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Networking Seifert surgeries on knots, III
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How do Seifert surgeries on hyperbolic knots arise from those on torus knots? We
approach this question from a networking viewpoint introduced in [9]. The Seifert
surgery network is a 1–dimensional complex whose vertices correspond to Seifert
surgeries; two vertices are connected by an edge if one Seifert surgery is obtained
from the other by a single twist along a trivial knot called a seiferter or along an
annulus cobounded by seiferters. Successive twists along a “hyperbolic seiferter” or
a “hyperbolic annular pair” produce infinitely many Seifert surgeries on hyperbolic
knots. In this paper, we investigate Seifert surgeries on torus knots that have hyper-
bolic seiferters or hyperbolic annular pairs, and obtain results suggesting that such
surgeries are restricted.
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Dedicated to Sadayoshi Kojima on the occasion of his 60th birthday

1 Introduction

How do Seifert surgeries on hyperbolic knots arise from those on torus knots? In [9]
we formulate this question from a viewpoint of the Seifert surgery network. Let us
recall some basic notions given in [9] and an example illustrating our idea. A pair
.K;m/ of a knot K in S3 and an integer m is a Seifert surgery if the result K.m/ of
m–Dehn surgery on K has a Seifert fibration; we allow the fibration to be degenerate,
ie to contain an exceptional fiber of index 0 as a degenerate fiber. It is shown in [9,
Proposition 2.8] that if K.m/ admits a degenerate Seifert fibration, then it is either
a lens space or a connected sum of two lens spaces. In the latter case, Greene [14]
recently showed that K is a torus knot or a cable of a torus knot.

Definition 1.1 (Seiferter) Let .K;m/ be a Seifert surgery. A knot c in S3�N.K/

is called a seiferter for .K;m/ if c satisfies (1) and (2) below:

(1) c is a trivial knot in S3 .

(2) c becomes a fiber in a Seifert fibration of K.m/.
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We also consider pairs of seiferters.

Definition 1.2 (Annular pair of seiferters) Let c1; c2 be seiferters for a Seifert surgery
.K;m/. We call fc1; c2g a pair of seiferters if c1 and c2 simultaneously become fibers
in a Seifert fibration of K.m/. A pair of seiferters fc1; c2g is called a Hopf pair if
c1[ c2 is a Hopf link in S3 . A pair of seiferters fc1; c2g is called an annular pair of
seiferters (or annular pair for short) if c1 and c2 cobound an annulus in S3 .

For a Seifert surgery .K;m/ with a seiferter c , let Kp and mp be the images of K

and m under a p–twist along c , respectively. Then, .Kp;mp/ remains a Seifert surgery
for any integer p , and (the image of) c is also a seiferter for .Kp;mp/ [9, Proposi-
tion 2.6]. Similarly, if .K;m/ has an annular pair fc1; c2g, then under twisting along
the annulus cobounded by c1; c2 , we obtain a new Seifert surgery for which (the image
of) fc1; c2g remains an annular pair [9, Proposition 2.33(1)]. We call a twist along
an annulus cobounded by c1[ c2 a twist along an annular pair of seiferters. We say
that a seiferter c (respectively an annular pair fc1; c2g) for a Seifert surgery .K;m/ is
hyperbolic if S3�K[c (respectively S3�K[c1[c2 ) admits a complete, hyperbolic
metric with finite volume.

Remark 1.3 Suppose that a seiferter c for .K;m/ bounds a disk in S3�K . Since
no twist along c changes .K;m/, we call c irrelevant. We do not regard an irrelevant
seiferter as a seiferter. However, for pairs of seiferters fc1; c2g we allow ci to be an
irrelevant seiferter. Let fc1; c2g be an annular pair for .K;m/. If either c1 and c2

cobound an annulus disjoint from K or there is a 2–sphere in S3 separating ci and
cj [K , then twists along fc1; c2g do not change .K;m/ or have the same effect on K

as twists along cj . We thus call such an annular pair irrelevant, and exclude it from
annular pairs of seiferters. Note that if S3�K[ c1[ c2 is hyperbolic, then fc1; c2g is
not irrelevant.

Regard each Seifert surgery as a vertex, and connect two vertices by an edge if one is
obtained from the other by a single twist along a seiferter or an annular pair of seiferters.
We then obtain a 1–dimensional complex, called the Seifert surgery network.

Let us take a look at seiferters for Seifert surgeries on torus knots Tp;q . Throughout
this paper we assume, without loss of generality, that jpj> q � 1, and denote a trivial
knot Tp;1 by O .

Example 1.4 (The subcomplex T ) Since the exterior of a torus knot Tp;q is a Seifert
fiber space, .Tp;q;m/ is a Seifert surgery for any integer m. Let sp , sq be exceptional
fibers in the Seifert fibration of the exterior of Tp;q with indices jpj, q , respectively,
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and c� a meridian of Tp;q ; see Figure 1.1. Then sp and sq remain exceptional fibers
in Tp;q.m/. Note that c� is isotopic in Tp;q.m/ to the core of the filled solid torus,
which is a fiber of index jpq �mj and in particular a degenerate fiber in Tp;q.pq/.
Hence, the trivial knots sp , sq , c� are seiferters for .Tp;q;m/ for any integer m, and
called basic seiferters for .Tp;q;m/. We denote by T the subcomplex whose vertices
are Seifert surgeries on torus knots and whose edges correspond to basic seiferters.

 

 

 

 

 

 

    

Sp

Tp;q

Sq

c�

Figure 1.1: Basic Seiferters

The following example motivates us to consider the Seifert surgery network.

Example 1.5 (1) The meridian c� for T�3;2 is a seiferter for all .T�3;2;m/

.m 2 Z/. Twisting along c� yields the horizontal line in Figure 1.2, which
consists of all the integral Seifert surgeries on T�3;2 .

(2) The trivial knot c �S3�T�3;2 in Figure 1.2 is a seiferter for the Seifert surgery
.T�3;2;�2/ (Section 2, Figure 2.2). A .�2/–twist of T�3;2 along c yields the
figure-eight knot. Since the linking number between c and T�3;2 is zero, the
surgery slope �2 does not change under the twisting. Thus we obtain the right
vertical line in Figure 1.2.

(3) The trivial knot c0�S3�T�3;2 in Figure 1.2 is a seiferter for .T�3;2;�7/ [9, Ex-
ample 2.21(2)]. A 1–twist of T�3;2 along c0 yields the .�2; 3; 7/ pretzel knot
P .�2; 3; 7/; see the authors [7]. Since the linking number between c0 and T�3;2

is 5, the surgery slope changes from �7 to �7C 52 D 18. We thus obtain the
lens surgery .P .�2; 3; 7/; 18/ first found by Fintushel and Stern [12]. This gives
the left vertical line in Figure 1.2.

A path from .K;m/ to .K0;m0/ 2 T in the network shows that the Seifert surgery
.K;m/ is obtained from the m0–surgery on the torus knot K0 by a sequence of
twists along seiferters or annular pairs. For example, vertical paths in Figure 1.2
from .figure-eight knot;�2/ and .P .�2; 3; 7/; 18/ to vertices in T explain how these
surgeries arise from surgeries on a trefoil knot. The authors [8; 9] and the authors with
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c

T�3;2;�2

�2–twist along c

.figure-eight knot;�2/

c

Figure 1.2: Seifert surgery network

Eudave-Muñoz [6] find paths from various known Seifert surgeries to vertices in T ;
the list includes Seifert surgeries on graph knots, Berge’s lens surgeries [3], and Seifert
surgeries constructed by using Montesinos’ trick [10; 11].

In the present paper, we explore Seifert surgeries on torus knots which have edges
going out of T , and try to classify such surgeries. We focus on Seifert surgeries on
torus knots which have hyperbolic seiferters or hyperbolic annular pairs. By Thurston’s
hyperbolic Dehn surgery theorem (see Thurston [28; 29], Benedetti and Petronio [2],
Petronio and Porti [25] and Boileau and Porti [4]), if .Tp;q;m/ has a hyperbolic
seiferter (respectively a hyperbolic annular pair), then all but finitely many vertices
of the 1–complex generated by successive twists along the seiferter (respectively the
annular pair) are Seifert surgeries on hyperbolic knots. Hence, we call .Tp;q;m/ with a
hyperbolic seiferter or a hyperbolic annular pair a spreader. Previously known examples
of spreaders [6; 7; 8; 9] have specific patterns and lead us to the following conjecture.

Conjecture 1.6 If .Tp;q;m/ is a spreader, then q D 1; 2, or mD pq; pq˙ 1.

In Section 2, we review the definition of m–moves introduced in [9], which are in
fact Kirby calculus handle-slides over m–framed knots. A trivial knot obtained from a

Algebraic & Geometric Topology, Volume 14 (2014)



Networking Seifert surgeries on knots, III 2069

seiferter for .K;m/ by a sequence of m–moves is also a seiferter for .K;m/ if K is
nontrivial. In Sections 3 and 4, we exploit m–moves to find seiferters for .Tp;q;m/

where q D 1; 2. Theorems 3.1 and 4.1 imply the following.

Theorem 1.7 For each integer m, .Tp;1;m/D .O;m/ and .Tp;2;m/ are spreaders.
In particular, .O;m/ has infinitely many hyperbolic annular pairs as well as infinitely
many hyperbolic seiferters.

Regarding seiferters for .Tp;q;m/ where q � 3, we consider two cases according to
whether Tp;q.m/ has a unique Seifert fibration up to isotopy or not: the case when
jm� pqj � 2 and the case when m D pq;pq˙ 1. In the latter case, we prove the
theorem below, which follows from Propositions 5.1, 5.4 and 5.5.

Theorem 1.8 Both .Tp;q;pq/ .q�2; .p; q/¤ .˙3; 2// and .T2n˙1;n; n.2n˙1/�1/

.n� 2/ have a hyperbolic seiferter which cannot be obtained from basic seiferters or a
regular fiber of the exterior of the torus knot by any sequence of m–moves.

