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Many, many more intrinsically knotted graphs
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THOMAS W MATTMAN
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We list more than 200 new examples of minor minimal intrinsically knotted graphs
and describe many more that are intrinsically knotted and likely minor minimal.

05C10; 57M15, 57M25

Introduction

In the early 1980s Conway and Gordon [4] showed that every embedding of K7 , the
complete graph on seven vertices, in S3 contains a nontrivial knot. A graph with this
property is said to be intrinsically knotted (IK). The question “Which graphs are IK?”
has remained open for the past 30 years.

A graph H is a minor of another graph G if H can be obtained from a subgraph of G

by contracting zero or more edges. A graph G with a given property is said to be minor
minimal with respect to that property if no proper minor of G has the property. It is
easy to show that a graph is IK if and only if it contains a minor that is minor minimal
intrinsically knotted (MMIK). Robertson and Seymour’s graph minor theorem [15]
says that in any infinite set of graphs, at least one is a minor of another. It follows
that for any property whatsoever, there are only finitely many graphs that are minor
minimal with respect to that property. In particular, there are only finitely many MMIK
graphs. Furthermore, deciding whether one graph is a minor of another can be done
algorithmically. Hence, if we knew the finite set of all MMIK graphs, we would be
able to decide whether or not any given graph is IK. However, obtaining this finite
set, or even putting an upper bound on its size, has turned out to be very difficult. In
contrast, Robertson, Seymour and Thomas [16] settled the corresponding question for
intrinsically linked (IL) graphs — ie graphs for which every embedding in S3 contains
a nontrivial link — in 1995: there are exactly seven MMIL graphs; they are obtained
from K6 by rY and Yr moves (we will define these shortly).

Prior to this work, 41 MMIK graphs were known. We have found 222 new MMIK
graphs, as well as many more IK graphs that are likely minor minimal. In this paper
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we describe these 222 graphs. For 101 of them we give a “traditional” proof that they
are IK. To prove that the remainder are also IK, we rely on the computer program of
Miller and the third author [12]. The program proves that a graph is IK by showing
every embedding of the graph contains a D4 minor with opposite cycles linked; this is
explained in greater detail in Section 4.1. We also prove that all 222 graphs are minor
minimal.

First, some more definitions and terminology. A spatial graph is a graph embedded
in S3 . A spatial graph is said to be knotted (resp. linked) if it contains a nontrivial knot
(resp. nontrivial link). An abstract graph G is n–apex if one can remove n vertices
from G to obtain a planar graph. For an edge e of G , G�e denotes the graph obtained
by removing e from G and G=e the graph obtained by contracting e .

A rY move on an abstract graph consists of removing the edges of a triangle (ie,
3–cycle) abc in the graph, then adding a new vertex v and connecting it to each of the
vertices a, b , and c , as shown in Figure 1. The reverse of this operation is called a
Yr move. Note that in a Yr move, the vertex v cannot have degree greater than three.
(There is various terminology for this in the literature: r D triangle D Delta D �;
YD wyeD star; moveD exchangeD transformation.)

b c

a

triangle–Y

Y–triangle

b c

v

a

Figure 1: rY and Yr moves

If a graph G0 is obtained from a graph G by exactly one rY move, we say G0 is a
child of G , and G is a parent of G0 . A graph that has no degree-three vertices can have
no parents and we call such a graph parentless; a triangle-free graph has no children
and is childless. If G0 is obtained from G by one or more rY moves, we say G0 is a
descendant of G , and G is an ancestor of G0 . If G0 is obtained from G by zero or
more operations, each of which is a rY or Yr move, we say G and G0 are cousins
of each other (thus, being cousins is an equivalence relation). The set of all cousins
of G is called the G family.

Sachs [17] observed that every child of an IL graph is IL. Essentially the same argument
shows that every child of an IK graph is IK. As a corollary of [16], we also know
that every parent of an IL graph is IL. In contrast, it is shown by Flapan and the third
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author in [5] that a parent of an IK graph need not be IK. In this paper we also use the
following lemma.

Lemma 1 (Brouwer, Davis, Larkin, Studenmund and Tucker [2] and Ozawa and
Tsutsumi [14]) If an IK graph G has a MMIK child, then G is MMIK.

In addition, we make frequent use of a lemma that is a consequence of the observation
(due, independently, to Blain, Bowlin, Fleming, Foisy, Hendricks and Lacombe [1]
and [14]) that the join, H �K2 , of H and K2 is IK if and only if H is nonplanar.

Lemma 2 [1; 14] If G is 2–apex, then G is not IK.

Family Graphs IK MMIK graphs
(total) graphs known new

K7 20 14 14 0
K3;3;1;1 58 58 26 32
E9C e 110 110 0 33
G9;28 1609 1609 0 156
G14;25 > 600,000 unknown 0 1

Table 1: Families of the 222 new MMIK graphs

The graphs we study here fall into several families. Below we give a quick overview
of our results, which are summarized in Table 1; details are provided in the following
sections, with one section devoted to each family. Some of these families contain a large
number of graphs; we used a computer program to construct these families. The K7

family consists of 20 graphs, 14 of which were previously known to be MMIK. We show
the remaining 6 are not IK (this was also shown, independently, by Hanaki, Nikkuni,
Taniyama and Yamazaki in [9]). The K3;3;1;1 family consists of 58 graphs, 26 of
which were previously known to be MMIK. We show the remaining 32 are also MMIK.
The E9C e family consists of 110 graphs. We show that all are IK and exactly 33
of them are MMIK. The G9;28 family consists of 1609 graphs. We show they are all
IK and at least 156 of them are MMIK. For 101 of these 156 graphs, we prove the
graph is MMIK without making use of the computer program of [12]. Sampling results
obtained by computer suggest that well over half of the graphs in this family are MMIK.
The G14;25 family consists of over 600,000 graphs; we do not know the exact number.
We only show that G14;25 itself is MMIK.

