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Homotopy colimits of classifying spaces
of abelian subgroups of a finite group

CIHAN OKAY

The classifying space BG of a topological group G can be filtered by a sequence of
subspaces B.q;G/ , q � 2 , using the descending central series of free groups. If G is
finite, describing them as homotopy colimits is convenient when applying homotopy
theoretic methods. In this paper we introduce natural subspaces B.q;G/p �B.q;G/

defined for a fixed prime p . We show that B.q;G/ is stably homotopy equivalent to
a wedge of B.q;G/p as p runs over the primes dividing the order of G . Colimits of
abelian groups play an important role in understanding the homotopy type of these
spaces. Extraspecial 2–groups are key examples, for which these colimits turn out to
be finite. We prove that for extraspecial 2–groups of order 22nC1 , n� 2 , B.2;G/

does not have the homotopy type of a K.�; 1/ space, thus answering in a negative
way a question posed by Adem in [1]. For a finite group G , we compute the complex
K–theory of B.2;G/ modulo torsion.

55R10; 55N15, 55Q52

1 Introduction

In [1], Adem introduced a natural filtration

B.2;G/� � � � � B.q;G/� � � � � B.1;G/D BG

of the classifying space BG of a topological group G . For a fixed q � 2, let �q.Fn/

denote the q th stage of the descending central series of the free group on n generators.
Then B.q;G/ is the geometric realization of the simplicial space whose n–simplices
are the spaces of homomorphisms Hom.Fn=�

q.Fn/;G/. In this article we study
homotopy-theoretic properties of these spaces.

Let G be a finite group and p a prime dividing the order of G . Consider the free pro-p
group Pn , the pro-p completion of the free group Fn . As noted in [1], the geometric
realization of the simplicial set n 7! Hom.Pn=�

q.Pn/;G/ gives a natural subspace
of B.q;G/, and is denoted by B.q;G/p . We prove that there is a stable homotopy
equivalence:
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Theorem 1.1 Suppose that G is a finite group. There is a natural weak equivalence_
p j jGj

†B.q;G/p!†B.q;G/ for all q � 2

induced by the inclusions B.q;G/p! B.q;G/.

Let N .q;G/ denote the collection of subgroups of nilpotency class less than q and
G.q/D colimN .q;G/A. The key observation in [1] is the following fibration

hocolimN .q;G/G.q/=A �! B.q;G/ �! BG.q/;

which can be constructed using the (homotopy) colimit description of B.q;G/. This
raises the following question of whether they are actually homotopy equivalent, posed
in [1].

Question 1.2 (Adem [1, page 15]) If G is a finite group, are the spaces B.q;G/

Eilenberg–Mac Lane spaces of type K.�; 1/?

One of the objectives of this paper is to show the existence of a certain class of groups
for which B.2;G/ does not have the homotopy type of a K.�; 1/ space. The following
theorem is used to show that extraspecial 2–groups are examples of such groups. (At a
given order there are two types up to isomorphism.)

Theorem 1.3 Let Gn denote an extraspecial 2–group of order 22nC1 then

�1.B.2;Gn//Š colimN .2;Gn/AŠGn �Z=2 for n� 2:

Indeed for the central products D8 ı D8 and D8 ıQ8 , that is n D 2, the higher
homotopy groups are given by

�i.B.2;G2//Š �i

�W151
S2
�

for i > 1:

Another natural question is to compute the complex K–theory of a homotopy colimit.
The main tool to study a representable generalized cohomology theory of a homotopy
colimit is the Bousfield–Kan spectral sequence whose E2 –term consists of the derived
functors of the inverse limit functor. We address this problem for the homotopy colimit
of classifying spaces of abelian subgroups of a finite group, that is, for B.2;G/.

Theorem 1.4 There is an isomorphism

Q˝Ki.B.2;G//Š

�
Q˚

L
pjjGjQ

np

p if i D 0,
0 if i D 1,

where np is the number of (non-identity) elements of order a power of p in G .
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Torsion groups can appear in K1.B.2;G//. An explicit example is the case of G2 ,
there is an isomorphism

Ki.B.2;G2//Š

�
Z˚Z31

2
if i D 0,

.Z=2/9 if i D 1:

The organization of this paper is as follows. In Section 2.1 we introduce the spaces
B.q;G/ and B.q;G/p for discrete groups and list some of their basic properties. In
Section 3 we assume G is finite, and describe these spaces as homotopy colimits.
We prove a stable decomposition of B.q;G/ (Theorem 1.1). In Section 4 we turn
to the higher limits as a preparation for the complex K–theory of B.2;G/. Under
some assumptions, we prove a vanishing result of certain higher limits (Theorem 4.7).
The main result of Section 5 is the computation of Q˝K�.B.2;G// as given in
Theorem 1.4. Section 6 contains a general observation on colimits of abelian groups
(Theorem 6.1). As an application, in Section 7 we compute the colimit of abelian
subgroups of an extraspecial 2–group (Theorem 1.3). Key examples which illustrate the
main features discussed throughout the paper are given in Section 8. Basic properties
of homotopy colimits are explained in the appendix, Appendix A.

Acknowledgements The author would like to thank A Adem, for his supervision;
J Smith, for pointing out Proposition 4.5; F Cohen and J M Gómez, for commenting on
an early version of this paper.

2 Filtrations of classifying spaces

2.1 Preliminaries

Let � be the category whose objects are finite non-empty totally ordered sets n, n� 0,
with nC 1 elements

0 �! 1 �! 2 �! � � � �! n

and whose morphisms � W m!n are order preserving set maps or alternatively functors.
The nerve of a small category C is the simplicial set

BCn D HomCat.n;C/:

For instance, the geometric realization of the nerve BG� of a discrete group G (regarded
as a category with one object) is the classifying space BG . An equivalent way of
describing the classifying space is as follows. The assignment

nD
�
0

e1
�! 1

e2
�! � � �

en
�! n

�
7! Fn;
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where Fn is the free group generated by fe1; e2; : : : ; eng, defines a faithful functor
�!Grp injective on objects. Then the classifying space of G is isomorphic to the
simplicial set

BG�W �
op
! SetI n 7! HomGrp.Fn;G/:

A generalization of this construction to certain quotients of free groups is studied in [1].
We recall the constructions and describe some alternative versions.

Definition 2.1 For a group Q define a chain of groups inductively: �1.Q/ D Q,
�qC1.Q/D Œ�q.Q/;Q�. The descending central series of Q is the normal series

1� � � � � �qC1.Q/� �q.Q/� � � � � �2.Q/� �1.Q/DQ:

Now take Q to be the free group Fn . For q > 0, the natural maps Fn! Fn=�
q.Fn/

induce inclusions of sets

HomGrp.Fn=�
q.Fn/;G/� HomGrp.Fn;G/:

Furthermore, the simplicial structure of BG� induces a simplicial structure on the
collection of these subsets.

Definition 2.2 Let G be a discrete group. We define a sequence of simplicial sets
B�.q;G/, q � 2, by the assignment

n 7! HomGrp.Fn=�
q.Fn/;G/

and denote the geometric realization jB.q;G/�j by B.q;G/. Define B�.1;G/DBG�
and B.1;G/D BG by convention.

As in [1] this gives rise to a filtration

B.2;G/� B.3;G/� � � � � B.q;G/� B.qC 1;G/� � � � � B.1;G/D BG

of the classifying space of G .

2.2 p–local version

An alternative construction is obtained by replacing the free group Fn by its pro-p
completion, namely the free pro-p group Pn ; see Dixon, du Sautoy, Mann and Segal [5]
for their basic properties. It can be defined using the p–descending central series of
the free group

Pn D lim
 �

Fn=�
q
p .Fn/;

Algebraic & Geometric Topology, Volume 14 (2014)



Homotopy colimits of classifying spaces of abelian subgroups of a finite group 2227

where �q
p .Fn/ are defined recursively:

�1
p .Fn/D Fn and �qC1

p .Fn/D Œ�
q
p .Fn/;Fn�.�

q
p .Fn//

p

The group Pn contains Fn as a dense subgroup. Observe that each quotient Fn=�
q
p .Fn/

is a finite p–group.