Conjecture 1.6 above implies that if q � 3 and m ¤ pq; pq˙ 1, .Tp;q;m/ has no
hyperbolic seiferters. Theorem 1.9 below shows the difficulty of obtaining such a
hyperbolic seiferter.

Theorem 1.9 Suppose that q� 3 and m¤pq , pq˙1 (ie Tp;q.m/ is not a connected
sum of lens spaces, a lens space, or a prism manifold). Then every seiferter for .Tp;q;m/

is obtained from a basic seiferter or a regular fiber of S3�N.Tp;q/ by a sequence of
m–moves (Proposition 2.2). However, to obtain a hyperbolic seiferter for .Tp;q;m/ in
such a manner we need to apply m–moves at least twice (Corollary 6.8(2)).

We close the introduction with the following question.

Question 1.10 Does every lens surgery .Tp;q;pq˙ 1/ have a hyperbolic seiferter?
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2 Seiferters for torus knots and Seifert fibrations of torus
knot spaces

Definition 2.1 (m–move) Let K be a knot in S3 , and c a knot in S3 �N.K/.
Take a simple closed curve ˛m on @N.K/ representing a slope m. Let b be a
band in S3 � int N.K/ connecting ˛m and c , and let b \ ˛m D �˛m

, b \ c D �c .
We set � 0˛m

D ˛m � int �˛m
and � 0c D c � int �c . Then the band connected sum

c \b ˛mD �
0
c[ .@b� int.�c[�˛m

//[� 0˛m
is a knot in S3� int N.K/. Pushing c \b ˛m

away from @N.K/, we obtain a knot c0 in S3�N.K/; see Figure 2.1. We say that c0

is obtained from c by an m–move using the band b .

c

�c

� 0c

˛m

�˛m

b � 0˛m

N.K/

band sum

c \b ˛m
c0

Figure 2.1: m–move

Let K be a knot in S3 , and c1; c2 knots in S3�N.K/. Assume that c2 is obtained
from c1 after a finite sequence of m–moves and isotopies in S3 � int N.K/. We
then say that c2 is m–equivalent to c1 . Note that c2 is isotopic to c1 in the surgered
manifold K.m/ [9, Proposition 2.19(1)]. Hence, if .K;m/ is a Seifert surgery, c1

is a seiferter for .K;m/, and c2 is a trivial knot, then c2 is a possibly irrelevant
seiferter for .K;m/. Proposition 2.19(3) in [9] shows that c2 is not irrelevant if K is
a nontrivial knot. Figure 2.2 illustrates how an m–move works, where K D T�3;2 ,
mD�2, c1 D s�3 . It follows that c2 is a seiferter for .T�3;2;�2/. See Section 3 for
m–moves of annular pairs of seiferters.

    

   

 

 

       

 

 

  

c1 D s�3

b

˛�2

�2–move

c2

c2

Figure 2.2: m–move; mD�2 , c2 is a seiferter for .T�2;3;�2/
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Most seiferters for .Tp;q;m/ are m–equivalent to basic seiferters or regular fibers of
Seifert fibrations of S3� int N.Tp;q/. Precise statements are as follows.

Proposition 2.2 Let Tp;q be a nontrivial torus knot, and c a seiferter for .Tp;q;m/,
where m¤ pq .

(1) Suppose that c is an exceptional fiber in some Seifert fibration of Tp;q.m/. If
Tp;q.m/ is a lens space, we assume that the base surface is S2 . Then c is
m–equivalent to a basic seiferter sp , sq or c� .

(2) Suppose that c is a regular fiber in some Seifert fibration of Tp;q.m/. If Tp;q.m/

is neither a lens space nor a prism manifold, then c is m–equivalent to a regular
fiber in S3�N.Tp;q/.

Proof of Proposition 2.2 We denote by F a Seifert fibration on Tp;q.m/ in which c

is an exceptional fiber or a regular fiber.

Case 1 Tp;q.m/ is not a lens space.

By [9, Proposition 2.8], if Tp;q.m/ admits a degenerate Seifert fibration, then it is
either a lens space or a connected sum of two lens spaces. It follows that F is a
nondegenerate Seifert fibration. Let F0 be a natural extension of the Seifert fibration
of S3 � int N.Tp;q/ over Tp;q.m/. The base space of F0 is the 2–sphere, and its
exceptional fibers are sp , sq and a core of the filled solid torus, whose indices are jpj, q

and jpq � mj, respectively. We note that c� is isotopic in Tp;q.m/ to the third
exceptional fiber of F0 . Let t be a regular fiber of F0j.S

3�N.Tp;q//.

Subcase 1 Tp;q.m/ is not a prism manifold.

It then follows from Jiang, Wang and Wu [20, Corollary 3.12] that two Seifert fibra-
tions F and F0 are isotopic. Hence, if c is an exceptional fiber in Tp;q.m/, then c

is isotopic to one of sp , sq and c� in Tp;q.m/, and thus m–equivalent to a basic
seiferter sp , sq or c� . Similarly, if c is a regular fiber in Tp;q.m/, then c is isotopic
to t in Tp;q.m/ and thus m–equivalent to the regular fiber t [9, Proposition 2.19(1)].

Subcase 2 Tp;q.m/ is a prism manifold and c is an exceptional fiber.

A Seifert fibration of a prism manifold is either over S2 with three exceptional fibers of
indices 2, 2, x or over RP2 with at most one exceptional fiber; see Jaco [19, VI.16(b)].
Hence, F0 is a Seifert fibration over the base orbifold S2.2; 2;x/ for some odd integer
x .� 3/. Now let us show that Tp;q.m/ has a Seifert fibration over S2 with c an excep-
tional fiber even if the base space of F is not S2 . Assume that F is a Seifert fibration
over RP2 ; then F j.Tp;q.m/� int N.c// is a Seifert fibration over the Möbius band
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with no exceptional fiber. Hence Tp;q.m/� int N.c/ admits a Seifert fibration over the
disk with two exceptional fibers of indices 2, 2. Extending this fibration over Tp;q.m/,
we obtain a Seifert fibration over S2 with c an exceptional fiber, as claimed. For
simplicity, denote the new Seifert fibration by the same symbol F . Then, F is a Seifert
fibration over the base orbifold S2.2; 2;x0/ for some odd integer x0 .� 3/. Since a
regular fiber of F (respectively F0 ) generates the center of �1.Tp;q.m//, the quotient
of �1.Tp;q.m// by its center is the dihedral group of order 2x0 (respectively 2x ). It
follows that x D x0 .

Claim 2.3 There exists an orientation preserving homeomorphism f of Tp;q.m/

which carries fibers of F to fibers of F0 .

Proof of Claim 2.3 We denote the normalized Seifert invariant of F by .b; 1
2
; 1

2
; y

x
/

.b 2 Z; 0 < y < x/, and that of F0 by .b0; 1
2
; 1

2
; y0

x
/ .b0 2 Z; 0 < y0 < x/. Note

that the order of H1.Tp;q.m// is given by 4j.b C 1/x C yj D 4j.b0 C 1/x C y0j.
Hence we have b D b0; y D y0 or b C b0 D �3; x D y C y0 . In the former case,
we have an orientation preserving homeomorphism of Tp;q.m/ which carries fibers
of F to those of F0 as desired; see Orlik [24], Neumann and Raymond [22] and
Hatcher [15]. We show that the latter does not occur. If we have the latter case, then
.b0; 1

2
; 1

2
; y0

x
/ D .�b � 3; 1

2
; 1

2
; x�y

x
/. On the other hand, �Tp;q.m/ (Tp;q.m/ with

orientation reversed) has a Seifert invariant .�b;�1
2
;�1

2
;�y

x
/, which is normalized

to .�b � 3; 1
2
; 1

2
; x�y

x
/. Thus we have an orientation preserving homeomorphism

from �Tp;q.m/ to Tp;q.m/ [15; 22; 24], ie Tp;q.m/ admits an orientation reversing
homeomorphism. This contradicts the fact that a prism manifold has no orientation
reversing homeomorphism; see Asano [1; 22, 8.4] and Rubinstein [26].

Then, [20, Lemma 3.5] implies that f is isotopic to a homeomorphism preserving F .
This implies that F0 is isotopic to F . Hence just as in Subcase 1, the exceptional
fiber c is m–equivalent to one of sp , sq and c� .

Case 2 Tp;q.m/ is a lens space, and c is an exceptional fiber.

Then Tp;q.m/ has a natural Seifert fibration over S2 in which sp and sq are exceptional
fibers of indices jpj; q . Note also that sp and sq give a genus-one Heegaard splitting
Tp;q.m/D V [W of the lens space Tp;q.m/; sp and sq are cores of the solid tori V

and W . We recall that the base space of the Seifert fibration F is S2 from the
assumption of Proposition 2.2(1). Then, F also gives a genus-one Heegaard splitting
Tp;q.m/D V 0 [W 0 such that the exceptional fiber c in F is a core of V 0 . Since a
genus-one Heegaard splitting is unique up to isotopy by Bonahon and Otal [5] and
Hodgson and Rubinstein [17], c is isotopic to sp or sq in Tp;q.m/. Proposition 2.19(1)
in [9] thus shows that c is m–equivalent to a basic seiferter sp or sq as desired.
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Remark 2.4 Assumptions in Proposition 2.2 are necessary.

(1) As we will see in Proposition 5.1, each .Tp;q;pq/ where .p; q/¤ .˙3; 2/ has
a seiferter which is not pq–equivalent to any basic seiferter nor a regular fiber
of S3�N.Tp;q/.

(2) If Tp;q.m/ is a prism manifold (ie q D 2 and mD 2p˙ 2), then there exists a
seiferter c for .Tp;q;m/ which is a regular fiber in a Seifert fibration over the
projective plane [9, Corollary 3.15(6)]. Then c is not m–equivalent to a regular
fiber of S3�N.Tp;q/.

(3) Propositions 5.4 and 5.5 show that for some lens surgeries .Tp;q;m/ .mDpq˙1/,
there exist seiferters which are not m–equivalent to any basic seiferters nor
regular fibers of S3�N.Tp;q/.

