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Fast Nielsen–Thurston classification of braids

MATTHIEU CALVEZ

We prove the existence of an algorithm that solves the reducibility problem in braid
groups and runs in quadratic time with respect to the braid length for any fixed
braid index.

20F36; 20F10, 20F65

1 Introduction

One of the main algorithmic decision problems regarding braids (viewed as mapping
classes of a punctured closed disk) is the problem to determine the Nielsen–Thurston
type of a given braid: reducible, periodic or pseudo-Anosov; see Fathi, Laudenbach
and Poenaru [21], Casson and Bleiler [13] and Farb and Margalit [20]. This problem
is called the reducibility problem because it amounts to determining whether a given
nonperiodic braid is reducible or not; ie whether it is reducible or pseudo-Anosov.
Indeed, the case of periodic braids can be easily discarded: a braid x is periodic if and
only if its nth power or its .n� 1/st power is a power of the half-twist � (see Birman,
Gebhardt and Gonzáles-Meneses [6]); and this is easy to decide algorithmically.

To solve the reducibility problem, two kinds of techniques have been used and several
algorithms have been written; however none of them works in polynomial time with
respect to the braid length for the general braid group Bn .

First, the Bestvina–Handel algorithm [3] uses the theory of train tracks and it is valid for
any mapping class group. Although this algorithm works fast in practice, its theoretical
complexity remains unknown.

Second, following the ideas which were introduced by Benardete, Gutierrez and Nitecki
[1; 2], connections between the reducibility problem and the Garside structures of
braid groups have been used for detecting reducibility; see [1; 2], Lee and Lee [28],
Gonzáles-Meneses and Wiest [27], Calvez and Wiest [12] and Calvez [10]. Our work
fits into this approach and builds mainly on the last algorithm by González-Meneses
and Wiest [27].

However Garside tools are not the only ones needed in the paper. We bring into play a
very deep property of mapping class groups: the so-called linearly bounded conjugator
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1746 Matthieu Calvez

property (see Masur and Minsky [29] and Tao [31]); see Theorem 16. At this point
we already warn the reader that the algorithm given in the paper is not well-defined
(although it will be actually described) because it rests on the above linear bound, which
is not explicitly known. Therefore our main result is an existence result only.

The latter can be stated as follows. For a braid x , let us denote by jxj the minimal
possible length of a word representing x whose letters are positive permutation braids
and their inverses (in other words, the letters are braids in which any pair of strands
crosses at most once and all crossings have the same orientation).

We will prove the following result.

Theorem 1 Let n be a positive integer. There exists an algorithm which decides the
Nielsen–Thurston type of any given braid x with n strands and runs in time O.jxj2/.

The paper is organized as follows. In Section 2 we recall useful tools from Garside
theory and give precise statements relating the latter and the reducibility problem; an
actual description of the algorithm whose existence is stated in Theorem 1 is also given.
The detailed proofs are deferred to Section 3.
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with Proposition 17, Juan González-Meneses for useful comments on an earlier version
of that work and the anonymous referee for suggesting some improvements. This work
was partially supported by a grant from Région Bretagne, by MTM2010-19355 and
FEDER, and by FONDECYT through the postdoctoral grant number 3130569 and the
Center of Dynamical Systems and Related Fields (project Anillo 1103).

2 The reducibility problem and Garside theory

2.1 Reminders on Garside theory

We first recall some basic notions of Garside theory in the specific case of braid groups,
with emphasis on the classical structure; references are [18; 19; 22]. The reader is
referred to [15; 16; 17] for a general account on Garside groups.

The classical Garside structure of the braid group consists of the following 2–fold
data: BCn is the monoid whose elements are braids which can be expressed as words
on the Artin generators �i with only positive exponents and � is the so-called Garside
element or half-twist.
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Fast Nielsen–Thurston classification of braids 1747

The relation 4 on Bn defined by x 4 y if and only if x�1y 2 BCn defines a partial
order called prefix order, which turns out to be a lattice order. We will denote by � the
inner automorphism associated to �: this is an involution which for each i maps �i

to �n�i ; actually the center of Bn (n > 3) is the cyclic group generated by �2 . It can
be shown that for any braid x , there exist relative integers r; s such that �r 4 x 4�s .
This allows us to define the so-called infimum and supremum of x , respectively, by

inf.x/Dmaxfr 2 Z j�r 4 xg; sup.x/Dminfs 2 Z j x 4�s
g:

The canonical length of x is defined by `.x/D sup.x/� inf.x/.

