; ˇ/ is a peak that Lemma 6.13 lowers, and by attaching ˛�1

2
to the

lowering factorization, we get a peak-lowering factorization for the peak .W; ˛1; ˇ/.

This proves the first case. Now we move to a slightly more general case.

Case The proposition is true for general ˛ 2 �Œa� , ˇ 2 �Œb� with disjoint support.
(We are still assuming a does not dominate b and b does not dominate a.)

If ˛jŒb� and ˇjŒa� are both the identity, then Lemma 6.13 lowers the peak. So we
assume without loss of generality that ˛jŒb� is not the identity. Lemma 6.4 implies
that ˇ is a long-range automorphism in this case. If we also assume that ˇjŒa� is not
the identity, then ˛ is also a long-range automorphism, and therefore Theorem 4.6
applies to lower the peak. So we assume that ˇjŒa� is the identity.

Since ˇ is a long-range automorphism, we peak-reduce ˇ with respect to W to get
a factorization ˇ D ˇk � � �ˇ1 by classic long-range Whitehead automorphisms. It is
possible that jˇi � � �ˇ1 �W j< jW j for some i in 1; : : : ; k . If this is the case, we lower
the peak .W; ˛; ˇ1/ by the method above and concatenate ˇk � � �ˇ2 to this factorization
to get a peak-lowering factorization for ˇ˛�1 .

Otherwise, since ˇk � � �ˇ1 is peak reduced, we have jˇ �W j D jW j, j˛ �W j< jW j and
jˇi � � �ˇ1 �W jD jW j for i D 1; : : : ; k . We prove the claim by induction on the length k

of the factorization. We let ˛1; ˛2 and ˛3 have the same meanings as above, with ˇ1

taking the role of ˇ . Then ˇ1˛
�1
1
D ˛�1

3
ˇ1˛

�1
2

is a peak-lowering factorization for
the peak .W; ˛1; ˇ1/, using Lemma 6.13 as explained above. However, if k > 1, then
we have a new peak .ˇ1 �W; ˛3; ˇk � � �ˇ2/. The inductive hypothesis implies that this
new peak can be lowered. Concatenating ˛�1

3
ˇ1 onto the peak-lowering factorization

for .ˇ1 �W; ˛3; ˇk � � �ˇ2/ gives us a peak-lowering factorization for .W; ˛1; ˇ/, which
gives us a peak-lowering factorization for the original peak using Lemma 6.14. This
proves the second case.
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General case Finally we prove the proposition as stated. We have ˛ 2 �Œa� and
ˇ 2 �Œb� . If ˛ does not fix b , then since a does not dominate b , we know that ˛
conjugates b by a nontrivial element of hŒa�i. Then by Lemma 6.14, we may replace ˛
by its product with an inner automorphism and assume that ˛ fixes b . Similarly, we
assume that ˇ fixes a.

Claim If c˙1 is in supp.˛/ \ supp.ˇ/, then either both a and b nonadjacently
dominate c , or else the connected component Y of c in � n st.a/ is also a connected
component of � n st.b/ and Y [Y �1 � supp.˛/\ supp.ˇ/.

If c˙1 is in supp.˛/\ supp.ˇ/, then one possibility is that a dominates c . If b were
adjacent to c , it would imply that a is adjacent to b , which is not the case. So b is not
adjacent to c . If b does not also dominate c , then there is a vertex adjacent to a and c

but not adjacent to b . This means that a and c are in the same component of � n st.b/;
then ˇ.a/D a implies that c; c�1 62 supp.ˇ/ by Lemma 6.3. This is a contradiction,
so we see that both a and b dominate c . Then if c were adjacent to a, it would imply
that a and b are adjacent, so c is also not adjacent to a.

Next we suppose that c in supp.˛/ \ supp.ˇ/ is in a connected component Y of
� nst.a/ with at least two vertices. First of all, b is not adjacent to c , since otherwise ˛
would not fix b (by Lemma 6.3, since b would be in Y ). Further, it cannot be the case
that b dominates c ; if it did, b would be adjacent to a vertex of Y other than c and
therefore b would be in Y and ˛ would not fix b . So let Y 0 be the component of c in
� n st.b/. Suppose d 2 Y . Then there is a path from d to c outside of st.a/. If this
path intersects st.b/, then b would be in Y , which is impossible. So the path from d

to c is outside st.b/, meaning that d is in Y 0 . Since d was arbitrary Y � Y 0 . By a
parallel argument, Y 0 � Y , and therefore they are equal. This proves the claim.

We prove the proposition by induction on the cardinality of supp.˛/\ supp.ˇ/. The
base case is that supp.˛/\ supp.ˇ/D¿, which we covered in a previous case.