Note that in each family all graphs have the same number of edges since rY and Yr
moves do not change the number of edges in a graph. However, if two edges of
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a Y are part of a triangle, then a Yr move on that Y results in double edges (ie,
two edges with the same endpoints); in this case we say that the initial graph has
a Y. It turns out that there is no graph with a Y in the families of each of the
graphs K7 , K3;3;1;1 , E9Ce , G9;28 , and G13;30 . (This last graph is described below.)
The G14;25 family, however, does contain graphs with a Y. Whenever our computer
program that generates these families encounters a Y, it does not perform a Yr move
on that Y, since the resulting graph, after deleting one of its double edges, would have
fewer edges than the initial graph. (We prefer to consider graphs with different number
of edges to be in distinct families.)

Note that a graph obtained by performing a Yr move on a Y followed by deleting
one of the resulting double edges can also be obtained by just contracting one of the
edges in the Y. So it might be interesting to perform such Yr moves and study the
resulting graphs; they might lead to new MMIK graphs.

Question 3 Find an example of a MMIK graph that results from contracting an edge
of a Y in the family of some other MMIK graph.

In particular, this would be a way to move from the family of one MMIK graph to
that of another. We will not pursue this further here as our examples of a Y are in
the G14;25 family, which is already huge even without considering additional graphs
constructed in this way.

Although verifying that a given graph is MMIK can be laborious, using our computer
program to generate new candidates for MMIK graphs turned out to be relatively quick.
Considering the ease with which we found families of new MMIK graphs, we expect
there are many more such families. Since we know of no upper bound estimates on the
number of MMIK graphs, it seems that until there is more progress in the theory, it
may not be worthwhile to continue the search for more MMIK graphs.

Instead, we propose the following question regarding the family size of a graph.

Question 4 Given an arbitrary graph, is there an efficient way of finding, or at least
estimating, how many cousins it has?

For example, the G14;25 example shows that these families can become quite large.
In contrast, the MMIK graph described by Foisy in [7], which has 13 vertices and 30
edges (G13;30 ), has more edges than any of the graphs mentioned above; but its family
consists of only one graph (just itself).

Finally, we remark that our study includes a description of four new MMIK graphs
on nine vertices: E9C e , G9;28 , and Cousins 12 and 41 of the K3;3;1;1 family. A
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computer search (see Morris [13]) suggests that these, along with the known (ie, as
in Kohara and Suzuki [10]) MMIK graphs in the K7 and K3;3;1;1 families, form a
complete list of MMIK graphs on nine or fewer vertices. In particular, we expect that
the families described in this paper include all MMIK graphs with at most nine vertices.

1 The K7 family

1

2

3 9 4

6 5 7 20 14

10 11 8 16 17

12 13 19

15

18

Figure 2: The K7 family

Figure 2 shows the family of 20 graphs derived from K7 by Yr and rY moves. An
edge list for each of these 20 graphs can be found in the authors’ [8, Appendix]. Graphs
at the same horizontal level have the same number of vertices, beginning with K7
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Figure 3: Unknotted embeddings of Cousin 17 (left) and Cousin 19 (right) of K7

(Cousin 1) at the top and concluding with a 14–vertex graph, C14 (Cousin 18), at
bottom. Edges join parent to child. The numbering of the cousins is somewhat arbitrary:
it reflects the order in which these graphs were constructed via rY and Yr moves
by our algorithm. Note that Cousin 9 is labeled E9 by the second author in [11], and
Cousins 16 and 20 are labeled G6 and G7 in [5].

Kohara and Suzuki [10] earlier described K7 and its 13 descendants. None of the
six remaining cousins, 9, 14, 16, 17, 19 and 20 are IK. This follows as Cousins 17
and 19 have unknotted embeddings, as shown in Figure 3, and Cousins 9, 14, 16, 20
are ancestors of Cousins 17 and 19. (The unknotted embeddings of Figure 3 were
derived from the unknotted embedding of Cousin 20 that appears in [5, Figure 2].)
Thus the K7 family yields no new examples of MMIK graphs. This has also been
shown, independently, by Hanaki, Nikkuni, Taniyama and Yamazaki [9].

We remark that E9 (Cousin 9), a graph on nine vertices and 21 edges, is the smallest
graph that is not IK but has an IK child. Indeed, it follows from [11] that descendants
of a non-IK graph on fewer edges or fewer vertices would be 2–apex and, therefore,
not IK by Lemma 2. Descendants of a graph on 20 or fewer edges also have 20 or
fewer edges and, so, are 2–apex. As for graphs on eight vertices, the non-IK examples
with 21 or more edges are all subgraphs of two graphs, G1 and G2 , on eight vertices
and 25 edges (see [11, Figure 7]). As all descendants of these two graphs are 2–apex,
the same is true of descendants of any subgraphs of G1 or G2 .

