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Short homotopically independent loops on surfaces

STEVE KARAM

In this paper, we are interested in short homologically and homotopically independent
loops based at the same point on Riemannian surfaces and metric graphs.

First, we show that for every closed Riemannian surface of genus g � 2 and area
normalized to g , there are at least dlog.2g/C 1e homotopically independent loops
based at the same point of length at most C log.g/ , where C is a universal constant.
On the one hand, this result substantially improves Theorem 5.4.A of M Gromov
in [7]. On the other hand, it recaptures the result of S Sabourau on the separating
systole in [12] and refines his proof.

Second, we show that for any two integers b � 2 with 1� n� b , every connected
metric graph � of first Betti number b and of length b contains at least n homologi-
cally independent loops based at the same point and of length at most 24.log.b/Cn/ .
In particular, this result extends Bollobàs, Szemerédi and Thomason’s log.b/ bound
on the homological systole to at least log.b/ homologically independent loops based
at the same point. Moreover, we give examples of graphs where this result is optimal.
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1 Introduction

Short homotopically and homologically independent loops on surfaces have been of
great interest. Gromov proved in [7; 8] that both the systole sys.M /, ie the length
of the shortest noncontractible loop, and the homological systole sysH .M /, ie the
length of the shortest homologically nontrivial loop, of a closed Riemannian surface M

of genus g � 2 with area normalized to 4�.g � 1/ are at most � log.g/. In [1],
F Balacheff, S Sabourau and H Parlier found the maximal number of homologically
independent loops of length at most � log.g/. Their theorem goes as follows.

Theorem 1.1 [1] Let �W N ! N be a function such that � WD supg
�.g/

g
< 1.

Then there exists a constant C� such that for every closed Riemannian surface M

of genus g and area normalized to g there are at least �.g/ homologically independent
loops ˛1; : : : ; ˛�.g/ that satisfy

length.˛i/� C� log.gC 1/;

for every i 2 f1; : : : ; �.g/g.
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Moreover, they constructed some hyperbolic surfaces where their bound is optimal.

For the applications we have in mind (see Section 2), it would be nice if the loops
in Theorem 1.1 were based at the same point. Unfortunately, the following example
shows that in general, we cannot even find two homologically independent loops based
at the same point satisfying a log.g/ bound. Indeed, let M be a closed hyperbolic
surface of genus g . Consider a family of gC 1 loops in M dividing the surface into
two spheres with gC 1 boundary components. Pinching these loops enough, we force
(by the collar theorem) every loop of M homologically independent from this family
to be arbitrary long. Still, we obtain some results in this direction when the systole is
bounded from below; see Theorem 4.4.

This leads us to replace the notion of homologically independent loops with the notion
of homotopically independent loops defined below.

Definition 1.2 Let M be a closed Riemannian surface of genus at least one. A family
of loops .˛1; : : : ; ˛k/ based at the same point v in M are said to be homotopically
independent if the subgroup of �1.M; v/ generated by ˛1; : : : ; ˛k is free of rank k .

Observe that k homologically independent loops based at the same point on a closed
surface M of genus g are homotopically independent for k < 2g ; see Theorem 4.3.

Now, for how many homotopically independent loops based at the same point does
the log.g/ bound hold?

One might wonder or even doubt the benefit of finding short homotopically independent
loops based at the same point. We show the benefits of such a choice in Section 2. To
the author’s best knowledge, the only answer to the previous question is due to Gromov.

Theorem 1.3 [8, 5.4.B] Let .M; h/ be a closed Riemannian surface of genus g � 2

and of area normalized to g . For every ˛<1, there exist two homotopically independent
loops 1 and 2 based at the same point in M such that

sup.length.1/; length.2//� C˛ g1�˛;

where C˛ is a positive constant that depends only on ˛ .

Note that Theorem 1.3 does not hold for ˛ D 1. Indeed, P Buser and P Sarnak
constructed in [4] hyperbolic surfaces with injectivity radius � log.g/ at every point.
We improve Theorem 1.3 by showing the following result.

Throughout this paper for a positive real number R, we denote by dRe the smallest
integer greater or equal to R.
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Theorem A Let M be a closed Riemannian surface of genus g � 2 and area
normalized to g . Then there are at least dlog.2g/ C 1e homotopically indepen-
dent loops ˛1; : : : ; ˛dlog.2g/C1e based at the same point in M , such that for ev-
ery i 2 f1; : : : ; dlog.2g/C 1eg,

length.˛i/� C log.g/;

where C is a universal constant independent from the genus.

Theorem A substantially improves Theorem 1.3. Under the same hypothesis as
Theorem 1.3, Theorem A guarantees the existence of dlog.2g/C 1e homotopically
independent loops based at the same point (instead of two) of length roughly bounded
by log.g/ (instead of g˛ ). Note that, if the homotopical systole of the surface M in
Theorem A is bounded away from zero, then the dlog.2g/C 1e loops can be chosen
to be homologically independent (see Theorem 4.4). Also Theorem A recaptures the
following result by S Sabourau.