Now we work the inductive step. Since supp.˛/\ supp.ˇ/ is nonempty, we select an
element c from it. First we assume that both a and b nonadjacently dominate c . Fix
a graphically reduced representative for W . Let na denote the number of instances
of c or c�1 in the representative in a subword cud or duc�1 with u 2 hst.a/i and
d 2 Œa�˙1 and let nb be defined similarly with a replaced by b . Let n0 count the
number of remaining instances of c or c�1 in the representative (those that are counted
by neither na or nb ). Let v1 and v2 be in hŒa�i with ˛.c/D v1cv2 and let u1 and u2

be in hŒb�i with ˇ.c/ D u1cu2 . Let ˛c be the element of �Œa� with ˛c.d/ D ˛.d/

for all d ¤ c , and ˛c.c/D v1c . Let ˇc be defined similarly, with ˇc.c/D u1c . We
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note that ˛c and ˇc can be expressed as products of Laurence generators and are
well-defined automorphisms.

The decomposition of W into syllables with respect to Œa� coming from our represen-
tative, with Lemma 6.6, tells us the following: at each instance of c counted by nb

or n0 , ˛ increases the length of W by jv2j more than ˛c does, and at each instance
of c counted by na , ˛ may decrease the length of W by up to jv2j more than ˛ does
or increase it by up to jv2j more. Specifically,

jv2j.n
0
C nb � na/� j˛ �W j � j˛c �W j � jv2j.n

0
C nbC na/:

Similarly for ˇ ,

ju2j.n
0
C na� nb/� jˇ �W j � jˇc �W j � ju2j.n

0
C naC nb/:

Of course, since c 2 supp.˛/\ supp.ˇ/, we know jv2j> 0 and ju2j> 0.

Suppose both j˛c �W j � j˛ �W j and jˇc �W j � jˇ �W j. Then n0C nb � na � 0 and
n0C na � nb � 0. Summing these, we see that n0 � 0, but since n0 is a nonnegative
integer, n0 D 0. Then nb D na , and in this case we have both j˛c �W j D j˛ �W j and
jˇc �W j D jˇ �W j. By the definition of a peak, either j˛ �W j< jW j or jˇ �W j< jW j.
So in this case we have either j˛c �W j< jW j or jˇc �W j< jW j.

Otherwise, we have either j˛c �W j< j˛ �W j or jˇc �W j< jˇ �W j. Since the definition
of a peak ensures that both j˛ �W j � jW j and jˇ �W j � jW j, in this case we also have
either j˛c �W j< jW j or jˇc �W j< jW j.

Without loss of generality we suppose j˛c �W j< jW j. Then .W; ˛c ; ˇ/ is a peak that
can be lowered by the inductive hypothesis. So we append the element .˛c˛

�1/ 2�Œa�
onto a peak-lowering factorization for .W; ˛c ; ˇ/ to get a peak-lowering factorization
for .W; ˛; ˇ/.

The case where c 2 supp.˛/\ supp.ˇ/ is in a connected component of � n st.a/ is
similar, with na , nb and n0 defined similarly.

Lemma 6.16 Suppose a and b are vertices of � with Œa� ¤ Œb� and ˛ 2 �Œa�
and ˇ 2 �Œb� are classic long-range Whitehead automorphisms such that ˛.b/ D b ,
supp.˛/\ supp.ˇ/ D ¿ and ˇ.a/ is a or ab . Then ˛ˇ˛�1 is a classic long-range
Whitehead automorphism in �Œb� and for any tuple W of cyclic words, we have

jW j � jˇ �W j D j˛ �W j � j˛ˇ �W j:

Proof The fact that ˛ˇ˛�1 2 �Œb� is relation R4 in Day [9, Section 2.4], with ˛
being .A; a/�1 and ˇ being .B; b/ in that statement. The equation of differences of

Algebraic & Geometric Topology, Volume 14 (2014)



Full-featured peak reduction in right-angled Artin groups 1733

lengths is essentially Day [9, Sublemma 3.21], applied twice. Near the end of the proof
of that statement, the equation above appears as an inequality (˛ and ˛�1 are switched
and the terms rearranged, but it is the same assertion). The same inequality with W

replaced by ˛ �W and ˛ replaced by ˛�1 is the inequality in the reverse direction,
proving the equation.

Proposition 6.17 Suppose a is not adjacent to b , b dominates a and a does not
dominate b . Then the peak .W; ˛; ˇ/ can be lowered.

Proof More precisely, we prove the following.

Claim Suppose a is not adjacent to b , b dominates a and a does not dominate b .
Then the peak .W; ˛; ˇ/ has a peak-lowering factorization such that each automorphism
in the factorization is in �Œb� or is a long-range automorphism in �Œa� .