A central property of Garside groups is the existence of a distinguished generating
set allowing for the definition of normal forms. Consider the set of positive prefixes
of �; these elements are called simple elements or positive permutation braids (because
they are in one-to-one correspondence with the elements of the symmetric group on n

objects). Geometrically, simple elements are positive braids in which every pair of
strands crosses at most once. Because it contains all of Artin’s generators �i , the set of
simple elements generates Bn .

Definition 2 A pair .s1; s2/ of simple elements is said to be left-weighted if for any
nontrivial positive prefix t of s2 , the product s1t is not a simple element.

This allows us to state the following.

Proposition 3 [18] Let x 2 Bn . There exists a unique decomposition given by
x D�px1 � � �xr , where p D inf.x/, the xi are simple elements with xr ¤ 1 and (if
r > 2) the pair xixiC1 is left-weighted for i D 1; : : : ; r � 1. We have sup.x/D pC r

and `.x/D r .

Recall the braid length j � j defined in Section 1. It can be shown [19] that every
braid admits a unique decomposition of the form a�1b , where a; b are positive braids
having no common nontrivial positive prefix. This is called the mixed canonical form.
Moreover, if a D a1 � � � ak and b D b1 � � � bl are the left normal forms of a and b

respectively, it is shown in [14] that the word a�1
k
� � � a�1

1
b1 � � � bl is a geodesic in

the Cayley graph of Bn with respect to the set of simple elements. Hence the braid
length j � j is given by the length of the mixed canonical form. Finally notice that the
latter is related to the canonical length in the following way: if x D�px1 � � �xr is the
left normal form of x 2 Bn , we have jxj Dmax.jpj; r;pC r/ and `.x/6 jxj.

Although we do not need that, it is worth mentioning that the braid group admits
another Garside structure, called the dual Garside structure; see [8].
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The existence of normal forms for braids allows us to construct algorithms for solving
the conjugacy problem in the braid groups, that is, for deciding whether any two
given braids are conjugate and finding a conjugator whenever there exists one; see for
example [18; 22; 23; 24; 25]. We now recall some related notions.

All existing algorithms for solving the conjugacy problem in braid groups rely on the
definition of a particular finite computable characteristic subset of each conjugacy class
in Bn , consisting of its “simplest” elements (in some sense). A first example of such a
characteristic subset is given by the following.

Proposition-Definition 4 [18] Let x 2 Bn . The subset of the conjugacy class of x

consisting of all elements with minimal canonical length is finite (and nonempty). Its
elements have simultaneously maximal infimum and minimal supremum within the
conjugacy class of x . This set is called the super summit set of x and is denoted
by SSS.x/.

An element in the super summit set of a given braid can be computed using a special
kind of conjugation called cyclic sliding.

Definition 5 [24] Let x D �px1 � � �xr be the normal form of x 2 Bn . Suppose
that r > 0. The preferred prefix of x is the maximal positive prefix t of ��p.x1/ such
that xr t is a simple element; it is denoted by p.x/. If r D 0, that is if x is a power
of �, p.x/ is just defined to be the trivial braid. The result of the conjugation of x by
its preferred prefix p.x/ is called cyclic sliding of x and denoted by s.x/.

The cyclic sliding operation actually achieves the computation of elements in super
summit sets, in an effective way. Indeed, only a polynomial (with respect to both length
and braid index) number of iterations of s is required to compute an element in the
super summit set.

Theorem 6 [9; 24] Let x 2 Bn . Then either

`.sn.n�1/=2�1.x// < `.x/ or x 2 SSS.x/:

Another (smaller) example of conjugacy invariant subset was defined later by Gebhardt
and González-Meneses.

Proposition-Definition 7 [24] Let x 2 Bn . The subset of the conjugacy class of x

consisting of all elements which are periodic points under the cyclic sliding operation is
finite and nonempty. It is a subset of the super summit set of x , called the set of sliding
circuits of x and denoted by SC.x/.
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Iterative application of the cyclic sliding operation to a braid x eventually reaches an
element of SC.x/; however by contrast with the case of SSS.x/, no general bound on
the number of repetitions involved is known (see Conjecture 11).

To conclude this paragraph, we recall the important notion of rigid braid.

Definition 8 [24] A braid x is said to be rigid if its preferred prefix is trivial.