Theorem 1.4 (Sabourau [12]) There exists a positive constant C such that every
closed Riemannian surface M of genus g � 2 and area normalized to g satisfies

sys0.M /� C log.g/;

where sys0.M / is defined as the length of the shortest noncontractible loop in M

which is trivial in H1.M;Z/.

Note that Sabourau splits his proof into two cases. In the first case, he supposes
that sys0.M /� 4 sys.M / and then he deduces the result from Gromov’s log.g/ bound
on the systole. Meanwhile, Theorem A provides a unified proof of this theorem without
referring to Gromov’s asymptotic systolic inequality.

Gromov’s log.g/ bound on the systole has an analog for metric graphs. Note that for a
metric graph � , the homotopical systole coincides with the homological systole. We
will denote it by sys.�/. The best bound on the systole of a metric graph is due to
Bollobàs and Szemerédi [2] and Bollobás and Thomason [3]. Specifically, they proved
that the systole of every connected metric graph of first Betti number b � 2 and length
normalized to b satisfies

(1-1) sys.�/� 4 log.bC 1/:

Exactly as for surfaces, given a metric graph of first Betti number b � 2 and of length
normalized to b , one might wonder about the number of homologically independent
loops based at the same point satisfying the Bollobàs, Szemerédi and Thomason log.b/
bound. We answer this question here.
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Theorem B Let � be a connected metric graph of first Betti number b � 2 and of
length normalized to b . Let n 2 f1; : : : ; bg. There exist at least n homologically
independent loops in � based at the same point and of length at most 24.log.b/C n/.

An interesting value of n is nD blog.b/c, ie, the integral part of log.b/. In this case,
Theorem B asserts that for every connected metric graph � of first Betti number b � 2

and of length b , there exist at least blog.b/c homologically independent loops based
at the same point of length at most 48 log.b/. This extends Bollobàs, Szemerédi and
Thomason’s log.b/ bound on the homological systole of � to blog.b/c homologically
independent loops of � based at the same point.

One might wonder how far from being optimal Theorem B is. We show that it cannot
be substantially improved. Indeed, let b and n be two integers such that b � 2

and 1 � n � b . There exists a connected metric graph of first Betti number b and
length normalized to b , such that there are at most b24.log.b/Cn/cC1 homologically
independent loops in � based at the same point of length at most 24.log.b/C n/ (cf
Theorem 3.2). In particular, this result shows that for n � dlog.b/e, there exists a
connected metric graph � of first Betti number and length normalized to b , such that
there are at most 49n homologically independent loops in � based at the same point
of length at most 24.log.b/C n/.

This paper is organised as follows. In Section 2, we show the benefits of short homo-
topically independent loops based at the same point. In Section 3, we give the proof of
Theorem B. In Section 4, we show how to extend Theorem B to closed surfaces with
systole bounded away from zero. In Section 5, we show that on a given closed surface
the cut locus of a simple closed geodesic captures its topology. In Section 6, we prove
Theorem A.

Acknowledgments The author would like to thank his advisor, Stéphane Sabourau,
for many useful discussions and valuable comments. He also would like to thank
Florent Balacheff for reading and commenting on this paper.

2 Benefits of short homotopically independent loops based at
the same point

In this section, we show two applications of homotopically independent loops based at
the same point of bounded length.

Let M be a closed Riemannian surface of genus g � 2. If ˛ and ˇ are two homotopi-
cally independent loops based at the same point in M , then

sys0.M /� length.˛ˇ˛�1ˇ�1/:
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In particular, if sup.length.˛/; length.ˇ//� C log.g/, then

sys0.M /� 4C log.g/:

Notice that the above observation allows us to recapture the result of Theorem 1.4
on the separating systole by means of Theorem A. Also we would like to point out
that Gromov’s upper bound C˛ g1�˛ on the length of two homotopically independent
loops based at the same point in Theorem 1.3 is not sufficient to prove that the length
of the separating systole of a closed Riemannian surface of genus g � 2 and area g is
bounded above by � log.g/.

Another use of homotopically independent loops based at the same point v of a
closed Riemannian surface M is to contribute to the area of balls centered at a lift zv
of v in the universal cover �M of M . Let us clarify this idea here. Consider a
system S D f˛1; : : : ; ˛kg of pairwise nonhomotopic loops based at v . Let

LD sup
1�i�k

length.˛i/:

Denote by s half the systole of M at the point v , ie half the length of the shortest
noncontractible loop based at v . Let H 0r (resp. Nr ) be the set of elements of H D hSi

(resp. �1.M; v/) of length less than r , where the length of ˛ 2 �1.M; v/ is defined
as length.˛/D dist.zv; ˛:zv/. It is the minimal length of a loop based at v representing ˛ .
Let R> sCL. Consider the ball BDB �M .zv; r0/, where r0DR�s . Every element i

of Nr0
yields a point zvi D i :zv in B . The balls B �M .zvi ; s/ are disjoint and of the same

area. We have

(2-1) Area B �M .zv;R/� card.Nr0
/Area BM .v; s/;

where card.Nr0
/ is the cardinal of Nr0

.