Let TGrp denote the category of topological groups. We consider continuous group
homomorphisms � 2 HomTGrp.Pn;G/ where G is a discrete group. The image of �
is a finite p–subgroup of G . This follows from the fact that Pn is compact and if K

is a subgroup of Pn of finite index then jPn WKj is a power of p by [5, Lemma 1.18].
Then there exists q � 1 such that � factors as:

Pn
� //

��

G

Fn=�
q
p.Fn/

::

This implies that HomTGrp.Pn;G/ � HomGrp.Fn;G/ and also there is a simplicial
structure induced from BG� .

We remark that a theorem of Serre on topological groups says that any (abstract) group
homomorphism from a finitely generated pro-p group to a finite group is continuous [5,
Theorem 1.17]. This implies that when G is finite any (abstract) homomorphism
�W Pn!G is continuous. More generally, as a consequence of Nikolov and Segal [16,
Theorem 1.13], if every subgroup of G is finitely generated then the image of an
abstract homomorphism � is a finite group, hence in this case � is also continuous.

Definition 2.3 Let p be a prime integer and G a discrete group. We define a sequence
of simplicial sets B�.q;G/p , q � 2, by

n 7! HomTGrp.Pn=�
q.Pn/;G/:

Define B�.1;G/p to be the simplicial set n 7!HomTGrp.Pn;G/ and set B.1;G/pD

jB�.1;G/pj.

Let us examine the simplicial set B�.1;G/p . There is a natural map

� W lim
�!

q Hom.Fn=�
q
p .Fn/;G/! Hom.Pn;G/

induced by the projections Pn!Fn=�
q
p .Fn/. This map is injective since it is induced

by injective maps and surjective since �W Pn!G factors through Fn=�
q
p .Fn/!G for

some q � 1, as observed above. Thus � is a bijection of sets. Colimits in the category
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of simplicial sets can be constructed dimension-wise and the geometric realization
functor commutes with colimits. Therefore, for a discrete group G , we note that there
is a homeomorphism

lim
�!

qB.q;G;p/! B.1;G/p

induced by � , where B.q;G;p/ is the geometric realization of the simplicial set
defined by Bn.q;G;p/D HomGrp.Fn=�

q
p .Fn/;G/.

3 The case of finite groups

We restrict our attention to finite groups. Note that the following collections of sub-
groups have an initial object (the trivial subgroup), and they are closed under taking
subgroups and the conjugation action of G . Define a collection of subgroups for
q � 2 by

N .q;G/D fH �G j �q.H /D 1g:

These are nilpotent subgroups of G of class less than q . Observe that N .2;G/ is the
collection of abelian subgroups of G .

Denote the poset of p–subgroups of G by Sp.G/ (including the trivial subgroup) and
set

N .q;G/p D Sp.G/\N .q;G/:

When q D 2 this is the collection of abelian p–subgroups of G .

3.1 Homotopy colimits

In [1] Adem observes that there is a homeomorphism

colimN .q;G/BA! B.q;G/

and furthermore the natural map

hocolimN .q;G/BA! colimN .q;G/BA

turns out to be a weak equivalence. A similar statement holds for the spaces B.q;G/p .

Proposition 3.1 Suppose that G is a finite group. Then there is a homeomorphism

B.q;G/p Š colimN .q;G/p BP

and the natural map

hocolimN .q;G/p BP ! colimN .q;G/p BP

is a weak equivalence.
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Proof There is a natural bijection of sets

colimN .q;G/p HomGrp.Fn;P /! HomGrp.Pn=�
q.Pn/;G/:

The image of a morphism Pn=�
q.Pn/!G is a p–group of nilpotency class at most q .

Conversely, if P �G is a p–group of nilpotency class q then Fn!P induces a map
Pn!P by taking the pro-p completions, and factors through the quotient Pn=�

q.Pn/.
This induces the desired homeomorphism

B.q;G/p Š colimN .q;G/p BP:

The natural map from the homotopy colimit to the ordinary colimit is a weak equivalence
since the diagram of spaces is free (see Appendix A).

Remark 3.2 For the homotopy colimits considered in this paper, it is sufficient to
consider the sub-poset determined by the intersections of the maximal objects of the
relevant poset. More precisely, let M1;M2; : : : ;Mk denote the maximal groups in the
poset N .q;G/ and M.q;G/D f

T
J Mi j J � f1; 2; : : : ; kgg. The inclusion map

M.q;G/!N .q;G/

is right cofinal and hence induces a weak equivalence (see Welker, Ziegler and Živalje-
vić [21, Proposition 3.10])

hocolimM.q;G/BM ! hocolimN .q;G/BA:

A similar observation holds for N .q;G/p .

3.2 A stable decomposition of B.q; G /

Recall that a finite nilpotent group N is a direct product of its Sylow p–subgroups:

N Š
Y

p j jN j

N.p/

For a prime p dividing the order of the group G , and N 2N .q;G/, define

�p.N /D

�
N.p/ if p j jN j;

1 otherwise :

Lemma 3.3 The inclusion map �pW N .q;G/p!N .q;G/ of posets induces a weak
equivalence

hocolimN .q;G/p BP ! hocolimN .q;G/B�p.A/:
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Proof By freeness (Appendix A) it is enough to consider ordinary colimits. Let
BW N .q;G/p!Top denote the functor P 7!BP . The map �pW N .q;G/!N .q;G/p
defined by A 7! �p.A/ induces an inverse to the map induced by �p on the colimit

colimN .q;G/p BP ! colimN .q;G/B�p.A/:

This follows from the fact that �p ı �p is the identity on N .q;G/p .

Theorem 3.4 Suppose that G is a finite group. There is a natural weak equivalence_
p j jGj

†B.q;G/p!†B.q;G/ for all q � 2

induced by the inclusions B.q;G/p! B.q;G/.

Proof First note that the nerve of the poset N .q;G/ is contractible since the trivial
subgroup is an initial object. Note that for A 2N .q;G/ each BA is pointed via the
inclusion B1! BA.

Let J denote the pushout category 0 01! 1. Define a functor F from the product
category J �N .q;G/ to Top by

F..0;A//D pt; F..01;A//D BA and F..1;A//D pt:

Commutativity of homotopy colimits implies that

hocolimJ hocolimN .q;G/ F Š hocolimJ�N .q;G/ F Š hocolimN .q;G/ hocolimJ F:

The nerve of N .q;G/ is contractible, in which case we can identify the homotopy
colimit over J as the suspension and conclude that the map

(3.4.1) †.hocolimN .q;G/BA/! hocolimN .q;G/†.BA/

is a homeomorphism. The natural map induced by the suspension of the inclusions
BA.p/! BA, _

p j jAj

†BA.p/!†BA

is a weak equivalence. This follows from the splitting of suspension of products,

†
�
BA.p/ �BA.q/

�
'†.BA.p//_†.BA.q//_†

�
BA.p/ ^BA.q/

�
;

and from the equivalence †.BA.p/ ^BA.q//' pt when p and q are coprime. The
latter follows from the Künneth theorem and the Hurewicz theorem by considering the
homology isomorphism induced by the inclusion BA.p/ _BA.q/! BA.p/ �BA.q/ .
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Invariance of homotopy colimits under natural transformations which induce a weak
equivalence on each object, the homeomorphism (3.4.1) and Lemma 3.3 give the weak
equivalences

†.hocolimN .q;G/BA/Š hocolimN .q;G/†.BA/

' hocolimN .q;G/
_

p j jAj

†
�
BA.p/

�
'

_
p j jGj

†
�

hocolimN .q;G/B�p.A/
�

'

_
p j jGj

†
�

hocolimN .q;G/p BP
�
:

When commuting the wedge product with the homotopy colimit, again an argument
using the commutativity of homotopy colimits can be used similar to the suspension
case. Note that the wedge product is a homotopy colimit.

This stable equivalence immediately implies the following decomposition for a gener-
alized cohomology theory.

Theorem 3.5 There is an isomorphism

zh�.B.q;G//Š
Y

p j jGj

zh�.B.q;G/p/ for all q � 2;

where zh� denotes a reduced cohomology theory.

Therefore one can study homological properties of B.q;G/ at a fixed prime. In
particular, this theorem applies to the complex K–theory of B.q;G/ and each piece
corresponding to B.q;G/p can be computed using the Bousfield–Kan spectral se-
quence [3].