Since a does not dominate b , we know that ˛ acts on Œb� by conjugating it by a fixed
element of hŒa�i. Then by Lemma 6.14, we can replace ˛ by its composition with an
inner automorphism from �Œa� and assume that ˛ fixes Œb�. We also note that since b

nonadjacently dominates a, a does not adjacently dominate anything and therefore ˛
is long-range and Œa�D fag (see Lemma 6.4).

We induct on j˛jO , the length of the outer class of ˛ as a product of Laurence
generators. We use as a base case the case that ˛ is a classic long-range Whitehead
automorphism, which will certainly be true if j˛jO is one. Before proving this case,
we prove the inductive step. We peak-reduce ˛ with respect to W by Theorem 4.6.
We select the first automorphism ˛1 out of such a peak-reducing factorization. Let
˛2 D ˛˛�1

1
. Then ˛1 will be a classic long-range Whitehead automorphism with

multiplier a˙1 , j˛2jO < j˛jO , and j˛1 �W j � jW j, with the inequality being strict
if j˛ �W j< jW j. (Specifically, we factor ˛ as a product of transvections and partial
conjugations with multipliers a˙1 and apply the algorithm from Day [9]; at each step,
the algorithm merges, commutes or splits the automorphisms in the factorization, and
the resulting peak-reduced factorization consists entirely of long-range automorphisms
with multipliers in fa; a�1g.) Then .W; ˛1; ˇ/ is a peak. We apply the claim and
get a peak-lowering factorization of ˇ˛�1

1
. If the last term in the factorization is a

long-range automorphism ˛0 2�Œa� , then j˛0�1˛1 �W j< jW j by the definition of a
peak-lowering factorization. We peak-reduce ˛2˛

0 with respect to j˛0�1˛1 �W j using
Theorem 4.6. If we replace the element ˛0 in our factorization of ˇ˛�1

1
with this

peak-reduced factorization of ˛2˛
0 , then the result is a peak-lowering factorization

of ˇ˛�1 . Otherwise the last term in the factorization of ˇ˛�1
1

is an automorphism
ˇ0 2�Œb� . Then .˛1 �W; ˛2; ˇ

00/ is a peak satisfying the hypotheses of the claim, but
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with j˛2jO < j˛jO . Then by induction, we apply the claim and get a peak-lowering
factorization of ˇ0˛�1

2
. We replace ˇ0 in the factorization of ˇ˛�1

1
with the entire

factorization of ˇ0˛�1
2

to get a peak-lowering factorization of ˇ˛�1 .

Now we prove the claim in the base case: with the additional hypothesis that ˛ is a
classic long-range Whitehead automorphism with multiplier a (the case where the
multiplier is a�1 is similar). Let ˇ00 be the short-range part of ˇ ; in other words
let ˇ00 equal ˇ on st.b/ and let ˇ fix all other vertices. Then ˇ00 will be a product
of short-range transvections and inversions and will be a well-defined automorphism.
Let ˇ0 be the difference, the long-range part, so that ˇDˇ0ˇ00 . Everything in supp.ˇ00/
is adjacent to b and dominated by b , or equal to b . Since a is not adjacent to b , a

cannot be adjacent to anything in supp.ˇ00/ (otherwise domination would force a to
be adjacent to b ). Since ˛ fixes b , ˛ fixes the entire connected component of b

in � n st.a/. Therefore supp.ˇ00/\ supp.˛/ D ¿. Since a is not adjacent to b , by
definition, ˇ00 fixes Œa�. Then by Lemma 4.7 and Proposition 6.7, we know ˛ commutes
with ˇ00 and

jW j � j˛ �W j D jˇ00 �W j � j˛ˇ00 �W j:

So ˇ˛�1 D ˇ0˛�1ˇ00 .

Since we are about to start a step that we will repeat, we relabel ˛ as ˛0 and ˇ0�1ˇ �W

as W 0 . Let ˛00 denote the trivial automorphism at first. Then we have ˇ˛�1 D

ˇ0˛0�1ˇ00˛00�1 . We process this factorization into a better one using an algorithm with
a loop. If jW 0j< jW j, then we do not enter the loop and instead skip ahead to the next
step. Otherwise .W 0; ˛0; ˇ0/ is a peak;

jˇ0 �W 0j D jˇ �W j � jW j � jW 0j;

jW 0j � j˛0 �W 0j D jˇ00 �W j � j˛0ˇ00 �W j D jW j � j˛0 �W j � 0;

with one of these inequalities strict because .W; ˛; ˇ/ is a peak.