Also notice that

(2-2) card.Nr0
/� card.H 0r0

/:

Thus, a lower bound on the cardinal card.H 0r0
/ of H 0r0

yields also a lower bound
on card.Nr0

/. One way to bound card.H 0r0
/ from below is the following. We define a

norm k � k on H as follows. For ˇ in H , we define the word length kˇk of ˇ as the
smallest integer n such that ˇ D 1 � � � n , where i 2 S [S�1 . Denote by Hw

r the
set of elements of H of word length less than r . We have

(2-3) card.N 0r /� card.Hw
r=L/:

Combining (2-1), (2-2) and (2-3) we get

(2-4) Area B �M .zv;R/� card.Hw
r=L/Area BM .v; s/:
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Now let r 0 > 1. Notice that Hw
r 0 is maximal if H is free of rank k . That is guaranteed

if the loops ˛1; : : : ; ˛k are homotopically independent in M . It is now clear how
homotopically independent loops based at the same point v contribute to the area of the
balls centered at points in the fiber over v in �M whenever the radii R of these balls is
longer than sCL. Moreover, since R must be at least sCL, it is straightforward to
see that the shorter the L, the better the result. This means that the upper bound of the
lengths of the ˛i is also important.

3 Short homologically independent loops on graphs

In this section we prove Theorem B. Recall that this theorem extends the Bollobàs–
Szemerédi–Thomason log.b/ bound on the homological systole of graphs to dlog.g/e
homologically independent loops based at the same point.

First let us recall some definitions. By definition, a graph � is a finite one-dimensional
CW–complex (multiple edges and loops are allowed). The first Betti number of a
graph � can be computed as

b.�/D e� vC n;

where e; v and n are respectively the number of edges, vertices and connected compo-
nents of � . A metric graph .�; h/ is a graph endowed with a length space metric h.
The length of a subgraph of � is its one-dimensional Hausdorff measure. For more
details on graphs we refer the reader to Diestel [6].

Definition 3.1 Let � be a connected graph of first Betti number b � 1. A family of
loops .˛1; : : : ; ˛k/ in � is said to be homologically independent if their homology
classes in H1.�;R/ are so.

Note that this definition extends also to closed Riemannian manifolds.

Now we prove Theorem B.

Theorem B Let � be a connected metric graph of first Betti number b � 2 and of
length normalized to b . Let n 2 f1; : : : ; bg. There exist at least n homologically
independent loops in � based at the same point and of length at most 24.log.b/C n/.

Proof By definition of the first Betti number b , there exist b homologically in-
dependent loops ˛1; : : : ; ˛b in � . Fix a point x of ˛1 . For i D 1; : : : ; b , let Ci

be a minimizing curve from x to ˛i . We have length.Ci˛iCi
�1/ � length.Ci/C

length.˛i/C length.Ci/. Notice that length.Ci/C length.˛i/� b . Thus, there exists b
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homologically independent loops in � based at the same point of length at most
2b (� 24.log.b/ C b=2/). This yields the desired result for n 2 fb=2; bg. Now
we consider the case n < b=2. In particular, we suppose b � 3. By a short cycle
of � we mean a simple loop of length at most 12 log.b/. Let X be a maximal set
of homologically independent short cycles of � and denote by N its cardinal. We
claim that

N �
b

2
:

Indeed, we construct k D db=2e graphs �k � � � � � �1 D � and k simple loops as
follows. Remove an edge from a systolic loop 1 of �1 and denote by �2 the resulting
graph. The graph �2 is connected and of first Betti number b2D b�1. Now remove an
edge from a systolic loop 2 of �2 and denote by �3 the resulting graph. By induction,
we keep doing this until we get �k . From the inequality (1-1) and since k D db=2e

we have, for every i D 1; : : : ; k ,

length.i/� 4
log.1C b� i C 1/

b� i C 1
length.�i/� 12 log.b/:

By construction, the k loops fig
k
iD1

are homologically independent in � . So the
claim is proved.

We divide the set X as follows. Take any element ˛1 of X and denote by Y1 the
set fˇ 2X j dist.ˇ; ˛1/ � 4ng. Let ˛2 be an element of X nY1 and denote by Y2 the
set fˇ 2X j dist.ˇ; ˛2/� 4ng. By induction we continue this process which eventually
ends since X is finite. Let j̨ 2X be the last short cycle obtained from this process, ie,
let j̨ be an element of X n Y1 [ � � � [ Yj�1 such that Y1 [ � � � [ Yj�1 [ Yj D X .
For i D 1; : : : ; j , we denote by Ti the cardinal of Yi . We claim that there exists an i0
such that

Ti0
� n:

Indeed, suppose the opposite. We have

b
2
�N D card.X /�

jX
iD1

Ti < j n:

So j > b
2n
> 1. For i ¤ i 0 , we have dist.˛i ; ˛i0/ > 4n. This means that the open

neighborhoods of radius 2n around the ˛i are pairwise disjoint. Since � is con-
nected, the length of the neighborhood of radius 2n around each short cycle ˛i is at
least length.˛i/C 2n. This implies that

length.�/ > 2nj > b:

Hence we have a contradiction. So there is an i0 such that Ti0
� n.
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Now fix a vertex a of ˛i0
and let ˇ be any element of Yi0

n f˛i0
g. Let b and c be two

vertices of ˛i0
and ˇ respectively such that dist.˛i0

; ˇ/D dist.b; c/. Also, let Cab be
a minimizing curve from a to b and Cbc be a minimizing curve from b to c . The
following hold:

� length.Cab/� length.˛i0
/=2

� length.Cbc/� 4n

The loop ˇ0 D CabCbcˇCcbCba is homologous to ˇ and satisfies

length.ˇ0/� 24 log.b/C 8n:

So the Ti0
short cycles of Yi0

give rise to Ti0
homologically independent loops of �

based at the same point a and of length at most 24.log.b/C n/.