It turns out that by adding one edge to E9 one can obtain a MMIK graph; we call this
graph E9C e and describe its family in Section 3.
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2 The K3;3;1;1 family
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Figure 4: The K3;3;1;1 family

Figure 4 (produced using Mathematica) shows the 58 graphs derived from K3;3;1;1

by rY and Yr moves. Edge lists for these graphs can be found in [8]. The graphs
range from the 8 vertex graph K3;3;1;1 (Cousin 1) through the 14 vertex graph Cousin 42
(called R1 in [14]). Kohara and Suzuki [10] described the graph K3;3;1;1 and its 25
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descendants. These 26 graphs were already known to be MMIK (see Foisy [6] and [10].)
As we will now show, the remaining 32 graphs in the family are also MMIK.

Proposition 5 The 58 graphs in the K3;3;1;1 family are all MMIK.

Proof We first observe that all graphs in the family are IK. For this, it suffices to show
that the four parentless cousins, 1, 12, 41, and 58, are intrinsically knotted. Foisy [6]
proved this for Cousin 1, K3;3;1;1 . We handle the remaining three graphs by using the
computer program described in [12] to verify that in every embedding of the graph
there is a D4 minor that contains a knotted Hamiltonian cycle.

Having established that all graphs in the family are IK, by Lemma 1, we can conclude
that they are all MMIK once we have shown this for the four childless cousins, 29, 31, 42,
and 53. We do know that descendants of K3;3;1;1 are MMIK. This combines work of
Kohara and Suzuki [10] (who argued that, if K3;3;1;1 is MMIK, then all of its descen-
dants are too) and Foisy [6] (who proved that K3;3;1;1 is MMIK). As cousins 29, 31,
and 42 have K3;3;1;1 as an ancestor, the following lemma completes the argument.

5 2

7

1 12

3 6

11 8 4 13 9 10

Figure 5: Cousin 53 of the K3;3;1;1 family

Lemma 6 Cousin 53 (Figure 5) of the K3;3;1;1 family is MMIK.

Proof Let G denote Cousin 53. As in the proof above, all graphs in the family are IK,
including G . Since G has no isolated vertices, it will be enough to show that G � e

and G=e have knotless embeddings for every edge e in G .
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As in Figure 5, the graph has an involution .1; 12/.2; 5/.3; 6/.4; 13/.8; 9/.10; 11/. This
allows us to identify the 22 edges in pairs with the exception of the edges .2; 5/ and
.3; 6/ (which are fixed by the involution). Thus, up to symmetry, there are 12 choices
for the edge e and 24 minors (G � e or G=e ) to investigate.

1 3 4 5

8 7 9 10

11

12 6

2
13

A

B

D

C

Figure 6: An embedding of Cousin 53 which has a unique knotted cycle (in bold)

The argument is based primarily on the embedding of G shown in Figure 6, for
which there is a single knotted cycle .1; 5; 2; 12; 6; 3; 4; 11; 8; 13; 10; 9; 7; 1/, as well
as four crossings, labeled A, B , C , D in the figure. By flipping (ie, interchanging
the over- and undercrossing arcs) at selected crossings, we construct two additional
embeddings, each having a unique knotted cycle. Let us call the representation of G

shown in the figure Embedding 1. If we flip the crossing A, we have what we will call
Embedding 2 whose unique knotted cycle is .1; 3; 6; 12; 2; 11; 4; 9; 7; 8; 13; 10; 5; 1/.
For Embedding 3, we flip the crossings A and C, which gives the knotted cycle
.1; 3; 6; 13; 8; 11; 4; 9; 7; 12; 2; 5; 1/.

Out of the 12 choices for an edge e , all but one occurs as an edge either in the
knotted cycle of Embedding 1 or else in that of Embedding 2. For each such e , this
gives an unknotted embedding of G � e . The remaining possibility is e D .6; 9/ (or,
equivalently, .3; 8/). In this case, deleting vertices 2 and 3 from G� .6; 9/ results in a
planar graph (this is not obvious from Figures 5 or 6, but is easy to verify manually or
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using Mathematica). Therefore, G � .6; 9/ is 2–apex and, by Lemma 2, not IK. Thus
no minor of the form G � e is IK.

If we contract the edge e D .1; 3/ in Embedding 1 (shown in Figure 6), the single
knotted cycle becomes two cycles that share the new vertex formed by identifying
vertices 1 and 3. Since these two cycles are unknots, this is an unknotted embedding
of G=e . Similarly, contracting either edge e D .4; 9/ or e D .5; 10/ in Embedding 1
leads to an unknotted embedding of G=e . Embedding 2 shows that G=e is unknotted
for e D .1; 7/, .2; 5/, .6; 9/, and .8; 11/, while Embedding 3 does for e D .3; 4/

and .7; 8/.

For each of the remaining three choices of e , we give vertices that, when deleted
from G=e , yield a planar graph, showing that G=e is 2–apex: for e D .1; 5/, delete
vertices 4 and 6; for e D .3; 6/, delete vertices 2 and 7; for e D .4; 11/, delete
vertices 5 and 6. Thus, by Lemma 2, none of these graphs is IK, completing the
argument for the G=e minors.

As no G � e nor G=e minor is IK, we conclude that G is MMIK.