In particular a rigid braid is a fixed point of s and is an element of its own set of sliding
circuits. Moreover, if a conjugacy class contains one rigid braid, then the corresponding
set of sliding circuits consists only of rigid braids [24].

2.2 Previous works

We now turn to the relations between the reducibility problem and the notions above.
First of all, we recall some definitions and properties related to reducible braids.

Let Dn be the closed disk in C with diameter Œ0; nC1� and with the points f1; : : : ; ng
removed. As the mapping class group of Dn , the braid group Bn induces an action
(on the right) on the set of isotopy classes of simple closed curves in Dn . A curve
is said to be nondegenerate if it is not contractible and surrounds more than one and
less than n punctures. By the word “curve” alone we will mean the isotopy class of a
nondegenerate simple closed curve.

A braid x is reducible if it preserves setwise a family of curves; such a curve is then
said to be a reducing curve for x . Notice that reducibility is a conjugacy-invariant
property. Moreover a reducible braid x is not periodic if the set of its essential reducing
curves, that is reducing curves which do not intersect any other reducing curve, is not
empty. An important matter when we want to detect the reducibility of a braid is to
actually detect reducing curves whenever they exist. This leads us to formulate the
following.

Definition 9 [2; 27] A curve C in Dn is said to be round if it is isotopic to a geometric
circle in Dn . A curve C in Dn is said to be almost round if it has a unique maximum
and a unique minimum in the horizontal direction. The latter is equivalent to saying
that C can be transformed into a round curve by the action of a simple element.

Whenever a reducible braid preserves a family of round curves, the reducibility is easy
to detect (there are only n.n� 1/=2 round curves); see [1]. Moreover the notion of
roundness of a curve behaves well with respect to Garside-theoretic operations.

Theorem 10 [2; 26] If x 2 Bn is a reducible braid that preserves a family of round
curves, then so is s.x/.
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Notice that any family of curves can be transformed into a family of round curves
under the action of some braid, in other words a reducible braid always preserves a
family of round curves up to conjugacy. It follows from Theorems 6 and 10 that for
any reducible braid x , there exists some element of SSS.x/ that preserves a family of
round curves.

Therefore computing the whole super summit set of a braid gives a manner of testing its
reducibility: x is reducible if and only if some element in SSS.x/ preserves a family of
round curves. We remark that the same approach can be carried out in the framework
of the dual Garside structure, replacing round curves by standard curves (see [10]).
However in either structure, the resulting algorithm is far from polynomial because the
super summit sets are exponentially large in general, with respect to both length and
braid index [26; 30].

In the special case of the four-strand braid group B4 , it is possible to overcome the
latter difficulty, showing that every element of the (classical) super summit set of a
given reducible 4–braid with a reducing curve surrounding three punctures preserves a
round or an almost-round curve. This leads to a polynomial time algorithm for solving
the reducibility problem in B4 , described in [12].

In [28], Lee and Lee replaced the condition about some element of the super summit set
of a reducible braid x by the condition that every element of the ultra summit set of x

(which is another conjugacy invariant subset introduced in [23]) preserves a family of
round curves. However this was shown at the cost of an additional technical hypothesis
about the external and internal components of x .

In [27], González-Meneses and Wiest showed that every element of (some refined
version of) the set of sliding circuits of a reducible braid preserves a family of round or
almost-round curves.

Both approaches from [28] and [27] suffer the same drawback, namely the lack of
control on the distance to the first repetition when applying iteratively the cyclic sliding
operation. The algorithm in [27] indeed solves the reducibility problem in arbitrary
braid groups with polynomial complexity, both in braid length and braid index, provided
the following conjecture holds.

Conjecture 11 [27, Conjecture 3.5] Let x 2 Bn , with canonical length r . Let t

be the minimal positive integer such that sk.x/D st .x/ for some k with 0 6 k < t .
Then t is bounded by a polynomial in r and n.

One of the keys for proving Theorem 1 will be a partial demonstration of Conjecture 11.
We shall prove, using Masur–Minsky’s linear bound, the following.
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Theorem 12 There exists a constant C.n/ (depending only on n) such that for any
pseudo-Anosov n–strand braid x2SSS.x/, the following holds: x has a rigid conjugate
if and only if sC.n/�jxj.x/ is rigid.