Before stating our next theorem, we construct a connected metric graph �? that will
be useful to the rest of this section. Let m and p be two positive integers with m� p .
Denote by q and r the quotient and the remainder in the division of m by p , that
is, mD pqC r with r 2 f0; : : : ;p� 1g. Also let L and l be two positive constants.

Xi

wi

v
L

l

Figure 1: The graph �? for mD 12 , p D 4 , q D 3 and r D 2

Fix a vertex v . We construct q bouquets X1; : : : ;Xq of p circles and a bouquet XqC1

of r circles. We define �? by joining the vertex of each bouquet Xi to the vertex v by an
edge wi ; see Figure 1. We define a metric h on �? such that .�?; h/ is a length metric
space as follows. For i D 1; : : : ; q , set length.wi/ D L, and length.Xi/ D l . Also
set length.XqC1/C length.wqC1/D r . It is straightforward to see that the graph �? is
connected, of first Betti number m and of length q.LC l/C r . We claim that there are
at most pC r .� 2p�1/ homologically independent loops based at the same point of
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length at most 2L. Indeed, notice that there exist at most r homologically independent
loops based at v of length less than 2L. So let m be any point of �? other than the
point v . There exists a unique i such that m 2Xi [wi . Now notice that if we want
to find more than pC r homologically independent loops based at m, one of them
must cross at least two times one of the edges wj , with j 2 f1; : : : ; qg n fig. Thus, the
length of this loop exceeds 2L.

Our next theorem shows that one cannot substantially improve Theorem B, thus it is
roughly optimal.

Theorem 3.2 Let b and n be two integers such that b � 2 and 1� n� b . Let � > 0.
There exists a connected metric graph of first Betti number b , of length normalized
to b , such that there are at most b�.log.b/C n/cC 1 homologically independent loops
in � based at the same point of length at most �.log.b/C n/

Proof We only need to consider the case when b � b�.log.b/C n/c C 1 since the
other case is trivial. Denote by q and r respectively the quotient and the remainder in
the division of b by b�

2
.log.b/C n/cC 1. Let " > 0 be such that

b
�
2
.log.b/C n/cC 1D �

2
.log.b/C n/C ":

Consider the graph �? given by the previous construction with:

� mD b

� p D b�
2
.log.b/C n/cC 1

� LD �
2
.log.b/C n/

� l D "

The graph �? is connected, of first Betti number b , of length b and has at most
b�.log.b/Cn/cC1 homologically independent loops based at the same point of length
at most �.log.b/C n/.

4 Short homologically independent loops on surfaces with ho-
motopical systole bounded from below

In this section we combine ideas from [1] and the author [10] to extend Theorem B to
closed surfaces with systole bounded below.
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Definition 4.1 Let .M; h/ be a closed Riemannian surface of genus g . The image
in M of an abstract graph by an embedding will be referred to as a graph in M . The
metric h on M naturally induces a metric on a graph � in M . Despite the risk of
confusion, we will also denote by h such a metric on � .

Proposition 4.2 Let .M; h/ be a closed Riemannian surface of genus g � 1. Suppose
that the homotopical systole of M is at least `. Then, there exists a graph � in M

such that

(1) the inclusion map i W �!M is distance nonincreasing,

(2) the homomorphism i�W H1.�;R/!H1.M;R/ induced by the inclusion is an
isomorphism,

(3) length.�/�
29 Area.M; h/Cg

minf1; `g
:

Proof Without loss of generality, we suppose that `� 1. This proposition is the same
as [10, Proposition 6.1], where ` was taken to be 1

2
and the area is equal to 1

211 .2g�1/

instead of g . The proof of Proposition 6.1 in [10] starts by fixing r0 D
1
25 . In our case

we fix r0 D
`

24 and reproduce the argument.

Before stating out next theorem, let us recall the following theorem.

Theorem 4.3 (Jaco [9]) Let M be a closed Riemann surface of Euler characteris-
tic �.M /�0. Any subgroup of �1.M / generated by k elements, where k<2��.M /,
is a free group.

Now we can prove the following result.

Theorem 4.4 Let M be a closed orientable Riemannian surface of genus g � 1 with
homotopical systole at least ` and area normalized to g . Let n 2 f1; : : : ; 2gg be an
integer. There exist at least n homologically independent loops 1; : : : ; n based at the
same point in M such that for every i D 1; : : : ; n, we have

length.i/� 24C`.log.2g/C n/;

where C` D
29

minf1;`g . Moreover, if n< 2g then h1; : : : ; ni is free of rank n.