Claim There is an algorithm to iteratively process the factorization

ˇ˛�1
D ˛00�1ˇ00˛0�1ˇ0;

such that at the beginning of each loop we have:

� .W 0; ˛0; ˇ0/ is a peak, where W 0 D ˇ0�1ˇ �W .
� ˛0 is a noninner long-range classic Whitehead automorphism.
� ˇ0 is a noninner automorphism.
� ˛0�1ˇ00˛0 is in �Œb� and

jW 0j � j˛0 �W 0j D jˇ00�1
�W 0j � jˇ00�1˛0 �W 0j:
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With each repeat of the loop, we strictly decrease jW 0j, or we do not increase jW 0j but
strictly decrease one of j˛0jO or jˇ0jO while leaving the other fixed. At the end of an
iteration, either the new jW 0j satisfies jW 0j< jW j and we exit the loop, or we repeat
the loop (and satisfy the conditions for beginning the loop with the relabeled terms).

We have already shown that if we enter the loop at all, then the beginning conditions are
satisfied for the first iteration. Now we explain the algorithm. By construction, ˇ0 is a
long-range automorphism. Using Theorem 4.6, we peak-reduce ˇ0 with respect to W 0

and consider the first automorphism ˇ0 in the resulting peak-reduced factorization
of ˇ0 . This ˇ0 is a classic long-range Whitehead automorphism with multiplier d� for
some d 2 Œb� and �D˙1. Since jˇ0 �W 0j � jW 0j (because jˇ0 �W 0j D jˇ �W j � jW j),
it follows from the definition of a peak-reduced factorization that jˇ0 �W

0j � jW 0j.
Then .W 0; ˛0; ˇ0/ is a peak.

If supp.˛0/\supp.ˇ0/D¿ and a 62 supp.ˇ0/, then Lemma 6.16 applies. In particular,
˛0ˇ0˛

0�1 2�Œb� and

jW 0j � j˛0 �W 0j D jˇ0 �W
0
j � j˛0ˇ0 �W

0
j:

We replace ˇ0 with ˇ�1
0
ˇ0 and replace ˇ00 with ˇ00˛0ˇ0˛

0�1 . The new W 0 is ˇ0 �W
0 .

We go back to the beginning of the loop since the conditions to continue the loop
are satisfied. If supp.˛0/ � supp.ˇ0/ and a 2 supp.ˇ0/, we replace ˇ0 with its
complement so that we have supp.˛0/\ supp.ˇ0/D ¿ and a 62 supp.ˇ0/. Then we
apply the previous case. In these cases we have not increased jW 0j or the length of ˛0 ,
but we have decreased the length of ˇ0 . If the new ˇ0 is inner, then the changes in
length imply that the new W 0 is shorter than ˇ �W and is therefore shorter than W .

Now we want a 2 supp.ˇ0/; if this is not the case, we replace ˇ0 with its complement.
This replacement does not change ˇ0 �W , so .W 0; ˛0; ˇ0/ is still a peak. After perform-
ing such a replacement if necessary, we definitely have a 2 supp.ˇ0/. Further, since
we have just considered this case separately, we can assume that supp.˛0/ 6� supp.ˇ0/.
Then we apply Corollary 6.9 to .W 0; ˛0; ˇ0/ and one of the following holds.

� There is a classic long-range Whitehead automorphism ˇ1 with multiplier d��

such that jˇ1 �W
0j< jW 0j and supp.ˇ1/\ supp.˛/D¿ and ˇ1 fixes Œa�.

� There is a classic long-range Whitehead automorphism ˛1 with multiplier a

such that j˛1 �W
0j< jW 0j and supp.˛1/� supp.˛0/\ supp.ˇ0/.

If supp.˛0/\ supp.ˇ0/D¿, then the first case holds.

If the second case holds, ˛0˛�1
1

commutes with ˇ00 since supp.˛0˛�1
1
/ � supp.˛0/

and supp.˛0/ \ supp.ˇ00/ D ¿, and since ˛0˛�1
1

fixes Œb� and ˇ00 fixes Œa�. Note
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that ˛1 ¤ ˛ since we assumed supp.˛0/ 6� supp.ˇ0/. So we relabel ˛1 as ˛0 and
relabel ˛00 as ˛00˛0˛�1

1
. Then we still have the conditions we expect at the beginning

of the loop. The new ˛0 is nontrivial because ˛1 �W
0 ¤W 0 and .W 0; ˛0; ˇ0/ is still

a peak because jW 0j is now strictly greater than j˛0 �W 0j and jW 0j � jˇ0 �W 0j is
unchanged. Then we repeat the loop. In this case we have not increased jW 0j or the
length of ˇ0 but we have decreased the length of ˛0 .