3.3 Homotopy types of B.q; G / and B.q; G /p

We follow the discussion on the fundamental group of B.q;G/ from Adem [1], similar
properties are satisfied by B.q;G/p . Let N be a collection of subgroups of a finite
group G . We require that N has an initial element and is closed under taking subgroups.
In particular, it can be taken as N .q;G/ or N .q;G/p . The fundamental group of a
homotopy colimit is described by Farjoun [9, Corollary 5.1]. There is an isomorphism

�1.hocolimN BA/Š colimN A;
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where the colimit is in the category of groups. We will study colimits of (abelian)
groups in the next section in more detail.

For each A 2N , there is a natural fibration G=A!BA!BG and taking homotopy
colimits one obtains a fibration

(3.5.1) hocolimN G=A! hocolimN BA! BG:

This is a consequence of a theorem of Puppe (see Farjoun [8, Appendix HL]). The
point is that each fibration has the same base space BG . Associated to this fibration
there is an exact sequence of homotopy groups

(3.5.2) 1 �! �1

�
hocolimN G=A

�
�! �1

�
hocolimN BA

�
 
�! �1.BG/ �! �0

�
hocolimN G=A

�
�! 0;

where  is the natural map

�1

�
hocolimN BA

�
Š colimN A!G

induced by the inclusions A!G . Note that if N contains all cyclic subgroups of G

then hocolimN G=A is connected. Since in this case, the commutativity of

colimN A
 // G

hgi

OO ::

implies that  is surjective.

We point out here that for N DN .q;G/ the homotopy fibre hocolimN G=A is homo-
topy equivalent to the pull-back of the universal principal G –bundle

E.q;G/ //

��

EG

��
B.q;G/ // BG

and this pull-back E.q;G/ can be defined as the geometric realization of a simplicial
set as described by Adem [1]. It can be identified as a colimit

E.q;G/Š colimN .q;G/G �A EA
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and there is a commutative diagram

hocolimN .q;G/G �A EA
� //

�

��

hocolimN .q;G/G=A

��
colimN .q;G/G �A EA // colimN .q;G/G=A

induced by the contractions EA! pt, and the weak equivalences as indicated. The
exact sequence (3.5.2) becomes

(3.5.3) 0 �! T .q/ �!G.q/
 
�!G �! 0;

where G.q/D �1.B.q;G// and T .q/D �1.E.q;G//.

Consider the universal cover zB.q;G/ of B.q;G/. Again using the theorem of Puppe, it
can be described as the homotopy fibre of the homotopy colimit of the natural fibrations
G.q/=A �! BA �! BG.q/ (see Adem [1, Theorem 4.4])

zB.q;G/' hocolimN .q;G/G.q/=A // B.q;G/

��
BG.q/:

The question of B.q;G/ having the homotopy type of a K.�; 1/ space is equivalent
to asking whether the classifying space functor B commutes with colimits

B.q;G/D colimN .q;G/BA! B
�
colimN .q;G/A

�
:

The difference is measured by the simply connected, finite-dimensional complex
zB.q;G/, or equivalently by the values of the higher limits

H i. zB.q;G/IZ/Š lim
 �

i
N .q;G/ZŒG.q/=A�

as implied by the Bousfield–Kan spectral sequence.

The class of extraspecial 2–groups provides examples for which B.2;G/ is not ho-
motopy equivalent to a K.�; 1/ space. This follows from the computation of the
fundamental group of B.2;G/ that is the colimit of abelian subgroups of G ; see
Section 7 and Section 8.

4 Higher limits

As the higher limits appear in the E2 –term of the Bousfield–Kan spectral sequence, in
this section we discuss some of their properties. The main theorem of this section is a
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vanishing result of the higher limits of the contravariant part of a pre-Mackey functor
RW dn! Ab where dn denotes the poset of non-empty subsets of f1; : : : ; ng ordered
by reverse inclusion.

Let C be a small category and F W C! Ab be a contravariant functor from C to
the category of abelian groups. AbC denotes the category of contravariant functors
C! Ab. Observe that

lim
 �

F Š HomAb
�
Z; lim
 �

F
�
Š HomAbC.Z;F /:

Definition 4.1 Derived functors of the inverse limit of F W C! Ab are defined by

lim
 �

iF � ExtiAbC.Z;F /:

A projective resolution of Z in AbC can be obtained in the following way, for details see
Webb [20]. First note that the functors Fc W C!Ab defined by Fc.c

0/DZ HomC.c
0; c/

are projective functors and by Yoneda’s Lemma,

HomAbC.Fc ;F /Š F.c/:

Let C n� W C! S denote the functor which sends an object c of C to the nerve of
the under category C n c . The nerve B.C n c/ is contractible since the object c! c is
initial. Then we define a resolution P�!Z of the constant functor as the composition
P� D C� ı C n �, where C�W S ! Ab is the functor which sends a simplicial set
X to the associated chain complex C�.X / D ZŒX��. At each degree n, there are
isomorphisms

HomAbC.Pn;F /Š HomAbC

� M
x0 ��� xn

Fxn
;F

�
Š

Y
x0 x1 ��� xn

F.xn/:

Differentials are induced by the simplicial maps between chains of morphisms. The
following result describes them explicitly.

Lemma 4.2 (Oliver [17]) lim
 �

iF ŠH i.C �.CIF /; ı/, where

C n.CIF /D
Y

x0 x1 ��� xn

F.xn/

for all n� 0 and where for U 2 C n.CIF /,

ı.U /
�
x0 � x1 � � � �  � xn

�
 � xnC1

�
D

nX
iD0

.�1/iU
�
x0 � � �  yxi � � �  xnC1

�
C .�1/nC1F.�/

�
U
�
x0 � � �  xn

��
:
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A useful property of higher limits, which allows the change of the indexing category,
is the following.

Proposition 4.3 (Jackowski and McClure [13, Lemma 3.1]) Fix a small category
C and a contravariant functor F W C! Ab. Let D be a small category and assume
that gW D ! C has a left adjoint. Set g�F D F ı gW D ! Ab then H�.CIF / Š
H�.DIg�F /:

Assume that the indexing category C is a finite partially ordered set (poset) whose
morphisms are i ! j whenever i � j . We consider an appropriate filtration of F as
in Grodal [11].

Definition 4.4 A height function on a poset is a strictly increasing map of posets
htW C! Z.

A convenient height function can be defined by ht.A/D� dim.jC�Aj/, where C�A

is the subposet of C consisting of elements C � A. Let N D dim.jCj/ then it is
immediate that lim

 �

iF vanishes for i > N . The functor F can be filtered in such a
way that the associated quotient functors are concentrated at a single height. Define a
sequence of subfunctors

FN � � � � � F2 � F1 � F0

by Fi.A/D 0 if ht.A/ >�i and Fi.A/DF.A/ otherwise. This induces a decreasing
filtration on the cochain complexes hence there is an associated spectral sequence
whose E0 –term is

E
i;j
0
D C iCj .CIFi=FiC1/D

Y
A2Cjht.A/D�i

HomZ
�
CiCj .jC�Aj; jC>Aj/;F.A/

�
with differentials d0W C

k.CIFi=FiC1/! C kC1.CIFi=FiC1/. E1 –term is the coho-
mology of the pair .jC�Aj; jC>Aj/ in coefficients F.A/ that is

(4.4.1) E
i;j
1
D

Y
A2Cjht.A/D�i

H iCj
�
.jC�Aj; jC>Aj/IF.A/

�
:

Fix A and let A0 > A such that ht.A0/ D ht.A/C 1, then differential d1 can be
described as the composition

H k
�
.jC�A0 j; jC>A0 j/IF.A

0/
� F.A�A0/
������!H k

�
.jC>Aj; jC>A;ht�ht.A/C2j/IF.A/

�
@
�!H kC1

�
.jC�Aj; jC>Aj/IF.A/

�
;
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where @ is the boundary map associated to the triple

.jC�Aj; jC>Aj; jC>A;ht�ht.A/C2j/:

We now consider higher limits over specific kinds of diagrams. Let dn be the category
associated to the non-degenerate simplexes of the standard n–simplex, the objects
are increasing sequences of numbers �k D Œi0 < � � � < ik �, where 0 � ij � n and the
morphisms are generated by the face maps dj .Œi0< � � �< ik �/D Œi0< � � �<yij < � � �< ik �

for 0� j � k .