3 Annular pairs of seiferters for .O; m/

Let fc1; c2g be an annular pair of seiferters. When we mention the linking number
lk.c1; c2/, c1 and c2 are oriented so as to be homologous in an annulus cobounded
by c1; c2 . If c1 [ c2 is not a Hopf link, then this convention determines the linking
number without specifying the annulus. A Hopf link cobounds two nonisotopic annuli
according as lk.c1; c2/D 1 or �1. For details, see [9, Lemma 2.30 and Remark 2.31].

In [9] an annular pair fc1; c2g is defined to be an ordered pair of c1 and c2 to specify
the direction of twist along the annulus cobounded by c1[ c2 . However, since we do
not perform annulus twists in this paper, annular pairs are presented as unordered pairs.

Let K be a knot in S3 , and c1[ c2 a link in S3�N.K/. Let c0
1

be a knot obtained
from c1 by an m–move using a band disjoint from c2 and connects c1 and a simple
closed curve on @N.K/ with slope m. We then say that c0

1
[c2 is obtained from c1[c2

by an m–move. The link c0
1
[ c2 is isotopic to c1[ c2 in the surgered manifold K.m/

as ordered links [9, Lemma 2.25(1)]. If fc1; c2g is a pair of seiferters for a Seifert
surgery .K;m/ and c0

1
is trivial in S3 , then fc0

1
; c2g is also a pair of seiferters for

.K;m/ [9, Lemma 2.25(2)]. The theorem below complements [9, Theorem 6.21].

Theorem 3.1 (1) For each integer m, there are infinitely many hyperbolic Hopf
pairs of seiferters for .O;m/.

(2) For any integers m¤ 0 and p� 2 except .m;p/D .˙1; 2/, there is a hyperbolic
annular pair of seiferters fc1; c2g for .O;m/ with lk.c1; c2/D p .

Proof of Theorem 3.1 (1) Assertion (1) follows from Lemma 3.2 below.
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(2) Assume that m¤ 0, p � 2, and .m;p/D .˙1; 2/. Then, if m¤ 1, fc; cpC1;mg

in Proposition 3.10 with q replaced by pC 1 is a hyperbolic annular pair for .O;m/
with lk.c; cpC1;m/ D p , as desired in assertion (2). If m ¤ �1, fc; c0

p�1;m
g in

Proposition 3.13 has the desired property.

Lemma 3.2 Let O [ c [ cp be the link in Figure 3.1, where p is an odd integer with
jpj � 3. Then, fc; cpg is a hyperbolic Hopf pair of seiferters for .O;m/ if p¤ 2m˙1.
For each m, fc; cpg .p �m;p¤ 2m˙1/ are mutually distinct, hyperbolic Hopf pairs.

         

         

  

                

          

 

�pC 2m crossings‚ …„ ƒ
�p crossings‚ …„ ƒ O

c

cp

C1–crossing

�1–crossing

Figure 3.1

Proof of Lemma 3.2 Consider the link consisting of a torus knot Tp;2 (jpj � 3) and
its basic seiferters s2 , sp . Regard s2 as the trivial knot O , and set c D sp . See the
first figure of Figure 3.2. There is a Seifert fibration of S3� int N.O/ in which Tp;2

is a regular fiber and c is the exceptional fiber of index jpj. Let cp be the trivial knot
obtained from Tp;2 in S3 �N.O/ by the m–move in Figure 3.2. Since c [Tp;2 is
isotopic in O.m/ to c [ cp , c [ cp is also the union of fibers in a Seifert fibration
of O.m/. It follows that fc; cpg in the second figure of Figure 3.2 is a pair of seiferters
for .O;m/. After isotopy, the link O [ c [ cp in the last figure of Figure 3.2 is the
same link as O [ c [ cp in Figure 3.1. Hence, fc; cpg in Figure 3.1 is a Hopf pair of
seiferters for .O;m/.

Suppose p¤2m˙1. Let us show that fc; cpg is a hyperbolic Hopf pair, ie O[c[cp is
a hyperbolic link. Assume for a contradiction that X DS3�int N.O[c[cp/ is Seifert
fibered. Then, the exterior of O [ cp , which is obtained from X by Dehn filling along
@N.c/, is a nondegenerate Seifert fiber space or a reducible manifold. On the other hand,
since O[cp .p¤ 2m˙1/ is a 2–bridge link and not a torus link, it is a hyperbolic link.
(For details refer to the proof of [9, Theorem 6.21].) This is a contradiction, so that X

is not Seifert fibered. Figure 3.3 shows that X is homeomorphic to the exterior of the
Montesinos link LDM.1=.2m�p�1/; 1

2
; 1

2
/. The proof of Oertel [23, Corollary 5]

shows that X is hyperbolic if X is not Seifert fibered, and L is not equivalent to the
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Montesinos links M.1
2
; 1

2
; �1

2
; �1

2
/, M.2

3
; �1

3
; �1

3
/, M.1

2
; �1

4
; �1

4
/, M.1

2
; �1

3
; �1

6
/,

or the mirror images of these links. The 2–fold branched cover of S3 along L is a prism
manifold, which has a finite fundamental group. However, the 2–fold branched covers
along the four Montesinos links above have infinite fundamental groups. Therefore, X

is hyperbolic.

We note that fjlk.c;O/j; jlk.cp;O/jg D f1; jm�pjg. Hence, if O [ c[ cp is isotopic
to O [ c [ cq .p; q � m/ in S3 with O sent to O , then p D q . It follows that for
each m the pairs of seiferters fc; cpg where p �m are mutually distinct.

Remark 3.3 Corollary 5 in [23] states that a Montesinos link is hyperbolic if it is not
a torus link, and not equivalent to the four Montesinos links listed above or their mirror
images. However, in the proof the author assumes that links whose exteriors are Seifert
fibered are torus links, which is not true. We thus obtain the corrected Corollary 5
in [23] by replacing the word “torus link” with “link whose exterior is Seifert fibered”.
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Figure 3.3: Continued from Figure 3.2.

The Hopf pair of seiferters fc; cpg satisfies jlk.c; cp/j D 1. Now for a given inte-
ger p > 1, let us find an annular pair of seiferters fc1; c2g with lk.c1; c2/ D p as
claimed in Theorem 3.1(2). We will give such examples in Propositions 3.10 and 3.13.
To prove the hyperbolicity of these examples, we prepare some general results.

Proposition 3.4 Let l1[� � �[ ln be an n–component link in a solid torus V . Suppose
that there is a meridional disk D for V satisfying .1/, .2/ below.

(1) The winding number of li in V equals jD\ li j for any i .

(2) V � int N.D[ .
Sn

iD1 li// is homeomorphic to a handlebody.

Then, if V � int N.
Sn

iD1 li/ contains an essential torus, it bounds a solid torus in V .

Algebraic & Geometric Topology, Volume 14 (2014)



Networking Seifert surgeries on knots, III 2077

Proof of Proposition 3.4 We identify V split along D with D2�I , where I D Œ0; 1�,
and D2�f0g and D2�f1g are identified with D in V . Let a1; : : : ; am be the arcs in
D2 � I obtained by cutting

Sn
iD1 li by D ; each ai connects D2 � f0g and D2 � f1g

by condition (1).

Assume that V � int N.
Sn

iD1 li/ contains an essential torus T . Isotope T in V �

int N.
Sn

iD1 li/ so as to minimize the number of components jD\T j. Note that con-
dition (2) implies D\T ¤∅. Then D splits T into essential annuli A1;A2; : : : ;Ak

properly embedded in D2�I�
Sm

iD1 ai such that a component of @Ai and a component
of @AiC1 are identified in V , where 1� i �k , and if iDk we regard iC1DkC1 as 1.

Claim 3.5 Each annulus Ai connects D2 � f0g and D2 � f1g.

Proof of Claim 3.5 Assume for a contradiction that some Ai0
satisfies @Ai0

�

D2 � f˛g, where ˛ D 0 or 1. Let B1;B2 be the disks in D2 � f˛g bounded by
the components of @Ai0

. If B1 \ B2 D ∅, then B1 intersects some arc aj0
and

B1[Ai0
[B2 bounds a 3–ball in D2�I . This implies @aj0

�D2�f˛g, a contradiction
to condition (1) in Proposition 3.4. It follows that B1� int B2 or B2� int B1 . Without
loss of generality, we assume that the former holds. Let M be the 3–submanifold in
D2 � I bounded by the torus Ai0

[ .B2 � int B1/. Condition (1) then implies that
M \ ai D∅ for any i .

Case 1 M is boundary irreducible.

If @M is incompressible in X D V � int N.
Sn

iD1 li/� int M , then after pushing @M
in V � int N.

Sn
iD1 li/ off D , @M is an essential torus in D2 � I � int N.

Sm
iD1 ai/.

This contradicts condition (2) in Proposition 3.4. Hence, an essential simple closed
curve c in @M bounds a disk in X . On the other hand, @B1 is also an essential
simple closed curve in @M bounding the disk B1 in V � int M . Since the rank of
Ker.H1.@M /!H1.V � int M // is less than or equal to one by the Poincaré duality,
we see that Œc�D Œ@B1� in H1.@M / and thus @B1 bounds a disk in X . This contradicts
the fact that Ai0

is essential in D2 � I �
Sm

iD1 ai .

Case 2 M is boundary reducible.

It follows that M is a solid torus. Since @B1.�@M / bounds the disk B1 in S3�int M ,
a meridian of M and @B1 intersect in one point. This implies that the annulus Ai0

is parallel to B1 � int B2 in M , and contradicts the fact that Ai0
is essential in

D2 � I �
Sm

iD1 ai .