3 The E9 C e family

The graph E9 C e (see Figure 7) has nine vertices and 22 edges and is formed by
adding the edge .3; 9/ to E9 . The E9 C e family consists of 110 cousins; due to
its large size, we do not provide here a diagram for the entire family, but only a
partial diagram, as explained further below. Edge lists for all 110 cousins, as well as a
diagram of the entire family, can be found in [8]. The family includes two 8–vertex
graphs: the graph whose complement consists of two stars, each on four vertices (see
Campbell, the second author, Ottman, Pyzer, Rodrigues and Williams [3, Figure 4vi])
and K3;2;1;1;1 � .b1; c/; .b1; d/, whose complement is a triangle and a star of four
vertices. We refer the reader to [3] for an explanation of this notation along with a proof
that these two graphs are IK (also proved, independently, in [1]). Note that neither
is MMIK. The two star graph has K7 as a minor while K3;2;1;1;1 � .b1; c/; .b1; d/

has H8 (the graph obtained by a rY move on K7 ) as a minor.

The family also includes three other parentless graphs, all on ten vertices, which we
call Cousins 41, 47, and 50. We can describe these graphs by listing their edges:

Cousin 41 .1; 3/, .1; 4/, .1; 5/, .1; 6/, .2; 5/, .2; 6/, .2; 8/, .2; 10/, .3; 6/, .3; 7/,
.3; 8/, .3; 9/, .4; 8/, .4; 9/, .4; 10/, .5; 7/, .5; 9/, .6; 9/, .6; 10/, .7; 9/, .7; 10/,
.8; 9/.
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3 2
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4 5 1
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6 7

Figure 7: The complement of the graph E9C e

Cousin 47 .1; 3/, .1; 4/, .1; 5/, .1; 6/, .2; 5/, .2; 6/, .2; 8/, .2; 10/, .3; 6/, .3; 7/,
.3; 8/, .4; 8/, .4; 9/, .4; 10/, .5; 7/, .5; 8/, .5; 9/, .5; 10/, .6; 9/, .7; 9/, .7; 10/,
.8; 9/.

Cousin 50 .1; 3/, .1; 4/, .1; 5/, .1; 6/, .1; 10/, .2; 5/, .2; 6/, .2; 8/, .2; 10/, .3; 6/,
.3; 7/, .3; 8/, .3; 9/, .4; 8/, .4; 9/, .4; 10/, .5; 7/, .5; 8/, .5; 9/, .6; 9/, .7; 9/, .7; 10/.

To show that all graphs in the E9 C e family are IK, it is enough to check that all
the parentless graphs in the family are IK. We have explained why the two 8–vertex
parentless graphs are IK. The program of [12] shows that the four other parentless
graphs are IK.

1

41 50 47 44 3 28 31

84 85 54 9 64 13 11 14 10 12 86 70 15 79

39 45 40 42 38 49 98 48 46 43

83

Figure 8: The MMIK cousins of E9C e
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Of the 110 graphs in the family, only 33 are MMIK; they are shown in Figure 8.
These 33 graphs are the ancestors of Cousins 43, 46, 83, and 98; they include E9C e

(Cousin 1) as well as the three parentless 10–vertex graphs, Cousins 41, 47, and 50.
The other graphs in the family are all descendants of the two 8–vertex graphs. As the
8–vertex graphs are not MMIK, it follows, by Lemma 1, that the remaining 77 graphs
in the family are not MMIK.

The following lemma shows that Cousin 83 and, hence, its 28 ancestors are MMIK. We
omit the similar arguments which show that Cousins 43, 46, and 98 are also MMIK.

4

6 2

10

1 12 13 11

3 8

5
7

9

B

A
D C

Figure 9: An embedding of Cousin 83

Lemma 7 Cousin 83 (Figure 9) of the E9C e family is MMIK.

Proof The argument is similar to that of Lemma 6 so we will omit some of the details.
Let G denote Cousin 83. As G has no symmetries, the 44 minors obtained by removing
or contracting each of the 22 edges are pairwise nonisomorphic. We will demonstrate
that none of the 44 graphs G � e , G=e are IK. Figure 9 shows Embedding 1 with its
unique knotted cycle .1; 3; 8; 13; 9; 12; 6; 2; 11; 5; 7; 10; 4; 1/. By flipping crossings
we obtain four other embeddings, each with a unique knotted cycle:

(Embedding 2) (flip B): .1; 4; 13; 9; 12; 3; 8; 11; 2; 10; 7; 5; 1/

(Embedding 3) (flip A & B): .1; 5; 11; 2; 10; 7; 3; 8; 13; 9; 12; 6; 1/

(Embedding 4) (flip C): .1; 4; 10; 7; 3; 8; 13; 9; 12; 6; 2; 11; 5; 1/

(Embedding 5) (flip D): .1; 4; 13; 8; 3; 7; 10; 2; 11; 5; 9; 12; 6; 1/
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All but one edge e appears in one of the five cycles. The corresponding embedding
shows that G � e is not IK. For the remaining edge e D .7; 9/, note that removing
vertices 2 and 3 from G � e results in a planar graph. So, by Lemma 2, G � .7; 9/ is
not IK. This completes the argument that no minor of the form G � e is IK.

For 13 of the 22 edges, contracting the edge e turns the unique cycle in at least one of the
five embeddings into two unknotted cycles, showing that G=e is not IK. For eight of the
remaining nine edges, (namely .1; 4/, .2; 11/, .3; 8/, .3; 12/, .5; 11/, .7; 9/, .7; 10/,
and .9; 12/) G=e is 2–apex and, therefore, not IK. Finally, since G=.6; 12/ is isomor-
phic to Cousin 19 of the K7 family, it too is not IK. This completes the argument for
minors of the form G=e and the proof of the lemma.