Theorem 12 gives a partial solution to Conjecture 11: in the pseudo-Anosov rigid case,
starting from a super summit element, Theorem 12 guarantees that a rigid conjugate
(or equivalently an element of the set of sliding circuits) is found after only C.n/ � jxj

iterations of cyclic sliding (in other words, if a pseudo-Anosov super summit braid has
rigid conjugates, then the cyclic sliding operation converges towards one of them in
linear time with respect to braid length). This gives in this particular case (with the
notation of Conjecture 11) the bound t 6 C.n/r C 1.

The importance of the rigid case comes from the following result, which will play a
crucial role in our proof of Theorem 1. It is due to Birman, Gebhardt and González-
Meneses.

Theorem 13 [5] Let x 2 Bn be a pseudo-Anosov braid. There exists a positive
integer m< .n.n� 1/=2/3 such that xm is conjugate to a rigid braid.

Finally we recall the two following results from [27].

Theorem 14 [27, Theorem 5.16] Let x 2Bn be a nonperiodic, reducible braid which
is rigid. Then some essential reducing curve of x is round or almost-round. More
precisely, there is some positive integer k 6 n such that one of the following holds:

(1) xk preserves a round essential curve.

(2) inf.xk/ and sup.xk/ are even and either �� inf.xk/xk or x�k�sup.xk/ is a
positive braid preserving an almost-round essential reducing curve whose interior
strands do not cross.

Theorem 15 [27, Theorem 2.9] There is an algorithm which decides whether a given
positive braid x preserves an almost-round curve whose interior strands do not cross.
Its complexity is O.`.x/n4/.

We are now ready to describe the algorithm promised in Theorem 1. It takes as input
an n–braid x . The output is “periodic”, “reducible” or “pseudo-Anosov”.

(1) If xn�1 or xn is a power of �, return “periodic” and stop.

Algebraic & Geometric Topology, Volume 14 (2014)



1752 Matthieu Calvez

(2) For i D 1; : : : ; .n.n� 1/=2/3 � 1 compute the normal form of xi . Iteratively
apply cyclic sliding to xi until the canonical length has not decreased during
the n.n� 1/=2� 1 last iterations. This computes yi 2 SSS.xi/. Then compute
zi D sC.n/�jyi j.yi/. If none of the braids zi is rigid return “reducible” and stop.
Else let j be such that zj is rigid.

(3) For k D 1; : : : ; n, apply the algorithm in [1] to the braid zk
j to test whether

it preserves a round curve; apply the algorithm in Theorem 15 to both braids
��inf.zk

j
/zk

j and z�k
j �sup.zk

j
/ . If a round or an almost-round reducing curve is

found, then return “reducible” and stop.

(4) Return “pseudo-Anosov”.

As mentioned above, we remark that this algorithm, and specifically Step 2, is not
well-defined because the constant C.n/ is not explicitly known. In Section 3, we
will prove Theorem 12, show the correctness of the above algorithm and study its
complexity.

3 Proofs of our results

In order to prove Theorem 12, we combine two important results. The first one is the
already mentioned linearly bounded conjugator property for mapping class groups [29].
Although the range of surfaces considered by Masur and Minsky is much broader, only
the (nC 1/–times punctured sphere SnC1 (n > 3) is relevant for our purposes, so we
state their result in this special case.

Theorem 16 [29, Theorem 7.1] Let G be any generating set of the mapping class
group MCG.SnC1/. There exists a constant  .G/, depending only on G , such that
any pair of conjugate pseudo-Anosov mapping classes can be related by a conjugating
element w satisfying

jwjG 6  .G/.jxjG CjyjG/;

where j � jG denotes the word length with respect to the chosen generating set G .

We aim at an analogous result for braids, namely we want to show the following.

Proposition 17 There exists a constant c.n/, depending only on n, such that any
pair of conjugate pseudo-Anosov n–braids can be related by a conjugating element w
satisfying

jwj6 c.n/.jxjC jyj/:
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Before proving Proposition 17, we recall that the quotient Bn=h�
2i can be seen as the

mapping class group of an n–times punctured closed disk (with boundary fixed setwise).
For a braid x in Bn , denote by yx its image in the quotient Bn=h�

2i. Simple elements
are sent bijectively to a generating set of the quotient (whose elements we still call
simple); this defines a length k � k on Bn=h�

2i (notice that for any braid x , kyxk6 jxj).
Collapsing the boundary of the n–times punctured closed disk to a puncture in the
sphere SnC1 (where the punctures are uniformly placed along the horizontal great
circle), we can view Bn=h�

2i as the finite-index subgroup of MCG.SnC1/ consisting
of the mapping classes which fix the .nC 1/st puncture. The group MCG.SnC1/ is
equipped with the generating set consisting of the simple elements in the quotient
Bn=h�

2i together with a clockwise rotation by an angle of 2�=.nC 1/, which we
denote by � . Notice that for any u 2 Bn=h�

2i, we have jujGn
6 kuk. Conversely, we

will see in a simple computational way that the length kuk is linearly bounded in terms
of jujGn

.