Proposition 4.5 For any contravariant functor F W dn! Ab the spectral sequence
(4.4.1) collapses onto the horizontal axis hence gives a long exact sequence

(4.5.1) 0 �!
Y
�0

F.�0/ �!
Y
�1

F.�1/ �! � � � �!
Y
�n�1

F.�n�1/ �! F.�n/ �! 0

and where for U 2 C k�1
dn .F /D

Q
�k�1

F.�k�1/,

ık�1.U /.�k/D

kX
jD0

.�1/k�j F.dj /U.dj .�k//:

Proof For a simplex �k 2 dn, let dn�k be the poset of simplices � � �k and dn>k

denote the poset of simplices � > �k . Observe that the pair .jdn�k j; jdn>k j/ is
homeomorphic to .j�k j; j@�k j/, where �k is the standard k –simplex with boundary
@�k . The spectral sequence of the filtration has

E
k;j
1
D

Y
�k

H kCj
�
.jdn�k j; jdn>k j/IF.�k/

�
:

Therefore E1 –term vanishes unless j D 0, and otherwise

E
k;0
1
D

Y
�k

H k
�
.jdn�k j; jdn>k j/IF.�k/

�
D

Y
�k

F.�k/

collapses onto the horizontal axes, resulting in a long exact sequence. The differential
is induced by the alternating sum of the face maps dj .�k/ for 0� j � k .

In some cases, it is possible to show that the higher limits vanish. The next theorem
is an illustration of this instance. First let us recall the definition of a pre-Mackey
functor in the sense of Dress [6]. Let M W C! D be a bifunctor, that is a pair of
functors .M �;M�/ such that M � is contravariant, M� is covariant and both coincide
on objects.
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Definition 4.6 A pre-Mackey functor is a bifunctor M W C! D such that for any
pull-back diagram

X1

ˇ1 //

˛1

��

X2

˛2

��
˛2

��
X3

ˇ2

// X4

in C the diagram

M.X1/
M�.ˇ1/ // M.X2/

M.X3/
M�.˛2/

//

M�.˛1/

OO

M.X4/

M�.ˇ2/

OO

commutes.

We give a direct proof of the following theorem, which can also be deduced from an
application of Jackowski–McClure [13, Theorem 5.15] to the category dn.

Theorem 4.7 Let RW dn! Ab be a pre-Mackey functor then lim
 �

sR� D 0 for s > 0.

Proof We do induction on n. The case nD 0 is trivial since the complex (4.5.1) is
concentrated at degree 0. There are inclusions of categories

�0W dn� 1! dn

defined by Œi1 < � � �< ik � 7! Œi1C 1< � � �< ik C 1� and

�1W dn� 1! dn;

where Œi1< � � �< ik � 7! Œ0< i1C1< � � �< ikC1�. Let C �dn denote the complex C �dn.R/

in (4.5.1) that is C k
dn D

Q
�k

R.�k/: Define a filtration C �
�1
� C �

0
� C �dn such that

C k
0 D

Y
�kDŒ0<i1<���<ik �

R.�k/

and C k
�1
D C k

0
for k > 0 and C 0

�1
D 0. Then by induction

H i.C �dn=C �0 /DH i.C �dn�1.R ı �0//D 0

for i > 0 and
H i.C �

�1/DH i�1.C �dn�1.R ı �1//D 0
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for i > 1. And short exact sequences associated to the filtration C �
�1
� C �

0
� C �dn

implies that it suffices to prove H 1.C �
0
/D 0.

For a simplex � D Œ0< i < � � �< j � and morphisms ˛i W �! Œ0< i � and j̨ W �! Œ0< j �

in dn, set �� DR�. j̨ /R
�.˛i/.

For a fixed i , define a map ˆi W R.Œ0< i �/!R.Œ0�/ by

ˆi D

X
�DŒ0<i<���<j �

.�1/j� j�1R�.d
j
1
/�� ; where d

j
1
W Œ0< j �! Œ0�;

where j� j denotes the dimension of the simplex � . Combining these maps for all
1� i � n define ˆW

Qn
lD1 R.Œ0< l �/!R.Œ0�/ by

ˆD

nX
iD1

ˆi�i ;

where �i denotes the natural projection
Qn

lD1 R.Œ0< l �/!R.Œ0< i �/ to the i th factor.

We need to show that if U is in the kernel of ı1 , then ı0ˆ.U /D U or equivalently
R�.d i

1
/ˆ.U /D �i.U / for all 1� i � n. Fix k , and compute the composition

R�.dk
1 /ˆD

nX
iD1

X
�DŒ0<i<���<j �

.�1/j� j�1R�.dk
1 /R�.d

j
1
/��

D �k C

nX
iD1

� X
� jk2�¤Œ0<k�

.�1/j� j�1R�.dk
1 /R�.d

j
1
/��

C

X
� jk…�

.�1/j� j�1R�.dk
1 /R�.d

j
1
/��

�
:

In the second line first use the identity R�.dk
1
/R�.d

j
1
/�Œ0<k� D �k then separate the

summation into two parts such that it runs over the simplices which contain fkg and
do not contain fkg. Suppose that � D Œ0 < i < � � � < j � does not contain fkg and x�
denote the simplex obtained from � by adjoining fkg. There are three possibilities
for x� :

x� D

8<:
Œ0< i < � � �< k < � � �< j � if i < k < j

Œ0< i < � � �< j < k� if j < k

Œ0< k < i < � � �< j � if k < i
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The corresponding terms of the first two cases cancel out when � and x� are paired off
in the summation, since the diagram

R.x�/

��

R.Œ0<i �/oo R�.˛i / // R.�/

R�.˛j /

��
R.Œ0<k�/ R.Œ0�/

R�.dk
1
/

oo R.Œ0<j �/
R�.d

j

1
/

oo

commutes, and the corresponding terms become equal with opposite signs. So the
equation simplifies to

R�.dk
1 /ˆD�kC

X
�DŒ0<k<i<���<j �

.�1/j� j�1.R�.dk
1 /R�.d

j
1
/���R�.dk

1 /R�.d
j
1
/�d1� /

where the sum runs over the simplices starting with f0< kg. The maps

�
�
�! Œ0< k < i � and �

#
�! Œ0< k�

and also the two face maps

Œ0< i �
d1
 � Œ0< k < i �

d2
�! Œ0< k�

in our indexing category dn give a commutative diagram

R.Œ0<i �/

��

R�.d1/ // R.Œ0<k<i �/
R�.�/ // R.�/

R�.#/

��
R.d1�/ // R.Œ0<j �/

R�.dk
1
/R�.d

j

1
/

// R.Œ0<k�/

Hence we can write

R�.dk
1 /ˆD �k C

X
�DŒ0<k<i<���<j �

.�1/j� j�1R�.#/R
�.�/

�
R�.d2/�R�.d1/

�
:

Now suppose that U is in the kernel of ı1W C 1
0
! C 2

0
, the summation above vanishes

since .R�.d2/�R�.d1// .U /D 0. Therefore

R�.dk
1 /ˆ.U /D �k.U /;

which implies that H 1.C �
0
/D 0.
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4.1 Higher limits of the representation ring functor

Let G be a finite group and p be a prime dividing its order. Let M0; : : : ;Mn denote the
maximal abelian p–subgroups of G . Consider the contravariant functor RW dn! Ab
defined by � 7! R.M� /, where M� D

T
i2� Mi and R.H / is the Grothendieck

ring of complex representations of H . Note that Q˝R is a pre-Mackey functor: If
˛W � ! � 0 set AD

T
i2� Mi and B D

T
i2� 0 Mi then

.Q˝R�.˛/;Q˝R�.˛//D
�

resB;A;
1
jBWAj

indA;B

�
:

Hence Theorem 4.7 implies the following.

Corollary 4.8 If RW dn! Ab is defined as above then lim
 �

sQ˝R� D 0 for s > 0.

Proof We give an alternative proof that is specific to the representation ring functor.
Let U W Grp! Set denote the forgetful functor which sends a group to the underlying
set. The isomorphism C˝R.M� /ŠHomSet.M� ;C/DH 0.U.M� /IC// induces an
isomorphism

lim
 �

sC˝R.M� /Š lim
 �

sH 0.U.M� /IC/:

Note that U.M� / is a finite set of points. Consider the space hocolimdn U.M� / and
the associated cohomology spectral sequence

E
s;t
2
D lim
 �

s
dnH t .U.M� /IC/)H sCt

�
hocolimdn U.M� /IC

�
:

Now, the diagram dn! Top defined by � 7! U.M� / is free (Appendix A), consists
of inclusions of finite sets. Therefore the natural map

hocolimdn U.M� /! colimdn U.M� /D U.G/

is a homotopy equivalence, note that the latter is a finite set. The spectral sequence
collapses at E2 –page and gives

lim
 �

sH 0.U.M� /IC/ŠH s
�
hocolimdn U.M� /IC

�
;

which vanishes for s > 0.