By Claim 3.5 the union of Ai and the two disks in D2 � f0; 1g bounded by @Ai

bounds a 3–ball Vi in D2 � I . Note that for any distinct i; j we have Vi \Vj D∅,

Algebraic & Geometric Topology, Volume 14 (2014)



2078 Arnaud Deruelle, Katura Miyazaki and Kimihiko Motegi

Vi � Vj �Aj , or Vj � Vi�Ai . If V1;V2; : : : ;Vk are mutually disjoint, then
Sk

iD1 Vi

forms a solid torus in V bounded by T as claimed in Proposition 3.4. So assume that
Vi � Vj �Aj for some i; j . Then by Claim 3.5, ViC" � VjC"�AjC" , where "D˙1

and we regard kC 1, 0 as 1, k , respectively. Repeating this argument, we see that for
any Vi there exists Vj such that Vi � Vj �Aj . This does not occur for a finite number
of 3–balls V1;V2; : : : ;Vk . This completes the proof of Proposition 3.4.

The following proposition will be useful.

Proposition 3.6 Let l1[ l2 be a 2–component link in a solid torus V such that l1 is a
.p; q/ cable of V where q � 2, l2 is a core of V and l1[ l2 satisfies conditions (1), (2)
in Proposition 3.4. Then, l1[ l2 is a hyperbolic link in V if we cannot isotope l2 in
V � int N.l1/ so as to be disjoint from a cabling annulus for N.l1/� V .

Proof of Proposition 3.6 First we remark that since li .i D 1; 2/ wraps V geometri-
cally at least once, V � int N.l1[ l2/ is irreducible.

Assume for a contradiction that V � int N.l1[ l2/ contains an essential torus T .

Claim 3.7 T is parallel to @V and separates l1 and l2 , and l2 lies between T and @V .

Proof of Claim 3.7 Since T is not essential in V � int N.l1/, there are three
cases: (1) T is compressible in V � int N.l1/, (2) T is parallel to @N.l1/ in V �

int N.l1/ and (3) T is parallel to @V in V � int N.l1/. Case (3) implies Claim 3.7.
So we derive a contradiction in cases (1), (2).

Let V 0 be the solid torus in V bounded by T (Proposition 3.4); V 0 contains at
least one of l1 and l2 . Since each li is not contained in a 3–ball in V , V 0 is not
contained in a 3–ball in V , either. It follows that T D @V 0 is incompressible in
V � int V 0 . Now assume case (1) occurs. Then l2 � V 0 , and T separates l1 and l2 .
Since V � int N.l2/ Š T 2 � I , T is parallel to @N.l2/ in V � int N.l1 [ l2/. This
contradicts the fact that T is essential. Assume case (2) occurs. Since T is essential
in V � int N.l1 [ l2/, we have l2 � V 0 . Then the winding number of l2 in V is a
multiple of q .� 2/. This contradicts the fact that l2 is a core of V .

Claim 3.8 For any cabling annulus A for N.l1/ in V , we can isotope l2 in V �

int N.l1/ so as to be disjoint from A.

Proof of Claim 3.8 Let W be the submanifold of V � int N.l1/ cobounded by @V
and T . Identify W and @V �I so that @V and T correspond to @V �f0g and @V �f1g
respectively, and let � W W D @V �I! I be the natural projection. Since A0DA\W
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is a compact submanifold of W , �.A0/ is a compact and thus closed subset of I .
It follows that inf�.A0/ 2 �.A0/ and 0 < inf�.A0/, since A � int V . Now isotope
l2[T in W so that T becomes @V � f1

2
inf�.A0/g. After this isotopy l2 becomes

disjoint from A.

Claim 3.8 contradicts the assumption in Proposition 3.6. Hence, V � int N.l1 [ l2/

contains no essential torus.

Claim 3.9 X D V � int N.l1[ l2/ contains no essential annulus.

Proof of Claim 3.9 Assume for a contradiction that X contains an essential annulus.
Since X contains no essential torus, and is irreducible and boundary irreducible, this
assumption implies that X is a Seifert fiber space. Then X contains an essential
annulus A connecting @N.l1/ and @V ; note that A is also an essential annulus in the
cable space V � int N.l1/. Take a regular neighborhood N.@V [A/ in X . Then the
closure of @N.@V [A/� @X is a cabling annulus for N.l1/ in V . Since the cabling
annulus is disjoint from l2 , this fact contradicts the assumption in Proposition 3.6.

The proof of Proposition 3.6 is thus completed.

Proposition 3.10 Let c[cq;m be the link obtained from c[T1;q in S3�N.O/ by an
m–move using the band b in Figure 3.4(1) and an isotopy. Assume that q� 3, m¤ 0; 1

and .m; q/ ¤ .�1; 3/. Then, fc; cq;mg is a hyperbolic annular pair of seiferters for
.O;m/ with lk.c; cq;m/D q� 1.
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b

T1;q
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.1/
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Figure 3.4: Annular pair of seiferters fc; cq;mg; q D 3
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Figure 3.5: In (4), (5), the intersection points between O and T 0 are indicated
by “dots”.

Proof of Proposition 3.10 Since S3� int N.O/ admits a Seifert fibration in which c

and T1;q in Figure 3.4(1) are fibers, fc;T1;qg is an annular pair of seiferters for .O;m/.
After the m–move in Figure 3.4, cq;m and c in Figure 3.4(2) remain fibers in O.m/.
Note that cq;m is the torus knot T1;q�1 , a trivial knot in S3 , and c [ cq;m bounds an
annulus. It follows that fc; cq;mg is an annular pair of seiferters for .O;m/. Note that
lk.c; cq;m/D q� 1. It remains to show that O [ c [ cq;m is a hyperbolic link.

Let V be the solid torus S3 � int N.c/ containing O [ cq;m . Then O is a core
of V and cq;m is a .1; q � 1/ cable of V . The meridional disk D for V described
in Figure 3.5(3) intersects O in one point and cq;m in q � 1 points. Note also that
V � int N.D[O [ cq;m/ is homeomorphic to a handlebody. The link O [ cq;m in V

thus satisfies conditions (1), (2) with nD 2 in Proposition 3.4. Then by Proposition 3.6,
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in order to show that O[cq;m is hyperbolic in V , it is sufficient to show that O cannot
be isotoped in V � int N.cq;m/ off a cabling annulus for N.cq;m/� V .

Now let T 0 be the torus in V containing cq;m as described in Figure 3.5(4), (5);
then AD T 0 � int N.cq;m/ is a cabling annulus for N.cq;m/ � V . We note that T 0

intersects O in 2.m� 1/ points if m� 2, and in �2m points if m� �1. We denote
by ˛ the closure of the component of O�T 0 intersecting D . Let V 0 be the solid torus
in V bounded by T 0 . Concerning the arc components of O\V 0 and O\.V � int V 0/,
we can check the following.

Claim 3.11 (1) In V � int V 0 (respectively V 0 ), the arc ˛ in Figure 3.5(4) (respec-
tively (5)) is isotopic with @˛ fixed to an arc in T 0 intersecting cq;m algebraically
twice.

(2) In V � int V 0 (respectively V 0 ), each component ˇ of O \ .V � int V 0/ (re-
spectively O \ V 0 ) other than ˛ is isotopic with @ˇ fixed to an arc in T 0

intersecting cq;m once.

Using Claim 3.11, we show that there is no isotopy of O in V � int N.cq;m/ which
makes the intersection between O and the cabling annulus A empty. Assume for
a contradiction that there is an isotopy f W S1 � I ! V � int N.cq;m/ such that
f .S1 � f0g/ D O and f .S1 � f1g/ \ A D ∅. We may assume that f is trans-
verse to A; then f �1.A/ is a 1–submanifold properly embedded in S1 � I . Since
f .S1 � f1g/\A D ∅, we see f �1.A/\ .S1 � f1g/ D ∅, so that each arc compo-
nent of f �1.A/ has its end points in S1 � f0g. If f �1.A/ has a circle component
bounding a disk in S1�I , then by the loop theorem and the incompressibility of A in
V � int N.cq;m/ f restricted on the innermost circle is null-homotopic in A. Hence
we can modify f so that the innermost circle is eliminated. Thus by re-choosing f
we may assume f �1.A/ does not contain null-homotopic circles in S1 � I . For two
arc components a1; a2 of f �1.A/, we say that a1 is closer to S1�f0g than a2 if the
disk cobounded by a2 and an arc in S1�f0g contains a1 . Let c1 be an arc component
of f �1.A/ closest to S1�f0g, and c2 the arc in S1�f0g such that c1[ c2 cobounds
a disk in S1� I . Note that f .c2/ is the closure of a component of O �A, and f .c1/

is an immersed arc in A with @f .c1/D @f .c2/.

Claim 3.12 It holds that qD3, m��1 and f .c2/ is the arc ˛.�V 0/ in Figure 3.5(5).

Proof of Claim 3.12 Set X DV 0 if f .c2/�V 0 , and X DV � int V 0 if f .c2/�V �

int V 0 . Then f .c1/.�A/ is homotopic in X to the component f .c2/ of O\X with its
end points fixed. Combining this homotopy and the isotopies in Claim 3.11, we see that
f .c1/ is homotopic in X with its end points fixed to an arc  in T 0 intersecting cq;m
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once (if f .c2/ is an arc ˇ in Claim 3.11(2)) or algebraically twice (if f .c2/ is the arc ˛
in Claim 3.11(1)). Hence, the closed curve f .c1/[  in T 0 intersecting cq;m once or
algebraically twice is null-homotopic in X . Since V � int V 0 Š T 2 � I , f .c1/[  ,
which is not null-homotopic in T 0 , is not null-homotopic in V � int V 0 . It follows that
X D V 0 and thus f .c2/� V 0 . Since cq;m is the .1; q�1/ cable of V 0 where q � 3, a
meridian of V 0 intersects cq;m algebraically q� 1 times. It follows that q D 3 and 
intersects cq;m algebraically twice. Furthermore, we see that f .c2/ is the arc ˛ in
Figure 3.5(5) and so m� �1.