In the first case, Lemma 4.7 and Proposition 6.7 imply that ˛0 and ˇ1 commute and
that

jW 0j � j˛0 �W 0j D jˇ1 �W
0
j � j˛0ˇ1 �W

0
j:

We relabel ˇ�1
1
ˇ0 as ˇ0 and relabel ˇ1ˇ

00 as ˇ00 . Note that we still have ˇ˛�1 D

ˇ0˛0�1ˇ00˛00�1 . Furthermore, we still have ˇ00 fixing Œa� and supp.ˇ00/\supp.˛0/D¿,
since this was true of ˇ1 and the old ˇ00 . We relabel W 0 as ˇ0�1ˇ �W D ˇ1 �W

0 . We
also note that the new jW 0j is strictly less than the old jW 0j, since it is the image of
the old W 0 under ˇ1 . If jW 0j< jW j, then we exit the loop. Otherwise .W 0; ˛0; ˇ0/ is
still a peak since ˛0 shortens the new and old W 0 by the same amount. We repeat the
loop with the newly relabeled automorphisms. If the new ˇ0 is inner, then the changes
in length imply that the new W 0 is shorter than ˇ �W and is therefore shorter than W .

So we leave the loop when jW 0j< jW j. The sum of differences

j˛00�1˛ �W j � j˛ �W jC jW 0j � j˛0 �W 0j

equals jW j � j˛ �W j. These two facts together are enough to deduce that ˇ˛�1 D

˛00�1ˇ00˛0�1ˇ0 is a peak-lowering factorization.

6.5 Peak reduction and stabilizer presentations

Finally, we use peak reduction to homotope a path in the complex Z from Section 4.4
in order to prove Proposition 4.9. We need the following.

Lemma 6.18 Consider the set of conjugacy classes of A� consisting of all conjugacy
classes of length one represented by a positive generator and all conjugacy classes of
length two represented by a product of two noncommuting generators. Let U be a tuple
of conjugacy classes whose entries are this set of classes in some order. Then U is
minimal length in its automorphism orbit.

Further, if ˛ is a generalized Whitehead automorphism sending one minimal-length
representative of the orbit of U to another, then ˛ is a permutation automorphism or
an inner automorphism.
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Proof Without loss of generality, we suppose that U is ordered with the conjugacy
classes of length one first and the classes of length two following. By peak reduction,
to show that U is minimal length in its orbit, it is enough to show that no element
of �Œa� can shorten it, for any a in � . Let T be a syllable decomposition of U ; we
claim that the matrix �.T / can be put in GQ –normal form by permuting the rows. To
see this we examine the matrix �.T /.

In the following, � and ı are always in f1;�1g. For each b adjacent to or equal to a,
the conjugacy class represented by b� maps to �rb under � . For each b not adjacent
to a, with a dominating b , the conjugacy class represented by b� is a single syllable
that maps to �rbC �lb under � . For b not adjacent to a, with a not dominating b , the
conjugacy class represented by b� is a single syllable that maps to 0 under � (it maps
to rY � rY where Y is the component of b in � n st.a/). For b and c both adjacent
to or equal to a but not adjacent to each other, the conjugacy class of b�cı maps to
�rb C ırc . For b adjacent to or equal to a and c not adjacent to a or b , but with a

dominating c , the conjugacy class of b�cı maps to �rbC ırcC ılc . For b adjacent to
or equal to a and c in the component Y of � n st.a/ (which has at least two vertices),
the conjugacy class of b�cı maps to �rb . For b and c not adjacent to a, but with a

dominating both b and c , the conjugacy class of .bc/� splits into two syllables, which
map to �.rbC lc/ and �.rcC lb/, and the conjugacy class of .bc�1/� splits into two
syllables, which map to �.rb � rc/ and �.lb � lc/. If b is not adjacent to a, but a

dominates b , and c is in the connected component Y of � n st.a/ (which has at least
two elements), then the conjugacy class of .bcı/� splits into two syllables, which map
to �.rb � rY / and �.lbC rY /. Finally, if b is in the component Y of � n st.a/ and c

is in the component Z of � n st.a/ (with both having at least two elements), then the
conjugacy class of b�cı splits into two syllables that map to rY � rZ and rZ � rY .