Proof Let � be a graph in M that satisfies (1), (2) and (3) of Proposition 4.2. The
first Betti number of � is 2g . By Theorem B, there are at least n homologically
independent loops in � based at the same vertex of length at most 24C`.log.2g/Cn/.
The images of these loops by the inclusion map i yield the desired loops. The second
assumption follows from Theorem 4.3.
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Remark 4.5 A nonorientable version of Theorem 4.4 holds. Let M be a closed
nonorientable surface of genus g � 1 with homotopical systole at least ` and area
normalized to g . Let n 2 f1; : : : ;gg. There are at least n loops 1; : : : ; n based at
the same point v in M whose homology classes in H1.M;Z2/ are independent such
that for every i D 1; : : : ; n, we have

length.i/� 24C 0`.log.g/C n/;

where C 0
`
D C=minf1; `g for some positive constant C . Moreover, if n < g then

h1; : : : ; ni is free of rank n.

5 Cut loci and capturing the topology

In this section we extend the notion of cut locus, defined originally for points in a
Riemannian manifold, to simple closed geodesics (this might be already defined but
the author did not find a reference in the literature) and we give some basic results for
the new notion.

Let M be a closed surface and p be a point in M . The cut point of p along a
geodesic Cp starting at p is the first point q 2 Cp such that the arc of Cp between p

and any point r on Cp after q is no longer minimizing. The set Cut.p/ of all cut
points along all the geodesics issued from p is called the cut locus of p . We extend
this notion to simple closed geodesics as follows.

Let ˛W Œ0; l �!M be a simple closed geodesic in M and ˇ be another geodesic that
starts orthogonally from ˛ at some point p . The cut point of ˛ along ˇ is the first
point q 2 ˇ such that, for any point r on ˇ beyond q the length of the arc of ˇ
between p and r no longer agrees with the distance from r to ˛ . The set Cut.˛/ of
all the cut points of all the geodesics issued orthogonally from ˛ is called the cut locus
of ˛ . An alternative useful way to view Cut.˛/ is the following. Denote by N˛ the
normal bundle to ˛ . Each vector vt 2N˛ gives rise to a geodesic Ct starting at ˛.t/
such that Ct

0.0/D vt . Denote by qt the cut point of ˛ along the geodesic Ct . The
point qt is the image by the exponential map of some vector v0t parallel to vt . Let N1

be the set of the vectors v0t and N2 be the set of the vectors �v0t , where � 2 Œ0; 1/.
Then Cut.˛/D exp.N1/.

Lemma 5.1 We have M D exp.N1/[ exp.N2/, where the union is disjoint.

Proof Let x be a point in M . There exists a minimizing geodesic �x
�1 from x

to ˛ parametrized by arc length such that length.�x
�1/ D dist.x; ˛/. The geo-

desic �x
�1 hits ˛ orthogonally in a point ˛.t/ (cf do Carmo [5]). Since �x is
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minimizing, the point x is not after the cut point of ˛ along �x . That means that
the vector dist.˛.t/;x/� 0x.0/ 2 N1 [N2 . Notice that x D exp.dist.˛.t/;x/� 0x.0//.
Thus, M D exp.N1/[ exp.N2/.

Now let us prove that the union is disjoint. Let y 2 exp.N1/ \ exp.N2/. Since
y 2 exp.N2/, there exists a minimizing geodesic �y W Œ0; `� ! M from ˛ to y ,
parametrized by arc length such that �y is still minimizing for some time after y ie there
exists an " > 0 such that �y W Œ0; `C "� is a minimizing geodesic from ˛ to �y.`C "/.
On the other hand, since y 2 exp.N1/, there exists a minimizing geodesic ıy from ˛

to y parametrized by arc length such that ıy is no longer minimizing after y . Let �
be the curve defined by �.t/D ıy.t/ if t 2 Œ0; `�, and �.t/D �y.t/ for t 2 Œ`; `C "�.
Let 0< "0 < ". There exists a minimizing geodesic from �.`� "0/ to �.`C "0/ which
is of length strictly less than the arc of � between these two points since � is not
smooth at �.`/. We conclude that dist.�y.`C "

0/; ˛/ is strictly less than the length
of �y between �y.0/ and �y.`C "

0/. Hence we have a contradiction. So the proof is
finished.

Lemma 5.2 The set Cut.˛/ is a deformation retract of M n f˛g.

Proof Let x be a point of M not in ˛ or Cut.˛/. Denote by �x the unique minimizing
geodesic from x to ˛ . Let x0 be the cut point of ˛ along the geodesic �x . Clearly,
x0 2 Cut.˛/. Now we can shrink M n f˛g to Cut.˛/ by sliding each point x of M

not in ˛ or Cut.˛/ to Cut.˛/ along the arc of the geodesic �x between x and x0 .

In view of this lemma, we will say that Cut.˛/ captures the topology of M n f˛g.

Proposition 5.3 Let .M;g/ be a closed real analytic Riemannian surface and ˛ be a
simple closed geodesic in M . Then Cut.˛/ is a finite graph.

We omit the proof of Proposition 5.3 since it is essentially the same proof as in
Myers [11, page 97].