Remark Although it preserves IKness, the rY move does not necessarily preserve
MMIKness. Indeed, Cousin 83, which is MMIK by Lemma 7, has a non-MMIK child,
Cousin 87. (As a descendant of both of the non-MMIK 8–vertex graphs in this family,
Cousin 87 is also non-MMIK by Lemma 1; an edge list for Cousin 87 can be found
in [8]).

4 The G9;28 family

The graph G9;28 has nine vertices and 28 edges. It is most easily described in terms
of its complement, which is the disjoint union of a 7–cycle on the vertices 1; 2; : : : ; 7

and the edge .8; 9/.

The G9;28 family, listed fully in [8], consists of 1609 cousins, 25 of which, includ-
ing G9;28 itself, are parentless. The remaining cousins are descendants of one or
more of these 25 parentless graphs. We used the computer program of [12] to verify
that each of these 25 parentless graphs is IK; hence all 1609 cousins are IK. Here we
give a “traditional proof” that G9;28 is IK. We note that G9;28 and its descendants
account for 1062 of these 1609 cousins; thus these 1062 graphs are IK even without
the “computer proof”.

We also show in this section that Cousin 1151 of G9;28 , which is a descendant of G9;28 ,
is MMIK. Cousin 1151 and its ancestors form a set of 156 graphs (only 101 of which
are G9;28 or its descendants). Thus all of these 156 graphs are MMIK.

4.1 G9;28 is IK

In this subsection, we show that G9;28 is IK. We will make use of a lemma due
independently to Foisy [6] and Taniyama and Yasuhara [18], which we restate here.

Algebraic & Geometric Topology, Volume 14 (2014)
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e8
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Figure 10: The graph D4

Figure 10 shows the multigraph D4 . For each i D 1; 2; 3; 4, let Ci denote the cycle
consisting of the two edges e2i�1 and e2i . For any given embedding of D4 , let �
denote the mod 2 sum of the Arf invariants of the 16 Hamiltonian cycles in that
embedding of D4 . (Arf.K/ equals the reduction modulo 2 of the second coefficient of
the Conway polynomial of K .) Since the unknot has Arf invariant zero, if � ¤ 0 there
must be a nontrivial knot in the embedding. The lemma shows that this will happen
whenever the mod 2 linking numbers, lk.Ci ;Cj /, of both pairs of opposing cycles are
nonzero.

Lemma 8 [6; 18] Given an embedding of the graph D4 , � ¤ 0 if and only if
lk.C1;C3/¤ 0 and lk.C2;C4/¤ 0.

Proposition 9 The graph G9;28 is IK.

Proof First observe that the Petersen family graph P8 shown in Figure 11 is a subgraph
of G9;28 since the complement of P8 contains the 7–cycle .1; 2; 3; 4; 5; 6; 7/ and the
edge .8; 9/; we will call this subgraph S1 . By cyclically permuting the vertex labels
1; 2; : : : ; 7 in Figure 11, we obtain six more subgraphs, S2;S3; : : : ;S7 , of G9;28 , each
isomorphic to P8 . There are eight pairs of cycles in each Si . For example, the eight
links in S1 and S2 are:

i li1 li2 li3 li4
1 148,36257 158,36247 248,36157 258,36147
2 258,47361 268,47351 358,47261 368,47251

i li5 li6 li7 li8
1 2475,3618 5162,3748 1475,3628 4261,3758
2 3516,4728 6273,4158 2516,4738 5372,4168
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Figure 11: The Petersen family graph P8 is realized as a subgraph, S1 , of G9;28 .

In the table, we have listed the indices of the vertices in each cycle. Thus l11 , S1 ’s first
link, consists of the cycles .1; 4; 8; 1/ and .3; 6; 2; 5; 7; 3/. We will frequently use this
abbreviated notation in what follows. Note that each link l2j can be obtained from the
one above it, l1j , by applying the cyclic permutation  D .1; 2; 3; 4; 5; 6; 7/; we will
write l2j D  .l1j /. In a similar way, we determine the links lij for each i D 3; 4; 5; 6; 7

by repeatedly applying  .

Fix an arbitrary embedding of G9;28 . We wish to show that there is a knotted cycle in
that embedding. We will argue that G9;28 has a D4 minor embedded with opposite
cycles linked. Using Lemma 8, this implies there is a knotted cycle in the D4 and we
will refer to such a D4 minor as a “knotted D4 ”. We can then identify the knot in
the D4 with a knotted cycle in the given embedding of G9;28 .

As shown by Sachs [17], in any embedding of the Petersen family graph P8 , the mod 2
sum of the linking number over the eight pairs of cycles is nonzero. This means that, in
each Si , at least one pair of cycles lij has nonzero linking number mod 2. To simplify
the exposition, for the remainder of this proof, we will use “linked” to mean “has
nonzero linking number mod 2”.