Let n denote the cardinality of Œa� and let k denote the number of basis elements
of ZŒa� other than the rb for b 2 Œa�. First we verify that adding any linear combination
of the last k rows of �.T / to any of the first n does not simplify the matrix. If c

does not commute with a and b is in Œa�, then adding combinations of the row for rc

and lc to the row for rb may simplify the columns for b�cı , but any such action will
make the column for c more complicated. By our hypothesis on U , the column for c

precedes all the b�cı columns of �.T /, and therefore none of these row moves can
simplify �.T /. However, none of the columns for the other kinds of conjugacy classes
in U (enumerated above) have a nonzero element in the first n rows and a nonzero
element in the last k rows. This implies that adding linear combinations of the last k

rows to the first n rows cannot simplify any column of �.T / without making a previous
column worse. Since the first jX j columns of �.T / include the n columns coming
from the classes b for b in Œa�, which map to rb in each case, and since all other
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columns with a nonzero entry in the first n rows appear after the first jX j columns,
the matrix �.T / can be put in GQ –normal form by a permutation of the first n rows.

If an element of �Œa� shortens U , then all it can do is to delete some elements of Œa�
from somewhere in U . Such a deletion would give us a tuple U 0 with a syllable
decomposition T 0 differing only from T in some deletions of elements of Œa�. The
corresponding matrix �.T 0/ would also essentially already be in GQ –minimal form
(up to a permutation), and therefore U and U 0 cannot be in the same orbit under �Œa�
by Proposition 5.3.

To see the second part of the statement, we suppose that ˛ is a generalized Whitehead
automorphism sending U to a tuple of the same length. Of course, it is possible that ˛
is a permutation automorphism. We suppose that it is not, so that ˛ is in �Œa� for
some a. By the form of �.T /, we know that the only way ˛ can send �.T / to itself
is to add a linear combination of the bottom k rows of �.T / to some rows in the
top, where that linear combination has a trivial value. However, the only such linear
combination that is trivial is the one corresponding to conjugation by some element:
we add 0 times each rb with b commuting with a, C1 times each rc and �1 times
each lc with c not commuting with a and with a dominating c , and C1 times each rY

row. This can be seen from the enumeration of columns above.

Proof of Proposition 4.9 Recall that we have constructed a complex Z and we want
to show it is a presentation complex for Aut.A�/W . We have an edge-loop p based
at W that we wish to homotope so that its edge labels are only permutations and inner
automorphisms.

We define a graph yZ that is related to Z but is not locally finite. The vertices of yZ
are the same as the vertices of Z . The edges are as follows: if W 0 is a vertex in yZ
and ˛ is a generalized Whitehead automorphism in P or in �Œa� for some a with
j˛ �W 0j D jW 0j, then there is an edge labeled by ˛ from W 0 to ˛ �W 0 . Of course Z1

is a finite subgraph of yZ .

Now we define a map � from edge paths in yZ to edge paths in Z1 . For edges in
Z1 � yZ , we define � to be the identity. Suppose we have an edge in yZ starting at
a vertex W 0 that is not in Z1 . Then this edge is labeled by an element ˛ in �Œa�
for some a 2 X . Let S denote .X n Œa�/˙1 n supp.˛/. Then ˛ 2 �Œa�;S . By the
construction of Z , there is an edge starting at W 0 in Z1 labeled by some  2�Œa�;S .
Since ˛�1 2 .�Œa�;S /W 0 , there is an edge path w in the loops at W 0 representing
˛�1 (this step involves a choice, but we make these choices once and for all and
forget about them). Then � sends the edge in yZ starting at W 0 labeled with ˛ to the
concatenation of the path w with the edge labeled by  . We extend � to all edge paths
in Z1 by concatenation.
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For any edge path in yZ , the composition of edge labels gives us the same automorphism
before and after applying � . Further, the initial and terminal vertices of an edge path
are the same before and after applying � .

Our path p corresponds to a factorization 1 D ˛k � � �˛1 such that the intermediate
images ˛i � � �˛1 �W have the same length as W and there is an edge labeled by ˛iC1

from ˛i � � �˛1 �W to ˛iC1 � � �˛1 �W for each i . By Lemma 6.18, there is a tuple U of
cyclic words, minimal length in its orbit, with the following property: any generalized
Whitehead automorphism sending one minimal length image of U to another must be
an inner automorphism or a permutation automorphism. We consider the intermediate
images ˛i � � �˛1 �U of U and let m denote the maximum length of any of these. Let V

be the concatenation of U with m copies of W . Our plan to prove the proposition is
to peak-reduce the factorization ˛k � � �˛1 with respect to V . Peak reduction proceeds
by finding peak-lowering substitutions to apply to peaks (subwords of length two) in
the factorization. Since we have m copies of W in V , a peak-lowering substitution
can never produce a new factorization that has an intermediate image of W longer than
the original W : any increase in length in an image of W would have to be countered
by a decrease in length in an image of U that is greater than the length of the longest
intermediate image of U . Then if we peak-reduce ˛k � � �˛1 with respect to V , at each
step the factorization remains the composition of labels on an edge path in Z . So to
prove the proposition, it is enough to explain how the peak-lowering substitutions from
the proof of Theorem 1.3 correspond to homotopies of the path p .