6 Short homotopically independent loops on Riemannian
surfaces

In this section we prove Theorem A. Before doing that, let us give some definitions
and some independent propositions that will be useful to the rest of this section.
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Lemma 6.1 Let F Dha; bi be a free subgroup of rank 2 of the fundamental group of a
closed Riemannian manifold. The subgroup HDhb; a1ba�1; : : : ; an�1ba�.n�1/i of F

is free of rank n for every integer n�1. Moreover, if length.a/D la and length.b/D lb ,
then

sup
0�i�n�1

length.aiba�i/� 2.n� 1/laC lb:

Proof Since the subgroup of a free group is free then H is free. Next, we claim
that the generator apba�p is not an element of the free subgroup G generated by the
elements aqba�q for q 2 f0; : : : ; n� 1g n fpg. Indeed, a reduced word in G starts
with aq with q ¤ p . So H is of rank n. The length inequality is immediate.

Proposition 6.2 Let .M;g/ be a compact Riemannian cylinder. Denote by ˛ and ˇ
the two boundary components of M . Suppose that

length.˛/ < 1< length.ˇ/:

Then there exists a noncontractible simple loop  in M of length 1 such that the
systole of the cylinder R bounded by ˇ and  is equal to 1.

In particular, the loop  is a systolic loop of R .

Proof Let X D f� simple noncontractible loop in M such that sys.R� / D 1g,
where by R� we mean the cylinder of boundary components ˇ and � . Clearly the
set X is nonempty. Let ` D inf�2X length.�/ and " be a small positive constant.
By the definition of the infimum, there exists a simple noncontractible loop �0 such
that sys.R�0

/D 1 with `� length.�0/� `C". The systolic loop  of R�0
is a simple

noncontractible loop in M . Moreover, we have R �R�0
. Thus

1D sys.R�0
/� sys.R /� length. /D 1:

So sys.R /D 1. This finishes the proof.

In the proof of Theorem A below, we will need the following definition.

Definition 6.3 Let M be a closed Riemann surface of genus g (with possibly one
disk removed). It is well known that such a surface can be obtained from a polygon P

(with possibly one disk removed) by pairwise identifications of its sides where all the
vertices of P get identified to a single point on x of M . Such a polygon will be called
a normal representation of M . After identification, the edges of P give rise to 2g

simple loops (if M is orientable) or to g simple loops (if M is nonorientable) based
at x and intersecting each other only at x . Such a set of loops is called a canonical
system of loops.
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Now we prove Theorem A.

Theorem A Let M be a closed orientable Riemannian surface of genus g � 2 and
area normalized to g . There are at least nD dlog.2g/C1e homotopically independent
loops ˛1; : : : ; ˛n based at the same point such that for all i D 1; : : : ; n,

length.˛i/� 220 log.g/:

Proof of Theorem A Since every smooth metric can be approximated by a real
analytic one, we can assume that M is a real analytic Riemannian surface. We only
need to consider the case where the homotopical systole of M is less than 1, since
the other case is settled down by Theorem 4.4. Consider a maximal set X of simple
closed geodesics ˛1; : : : ; p̨ of length at most 1 which are pairwise disjoint in M and
not freely homotopic. Let k be the number of elements of X that are separating. Note
that k � p . The main idea of the proof is to go back to the case where the homotopical
systole is at least 1.

Remark 6.4 At first, we were tempted to cut the surface M open along the loops ˛i

of X and to attach an hemisphere along each of the 2p boundary components. This
yields at least k C 1 new closed surfaces M1; : : : ;MkC1 , where k is the number
of geodesics in X that are separating. We hoped to find the desired loops or two
short homotopically independent loops based at the same point in one of the closed
surfaces Mi . Recall that the homotopical systole of each Mi is at least 1 so we can
use Theorem 4.4. Afterwards we wanted to show that these loops do not cross the
hemispheres and so lie in the original surface M . It does not take much time to realize
that this idea is naive. One can run into many problems. Let us imagine the case
where pD g and all of the geodesics ˛i are nonseparating like the surface in Figure 2.
In this case, the surface obtained by cutting M along the loops ˛i and attaching
hemispheres is of genus 0 and so the proof collapses. Instead we will cut M along
each ˛i , chop off some “maximal” cylinders and then glue the boundary components
back together to obtain a new surface with systole bounded away from zero.

˛1 ˛2

Figure 2
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Let " 2 f�;Cg. We divide the proof into 5 steps.