 

 

 

 
 

 

    

     

      

 

 

 

 

 

c1

c3

c2 c5
c4

S1 � f0g
S1 � I

S1 � f1g

Figure 3.6

By Claim 3.12 c1 is the only arc component of f �1.A/ closest to S1 � f0g. Hence
all arc components of f �1.A/ are parallel to c1 in S1� I . The assumption .m; q/¤
.�1; 3/ in Proposition 3.10 together with Claim 3.12 implies m � �2, so that A

intersects O in �2m.� 4/ points and hence f �1.A/ has at least two arc components.
Let c3 be the second closest arc component of f �1.A/ to S1 � f0g, and c4; c5 the
subarcs of S1 � f0g connecting @c1 and @c3 ; see Figure 3.6. Note that f .c4/ and
f .c5/ are the components of O \ .V � int V 0/ adjacent to f .c2/D ˛ . Now we give
the arcs c4 and c5 the orientations induced from an orientation of S1 � f0g. Then,
Figure 3.5(5) shows that f .c4/ and f .c5/ are isotopic to arcs in T 0 whose algebraic
intersection numbers with cq;m are both one under an adequate orientation of cq;m .
This implies that the closed curve f .c/ where c D c1[ c5[ c3[ c4 is homotopic in
V � int V 0 to a closed curve in T 0 intersecting cq;m algebraically twice. Then, f .c/ is
not null-homotopic in V � int V 0 Š T 2 � I . On the other hand, since c bounds a disk
in S1 � I whose image under f is contained in V � int V 0 , f .c/ is null-homotopic
in V � int V 0 . This is a contradiction.

Proposition 3.13 Let c [ c0q;m be the link obtained from c [T1;q in S3�N.O/ by
an m–move using the band b0 in Figure 3.7(1) and an isotopy. Assume that q � 1,
m¤�1; 0 and .m; q/¤ .1; 1/. Then fc; c0q;mg is a hyperbolic annular pair of seiferters
for .O;m/ with lk.c; c0q;m/D qC 1.
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Figure 3.7: Annular pair of seiferters fc; c0q;mg; q D 3

Proof of Proposition 3.13 Apply the same argument as in the proof of Proposition 3.10
with replacement of Claims 3.11 and 3.12 by Claims 3.14 and 3.15 below.

Claim 3.14 (1) In V 0 (respectively V � int V 0 ), the arc ˛ in Figure 3.8(4) (respec-
tively (5)) is isotopic with @˛ fixed to an arc in T 0 intersecting c0q;m algebraically
twice.

(2) In V 0 (respectively V � int V 0 ), each component ˇ of O \ V 0 (respectively
O \ .V � int V 0/) other than ˛ is isotopic with @ˇ fixed to an arc in T 0 inter-
secting c0q;m once.

Claim 3.15 It holds that q D 1, m� 1 and f .c2/ is the arc ˛.� V 0/ in Figure 3.8(4).

Remark 3.16 Assume that p � 2, m¤ 0;˙1. Then fc; cpC1;mg in Proposition 3.10
and fc; c0

p�1;m
g in Proposition 3.13 are both hyperbolic annular pairs of seiferters for

.O;m/ with lk.c; cpC1;m/D lk.c; c0
p�1;m

/Dp . Since fjlk.c;O/j; jlk.cpC1;m;O/jgD

f1; j1�mjg does not coincide with fjlk.c;O/j; jlk.c0
p�1;m

;O/jg D f1; j1Cmjg, then
fc; cpC1;mg and fc; c0

p�1;m
g are distinct, annular pairs for .O;m/.

4 Seiferters and Hopf pairs for .Tp;2; m/

Theorem 4.1 For nontrivial torus knots Tp;2 .jpj � 3/, the following hold.

(1) Each Seifert surgery .Tp;2;m/ has a hyperbolic Hopf pair of seiferters.

(2) A Seifert surgery .Tp;2;m/ has a hyperbolic seiferter if m¤2p˙1 and .m;p/¤
.4; 3/; .�4;�3/.
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Figure 3.8: In (4), (5), the intersection points between O and T 0 are indicated
by “dots”.

Proof of Theorem 4.1 Theorem 4.1(1) follows from Proposition 4.2(1) below.

Theorem 4.1(2) follows from Proposition 4.2(2) if jpj � 5 and m¤ 2p . The case when
mD2p follows from the fact that .Tp;q;pq/ has a hyperbolic seiferter for any nontrivial
torus knot Tp;q (Claim 5.2 and the second and third author [21, Lemma 9.1]). The
remaining case is when jpj D 3. For trefoil knots, various seiferters and annular pairs
are found in [7]. For example, we see from Remark 4.6(1) that .T3;2;m/ (respectively
.T�3;2;m/) has a hyperbolic seiferter if m¤ 4 (respectively m¤ �4). This shows
Theorem 4.1(2) with jpj D 3.

Proposition 4.2 Let cm be the knot obtained from the basic seiferter s2 for .Tp;2;m/

.jpj � 3/ by an m–move using the band b described in Figure 4.1. Then the following
hold.
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(1) For the meridional seiferter c� as in Figure 4.1, fc�; cmg is a hyperbolic Hopf
pair of seiferters for .Tp;2;m/.

(2) The knot cm is a hyperbolic seiferter for .Tp;2;m/ if jpj�5 and m¤2p; 2p˙1.

 

 

   

     
 

 

    

 

 

 

c�

Tp;2 s2

b

˛m

m�p
twist

Figure 4.1: cm D s2 \b ˛m

Remark 4.3 If mD2p , then cm in Proposition 4.2 is the same as the basic seiferter s2

for Tp;2 . If m D 2p˙ 1, then cm is a .1; p˙1
2
/ cable of sp for Tp;2 , ie cm is the

seiferter sp;˙1 for .Tp;2; 2p˙ 1/ defined in [9, Corollary 3.15(2)].

Proof of Proposition 4.2 In (1) we may assume that p� 3 because the corresponding
result for p � �3 can be derived by taking mirror images. For the same reason we
may assume p � 5 in (2).

(1) The sequence of isotopies in Figures 4.2 and 4.3 shows that cm is a trivial knot.
Since cm is obtained from s2 by an m–move and Tp;2 is a nontrivial knot, cm is
a seiferter for .Tp;2;m/ by [9, Proposition 2.19(3)]. Furthermore, since fc�; s2g is
a pair of seiferters for .Tp;2;m/ and the band b is disjoint from c� in Figure 4.1,
fc�; cmg is a pair of seiferters [9, Lemma 2.25(2)]. The last figure of Figure 4.4 shows
that fc�; cmg is a Hopf pair of seiferters. Let us verify that an annulus cobounded
by c� and cm intersects Tp;2 if m¤ p˙ 1. This implies that fc�; cmg .m¤ p˙ 1/

is not irrelevant and thus an annular pair (Remark 1.3); in particular, fc�; c0g is an
annular pair of seiferters. Since jlk.cm;Tp;2/j D jm�pj ¤ 1D jlk.c�;Tp;2/j, cm is
not homologous to c� in S3�Tp;2 . It follows that c� and cm does not cobound an
annulus disjoint from Tp;2 , as desired.

Let us show that fc�; cmg is a hyperbolic annular pair for any m. In the last figure of
Figure 4.4, .�m/–twist along c� changes Tp;2[ cm to Tp;2[ c0 . Hence, there is an
orientation preserving homeomorphism from S3�Tp;2[c�[cm to S3�Tp;2[c�[c0 .
Thus it is sufficient to show that S3 � Tp;2 [ c� [ c0 is hyperbolic. Since c� [ c0

Algebraic & Geometric Topology, Volume 14 (2014)



2086 Arnaud Deruelle, Katura Miyazaki and Kimihiko Motegi

      

   

    

  

    

      

    

    

   

    

  

  

c�

Tp;2

cm

m�p

c�

Tp;2

cm

m�p

c�

Tp;2

cm

m�p

c�

Tp;2

cm

m�p

Figure 4.2: Isotopy of Tp;2[ c�[ cm

Tp;2

c� cm

p
�

1
m�p

Tp;2

c� cm

1�p

2

m�p

Figure 4.3: Continued from Figure 4.2

is isotopic to c� [ s2 in Tp;2.0/, c� and c0 are exceptional fibers of indices 2p

and 2, respectively in the small Seifert fiber space Tp;2.0/ over S2.2;p; 2p/. Then
apply [9, Theorem 3.24] to the annular pair fc�; c0g. We see that fc�; c0g is a hyperbolic
annular pair or a basic annular pair, ie a pair of basic seiferters c�; s2; sp as drawn
in Figure 1.1. However, the latter does not occur because jlk.c�; c0/j D 1. Hence,
fc�; c0g and thus fc�; cmg are hyperbolic annular pairs for .Tp;2;m/.

(2) Assume that m¤ 2p; 2p˙ 1 and p � 5. As shown in (1) cm is isotopic to s2

in Tp;2.m/, and thus an exceptional fiber of index 2 in Tp;2.m/, a Seifert fiber space
over S2.2;p; j2p �mj/. Then, [9, Corollary 3.15] shows that cm is either a basic
or a hyperbolic seiferter. Therefore, Claim 4.4 below implies that cm is a hyperbolic
seiferter for .Tp;2;m/, as claimed in Proposition 4.2(2).

Claim 4.4 The seiferter cm in Figure 4.1 is not a basic seiferter for .Tp;2;m/.

Proof of Claim 4.4 We observe the following from the last figure in Figure 4.4.
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Figure 4.4: Continued from Figure 4.3

(i) The seiferter c2p is the same as the basic seiferter s2 for Tp;2 .

(ii) The link Tp;2[ cm is obtained from Tp;2[ s2 after .m� 2p/–twist along c� .

Let M D S3� int N.Tp;2[ c�[ c2p/; M is proved to be hyperbolic in the proof of
Proposition 4.2(1). We see from observations (i), (ii) above that the 1=.2p�m/–Dehn
filling M.1=.2p�m// along @N.c�/ is homeomorphic to S3� int N.Tp;2[cm/, and
M.1

0
/ŠS3� int N.Tp;2[s2/ is a Seifert fiber space. Now assume for a contradiction

that cm is a basic seiferter for Tp;2 ; then S3� int N.Tp;2[ cm/ is Seifert fibered. By
Gordon and Wu [13, Corollary 1.2] we obtain j2p�mj � 3. Since m¤ 2p; 2p˙1, it
follows j2p�mj D 2 or 3.