By inspecting Sections 6.3 and 6.4 above, we can see that the peak-lowering substitu-
tions we use are from the following list.

� Factorization by classic Whitehead automorphisms: we take a long-range White-
head automorphism from � and replace it with a product of classic long-range
Whitehead automorphisms that follow an edge path in Z .

� Applying classic peak reduction to a peak between two classic long-range White-
head automorphisms.

� Conjugating an automorphism across an inner automorphism as in Lemma 6.14.
� Applying a relation of length three between Whitehead automorphisms with the

same multiplier, as in Lemma 6.11.
� Conjugating a permutation automorphism across another automorphism, as in

Lemma 6.10.
� Applying a Steinberg relation from Lemma 4.7.

We proceed to show how applying any of the above rules to ˛k � � �˛1 corresponds to
homotoping the path given by �.˛k � � �˛1/ across some of the 2–cells in Z . Applying

Algebraic & Geometric Topology, Volume 14 (2014)



1740 Matthew B Day

a substitution to ˛k � � �˛1 corresponds to homotoping �.˛k � � �˛1/ across 2–cells in Z .
In each of the following items, we indicate which cells we need.

� First we suppose we replace a long-range automorphism by a peak-reduced product
of classic Whitehead automorphisms. We suppose we have a vertex W 0 in yZ and a
long-range generalized Whitehead automorphism  labeling an edge in yZ starting
at W 0 . We know � sends  to a product 21 labeling edges starting at W 0 in Z ,
where i has the same multiplier and support as  , for i D 1; 2, and where 1 fixes W 0

and 2 �W
0 D  �W 0 . Both 1 and 2 are long-range automorphisms, so we can

drag the path they follow across 2–cells in Z of type (C2) in order to replace 21

with a product ıl � � � ı1 of long-range classic Whitehead automorphisms tracing out an
edge path in Z . We substitute this factorization back into ˛k � � �˛1 , replacing  , and
homotope the image under � across cells of type (C2).

� Now we suppose we must perform classic peak reduction. Suppose ˇ is a
subword of length two of ˛k � � �˛1 and ˇ and  are classic long-range Whitehead
automorphisms that we must peak-reduce with respect to V 0 , an intermediate image
of V . Since V 0 is an intermediate image of V , it is the concatenation of U 0 with several
copies of W 0 , where U 0 is an intermediate image of U and W 0 is an intermediate
image of W . Since ˇ and  are classic, � sends the edges with these labels in yZ
to edges with the same labels in Z , and W 0 is the vertex of Z that these edge are
based at. Lowering this peak with respect to V 0 will produce a factorization that
is peak-lowering with respect to U 0 , but which never increases the lengths of the
intermediate images of W . Therefore lowering this peak with respect to V 0 will give
us a factorization ˇ D ıl � � � ı1 that follows a path in Z . By Day [9, Lemma 5.1], the
substitution lowering this peak is an application of a relation between classic Whitehead
automorphisms. Since these relations are all witnessed by 2–cells of type (C3), we
can replace ˇ by ıl � � � ı1 in ˛k � � �˛1 and homotope �.˛k � � �˛1/ across cells of
type (C3).

� Next we suppose that we have a vertex W 0 in yZ and a generalized Whitehead
automorphism ˇ 2�Œb� for some b 2X , labeling an edge starting at W 0 and an inner
classic Whitehead automorphism  , and the next step in the peak reduction of ˛k � � �˛1

requires us to conjugate ˇ across  . We know that ˇ is ˇ2ˇ1 , where ˇ1 2 .�Œb�/W 0

and ˇ2 2�Œb� labels an edge starting at W 0 in Z1 . We conjugate ˇ1 and ˇ2 across  ,
which labels a loop in Z1 . This amounts to a homotopy of �.˛k � � �˛1/ across 2–cells
of type (C4).

� Now we suppose ˛k � � �˛1 has a subword ˇ with ˇ;  2�Œb� for some b 2 X ,
and we need to replace ˇ by its product ı D ˇ 2 �Œb� in the factorization as the
next step in the peak reduction. Here ˇ is an edge label on an edge originating at a
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vertex W 0 in yZ . Then �.ˇ/ is ˇ2ˇ1 , �. / is 21 , and �.ı/ is ı2ı1 , where all these
new automorphisms are in �Œb� , ˇ1 , 1 and ı1 stabilize the vertices they originate
at, and ˇ2 , 2 and ı2 label edges in Z1 . So �.˛k � � �˛1/ will differ before and
after the replacement as follows: before we have 21ˇ2ˇ1 and after we have ı2ı1 .
Pulling 1ˇ2 across cells of type (C5) will replace it with ˇ21 , where the second 2

is a product of edge labels at W 0 instead of ˇ2 �W
0 . Then we can homotope 2ˇ2

to ı3ı1 using a (C5) cell, where ı3 is some product of edge labels at W 0 . Then we
have homotoped 21ˇ2ˇ1 to a product of ı2 with a product of edge labels at W 0 . At
this point we only need to use some cells of type (C1) to finish this case.