Lemma 18 For any u 2 Bn=h�
2i, we have kuk6 n.n� 1/=2 � jujGn

.

Proof Let u 2 Bn=h�
2i. We will construct a word representative W of u using

only the letters y�˙1
1
; : : : ; y�˙1

n�1
such that kW k 6 n.n� 1/=2jujGn

. This is achieved
thanks to the following relations in MCG.SnC1/ (which can be easily deduced from
the presentation in [4, Theorem 4.5]). For 1 6 i 6 n� 1, 0 6 j 6 n we have

y�i�
j
D �j

y�i�j .mod nC1/; i � j ¤ 0; n .mod nC 1/;(1)

y�i�
i
D �iC1.y�1 � � � y�n�1/

�1;(2)

y�i�
iC0
D �i.y�n�1 � � � y�1/

�1:(3)

This allows us to gather (at the beginning) all powers of � appearing in a shortest
representative for u on the alphabet Gn ; this results in a power of �nC1 (because
u 2 Bn=h�

2i) followed by a word W in y�˙1
1
; : : : ; y�˙1

n�1
. The word W represents u

and as a word on the simple elements and their inverses, its length is bounded by
n.n�1/=2 � jujGn

(because each simple element can be written with at most n.n�1/=2

letters y�i so that the above relations are used at most n.n� 1/=2 � jujGn
times, and

because both y�1 � � � y�n�1 and y�n�1 � � � y�1 are simple).

Proof of Proposition 17 Given a pair of conjugate pseudo-Anosov n–braids x and y ,
we know we have a conjugating element between yx and yy , say � , in the quotient
Bn=h�

2i. In their proof of Theorem 16, Masur and Minsky construct a “short” conju-
gating element � 0 between yx and yy ; this element � 0 is expressed as a product yxm� ,
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for some integer m and therefore it belongs to the subgroup Bn=h�
2i of MCG.SnC1/.

Moreover,
j� 0jGn

6  .Gn/.jyxjGn
CjyyjGn

/6  .Gn/.kyxkCkyyk/

and we get from Lemma 18 that

k� 0k6 n.n� 1/=2 �  .Gn/.kyxkCkyyk/:

Finally, as h�2i is the center of Bn , and because a braid x conjugate to y cannot be
conjugate to �2ky for k ¤ 0, any lifting of � 0 in Bn conjugates x to y and we can
choose one, say w , so that jwj D k� 0k. Therefore, taking c.n/D n.n� 1/=2 �  .Gn/

achieves the proof of Proposition 17.

The second step towards Theorem 12 is a general fact about Garside groups. It explains
that if a super summit element has a rigid conjugate, then iterated cyclic sliding is the
shortest way of obtaining such a rigid conjugate.

Theorem 19 [24] Let x 2 Bn and assume that x is conjugate to a rigid braid.

(1) There exists a unique positive braid f .x/ such that f .x/�1xf .x/ is rigid and
f .x/4 g for any positive braid g such that g�1xg is rigid.

(2) If y 2SSS.x/, then (unless y is already rigid) there exists some positive integer k

such that f .y/ D
Qk

iD1 p.s
i�1.y//. That is, f .y/ is the product of the k

conjugating simple elements involved when applying k iterations of cyclic
sliding to y .

Now, the proof of Theorem 12 is just a combination of both of the previous results.

Proof of Theorem 12 Let x be a pseudo-Anosov n–strand braid such that x 2 SSS.x/.
Let us assume that x has a rigid conjugate z . By Proposition 17, there exists w 2 Bn

such that z D w�1xw and jwj 6 c.n/.jxj C jzj/. Since x; z 2 SSS.x/, we have
jxj D jzj. Let r be the number of negative factors in the mixed canonical form of w .
If r is even, then w0 D�rw is a positive braid conjugating x to z (recall that �2 is
central). Otherwise r is odd and w0 D�rC1w does the same job. In either case, we
get a positive braid w0 conjugating x to z with jw0j6 jwjC 1 6 .2c.n/C 1/jxj (we
may assume that jxj> 1).