Suppose first that it is l11 that is linked. We will use this to deduce that l26 or l28 is
linked. We will denote this situation by writing “l11) l26 or l28 ”. We will argue
that any other l2j , if linked, would result in a knotted D4 minor and therefore a
knotted cycle in the given embedding of G9;28 . If l21 is linked, then contracting the
edges .1; 4/, .2; 5/, .3; 6/, and .3; 7/ results in a D4 graph with one set of opposing
cycles arising from l11 and the other from l21 (see Figure 12). Assuming both pairs
are linked, this results in a nontrivial knot in the D4 graph by Lemma 8 and hence
a nontrivial knot in the embedding of G9;28 . So, we can assume l21 is not linked.
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Figure 12: Contracting .1; 4/ , .2; 5/ , .3; 6/ , and .3; 7/ results in a D4 .

Similarly, if l27 is linked, contracting .2; 5/, .2; 6/, .3; 7/, and .4; 8/ results in a D4

with linked opposite cycles arising from l11 and l27 .

Suppose that among the l2j pairs, it is l22 that is linked. Here, we will first decompose
the cycles of l11 and l22 . Since .3; 5/ is an edge of G9;28 , in homology, we can think
of the cycle 36257 (ie, .3; 6; 2; 5; 7; 3/ ) as the sum Œ2C 3� of the cycles 2 D 3625

and 3 D 357. The sum is linked with the other component of l11 , 148, so we deduce
that exactly one of 2 and 3 is also linked with 148 (see [6, Lemma 3.1]). We will
refer to this way of dividing 36257 into 3625 and 357 as “cutting along 35”. If it
is 3625 that is linked with 148, then contracting .1; 4/, .3; 5/, and .2; 6/ results in
a D4 whose opposite cycles arise from the linked cycles 3625 and 148 and the linked
cycles of l22 . Consequently, by Lemma 8, the embedding of G9;28 has a knotted
cycle in this case. If instead it is 357 that is linked with 148, we will need to cut the
cycle 47351 of l22 along 13. This leaves two cases. If it is 4731 that links the other
component of l22 , 268, then after contracting .1; 4/, .2; 5/, .2; 6/, and .3; 7/, we will
have a knotted embedding of D4 . On the other hand, if it is 135 that links 268, we
will want to contract .1; 4/, .2; 6/, .2; 7/ and .3; 5/ to achieve an embedding of D4

that implies a knotted cycle in G9;28 by Lemma 8.

Similarly, if l23 or l25 is linked, we will need to cut 36257 along 35. For l24 , we
again cut 36257 along 35 and further, cut 47251 along 42. Thus, in every case other
than j D 6 and j D 8, we have shown that assuming l11 and l2j are both linked leads
to an embedding of D4 that forces a knotted cycle in our embedding of G9;28 . This
shows that l11) l26 or l28 .

In much the same way, we now show l11) l53 or l56 . It is straightforward to verify
that there will be a knotted D4 in case both l11 and one of l51 , l52 , or l57 are linked.
As for l54 , it is the same link as l22 , which we treated above. The two remaining
cases require cutting, as we will now describe. If l11 and l55 are both linked, cut 7358

along 57 and use the edges .6; 9/ and .7; 9/ to identify 36257 as the sum (in homology)
of 3697 and 62579. (We will call this operation “cutting along 697”.) Finally, if it
is l58 that is linked, cut 7428 along 27 and 36257 along 35.
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As a final step in the argument for l11 , we construct a new P8 subgraph, T1 , from S1

by interchanging the vertex labels 8 and 9. Therefore, the linked pairs in T1 are
m11D 149; 36257;m12D 159; 36247; : : : ;m18D 4261; 3759 (compare with the table
of l1j above). Again, by [17], at least one of these m1j is linked in any embedding
of G9;28 . We will argue that this, together with l11) l26 or l28 and with l11) l53

or l56 , imply that there is a knotted D4 in our embedding of G9;28 .

First notice that l11 will form a D4 with m12 , m13 , m15 , m16 , and m18 (after
cutting 36257 along 27). In other words, l11 ) m11 , m14 , or m17 . Now, each
of the following pairs of link forms a D4 : m11 and l26 (cut 36257 along 35), m14

and l26 (no cuts), m14 and l28 (cut 36147 along 13), and m11 and l28 (cut 36257
along 85, 86, 87, ie, 36257D 3687C785C5862). Since l11) l26 or l28 , we deduce
that if l11 is linked, then we can assume m17 is linked, too, ie, l11)m17 .

To complete the argument for l11 , we construct T2 , another embedding of P8 , and
its links m2j , in the usual way by applying the 7–cycle  to the vertex indices of T1 .
Using the same type of argument as above, we can see that m17)m22 or m24 (the
only case that requires any cuts is when m17 is combined with m28 , where we cut 3629

along 382 and 5372 along 57). As we showed earlier, l11) l26 or l28 ; and we can
show m22 combined with either l26 or l28 yields a D4 (for m22 with l26 , cut 47351
along 13; for m22 with l28 , no cuts); we therefore conclude that if m22 and l11 are
both linked, then there is a knotted D4 . Similarly, we know l11) l53 or l56 ; and
we can show m24 combined with either l53 or l56 produces a D4 (for m24 with l53 ,
cut 47251 along 187; for m24 with l56 , cut 47251 along 24); hence l11 and m24 give
a D4 . It follows that if l11 and m17 are both linked, there is a nontrivial knot in our
embedding of G9;28 . Thus, when l11 is linked, no matter which pair of cycles m1j ,
j D 1; : : : ; 8 is linked in the Petersen graph T1 , we will have a knotted cycle in our
embedding of G9;28 . This completes the argument for l11 .