5 K–theory of B.2 ; G /

In this section, we assume that G is a finite group. We study the complex K–theory of
B.q;G/ when q D 2. Theorem 3.5 gives a decomposition

zK�.B.2;G//Š
M

p j jGj

zK�.B.2;G/p/
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of the reduced K–theory of B.2;G/. For each such prime p recall the fibration

hocolimN .q;G/p G=P �! B.q;G/p �! BG

from Section 3. Furthermore, the Borel construction commutes with homotopy colimits
and gives a weak equivalence

B.q;G/p '
�
hocolimN .q;G/p G=P

�
�G EG:

There is the Atiyah–Segal completion theorem [2] which relates the equivariant K–
theory of a G –space X to the complex K–theory of its Borel construction X �G EG .

Equivariant K–theory Complex equivariant K–theory is a Z=2–graded cohomology
theory defined for compact spaces using G –equivariant complex vector bundles (see
Segal [18]). Recall that

Kn
G.G=H /Š

�
R.H / if nD 0;

0 if nD 1;

where H � G and recall that R.H / denotes the Grothendieck ring of complex
representations of H . Note that in particular, K0

G
.pt/ Š R.G/ and K�

G
.X / is an

R.G/–module via the natural map X ! pt.

Let X be a compact G–space and I.G/ denote the kernel of the augmentation map
R.G/

"
�!Z. The Atiyah–Segal completion theorem [2] states that K�.X �G EG/ is

the completion of K�
G
.X / at the augmentation ideal I.G/. In particular, taking X to

be a point this theorem implies that

Kn.BG/Š

�
R.G/^ nD 0;

0 nD 1:

The completion R.G/^ can be described using the restriction maps to a Sylow p–
subgroup for each p dividing the order of the group G . Let Ip.G/ denote the quotient
of I.G/ by the kernel of the restriction map I.G/! I.G.p// to a Sylow p–subgroup.
There are isomorphisms of abelian groups

Kn.BG/Š

�
Z˚

L
p j jGjZp˝ Ip.G/ nD 0;

0 nD 1I

see Lück [15]. Note that if G is a nilpotent group, equivalently G Š
Q

p j jGjG.p/ , the
restriction map I.G/! I.G.p// is surjective and

(5.0.1) zK0.BG/Š I.G/^ Š
M

p j jGj

Zp˝ I.G.p//:
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We also use the fact that the completion of R.H / with respect to I.H / is isomorphic
to the completion with respect to I.G/ as an R.G/–module via the restriction map
R.G/!R.H /.

5.1 K–theory of B.2 ; G /

The E2 –page of the equivariant version of the Bousfield–Kan spectral sequence (see
Lee [14]) for the equivariant K–theory of hocolimN .q;G/p G=P is given by

(5.0.2) E
s;t
2
Š lim
 �

s
N .q;G/p Kt

G.G=P /Š

�
lim
 �

s
N .q;G/p R.P / if t is even,

0 if t is odd,

and the spectral sequence converges to K�
G
.hocolimN .q;G/p G=P / whose completion

is K�.hocolimN .q;G/p BP /. We will split off the trivial part of E
s;t
2

and consider

zE
s;t
2
Š lim
 �

s
N .q;G/p I.P / for t even.

Note that the splitting R.P /Š Z˚ I.P / gives

lim
 �

s
N .q;G/p R.P /Š lim

 �

s
N .q;G/p I.P /

for s > 0 since the nerve of N .q;G/p is contractible. The following result describes
the terms of this spectral sequence for the case q D 2.

Lemma 5.1 Let RW N .2;G/p ! Ab be the representation ring functor defined by
P 7!R.P / then lim

 �

sR are torsion groups for s > 0. Furthermore lim
 �

0RŠ ZnpC1 ,
where np is the number of (non-identity) elements of order a power of p in G .

Proof Let Mi for 0� i � n denote the maximal abelian p–subgroups of G . Define a
functor gW dn!N .2;G/p by sending a simplex Œi0< i1< � � �< ik � to the intersectionTk

jD0 Mij . Then g has a left adjoint, namely the functor P 7!
T

Mi WP�Mi
Mi sending

an abelian p–subgroup to the intersection of maximal abelian p–subgroups containing
it. By Proposition 4.3 we can replace the indexing category N .2;G/p by dn and
calculate the higher limits over the category dn. Then the first part of the theorem
follows from Corollary 4.8.

For the second part note that lim
 �

0RD lim
 �

R is a submodule of a free Z–module, hence
it is free. Then it suffices to calculate its rank. Tensoring with C gives an isomorphism

C˝ lim
 �

0
N .2;G/p R.P /Š HomSet

� [
N .2;G/p

P;C

�
:
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Recall that N .2;G/p is the collection of abelian p–subgroups of G . The result follows
from the identity

S
N .2;G/p P D np C 1, where np is the number of (non-identity)

elements of order a power of p in G .

Theorem 5.2 There is an isomorphism

Q˝Ki.B.2;G//Š

�
Q˚

L
p j jGjQ

np

p if i D 0,
0 if i D 1,

where np is the number of (non-identity) elements of order a power of p in G .

Proof By the decomposition in Theorem 3.5 we work at a fixed prime p dividing
the order of G . Then by the Atiyah–Segal completion theorem, K�.B.2;G/p/ is
isomorphic to the completion of K�

G
.hocolimN .2;G/p G=P / at the augmentation ideal

I.G/. Since R.G/ is a Noetherian ring the completion �˝R.G/R.G/^ is exact on
finitely generated R.G/–modules, hence commutes with taking homology. Moreover,
(5.0.1) gives

R.P /˝R.G/R.G/^ ŠR.P /^ Š Z˚ I.P /˝Zp:

This isomorphism induces

zEs;t
r ˝I.G/ I.G/^ Š zEs;t

r ˝Z Zp for r � 2,

which gives an isomorphism between the abutments. For t even and s > 0, zEs;t
2

are torsion by Lemma 5.1. After tensoring with Q, the spectral sequence collapses
onto the vertical axis at the E2 –page and Q˝ zK0.B.2;G/p/ŠQ˝Z

np

p , whereas
Q˝K1.B.2;G/p/ vanishes.

6 Colimits of abelian groups

The fundamental groups of B.2;G/ and B.2;G/p are isomorphic to the colimits of the
collection of abelian subgroups and abelian p–subgroups of G , respectively. Therefore
it is natural to study the colimit of a collection of abelian groups in greater generality
to determine the homotopy properties of these spaces.

Let A denote a collection of abelian groups closed under taking subgroups. We consider
the colimit of the groups in A. This can be constructed as a quotient of the free product`

of the groups in the collection

colimA AŠ

� a
A2A

A

�
=�
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by the normal subgroup generated by the relations b � f .b/, where b 2 B and
f W B!A runs over the morphisms in A. Let T be a finite abelian group, define the
number

d.T /D
X

p j jT j

rank.T.p//;

where T.p/ denotes the Sylow p–subgroup of T . For r > 0 and a collection of finite
abelian groups A, define a sub-collection

Ar D fA 2A j d.A/� rg:

The main result of this section is the following isomorphism of colimits, which reduces
the collection A to the sub-collection A2 . Note that if A consists of elementary abelian
p–groups then A2 is the sub-collection of groups of rank at most 2.

Theorem 6.1 The natural map

colimA2
A! colimA A

induced by the inclusion map A2!A is an isomorphism.

The proof follows from the homotopy properties of a complex constructed from the
cosets of proper subgroups of a group. We review some background first.

The coset poset Consider the poset fxH j H ¨ Gg consisting of cosets of proper
subgroups of G ordered by inclusion. The associated complex is denoted by C.G/ and
it is studied in Brown [4]. This complex can be identified as a homotopy colimit

C.G/' hocolimfH ¨GgG=H:

The identification follows from the description of this homotopy colimit as the nerve of
the transport category of the poset fH ¨Gg which is precisely the nerve of the poset
fxH jH ¨Gg.