Step 1 In this step we chop off cylinders corresponding to short separating loops.
If k D 0, we skip this step and start directly at the second step. By renumbering the ˛i

if needed, we can suppose that for i D 1; : : : ; k , the simple closed geodesic ˛i is
separating. Cut the surface M open along ˛1 . We obtain two compact surfaces M�

and MC with signatures .g �m; 1/ and .m; 1/, where m is some positive integer
less than g . Denote by ˛"

1
the boundary of the surface M " and let S" be one of

its canonical systems of loops. Notice that since the genus of M " is at least 1, we
have card.S"/ � 2. We can suppose that for every pair of loops a and b in S" , we
have sup.length.a/; length.b// > 1. Otherwise the proof is finished by Lemma 6.1
since a and b do not commute and so generate a free group of rank 2. Cut the
surface M " open along the loops in S" . This gives rise to a cylinder T " with two
boundary components ˛"

1
and ˇ"

1
such that length.ˇ"

1
/>1. So the cylinder T " satisfies

the hypothesis of Proposition 6.2. Thus, there exists a noncontractible simple loop  "
1

of length 1 which is a systolic loop of the cylinder R"
1

bounded by ˇ"
1

and  "
1

is 1.
Cut T " along  "

1
and throw away the cylinder C "

1
bounded by ˛"

1
and  "

1
. Now

reglue R"
1

by pairwise identifications of the edges of ˇ"
1

. This gives rise to a compact
surface M "

1
with one boundary component  "

1
of length 1. Glue the surfaces M�

1

and MC

1
along their boundaries �

1
and C

1
. The resulting surface M1 , satisfies the

following:

� The surface M1 has the same genus as the surface M .

� Area.M1/� Area.M /.

� A minimal representative in M1 of the free homotopy class of ˛1 is given by
the simple loop 1 of length 1 obtained by gluing �

1
and C

1
together.

Repeat the above process with the k � 1 remaining elements of X that are separating.
This gives rise to a closed surface Mk of the same genus as the surface M such
that Area.Mk/� Area.M /. Moreover, any simple closed geodesic of Mk of length
less than 1 is nonseparating. Perturbing the metric again, we can suppose again that it
is a real analytic one.

Step 2 In this step, we chop off cylinders corresponding to short nonseparating loops.
Cut the surface Mk open along ˛kC1 . This leads to a surface Nk with genus g� 1

and with two boundary components ˛�
kC1

and ˛C
kC1

. By Lemma 5.2, we know that
the cut locus Cut.˛kC1/ of ˛kC1 is a deformation retract of M n f˛kC1g. So the
fundamental group of Cut.˛kC1/ is isomorphic to the fundamental group of Nk .
Now cut the surface Nk open along Cut.˛kC1/. This gives rise to two cylinders.
The cylinder T �

kC1
with boundary components .˛�

kC1
; ˇ�

kC1
/ and the cylinder TC

kC1
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with boundary components .˛C
kC1

; ˇC
kC1

/. Arguing as in Step 1, we can suppose
that length.ˇ"

kC1
/> 1. So the cylinder T "

kC1
satisfies the hypothesis of Proposition 6.2.

Thus there exists a noncontractible simple loop  "
kC1

of length 1 which is a systolic
loop of the cylinder R"

kC1
of boundary components .ˇ"

kC1
;  "

kC1
/ is 1. Cut T "

kC1

open along  "
kC1

and throw away the cylinder C "
kC1

bounded by ˛"
kC1

and  "
kC1

.
Now reglue the cylinder R"

kC1
by reidentifying the sides of ˇ"

kC1
. This gives rise

to two compact surfaces M�
kC1

and MC

kC1
with boundary components that can be

pairwise identified. Gluing these two surfaces together we get a closed surface MkC1

that satisfies the following:

� The surface MkC1 has the same genus as the surface Mk .

� Area.MkC1/� Area.Mk/.

� A minimal representative of the free homotopy class of ˛kC1 in MkC1 is
given by the simple loop kC1 of length 1, obtained by gluing �

kC1
and C

kC1

together.

Repeat the above process with the p�k�1 remaining elements of X . This gives rise to a
closed surface Mp of the same genus as the surface M such that Area.Mp/�Area.M /.

Before proceeding to the next step, recall that the simple closed geodesics ˛1; : : : ; p̨

in the original surface M correspond to the simple closed geodesics 1; : : : ; p in the
surface Mp . Also recall that the cylinders C�i and CCi in M share the same boundary
component ˛i . We denote by Ci the cylinder with boundary components .�i ; 

C
i /,

that is, Ci D CCi [C�i .

Step 3 In this step, we show we can suppose two different cylinders Cj and Cj 0 in M

are distant from each other. Specifically, we have distM .Cj ;Cj 0/ > 218 log.g/. In
other words, we have

(6-1) distMp
.j ; j 0/ > 218 log.g/:

Indeed, suppose the opposite. Without loss of generality, suppose that the distance
between Cj and Cj 0 is equal to dist.�j ; 

�
j 0 /. Let z1 be a point on Cj and z2 be a

point on Cj 0 such that dist.z1; z2/ D dist.�j ; 
�

j 0 /. Consider the loop � that starts
at z1 , travels along a minimizing geodesic between z1 and z2 , makes a complete tour
along �j 0 and then comes back to z1 . We have that length.�/� 219 log.g/C1. Notice
also that � and �j do not commute. In particular, they are homotopically independent.
So by Lemma 6.1 (take aD �j and b D �), the proof of the Theorem is finished.

Step 4 In this step, we show that we can suppose that

sys.Mp/� 1:
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Indeed, by contradiction, suppose that there is a systolic loop � of Mp of length less
than 1. We claim that the geodesic � transversally intersects at least one of the i .
Indeed, suppose the opposite, and denote by �0 the simple closed geodesic in the original
surface M that corresponds to �. Since � does not transversally intersects any of the i ,
the loop �0 is disjoint from all the cylinders Ci . In particular, �0 does not intersect
any of the loops ˛i . This contradicts the maximality of X , since length.�0/ < 1.