Assume j2p�mj D 2; then jlk.cm;Tp;2/j Dm�p D pC 2.> 0/ or p� 2.> 0/. If
cm is the same as s2 , then we have jlk.cm;Tp;2/j D jlk.s2;Tp;2/j Dp , a contradiction.
If cm is the same as sp , then we have jlk.cm;Tp;2/j D 2, so that p D 0 or 4. This
is not the case because p is an odd integer. If cm is the same as c� , then since
jlk.c�;Tp;2/j D 1, we obtain p D�1; 3. This contradicts the assumption p � 5.

Assume j2p�mj D 3; then jlk.cm;Tp;2/j Dm�p D pC 3.> 0/ or p� 3.> 0/. By
comparing linking numbers as above, we can see that cm is distinct from s2; c� ,
and thus cm is the same as sp and p D 5. Since cm is also isotopic to s2 in
Tp;2.m/, Tp;2.m/� int N.s2/ (a Seifert fiber space over D2.p; j2p�mj/DD2.5; 3/)
is homeomorphic to T5;2.m/� int N.s5/ (a Seifert fiber space over D2.2; 3/). This

Algebraic & Geometric Topology, Volume 14 (2014)



2088 Arnaud Deruelle, Katura Miyazaki and Kimihiko Motegi

homeomorphism does not preserve Seifert fibrations up to isotopy, a contradiction
to [19, Theorem VI.18].

As for T�3;2 we find various seiferters and annular pairs of seiferters in [7].

Proposition 4.5 [7] Take the knot cm in S3�T3;2 illustrated in Figure 4.5; then cm

is a hyperbolic seiferter for .T3;2;m/; .T3;2;mC 1/ and .T3;2;mC 2/ except when
mD 2; 3; 4; 5. In particular, .T3;2;m/ has a hyperbolic seiferter if m¤ 4; 5.

Remark 4.6 (1) By setting nD 2 in Proposition 5.5, we see that .T3;2; 5/ has a
hyperbolic seiferter. This together with Proposition 4.5 shows that .T3;2;m/ has
a hyperbolic seiferter for m¤ 4.

(2) The seiferter cm in Figure 4.5 for .T3;2;m/ is isotopic in S3 � T3;2 to the
seiferter cmC2 for .T3;2;mC 2/ in Figure 4.1.

    

   

     

  

T3;2

cm

m�2
twist

Figure 4.5: Seiferter cm.D cmC2/ for .T3;2;m/

5 Seiferters not originating in Seifert fibrations of torus knot
spaces

As shown in Proposition 2.2, if m¤ pq;pq˙ 1 and Tp;q.m/ is not a prism manifold,
then any seiferter for .Tp;q;m/ is m–equivalent to a basic seiferter or a regular fiber
of S3�N.Tp;q/. On the contrary, as shown in this section, there exist seiferters for
.Tp;q;m/ which cannot be obtained from basic seiferters or regular fibers by a sequence
of m–moves. In fact, for all Tp;q but T˙3;2 the degenerate Seifert surgery .Tp;q;pq/

has a hyperbolic seiferter not pq–equivalent to a basic seiferter or a regular fiber in
S3�N.Tp;q/; for some Tp;q Seifert surgeries .Tp;q;m/ where mDpqC1 or pq�1

have such seiferters. Examples of the former statement will be given in Proposition 5.1,
and those of the latter in Propositions 5.4, 5.5.
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Proposition 5.1 Each Seifert surgery .Tp;q;pq/ .jpj>q�2/ where .p; q/¤ .˙3; 2/

has a hyperbolic seiferter which is not pq–equivalent to any basic seiferter for Tp;q or
a regular fiber of S3�N.Tp;q/. Furthermore, if jpC qj and jp� qj are both greater
than one, then .Tp;q;pq/ has at least two such hyperbolic seiferters.

Proof of Proposition 5.1 Let cC; c� be the knots in the exterior of a nontrivial torus
knot Tp;q as described in Figure 5.1. The link Tp;q[cC is exactly the same as the link
Tp;q [ c in [9, Figure 4.2]; see also [21, Figure 13]. Note that lk.cC;Tp;q/D pC q

and lk.c�;Tp;q/D p� q . The result on cC in Claim 5.2 below is essentially obtained
in [21, Lemma 9.1]. Since the link Tp;q [ c� is the mirror image of T�p;q [ cC , the
statement on c� also holds.

Claim 5.2 The knots c˙ are seiferters for .Tp;q;pq/. Each of c˙ is a degenerate
Seifert fiber in Tp;q.pq/ such that Tp;q.pq/� int N.c˙/ is a Seifert fiber space over
the disk with two exceptional fibers of indices jpj; q . Furthermore, if jp C qj ¤ 1

(respectively jp � qj ¤ 1), then cC (respectively c� ) is a hyperbolic seiferter for
.Tp;q;pq/; otherwise, cC (respectively c� ) is a meridian of Tp;q .

   

  

    

  

Tp;q

cC

Tp;q

c�

Figure 5.1: Hyperbolic seiferters cC and c� for .Tp;q;pq/

Since there are no p; q .jpj > q � 2/ satisfying jpC qj D jp � qj D 1, at least one
of cC; c� is a hyperbolic seiferter for .Tp;q;pq/. Set c D cC if jp C qj ¤ 1, and
otherwise c D c� .

Let us show that c is not pq–equivalent to any basic seiferter if .p; q/¤ .3;˙2/. If c

were pq–equivalent to sp (respectively sq ), then the Seifert fiber space Tp;q.pq/�

int N.c/ would be homeomorphic to Tp;q.pq/ � int N.sp/ Š S1 � D2 ] L.q;p/

(respectively Tp;q.pq/� int N.sq/Š S1�D2 ]L.p; q/), a contradiction to Claim 5.2.
If c were pq–equivalent to a meridional seiferter c� , then [9, Proposition 2.22(1)]
would show that lk.c;Tp;q/D˙1Cxpq for some integer x . Since lk.c;Tp;q/Dp˙q ,
a simple computation shows .p; q/D .˙3; 2/, a contradiction to our assumption. If c
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were pq–equivalent to a regular fiber t in S3�N.Tp;q/, then the Seifert fiber space
Tp;q.pq/� int N.c/ would be homeomorphic to Tp;q.pq/� int N.t/ Š S1 �D2 ]

L.p; q/ ]L.q;p/, a contradiction.

Suppose we have that jpC qj and jp � qj are both greater than one. We then see
that cC and c� are both hyperbolic seiferters for .Tp;q;pq/ with the required property.
Since jlk.cC;Tp;q/j D jp C qj ¤ jp � qj D jlk.c�;Tp;q/j, cC and c� are distinct
seiferters.

Remark 5.3 .Tp;q;pq/ may have a hyperbolic seiferter other than cC and c� . For
example, .T3;5; 15/ has a hyperbolic seiferter c such that lk.c;T3;5/ D 4. Since
4¤ j3˙ 5j, c is neither cC nor c� . See [9, Remark 9.20(1)].

A seiferter for .Tp;q;pq/ which is not pq–equivalent to any basic seiferter or a regular
fiber of S3�N.Tp;q/ arises because of nonuniqueness of degenerate Seifert fibrations
of Tp;q.pq/. Similarly, nonuniqueness of Seifert fibrations of lens spaces make it
possible for some lens surgeries to have such seiferters.

Proposition 5.4 The lens surgery .T2nC1;n; n.2nC 1/� 1/ .n� 2/ has a hyperbolic
seiferter which is not .n.2nC 1/� 1/–equivalent to any basic seiferter for T2nC1;n or
a regular fiber of S3�N.T2nC1;n/.

Proof of Proposition 5.4 In [8, Proposition 3.7], we prove that c described in
Figure 5.2(1) is a seiferter for the lens surgery .T�2n�3;nC2; .�2n� 3/.nC 2/C 1/.
Twisting T�2n�3;nC2 once along the seiferter c , we obtain Figure 5.2(2). Figure 5.3
demonstrates that the image of T�2n�3;nC2 after the twisting is T2nC1;n ; since
lk.c;T�2n�3;nC2/ D 2nC 2, the resulting surgery slope is .�2n� 3/.nC 2/C 1C

.2nC2/2Dn.2nC1/�1. Thus we obtain the lens surgery .T2nC1;n; n.2nC1/�1/ for
which c remains a seiferter. Note that lk.c;T2nC1;n/D lk.c;T�2n�3;nC2/D 2nC 2.

Let .Kp;mp/ be the Seifert surgery obtained from .T2nC1;n; n.2nC 1/� 1/ after a
p–twist along c . Then .Kp;mp/ .p 2 Z/ are Berge’s lens surgeries on type III knots.
Proposition 3.8 in [8] shows that each lens space Kp.mp/ has a Seifert fibration F
over S2 such that F has two exceptional fibers and c (the image of c after twisting) is
a regular fiber of F . Hence, Kp.mp/� int N.c/ is a Seifert fiber space over the disk
with two exceptional fibers.

Since lk.c;T2nC1;n/D 2nC 2 62 f1; n; 2nC 1g, the seiferter c is not a basic seiferter
for T2nC1;n . Then, if c were not a hyperbolic seiferter for .K0;m0/ D .T2nC1;n ,
n.2nC 1/� 1/, case (2), (4), (5), (6) or (7) in [9, Corollary 3.15 ] would occur.
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Figure 5.2: An n–Dehn twist is performed along the annulus A .