Next, we show that for all i D 1; : : : ; 7, we can assume all lij except li3 , li5 and li8
are unlinked. Indeed, we have shown that if l11 is linked, there will be a knot in our
embedding of G9;28 , which is the goal of our proof. Thus we can assume l11 is not
linked. By symmetry, the same argument can be applied to each li1 , i D 1; : : : ; 7.
Since l14 becomes l11 after applying the involution ı D .1; 5/.2; 4/.6; 7/, which is
a symmetry of G9;28 , we can likewise assume l14 , and hence every li4 is unlinked.
Also, l12 D l51 which, as we have already noted, is not linked. So, we may assume,
no li2 is linked. Next, suppose l17 is linked. We have mentioned that m17) m22

or m24 , and, by symmetry, the same argument shows l17) l22 or l24 . However, as
we have noted, no li2 or li4 is linked, or else we will have a knotted D4 . Thus l17 is
not linked either. Again, by symmetry, this implies no li7 is linked. Since l16D ı.l17/,
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we can also assume l16 , and hence all li6 , are also not linked. Thus only pairs of the
form lij with j D 3, 5, or 8 are linked.

Now, if l13 and l23 are both linked, we get a knotted D4 by doing a few cuts at various
stages (cut 36157 along 35, 47261 along 42, 4261 along 496, and 3615 along 391).
Thus l13) l25 or l28 and, by symmetry, we have

(1) li3) l.iC1/5 or l.iC1/8;

where, whenever the first index i of lij is greater than 7 or less than 1 (which comes
up further below), we reduce i mod 7, except that we use 7 instead of 0. We also
argue that l15) l53 , by showing l15 and l55 together give a D4 (cut 7358 along 57)
and l15 with l58 together give a D4 (no cuts). It follows from symmetry that

(2) li5) l.iC4/3:

We now apply the permutation ı D .1; 5/.2; 4/.6; 7/ to implication (2) above. First,
recall that  k.lij / D l.iCk/j , where, as before,  is the 7–cycle .1; 2; 3; 4; 5; 6; 7/.
Also, note that ı D �1ı . Hence, since ı.l15/D l18 , we get ı.li5/D ı i�1.l15/D

.�1/i�1ı.l15/D 
1�i.l18/D l.2�i/8 . Also, ı.l13/D l13 , which, by a similar argu-

ment as above, gives ı.li3/D l.2�i/3 . Therefore, applying ı to implication (2) gives
l.2�i/8) l.2�i�4/3 , which, by replacing both occurrences of 2� i with i , gives

(3) li8) l.iC3/3:

Combining implications (1), (2) and (3) yields li3) l.iC4/3 or l.iC5/3 . In particular,
l13 ) l53 or l63 , l53 ) l23 or l33 , and l63 ) l33 or l43 . These three implications
together give l13) l23 or l33 or l43 . We have already seen that l13 and l23 together
give a D4 . We also check that l13 and l43 give a D4 (cut 36157 along 697, 61579
along 59, 62413 along 64, 6413 along 61). Thus we conclude that l13) l33 , which,
by symmetry, gives

(4) li3) l.iC2/3:

Applying implication (4) repeatedly gives l13) l33) l53) l73) l23 , which means
if l13 is linked, we get a knotted D4 (since l13 and l23 give a D4 ). By symmetry,
we get a knotted D4 if any li3 is linked. This, and implications (2) and (3), together
imply that if any li5 or li8 is linked, we get a knotted D4 .

This completes the proof that G9;28 is IK. No matter which l1i is linked, we have
found a nontrivial knot in the given embedding of G9;28 .
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4.2 Cousin 1151 of G9;28

We now focus on the childless Cousin 1151 of G9;28 (Figure 13) and show that
it is minor minimal. This implies, by Lemma 1, that the 156 graphs consisting of
Cousin 1151 and its ancestors are all MMIK.
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Figure 13: Cousin 1151 of G9;28

It turns out that Cousin 1151 has no symmetries; hence we consider all its 56 minors
obtained by deleting or contracting each of its 28 edges. Of these 56 minors, 54 are
2–apex. Below, we list each of these 54 graphs as G � e or G=e , followed by the
two vertices that can be removed to obtain a planar graph. The remaining two graphs
are listed as “not 2–apex”. Note that whenever we contract an edge .a; b/ in G , we
relabel some of the vertices in G=.a; b/, as follows: if a< b , then we use the label a

for the vertex that edge .a; b/ contracts to; furthermore, we take the vertex in G with
the largest label and relabel it as vertex b in G=.a; b/. The list of 54 graphs follows:

G� .1; 8/, f4; 5g; G=.1; 8/, f1; 2g; G� .1; 9/, f4; 14g; G=.1; 9/, f1; 2g; G� .1; 10/,
f2; 8g; G=.1; 10/, f4; 14g; G � .1; 11/, f2; 3g; G=.1; 11/, f5; 14g; G � .2; 12/,
f1; 3g; G=.2; 12/, f2; 8g; G � .2; 13/, f1; 7g; G=.2; 13/, f1; 2g; G � .2; 14/, f1; 5g;
G=.2; 14/, f2; 3g; G � .3; 7/, f1; 2g; G=.3; 7/, f3; 4g; G � .3; 9/, f6; 7g; G=.3; 9/,
f1; 2g; G � .3; 10/, f2; 4g; G=.3; 10/, f3; 8g; G � .3; 15/, f1; 9g; G=.3; 15/, f2; 3g;
G�.4; 8/, f7; 13g; G=.4; 8/, f2; 3g; G�.4; 9/, f1; 7g; G=.4; 9/, f2; 3g; G�.4; 11/,
f2; 3g; G=.4; 11/, f7; 13g; G � .4; 12/, f2; 8g; G=.4; 12/, f1; 13g; G � .5; 10/,
f3; 8g; G=.5; 10/, not 2–apex; G � .5; 13/, f1; 2g; G=.5; 13/, f5; 6g; G � .5; 16/,
f1; 2g; G=.5; 16/, not 2–apex; G � .6; 11/, f5; 7g; G=.6; 11/, f2; 3g; G � .6; 14/,
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f1; 7g; G=.6; 14/, f5; 6g; G � .6; 15/, f1; 7g; G=.6; 15/, f6; 7g; G � .7; 8/, f3; 4g;
G=.7; 8/, f1; 2g; G�.7; 12/, f1; 9g; G=.7; 12/, f3; 14g; G�.7; 16/, f3; 4g; G=.7; 16/,
f1; 2g; G � .8; 13/, f1; 2g; G=.8; 13/, f3; 4g; G � .8; 15/, f2; 3g; G=.8; 15/, f1; 9g;
G � .9; 14/, f2; 3g; G=.9; 14/, f1; 7g; G � .9; 16/, f1; 2g; G=.9; 16/, f6; 13g.

By Lemma 2, all the 54 graphs that are 2–apex have knotless embeddings. In Figures 14
and 15 we display knotless embeddings for the two graphs that are not 2–apex. (We
used a computer program to verify that every cycle in these two embeddings is a trivial
knot.)
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Figure 14: A knotless embedding of the graph obtained by contracting edge
.5; 10/ in Cousin 1151 of G9;28 (vertex 10 used to be vertex 16)
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Figure 15: A knotless embedding of the graph obtained by contracting edge
.5; 16/ in Cousin 1151 of G9;28
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5 The G14;25 family

The graph G14;25 , depicted in Figure 16, has 14 vertices and 25 edges: .1; 6/, .1; 9/,
.1; 10/, .1; 11/, .2; 6/, .2; 7/, .2; 8/, .2; 14/, .3; 10/, .3; 12/, .3; 13/, .4; 6/, .4; 7/,
.4; 9/, .4; 11/, .5; 7/, .5; 8/, .5; 10/, .5; 14/, .6; 13/, .7; 12/, .8; 11/, .8; 13/, .9; 12/,
.9; 14/.
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Figure 16: The graph G14;25

We obtained this graph by starting with one of the cousins of G9;28 that is IK but not
MM, and repeatedly deleting or contracting edges (a total of three edges) until we
arrived at a MMIK graph.

The graph G14;25 is interesting since it is a MMIK graph with over 600,000 cousins!
We do not know exactly how many cousins it has; we stopped the computer program
after about one week of continuous operation, since we had no upper bound on the
number of cousins and therefore had no idea how much longer the program might
continue to run. We sampled a small number of these cousins, which turned out not to
be MMIK. Nevertheless, we would not be surprised if such a large family turned out to
contain hundreds or thousands of MMIK graphs.

Lemma 10 The graph G14;25 is MMIK.

Proof Let G denote the graph G14;25 . We show that G is IK by using the computer
program described in [12] to verify that there is a D4 minor with a knotted Hamiltonian
cycle in every embedding of the graph. To prove that G is MM, since it has no isolated
vertices, it will be enough to show that for every edge e in G , neither G � e nor G=e

is IK.
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The graph G has an involution .1; 5/.2; 4/.6; 7/.8; 9/.11; 14/.12; 13/ which allows us
to identify all its 25 edges in pairs, with the exception of the edge .3; 10/ (which is
fixed by the involution). Thus, up to symmetry, there are 13 choices for the edge e

and 26 minors (G � e or G=e ) to investigate. Each of these 26 minors turns out to be
2–apex. Below, we list each of them as G � e or G=e , followed by the two vertices
that can be removed to obtain a planar graph (see the note in Section 4.2 about vertex
relabeling).

G � .1;6/, f2; 3g; G=.1; 6/, f1; 6g; G � .1;9/, f2; 4g; G=.1; 9/, f1; 2g; G � .1;10/,
f2; 4g; G=.1; 10/, f2; 4g; G � .1;11/, f2; 3g; G=.1; 11/, f1; 7g; G � .2;6/, f1; 7g;
G=.2; 6/, f2; 3g; G � .2;7/, f1; 3g; G=.2; 7/, f1; 2g; G � .2;8/, f3; 5g; G=.2; 8/,
f1; 3g; G � .2;14/, f1; 3g; G=.2; 14/, f1; 2g; G � .3;10/, f2; 4g; G=.3; 10/, f2; 4g;
G�.3;12/, f1; 2g; G=.3; 12/, f3; 4g; G�.6;13/, f1; 7g; G=.6; 13/, f2; 5g; G�.8;11/,
f1; 7g; G=.8; 11/, f2; 3g; G � .8;13/, f2; 3g; G=.8; 13/, f1; 7g

It follows from Lemma 2 that each of these 26 minors has a knotless embedding, and
hence G14;25 is MMIK.
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