Let j 2 f1; : : : ; ng be such that � transversally intersects j . That means that in the
surface M , the loop �0 goes across the cylinder Cj . Now we claim that � intersects
only one j . Indeed, the length of �0 is less than 1 and the distance between any
pair of cylinders Cj and Cj 0 is greater than 1. Therefore, � intersects only one j .
Moreover, the two minimizing simple loops � and j do not commute as g � 2 by
assumption.

Lemma 6.5 Let ˇ be a loop in Mp of length less than L that transversally inter-
sects only one geodesic j and does not commute with it. Then there exist two
noncommutative loops a; b in the original surface M based at the same point such
that lengthM .a/D 1 and lengthM .b/ � 2LC 1. In particular, the loops a and b are
homotopically independent.

Proof We give ˇ and j some orientation. Let x1; : : : ;xq be the transversal intersec-
tion points of ˇ and j counted with multiplicity and ordered in the sense that if we
start walking on ˇ , then xi is the i th time ˇ intersects j . Suppose that q � 2 (the
case qD 1 will be treated in the end of the proof). Let ˇi;iC1 be the simple loop based
at xi defined as the concatenation of the oriented arc of ˇ between xi and xiC1 and
the oriented arc ciC1;i of j between xiC1 and xi . The loop ˇ is homotopic to the
loop ˇ1;2c1;2 � � �ˇq;qC1cq;qC1 , where by convention ci;iC1 is the inverse of ciC1;i ,
and xqC1 D x1 .

We claim that one of the loops ˇk;kC1 does not commute with j . Indeed, suppose
the opposite. Since j is a minimizing simple closed geodesic, every loop commut-
ing with j is homotopic to a power of it. The loop ˇ1;2c1;2 � � �ˇq;qC1cq;qC1 is
homotopic to a power of j since for all i the loop ˇi;iC1 commutes with j . Thus
ˇ1;2c1;2 � � �ˇq;qC1cq;qC1 commutes with j . So the loop ˇ commutes with j since
it is homotopic to ˇ1;2c1;2 � � �ˇq;qC1cq;qC1 . That is a contradiction.

Recall that the surface M can be obtained from the surface Mp by cutting along
the i and reinserting the cylinders Ci . Thus, the loop in M that corresponds to ˇ
decomposes into a union of curves whose endpoints lie on one of the two boundary
components �j and Cj of the cylinder Cj . Denote by x0

k
and x0

kC1
the points in M

corresponding to the points xk and xkC1 of ˇk;kC1 in Mp . We have two cases.
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Case 1 The points x0
k

and x0
kC1

lie both the same boundary component, say Cj . In
this case, let ˇ0 be the simple loop in M that corresponds to ˇk;kC1 ; see Figure 3.

M

ˇ0

j̨�j Cj

Figure 3

Take a D Cj and b D ˇ0 . These two loops are based at the same point and do not
commute. Moreover, we have length.a/D 1 and length.b/�LC 1.

Case 2 The points x0
k

and x0
kC1

do not lie both on �j or Cj . In this case, let ˇ0 be
the arc in M that corresponds to the arc of ˇ between xk and xkC1 .

M

ˇ0

j̨
�j Cj

Figure 4

Take aD Cj and b D ˇ0Cj ˇ
0�1 . These two loops are based at the same point and do

not commute. Moreover we have length.a/D 1 and length.b/� 2LC 1.

Finally, if the number of intersections q D 1, we argue exactly like in case 2 above,
supposing that xkC1 D xk . That finishes the proof of the Lemma.

Now, apply Lemma 6.5 with ˇ D � and make use of Lemma 6.1 to finish the proof.

Step 5 By Theorem 4.4, there are at least nD dlog.2g/C 1e homotopically indepen-
dent geodesic loops �1 : : : ; �n based at the same point in Mp with

length.�i/� 218 log.g/:
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If these loops are in the original surface M , ie, they do not transversally intersect any
of the loops i in Mp , then the proof is finished. So suppose the opposite. Let � be
one the loops �1 : : : ; �n that transversally intersects at least one of the i in Mp .
From (6-1), the loop � (transversally) intersects exactly one loop j in Mp . By
Lemma 6.5, we show that there exist two loops a; b in the original surface M based at
the same point with length.a/D 1 and length.b/� 219 log.g/C1. The result follows
from Lemma 6.1.

Remark 6.6 Theorem A extends to nonorientable surfaces with multiplicative con-
stant 222 instead of 220 by passing to the double oriented cover.

Corollary 6.7 There exists a positive constant C such that the separating systole of
every closed Riemannian surface M of genus g � 2 and area g satisfies

sys0.M /� C log.g/:

Proof From Theorem A, there exist two noncommuting loops a and b based at the
same point of length at most c log.g/ for some positive constant c . The commuta-
tor Œa; b� of a and b , of length at most 4c log.g/, yields a bound on the separating
systole of M .
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