When G is solvable, C.G/ has the homotopy type of a bouquet of spheres. To make
this statement precise we need a definition from group theory.

Definition 6.2 A chief series of a group G is a series of normal subgroups

1DN0 �N1 � � � � �Nk DG

for which each factor NiC1=Ni is a minimal (nontrivial) normal subgroup of G=Ni .

Algebraic & Geometric Topology, Volume 14 (2014)



Homotopy colimits of classifying spaces of abelian subgroups of a finite group 2245

Proposition 6.3 (Brown [4, Proposition 11]) Suppose that G is a solvable finite
group and

1DN0 �N1 � � � � �Nk DG

be a chief series then
C.G/'

Wn
Sd�1

for some n> 0, where d is the number of indices i D 1; 2; : : : ; k such that Ni=Ni�1

has a complement in G=Ni�1 .

We are interested only in the dimensions of the spheres.

Coset poset of abelian groups The number d in Proposition 6.3 for an abelian group
T is given by d.T / as introduced at the beginning of this section:

d.T /D
X

p j jT j

d.T.p//D
X

p j jT j

rank.T.p//;

where T.p/ denotes the Sylow p–subgroup of T .

For a finite group G , we denote the collection of proper abelian subgroups by A.G/.
(It is equal to N .2;G/ when G is non-abelian.)

Proposition 6.4 Let T be a finite abelian group. There is a fibration

(6.4.1)
Wn

Sd.T /�1
�! hocolimA.T /BA �! BT

for some n> 0.

Proof The fibre is the coset poset

C.T /' hocolimA.T / T=A

and it is homotopy equivalent to
Wn

Sd.T /�1 by Proposition 6.3.

The exact sequence of homotopy groups associated to the fibration (6.4.1) implies the
following.

Corollary 6.5 When d.T /� 3, the natural map

ˇW colimA.T /A! T

is an isomorphism.
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Proof of Theorem 6.1 We have a sequence of inclusions

A2 �!A3 �! � � � �!Ai �!AiC1 �! � � � �!Ar DA

for some r > 2. For each 2� i < r , one can filter these sets further as follows

Ai DAi;0 �Ai;1 � � � � �Ai;j � � � � �Ai;ti
DAiC1;

where Ai;j D fB 2AiC1 jA.B/�Ai;j�1g for 0< j � ti .

For 2� i < r and 0� j < ti , each of the maps

colimAi;j
A �! colimAi;jC1

A

has an inverse induced by the compositions: Let Q 2Ai;jC1�Ai;j

Q
ˇ�1

�! colimA.Q/A �! colimAi;j
A;

where ˇ is the map in Corollary 6.5 and the second map is induced by the inclusion
A.Q/!Ai;j . Hence each inclusion map Ai;j !Ai;jC1 induces an isomorphism on
the colimits.

7 Colimit of abelian subgroups of extraspecial 2–groups

The colimit of abelian subgroups of a finite group usually turns out to be an infinite
group. Simplest examples are amalgamations of the maximal abelian subgroups along
the center of the group; see Section 8 for such examples of groups. The smallest
example which diverges from this pattern is the extraspecial groups of order 32. In
this section, we consider colimits of abelian subgroups of extraspecial 2–groups and
prove that it is a finite group.

An extraspecial 2–group of order 22nC1 fits into an extension of the form

Z=2 �!Gn
�
�! .Z=2/2n;

where Z=2 is the center Z.Gn/. There are two, up to isomorphism, extraspecial
2–groups GCn and G�n for a fixed n. The first one is isomorphic to a central product
of n copies of D8 the dihedral group of order 8, for the second one replace one copy
of D8 by Q8 the quaternion group of order 8.

We want to compute the colimit of abelian subgroups of Gn and we denote the collection
of abelian subgroups by A.Gn/. Recall that there is a natural surjective map

 W colimA.Gn/A!Gn
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induced by the inclusions A!Gn .

In the case of G1 , which is either Q8 or D8 , the colimit is an amalgamated product
of the maximal abelian subgroups along the center. We consider the case n� 2. There
is an exact sequence

(7.0.1) 1 �!Z.Gn/ �! colimA.Gn/A �! colimA.Gn/A=Z.Gn/ �! 1

and a commutative diagram

colimA.Gn/A
 //

��

Gn

��
colimA.Gn/A=Z.Gn/

 0
// Gn=Z.Gn/;

where  and  0 are surjective.

It is easier to study colimA.Gn/A=Z.Gn/, since we can identify this group as a colimit
over the polar space of Sp2n.2/; see for example Smith [19] for a discussion of polar
spaces. Let us explain this identification.

Polar spaces Regard .Z=2/2n as a vector space over Z=2D f0; 1g and denote it by
V 2n . There is a non-degenerate symplectic bilinear form V 2n �V 2n! Z=2 defined
by

.v; w/D Œ��1.v/; ��1.w/�;

where Œ� ; � � denotes the commutator of given two elements in Gn . A subgroup
A of G is abelian if and only if �.A/ is an isotropic subspace of V 2n with respect
to the bilinear form .� ; � /, that is �.A/ � �.A/? . One can order these isotropic
subspaces by inclusion.

Definition 7.1 The polar space of Sp2n.2/ is the poset of (non-trivial) isotropic
subspaces of V 2n . We denote this poset by Sn .

Let feig1�i�2n be a basis for V 2n . It decomposes as the orthogonal direct sum of
2–dimensional subspaces

(7.1.1) V 2n
D

nM
iD1

he2i�1; e2ii;

where

.ei ; ej /D

�
1 if fj ; kg D f2i � 1; 2ig;

0 otherwise:
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For an abelian subgroup A of Gn , the assignment A 7! �.A/ defines a surjective map
of posets A.Gn/! Sn which induces an isomorphism

colimA.Gn/A=Z.Gn/! colimSn
S:

Note that we use Sn as an indexing category, the colimit is still in the category of
groups.

Let us introduce some notation. We denote the multiplication in the image of �S W S !
colimSn

S by �S .s1C s2/ D �S .s1/�S .s2/. In particular, for S D heI i, where eI DP
i2I ei for some non-empty subset I of f1; 2; : : : ; 2ng, we simply write

gI D �heI i
.eI /

to denote the image.

Let Sn;r denote the subposet of Sn which consists of subspaces of dimension at most
r . Theorem 6.1 implies that the inclusion Sn;2! Sn induces an isomorphism

colimSn;2
S ! colimSn

S:

Then a presentation of the colimit can be given as

(7.1.2) colimSn
S D

�
gI ; I �f1; 2; : : : ; 2ng

ˇ̌̌
g2

ID1; ŒgI ;gJ �D1, .eI ; eJ /D0;

gI gJDgK , eICeJDeK

�
:

Note that this group is generated by the images gI D �heI i
.eI / of 1–dimensional

subspaces heI i 2 Sn;1 . We will find a smaller collection of subspaces which generates
this group.

For a 1–dimensional subspace heI i 2 Sn;1 , define

L.eI /D fW 2 Sn;2 j dim.W /D 2 and eI 2W g

and for a sub-collection T � Sn;2 of 2–dimensional spaces let

P.T /D fhwi 2 Sn;1 j w �X for some X 2 T g:

It is possible to determine the cardinalities of these sets: jL.eI /j D 2n � 1 and
jP.fW g/j D 3 for any 2–dimensional subspace W 2 Sn;2 .

Definition 7.2 Let Q� Sn;1 and hwi 2 Sn;1 , we say hwi is connected to Q if there
exists a W 2 Sn;2 of dimension 2 such that w 2W and P.fW g/� fhwig �Q. We
also say hwi �W is connected to Q if the other two elements in P.fW g/� fhwig
are connected to Q.
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Lemma 7.3 Consider the poset P1 D P.L.e1//[fhe2ig, then every element of Sn;1

is connected to P1 .

Proof Identify the polar space of V 2n=he1; e2i with Sn�1 and fix I D f1; 2g. Then
by (7.1.1) we have

P.L.e1//D Sn�1;1 t fhe1ig t e1Sn�1;1;

P.L.e2//D Sn�1;1 t fhe2ig t e2Sn�1;1;

P.L.eI //D Sn�1;1 t fheI ig t eISn�1;1;

where the notation wSn�1;1 means the set fhwCvi j hvi 2 Sn�1;1g. Also observe that

Sn;1 D P.L.e1//[P.L.e2//[P.L.eI //:

Every element hvi of e2Sn�1;1 is connected to P1 via the space he2; vi. Therefore
every element of P.L.e2// is connected to P1 .