� For this item we suppose ˛k � � �˛1 has a subword ˇ with  2 �Œa� for some
a 2 X and ˇ a permutation automorphism. Suppose we need to replace this ˇ
with ˇı , where ıD ˇ�1ˇ 2�Œˇ�1.a/� . Suppose  in this sequence is the label on an
edge originating at a vertex W 0 . We know �. / is some 21 where 1 2 .�Œa�/W 0

and 2 is the label on an edge in Z originating at W 0 , and �.ı/ is some ı2ı1 with
ı1 2 .�Œˇ�1.a/�/ˇ�1 �W 0 and ı2 is the label on an edge in Z originating at ˇ�1 �W 0 .
We know 1 is represented by some edge path in the loops at W 0 . For each edge in
the sequence, we can conjugate ˇ across the given edge label, thereby pushing our
edge path across a 2–cell of type (C6). Then we conjugate ˇ across 2 , getting ˇı2
together with some product of loops at ˇ�1 �W 0 . We use disks of type (C1) to rewrite
the remaining sequence as ˇı2ı1 . This homotopes the image of ˛k � � �˛1 under �
from before the replacement to the image after the replacement.

� Now we suppose we have ˇ in ˛k � � �˛1 with ˇ2�Œb� and  2�Œa� satisfying the
hypotheses of Lemma 4.7. Suppose ˇ is an edge label originating from the vertex W 0

and to peak-reduce ˛k � � �˛1 we need to conjugate  across ˇ . Let ıD �1ˇ , which
is in �Œb� by Lemma 4.7. Then � sends the  originating at �1 �W 0 to some 21

and sends the  originating at ı�1 �W 0 to some 43 , where these automorphisms
are in �Œa� , we know 2 and 4 label edges leaving �1 �W 0 and ı�1 �W 0 in Z ,
and 1 and 3 fix �1 �W 0 and ı�1 �W 0 respectively. Let S D .X n Œa�/˙ nsupp. /.
Then  2�Œa�;S , and by the construction of � , we know i is as well, for i D 1; 2; 3; 4.
Similarly, � sends ˇ to ˇ2ˇ1 where ˇ2 labels an edge of Z starting at W 0 , ˇ1

fixes W 0 , ˇi 2 �Œb� and supp.ˇi/ � supp.ˇ/ for i D 1; 2, and � sends ı to ı1ı2
where ı2 labels an edge of Z starting at �1 �W 0 , ı1 fixes �1 �W 0 , ıi 2�Œb� and
supp.ıi/� supp.ı/ for i D 1; 2. These conditions mean that the edges labeled with ˇ2

and �1
2

leaving W 0 in Z satisfy the hypotheses for Lemma 4.7, and therefore there
is a 2–cell of type (C7) for this relation. We can move ˇ1 out of the way using cells of
type (C5). Then we slide the edge path across our cell of type (C7), and replace 2ˇ2

with 2w2w1ı2 , where w2 is an edge loop label sequence representing an element
of .�Œa�/ı�1�W 0 and w1 is an edge loop label sequence representing an element of
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.�Œb�/ı�1�W 0 . Again we use 2–cells of type (C5) to move w1 to precede ı2 . We note
that the edge labels appearing in w1 and in 1 satisfy the hypotheses of Lemma 4.7,
and so by a sequence of slides across 2–cells of type (C7) we can move one past the
other. Similarly, the labels in 1 together with ı2 satisfy the hypothesis of Lemma 4.7,
and we can slide 1 across ı2 . Then ı1 and w1 both represent the same element
of .�Œb�/ı�1�W 0 and we can use 2–cells of type (C1) homotope one to the other.
Similarly we homotope w2 to 31 . So we have homotoped ˇ2ˇ121 to 43ı2ı1
relative to endpoints, so we have homotoped the image of ˛k � � �˛1 under � before
this move to the image after this move.

So we peak-reduce ˛k � � �˛1 with respect to V and homotope �.˛k � � �˛1/ at each
step, so our edge path describes an edge loop in yZ that sends each intermediate image
of U to one of the same length as U . Then each ˛i is an inner automorphism or a
permutation automorphism by Lemma 6.18.
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