              T�2n�1;�n D T2nC1;n

Figure 5.3

In these cases, c is a .1;x/ cable .jxj � 2/ of an unknotted solid torus V in S3 , K0

is a knot in U D S3� int V , and a Seifert fibration of K0.m0/ restricts to that of V

with c a regular fiber. Now for a knot k in a 3–manifold X.� S3/, let us denote
by X.kI  / the manifold obtained from X after  –surgery on k . If jpj � 2, then
V .cI � 1

p
/ has a Seifert fibration over the disk in which a core of the filled solid torus

is an exceptional fiber of index jpxC 1j and a core of V is another exceptional fiber
of index jxj. In cases (2), (4), (5) and (7), U.K0Im0/ has a Seifert fibration over the
disk with at most two exceptional fibers. Hence Kp.mp/D U.K0Im0/[V .cI � 1

p
/

is either a Seifert fiber space with more than two exceptional fibers or a lens space
which has two exceptional fibers with c (the image of c after a p–twist) one of them.
The former case contradicts the fact that .Kp;mp/ is a lens surgery for any p . The
latter implies Kp.mp/� int N.c/ is a solid torus, a contradiction. The remaining case
is (6) in [9, Corollary 3.15]. In this case, K0.m0/� int N.c/ is a Seifert fiber space
over the Möbius band with one exceptional fiber, a contradiction. It follows that c is a
hyperbolic seiferter for .K0;m0/.

Finally we show that c is not m0 –equivalent to any basic seiferter for K0DT2nC1;n or a
regular fiber in S3�N.K0/, where m0Dn.2nC1/�1. If c is m0 –equivalent to a basic
seiferter s2nC1 or sn for K0 , then c is an exceptional fiber in the lens space K0.m0/.
It follows that K0.m0/�int N.c/ is a solid torus, a contradiction. Let us suppose that c

Algebraic & Geometric Topology, Volume 14 (2014)



2092 Arnaud Deruelle, Katura Miyazaki and Kimihiko Motegi

is m0 –equivalent to c� . Then, since jlk.c�;K0/j D 1, [9, Proposition 2.22(1)] implies
lk.c;K0/D˙1C xm0 for some integer x . On the other hand, lk.c;K0/D 2nC 2.
We thus have ˙1Cxm0D 2nC2, where n� 2. Then xD .2nC1/=.2n2Cn�1/ or
.2nC3/=.2n2Cn�1/; these cannot be integers because 2n2Cn�1>2nC3>2nC1>0

for n� 2. Hence c cannot be m0 –equivalent to c� . Let us show that the seiferter c for
.K0;m0/ is not m0 –equivalent to a regular fiber of S3 �N.K0/. Since the linking
number between T2nC1;n and a regular fiber of S3�N.T2nC1;n/ is ˙n.2nC1/. We
obtain ˙n.2nC1/Cxm0D 2nC2 for some integer x [9, Proposition 2.22(1)], where
n� 2. Then x D�1C .2nC1/=.2n2Cn�1/ or 1C .2nC3/=.2n2Cn�1/, which
cannot be integers for any n. Hence c cannot be m0 –equivalent to a regular fiber in
S3�N.K0/.

Proposition 5.5 The lens surgery .T2n�1;n; n.2n� 1/� 1/ .n� 2/ has a hyperbolic
seiferter which is not .n.2n� 1/� 1/–equivalent to any basic seiferter for T2n�1;n or
a regular fiber of S3�N.T2n�1;n/.

Proof of Proposition 5.5 In [8, Section 4], we prove that c0 described in Figure 5.4(1)
is a seiferter for the lens surgery .T�2n�3;nC1; .�2n � 3/.n C 1/ C 1/. Twisting
T�2n�3;nC1 once along c0 , we obtain Figure 5.4(2). Figure 5.5 demonstrates that the
image of T�2n�3;nC1 after the twisting is T2n�1;n ; since lk.c0;T�2n�3;nC1/D 2nC1,
the resulting surgery slope is .�2n�3/.nC1/C1C .2nC1/2D n.2n�1/�1. Thus
we obtain a lens surgery .T2n�1;n; n.2n� 1/� 1/ for which c0 remains a seiferter.
Note that lk.c0;T2n�1;n/D lk.c0;T�2n�3;nC1/D 2nC 1.

       

      

     

          

    

 A

c0

T�2n�3;nC1

.1/

1–twist

along c0

.2/

c0

Figure 5.4: An n–Dehn twist is performed along the annulus A .

Let .Kp;mp/ be the Seifert surgery obtained from .T2n�1;n; n.2n� 1/� 1/ after a
p–twist along c0 . Then .Kp;mp/ .p 2Z/ are Berge’s lens surgeries on type IV knots.
In [8, Section 4] it is shown that each lens space Kp.mp/ has a Seifert fibration F
over S2 such that F has two exceptional fibers and c0 (the image of c0 after twisting)
is a regular fiber of F . Since lk.c0;T2n�1;n/D 2nC1 62 f1; n; 2n�1g, the seiferter c0
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      T2n�1;n

Figure 5.5

is not a basic seiferter for T2n�1;n . Then the argument in the proof of Proposition 5.4
shows that c0 is a hyperbolic seiferter for the lens surgery .T2n�1;n; n.2n� 1/� 1/,
and is not .n.2n� 1/� 1/–equivalent to a basic seiferter or a regular fiber of S3 �

N.T2n�1;n/.

Remark 5.6 The lens surgery .T2nC1;n; n.2nC 1/� 1/ .n � 3/ has, other than c

in Figure 5.2(2), a hyperbolic seiferter which is not .n.2nC 1/� 1/–equivalent to
a basic seiferter or a regular fiber of S3 � N.T2nC1;n/. Let us put m D n C 1,
where n� 2; then the lens surgery .T�2n�3;nC1; .�2n�3/.nC1/C1/ in the proof of
Proposition 5.5 becomes .T�2m�1;m;m.�2m�1/C1/ and lk.c0;T�2m�1;m/D2m�1,
where c0 is as in Figure 5.4(1). Let T2mC1;m [ c0� be the mirror image of the link
T�2m�1;m [ c0 . Writing n for m.� 3/, we have the hyperbolic seiferter c0� for
.T2nC1;n; n.2nC 1/� 1/ which is not .n.2nC 1/� 1/–equivalent to a basic seiferter
or a regular fiber of S3�N.T2nC1;n/. Since jlk.c0�;T2nC1;n/j D 2n� 1 is not equal
to jlk.c;T2nC1;n/j D 2nC 2, the seiferter c0� is distinct from c .

6 Band sums and seiferters

For a 2–component link k1 [ k2 , we call a band b connecting k1 and k2 a triv-
ializing band if the band sum k1 \b k2 is a trivial knot in S3 . Theorem 6.1 below
determines when we have a trivializing band connecting a torus knot Tp;q and its basic
seiferters sp; sq; c� .

Theorem 6.1 Let Tp;q be a nontrivial torus knot with jpj> q� 2. Then the following
hold.

(1) There exists a trivializing band connecting sq and Tp;q if and only if q D 2.

(2) There exists a trivializing band connecting sp and Tp;q if and only if .p; q/D
.˙3; 2/.

(3) There exists a trivializing band connecting c� and Tp;q if and only if .p; q/D
.˙3; 2/.
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Proof of Theorem 6.1 The band sum of Tp;2 and s2 described in the first figure of
Figure 6.1 is a trivial knot in S3 . Moreover, if pD 3, the band sums of T3;2 and basic
seiferters s3 and c� described in the second and the third figures of Figure 6.1 are both
trivial knots. This fact proves the if parts of Theorem 6.1.

The only if part of assertion (3) is proved by Ishihara and the third author [18]; it is
further shown that if a band sum of c� and T3;2 is a trivial knot, then the band is
isotopic to b� in Figure 6.1. Thus it is enough to prove the only if parts of (1), (2). The
proof is done by relating the band sums to basic seiferters for the degenerate Seifert
surgery .Tp;q;pq/.

  

  

   

  

  

   

  

  

   
Tp;2

b2

s2

s3

b3

T3;2

c�

b�

T3;2

Figure 6.1: Band sums s2 \b2
Tp;2 , s3 \b3

T3;2 , and c� \b� T3;2 are trivial knots.

(1) Let bq be a band connecting sq and Tp;q , and write kq D sq \bq
Tp;q . Take

a tubular neighborhood of Tp;q so that N.Tp;q/ \ sq D ∅, and @N.Tp;q/ \ bq is
an arc. Let p̨q be a simple closed curve on @N.Tp;q/ with slope pq such that

p̨q \ bq D @N.Tp;q/\ bq . Then, b0q D bq � int N.Tp;q/ is a band connecting p̨q

and sq (Figure 6.2). Let c be a knot in S3 �N.Tp;q/ which is obtained from the
band sum sq \b0q p̨q by pushing away from @N.Tp;q/; c is obtained from the basic
seiferter sq by a single pq–move using the band b0q . Note that c is isotopic to kq

in S3 .

 

 

  

  

    

 

 

      

Tp;q
p̨q

b0q

sq N.Tp;q/

Figure 6.2: Band sum of sq and Tp;q , and band sum of sq and p̨q

Now suppose that the band sum kq is a trivial knot in S3 . Then, c is a seiferter for
.Tp;q; pq/; moreover, since c is isotopic in Tp;q.pq/ to the basic seiferter sq , c is
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a nondegenerate exceptional fiber of index q in Tp;q.pq/. Let V be the solid torus
S3� int N.c/. We prove the claim below on the position of Tp;q in V .

Lemma 6.2 The position of Tp;q in V is one of the following.

(i) Tp;q is a .q;p/ cable of V .

(ii) Tp;q is a .q;p/ cable of a .1; s/ cable of V for some integer s such that jsj � 2

and q D sp˙ 1.

Proof of Lemma 6.2 Since c is a nondegenerate exceptional fiber in Tp;q.pq/ Š

L.p; q/ ]L.q;p/, we have the following four possibilities in [9, Corollary 3.21(2),
Theorem 3.19(2)(iii)].

(i) Tp;q is a .q;p/ cable of V .

(i 0 ) Tp;q is a .p; q/ cable of V .

(ii) Tp;q is a .q;p/ cable of a .1; s/ cable of V for some integer s such that jsj � 2

and q D sp˙ 1.

(ii 0 ) Tp;q is a .p; q/ cable of a .1; s/ cable of V for some integer s such that jsj � 2

and p D sq˙ 1.

Since c is isotopic to sq in Tp;q.pq/, we see V .Tp;qIpq/D Tp;q.pq/� int N.c/Š

Tp;q.pq/� int N.sq/. This manifold is homeomorphic to S1 �D2 ]L.p; q/ because
Tp;q is the .q;p/ cable of the solid torus S3 � int N.sq/. On the other hand, in
cases (i 0 ) and (ii 0 ), V .Tp;qIpq/Š S1�D2 ]L.q;p/. Thus cases (i 0 ) and (ii 0 ) do not
occur.