Let k and f .x/ D
Qk

iD1 p.s
i�1.x// be as in Theorem 19. Then f .x/ 4 w0 . It

follows that jf .x/j 6 jw0j. As the braid f .x/ is a product of k simple elements,
we have k 6 n.n� 1/=2 � jf .x/j (because a simple element can be written with at
most n.n � 1/=2 letters �i ) so that finally k 6 n.n � 1/=2 � .2c.n/C 1/jxj. Thus
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taking C.n/D n.n� 1/=2 � .2c.n/C 1/ (which depends only on n), we have shown
the following: x has a rigid conjugate if and only if sC.n/�jxj.x/ is a rigid braid (notice
that sm.z/D z for any rigid braid z and any integer m 2N ).

We notice that Theorem 12 can be shown as well in the dual setting but we will not
need this. We now turn to the proof of Theorem 1, showing the correctness of the
algorithm in Section 2 and studying the complexity of each step.

Proof of Theorem 1 The correctness of Step 1 is shown in [6]. This step just consists
of a computation of left normal form; therefore it takes time O.`.x/2/ for any fixed n,
according to [19].

Let us prove that Step 2 is correct. First, by Theorem 6, the braid yi is an element of
SSS.xi/ for each i . Then if x is a pseudo-Anosov braid, by Theorem 13, at least one
of the braids xi (and therefore yi ) is pseudo-Anosov with a rigid conjugate and by
Theorem 12 at least one of the braids zi is rigid.

Let us calculate the complexity of Step 2. The computations of normal forms are known
to be quadratic with respect to the length [19]. We then recall that each instance of cyclic
sliding (when applied to a braid already in normal form) has linear complexity with
respect to the braid length for any given braid index (see [25, Theorem 4.4]). Therefore
for any i D 1; : : : ; .n.n�1/=2/3�1, the complexity of computing yi (which requires
at most .`.xi/� 1/ � .n.n� 1/=2� 1/ iterations of cyclic sliding) is quadratic with
respect to the braid length whenever n is fixed. The same is true for the computation
of zi from yi which requires C.n/jyi j6 C.n/i jxj iterations of cyclic sliding.

The validity of Step 3 follows from Theorem 14. This step consists of applying the
algorithm in [1] to at most n braids of length at most nj jxj and the algorithm of
Theorem 15 to at most 2n braids of length at most nj jxj. Both of these algorithms
work in linear time with respect to the length so that Step 3 is linear with respect
to jxj.

We notice that the present algorithm does not always yield the knowledge of reducing
curves for reducible elements (actually this failure happens when reducibility is detected
at Step 2). Thus, in view of the program in [5; 7; 6], writing an algorithm for solving
the conjugacy problem in braid groups in polynomial time still requires the following.

(i) Find explicitly the constant C.n/ to make the algorithm in Theorem 1 explicit.
This amounts to bounding explicitly the required number of cyclic slidings to
obtain (if it exists) a rigid conjugate from a pseudo-Anosov super summit element
(see Theorem 12); alternatively this rests on the knowledge of an explicit value
for Masur–Minsky’s constant c.n/ (see Proposition 17).
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(ii) Find reducing curves of a braid, in polynomial time, whenever the braid is known
to be reducible.

(iii) Find a polynomial bound on the number of rigid braids in a given pseudo-Anosov
conjugacy class.

We finish with a discussion of the special case of the four–strand braid group B4 . If
we want to decide the Nielsen–Thurston type of a given 4–braid, the algorithm in [12]
should rather be used instead of the present one because it is implementable and it
finds explicitly the reducing curves whenever they exist (in polynomial time). Using
the Birman–Ko–Lee structure of B4 , the author together with Bert Wiest show in [11]
the existence of a bound as in (iii) (which depends on Masur–Minsky’s constant c.4/;
see Proposition 17). Unfortunately, they do not know yet how to make explicit the
constant c.4/ (nor C.4/), so that the cardinality of the ultra summit set of a pseudo-
Anosov rigid 4–braid is not explicitly known. Nevertheless [11] presents a polynomial
time algorithm for solving the conjugacy problem in B4 .
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