To see that every element of P.L.eI // is connected to P1 , it is sufficient to show that
heI i is connected to P1 . The sequence of spaces

he1C e2; e3C e4i  - he1C e2C e3C e4i ,! he1C e3; e2C e4i

connects eI to P1 .

Set Kn D colimSn;2
S and consider the map �W colimP1

S ! Kn induced by the
inclusion P1 ! Sn;2 . The lemma translates into the statement that the image of �
generates Kn . This follows from the definition of connectivity: An element heI i of
Sn;1 is connected to P1 translates into gI lies in the image of � . Hence an equivalent
statement is the following.

Lemma 7.4 Inclusion of the poset P1!Sn;2 induces a surjective map on the colimits

�W colimP1
S !Kn:

By definition, g1 D �he1i
.e1/ commutes with the generators coming from P.L.e1//.

We will prove that in fact g1 also commutes with g2 the generator corresponding to
e2 , that is g1 commutes with the generators P1DP.L.e1//[fhe2ig of the group Kn .
Hence g1 is in the center Z.Kn/.

Lemma 7.5 For n� 2

colimA.Gn/A=Z.Gn/Š .Z=2/
2nC1:
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Proof First recall from (7.1.2) that each generator of Kn has order 2, showing that it
is also abelian is sufficient. We do induction on n. First, we compute the case nD 2.
By the decomposition (7.1.1), it is easy to see

P.L.e1//D fhe1i; he3i; he1C e3i; he4i; he1C e4i; he3C e4i; he1C e3C e4ig:

One can check that the minimal number of generators of the image of � , in Lemma 7.4,
is 5 and those are g1 , g3 , g4 , g3;4 and g2 . Observe that g1 commutes with all but
g2 . We have the following relations in K2 :

(7.5.1)

g2g2;3;4 D g1g1;3;4 g2g1;3g1;2;4 D g1g1;3;4

g2g1;3g2;3g1;3;4 D g1g1;3;4 g2g1g3g2g3 D g1

g2g1g2 D g1

Therefore g1 is in the center of K2 . It suffices to show that the remaining generators in
J Dfg1;g3;g4;g3;4;g2g are also central. Given g in J there exists an automorphism
of .Z=2/4 which induces an automorphism on K2 such that g is mapped to g1 . Hence
any element in J is central in K2 . We conclude that K2 is an abelian group since it is
generated by the elements in J .

For the general case, first identify the polar space of V 2n=he1; e2i with Sn�1 and by
induction the associated colimit is Kn�1Š .Z=2/

2n�1 . Consider Kn�1 as a subgroup
of Kn . By Lemma 7.4, Kn has 2nC 1 generators, namely e1 , e2 , and the 2n� 1

generators of Kn�1 . Note that g1 and g2 centralizes Kn�1 and the relations (7.5.1)
hold in Kn . Hence Œg1;g2�D 1.

Recall that the fundamental group of B.2;Gn/ is isomorphic to the colimit of abelian
subgroups of Gn .

Theorem 7.6 Let Gn denote an extraspecial 2–group of order 22nC1 then

�1.B.2;Gn//Š colimN .2;Gn/AŠGn �Z=2 for n� 2:

Proof Let us denote the colimit in the theorem by yKn , recall the exact sequence of
(7.0.1). There are exact sequences of groups

Z=2

��

Z=2

��
Z.Gn/ // yKn

� //

 

��

Kn

 0

��
Z.Gn/ // Gn

// .Z=2/2n
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where Z.Gn/ŠZ=2 and by Lemma 7.5, KnŠ .Z=2/2nC1 which forces ker. /ŠZ=2.
Note that Z.Gn/\ ker. /D 1 which implies that this kernel is in the center Z. yKn/,
and  induces an isomorphism

Œ yKn; yKn�Š ŒGn;Gn�:

This implies that Œ yKn; yKn�\ ker. /D 1 and Œ yKn; yKn�DZ.Gn/.

Denote the product Œ yKn; yKn� ker. / in yKn by V . Choose a complement xC of
V =Œ yKn; yKn� in yKn=Œ yKn; yKn�. Let C be the corresponding subgroup of yKn . Then
yKn D C ker. / and C \ ker. /D 1, hence

C Š yKn= ker. /ŠGn:

This implies that yKn is isomorphic to the direct product Gn �Z=2.

8 Examples

8.1 Transitively commutative groups

A non-abelian group G is called a transitively commutative group (TC–group) if
commutation is a transitive relation for non-central elements that is Œx;y�D 1D Œy; z�

implies Œx; z�D 1 for all x;y; z 2G �Z.G/. Any pair of maximal abelian subgroups
of G intersect at the center Z.G/.

For TC–groups, the homotopy types of E.2;G/ and B.2;G/ are studied by Adem [1].
The exact sequence (3.5.3) of homotopy groups associated to the fibration E.2;G/�!

B.2;G/ �! BG gives

1 �! T .2/ �!G.2/ �!G �! 1;

where G.2/ is isomorphic to the amalgamated product of maximal abelian subgroups
fMig1�i�k along the center of the group, and T .2/ is a free group of certain rank.
It turns out that E.2;G/ and B.2;G/ are K.�; 1/ spaces: E.2;G/ is homotopy
equivalent to a wedge of circles and B.2;G/' B.G.2//.

Higher limits of the representation ring functor RW N .2;G/! Ab fit into an exact
sequence

0 �! lim
 �

0R �!R.Z.G//˚

kM
iD1

R.Mi/
�
�!

kM
iD1

R.Z.G// �! lim
 �

1R �! 0;

where �.z;m1; : : : ;mk/D .z � resM1;Z.G/m1; : : : ; z � resMk ;Z.G/mk/. No higher
limit occurs lim

 �

1RD 0, that is � is surjective, since the restriction maps are surjective
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R.Mi/!R.Z.G//. The same conclusion holds for the restriction of the functor R

to N .2;G/p �N .2;G/. Therefore the spectral sequence in (5.0.2) collapses at the
E2 –page and after completion

Ki.B.2;G//Š

�
Z˚

L
p j jGjZ

np

p if i D 0,
0 if i D 1.

8.2 Extraspecial 2–groups

This class of groups are interesting since they provide counter examples to the following
question.

Question 8.1 (Adem [1, page 15]) If G is a finite group, are the spaces B.q;G/

Eilenberg–Mac Lane spaces of type K.�; 1/?

Recall from Section 7 that an extraspecial 2–group of order 22nC1 is an extension of
the form

Z=2 �!Gn
�
�! .Z=2/2n;

where Z=2 is the center Z.Gn/. We consider the homotopy type of B.2;Gn/ for
this class of groups. There is a fibration E.2;Gn/ �! B.2;Gn/ �! BGn and a
corresponding exact sequence of homotopy groups (3.5.3)

1 �! �1.E.2;Gn// �! �1.B.2;Gn//
 
�! �1.BGn/ �! 1;

where  is the natural map

�1.B.2;Gn//Š colimN .2;Gn/A!G

induced by inclusions of abelian subgroups A � G . We calculated this colimit in
Theorem 7.6

colimN .2;Gn/AŠGn �Z=2

which forces the kernel of  to be isomorphic to Z=2. This implies that the fundamental
group of E.2;Gn/ is isomorphic to Z=2. Recall the homotopy colimit description of
E.2;G/, there is a weak equivalence

E.2;Gn/' hocolimN .2;Gn/Gn=A:

This homotopy colimit is a finite-dimensional complex. It can be described as the
nerve of a category with finitely many morphisms. Therefore H�.E.2;Gn/IZ/ is
non-zero only for finitely many degrees whereas it is well-known that H�.BZ=2IZ/ is
non-zero for every even degree. Therefore E.2;Gn/ does not have the homotopy type
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of a K.Z=2; 1/ space, that is it has non-vanishing higher homotopy groups. The same
conclusion holds for B.2;Gn/ since from the fibration E.2;G/! B.2;G/! BG

we see that
�k.E.2;Gn//Š �k.B.2;Gn// for k � 2:

Thus B.2;Gn/ does not have the homotopy type of K.Gn �Z=2; 1/.