In case (i) in Lemma 6.2, jlk.c;Tp;q/jDp . On the other hand, since c is obtained from
sq by a single pq–move, we have lk.c;Tp;q/D lk.sq;Tp;q/C "pq , where c; sq;Tp;q

are oriented adequately and "2 f˙1g [9, Proposition 2.22(1)]. Hence, jpC"pqj D jpj.
It follows that q D 0;˙2. Since q � 2, we obtain q D 2 as claimed in Theorem 6.1.

Now let us consider case (ii) in Lemma 6.2 where Tp;q is a .q;p/ cable of a .1; s/ cable
of V ; then lk.c;Tp;q/D˙ps . It follows that jpC"pqjD jpsj and thus j1C"qjD jsj.
Combining this equality with jps�qj D 1 in case (ii), we obtain the inequalities below:

jpsj � 1� jps"C 1j � j1C "qjC jps"� "qj D jsjC 1

It follows jpsj � jsj C 2. Since jsj � 2, jpj � 1C 2
jsj
� 2. This contradicts the

assumption jpj> q � 2. Assertion (1) is thus proved.

(2) Starting with a band sum kp D sp \bp
Tp;q , we follow the argument in (1) with p

and q exchanged. Then, we obtain the same statement as in cases (i) and (ii) in
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Lemma 6.2 with p and q exchanged. The modified case (i) then leads to p D 0;˙2.
However, this is impossible because jpj> q � 2. The modified case (ii) leads to the
inequality jqsj � jsj C 2, so that q � 1C 2=jsj. Then, using the fact jpj > q � 2

and jsj � 2, we see that q D 2 and jsj D 2. Since j1C "qj D jsj holds in case (ii),
j1C "pj D jsj holds in the modified case (ii). We then obtain p D˙3 and q D 2, as
desired in assertion (2).

Theorem 6.1 implies the following results on seiferters obtained by m–moves.

Theorem 6.3 Let .Tp;q;m/ be a Seifert surgery on a torus knot Tp;q with jpj> q> 2.
Then, there is no seiferter for .Tp;q;m/ which is obtained from a basic seiferter by an
m–move.

Proof of Theorem 6.3 Theorem 6.1 shows that all band sums of Tp;q .jpj> q > 2/

and basic seiferters for Tp;q are nontrivial knots in S3 . Let ˛m be a simple closed curve
in @N.Tp;q/ with slope m. It follows that all band sums of ˛m and basic seiferters
for Tp;q are nontrivial knots because ˛m is isotopic in N.Tp;q/ to the core Tp;q . Thus
an arbitrary knot obtained from each basic seiferter for Tp;q by an m–move is not a
seiferter.

Theorem 6.4 Let .Tp;q;m/ be a Seifert surgery on a torus knot Tp;q with jpj> q� 2.
Suppose that c is a seiferter for .Tp;q;m/ which is obtained from a regular fiber of
S3�N.Tp;q/ by an m–move. Then, c is a .1;m�pq/ cable of a meridian of Tp;q ,
and thus a nonhyperbolic seiferter for .Tp;q;m/.

Proof of Theorem 6.4 Suppose that c is a seiferter for .Tp;q;m/ which is obtained
from a regular fiber t in S3 � N.Tp;q/ by an m–move using a band b.� S3 �

int N.Tp;q//; c is a knot in S3�N.Tp;q/ obtained by pushing the band sum t \b ˛m

away from @N.Tp;q/, where ˛m is a simple closed curve on @N.Tp;q/ with slope m.
Our purpose is to show that c is a .1;m�pq/ cable of a meridian of Tp;q .

In the Seifert fibration of S3 � int N.Tp;q/, take a regular fiber p̨q on @N.Tp;q/,
which represents the slope pq . We may assume that there is a small annulus M on
@N.Tp;q/ such that the core curve of M is a meridian of Tp;q , and that ˛m and p̨q

restrict to the same essential arc in the annulus @N.Tp;q/� int M .

Now isotope b so that b \ ˛m is contained in @N.Tp;q/� int M , and take the band
sum t \b p̨q . Note that t \b ˛m and t \b p̨q coincide outside of M and are isotopic
in S3 . Let cpq be a knot obtained by pushing t \b p̨q away from @N.Tp;q/. Since c

is a trivial knot in S3 , cpq is also trivial in S3 . Since cpq is isotopic in Tp;q.pq/ to
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Figure 6.3: A band sum of ˛m and a regular fiber t

the regular fiber t , cpq is a regular fiber in a degenerate Seifert fibration of Tp;q.pq/.
On the other hand, [9, Theorem 3.21(1)] shows that no seiferter for the degenerate
Seifert surgery .Tp;q;pq/ is a regular fiber. Hence, cpq is not a seiferter. It follows
that cpq is an irrelevant seiferter, and so bounds a disk in S3�Tp;q (Remark 1.3).

On the position of the band b the following holds.

Lemma 6.5 There exists an annulus S in S3� int N.Tp;q/ such that @S D t [ p̨q

and b � S .

Using the annulus S obtained by this lemma, we complete the proof of Theorem 6.4.
By an isotopy we may assume further that S \N.Tp;q/D p̨q . Since S contains the
band b , t \b ˛m is the union of the two arcs ˛m\M and � D @.S � b/� int M ; � is
isotopic in S with its end points fixed to the arc � 0 in Figure 6.4. Note that .˛m\M /[� 0

is a .1;m�pq/ cable of a meridian of Tp;q . This shows that t \b ˛m and thus c is
isotopic in S3�Tp;q to the .1;m�pq/ cable of a meridian of Tp;q , as claimed.

Proof of Lemma 6.5 Let A be an annulus in S3 � int N.Tp;q/ with @AD t [ p̨q .
(Since t and p̨q are regular fibers in the Seifert fibration of S3� int N.Tp;q/, such
an annulus is obtained as a union of regular fibers.) Choose orientations of t and p̨q

which are consistent in t \b p̨q . We consider two cases according as t and p̨q

are homologous in A or not. First suppose that t and p̨q are homologous in A.
Then lk.cpq;Tp;q/D lk.t;Tp;q/C lk. p̨q;Tp;q/D 2pq¤ 0. However, this contradicts
the fact that cpq bounds a disk in S3 � Tp;q . Now assume that t and p̨q are not
homologous in A. Then the (adequately oriented) annulus A in S3 � int N.Tp;q/

is a Seifert surface for the oriented link t [ p̨q . Here, a Seifert surface F for an
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Figure 6.4: � is isotopic to � 0 .

oriented link L is a compact oriented surface such that no component of F is closed
and @F D L. We define �.L/ to be the maximal Euler characteristic of all Seifert
surfaces for L. Since t \b p̨q is a trivial knot in S3 , we see �.t \b p̨q/D 1. Since
the oriented link t [ p̨q is nonsplittable, it follows �.t [ p̨q/D �.A/D 0. Then, the
minor revision of Hirasawa and Shimokawa’s [16, Theorem 1.6] below shows that the
oriented link t [ p̨q cobounds an annulus S containing the band b , as claimed. By
an isotopy we may assume that S � S3� int N.Tp;q/.

Theorem 6.6 (A minor revision of [16, Theorem 1.6]) Let L be an oriented link,
and b a band connecting (possibly the same) components of L such that L and b

induce opposite orientations to their intersection L\ b . Denote the self band sum of L

using b by Lb , an oriented link. Then, �.L/��.Lb/�1 if and only if L has a Seifert
surface S such that �.S/D �.L/ and b � S .

Proof of Theorem 6.6 For a Seifert surface S.�M DS3�int N.L// for L, consider
the three conditions below.

(1) S is taut in .M; @M /, ie S is incompressible and minimizes the Thurston norm
of ŒS; @S � 2H2.M;N /, where N is a tubular neighborhood of @S in @M .

(2) �.L/D �.S/

(3) S is a minimal genus Seifert surface for L, ie the sum of the genera of the
components of S is minimal.

Theorem 1.6 in [16] states that �.L/��.Lb/�1 if and only if L has a minimal genus
Seifert surface S such that b � S . In the proof the authors assume that .3/) .2/

and .1/ , .3/ are true. However, these are not true; if a minimal genus Seifert
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surface S for a link L is disconnected, then by tubing two components of S , we obtain
a minimal genus, compressible Seifert surface S 0 with �.S 0/ < �.L/. On the other
hand, .1/, .2/ holds by Scharlemann and Thompson [27, Lemma 1.2]. By replacing
the word “minimal genus” in the proof of [16, Theorem 1.6] with “taut”, we obtain a
proof of Theorem 6.6.

Remark 6.7 Among connected Seifert surfaces for a given link, a Seifert surface S

has minimal genus if and only if �.S/ is maximal. Thus, [16, Theorem 1.6] holds for
links which have only connected Seifert surfaces. Theorem 6.1(3) is, in fact, proved
in [18] by using [16, Theorem 1.6]. However, in the proof [16, Theorem 1.6] is applied
only to links with only connected Seifert surfaces.

Corollary 6.8 Let c be a hyperbolic seiferter for .Tp;q;m/, where jpj > q > 2 and
m¤ pq; pq˙ 1. Then,:

(1) c is m–equivalent to a basic seiferter for Tp;q (respectively a regular fiber of
S3�N.Tp;q/) if c is an exceptional fiber (respectively a regular fiber) in some
Seifert fibration of Tp;q.m/.

(2) c cannot be obtained from a basic seiferter or a regular fiber of S3 �N.Tp;q/

by a single m–move.

Proof of Corollary 6.8 It follows from the assumption jpj > q > 2 and m ¤ pq ,
pq˙ 1 that Tp;q.m/ is not a connected sum of lens spaces, a lens space, or a prism
manifold. Hence, (1) follows from Proposition 2.2, and (2) follows from Theorems 6.3
and 6.4.
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