Indeed for the extraspecial 2–groups of order 32, G2 D GC
2

or G�
2

, consider the
fibration

zB.2;G2/ // B.2;G2/

��
B.G2 �Z=2/;

where the fibre is a simply connected complex of dimension 2

zB.2;G2/D hocolimN .2;G2/.G2 �Z=2/=A:

Cohomology groups of this fibre can be calculated from the chain complexY
A0 A1 A2

ZŒ.G2�Z=2/=A2��!
Y

A0 A1

ZŒ.G2�Z=2/=A1��!
Y
A0

ZŒ.G2�Z=2/=A0�;

where Ai are abelian subgroups of Gn . It is sufficient to consider the ones which
contain the center Z.Gn/ (Remark 3.2). By a counting argument using the structure
of the poset which is isomorphic to the polar space (Definition 7.1) of Sp4.2/ (union
the trivial space 0), one can calculate the Euler characteristic

�. zB.2;G2//D
64
2
jf0�W1 �W2gj �

64
2jW1j
jfW1 �W2gjC

64
2jW2j
jfW2gj

D
64
2

45�
�

64
4

45C 64
2

30
�
C
�

64
8

15C 64
4

15C 64
2

�
D 152;

where Wi are the isotropic subspaces of V 4 D .Z=2/4 as described in Section 7. It
follows that the higher homotopy groups of B.2;G2/ are isomorphic to the homotopy
groups of a wedge of spheres

�i.B.2;G2//Š �i

�W151
S2
�

for i > 1:

As for the K–theory, non-vanishing higher limits of the representation ring functor
occur in the Bousfield–Kan spectral sequence. Again in the case of G2 a calculation in
GAP [12] shows that

lim
 �

i
N .2;G2/

RŠ

8<:
Z32 i D 0;

.Z=2/9 i D 1;

0 otherwise.
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Therefore the spectral sequence in (5.0.2) collapses at the E2 –page and after completion

Ki.B.2;G2//Š

�
Z˚Z31

2
if i D 0,

.Z=2/9 if i D 1.

Note that the K–theory computation also confirms that B.G2; 2/ is not homotopy
equivalent to B.G2�Z=2/, as the latter has K1.B.G2�Z=2//D 0 as a consequence
of the Atiyah–Segal completion theorem.

Appendix A: Simplicial sets

In this section we review some definitions about simplicial sets especially homotopy
colimits. We refer the reader to Goerss [10] and Dwyer [7].

The category of simplicial sets S and the category of topological spaces Top are closely
related. Given T a topological space there is a functor Top! S called the singular
set defined by

Sing.T /W n 7! HomTop.j�
n
j;T /;

where j�nj is the topological standard n–simplex. Conversely a simplicial set X

gives rise to a topological space via the geometric realization functor defined by the
difference cokernel

jX j D lim
�!

� a
� Wm!n

Xn � j�
m
j�

a
n

Xn � j�
n
j

�
;

where .x;p/ 7! .x; ��.p// and .x;p/ 7! .��.x/;p/. There is an adjoint relation
between these two functors

j � jW S� Top WSing :

Note that j � j preserves all colimits in S since it has a right adjoint.

Let I be a small category, and i 2 I an object, the under category I n i is the category
whose objects are the maps i ! i0 and morphisms from i ! i0 to i ! i1 are
commutative diagrams

i //

##

i0

��
i1:
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Let F W I! Top be a functor. The homotopy colimit of F is the topological space
defined by the difference cokernel

hocolim F D lim
�!

� a
f W j!i

B.I n i/�F.j /�
a

i

B.I n i/�F.i/

�
;

where .b;y/ 7! .B.f /.b/;y/ and .b;y/ 7! .b; f .y//. If one wants to work in the
category of simplicial sets, given F W I! S one can use the simplicial set B�.I n i/

instead.

From the definition we see that there is a natural map to the ordinary colimit

hocolim F ! colim F

obtained by collapsing the nerves B.I n i/ ! pt. This map is not usually a weak
equivalence. In general, it is a weak equivalence if the diagram F W I! S is a free
diagram (see Farjoun [8, Appendix HC]). A diagram of sets I! Set is free if it is of
the form

`
i F i for a collection of subobjects of I where each diagram F i W I! Set

is defined by F i.j / D HomI.i; j /. A diagram of simplicial sets is free if in each
dimension it gives a free diagram of sets. In particular, a collection of sets which is
closed under taking subsets and partially ordered by inclusion gives a free diagram
of sets.

A standard example of a homotopy colimit is the Borel construction. Let X be a
G –space and consider G the category associated to the group then

hocolim F 'X �G EG;

where F W G! Top sends the single object to X . The most important property of
homotopy colimits is that a natural transformation F ! F 0 of functors such that
F.i/! F 0.i/ is a weak equivalence for all i 2 I induces a weak equivalence

hocolim F ! hocolim F 0:

Another useful property we use in the paper is the commutativity of homotopy colimits.
We refer the reader to Welker, Ziegler and Živaljević [21] for further properties of
homotopy colimits.

References
[1] A Adem, F R Cohen, E Torres Giese, Commuting elements, simplicial spaces and

filtrations of classifying spaces, Math. Proc. Cambridge Philos. Soc. 152 (2012) 91–114
MR2860418

Algebraic & Geometric Topology, Volume 14 (2014)

http://dx.doi.org/10.1017/S0305004111000570
http://dx.doi.org/10.1017/S0305004111000570
http://www.ams.org/mathscinet-getitem?mr=2860418


2256 Cihan Okay

[2] M F Atiyah, G B Segal, Equivariant K–theory and completion, J. Differential Geome-
try 3 (1969) 1–18 MR0259946

[3] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture
Notes in Mathematics 304, Springer, Berlin (1972) MR0365573

[4] K S Brown, The coset poset and probabilistic zeta function of a finite group, J. Algebra
225 (2000) 989–1012 MR1741574

[5] J D Dixon, M P F du Sautoy, A Mann, D Segal, Analytic pro-p groups, 2nd edition,
Cambridge Studies Adv. Math. 61, Cambridge Univ. Press (1999) MR1720368

[6] A W M Dress, Contributions to the theory of induced representations, from: “Algebraic
K–theory, II: “Classical” algebraic K–theory and connections with arithmetic (Proc.
Conf., Battelle Memorial Inst.)”, Lecture Notes in Math. 342, Springer, Berlin (1973)
183–240 MR0384917

[7] W G Dwyer, Homology decompositions for classifying spaces of finite groups, Topol-
ogy 36 (1997) 783–804 MR1432421

[8] E D Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes
in Mathematics 1622, Springer, Berlin (1996) MR1392221

[9] E D Farjoun, Fundamental group of homotopy colimits, Adv. Math. 182 (2004) 1–27
MR2028495

[10] P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Mathematics 174,
Birkhäuser, Basel (1999) MR1711612

[11] J Grodal, Higher limits via subgroup complexes, Ann. of Math. 155 (2002) 405–457
MR1906592

[12] T G group, GAP: Groups, algorithms and programming (2008) Available at http://
www.gap-system.org/

[13] S Jackowski, J McClure, Homotopy decomposition of classifying spaces via elemen-
tary abelian subgroups, Topology 31 (1992) 113–132 MR1153240

[14] C-N Lee, A homotopy decomposition for the classifying space of virtually torsion-free
groups and applications, Math. Proc. Cambridge Philos. Soc. 120 (1996) 663–686
MR1401955

[15] W Lück, Rational computations of the topological K–theory of classifying spaces of
discrete groups, J. Reine Angew. Math. 611 (2007) 163–187 MR2361088

[16] N Nikolov, D Segal, Generators and commutators in finite groups; abstract quotients
of compact groups, Invent. Math. 190 (2012) 513–602 MR2995181

[17] B Oliver, Higher limits via Steinberg representations, Comm. Algebra 22 (1994) 1381–
1393 MR1261265

[18] G Segal, Equivariant K–theory, Inst. Hautes Études Sci. Publ. Math. (1968) 129–151
MR0234452

Algebraic & Geometric Topology, Volume 14 (2014)

http://www.ams.org/mathscinet-getitem?mr=0259946
http://www.ams.org/mathscinet-getitem?mr=0365573
http://dx.doi.org/10.1006/jabr.1999.8221
http://www.ams.org/mathscinet-getitem?mr=1741574
http://dx.doi.org/10.1017/CBO9780511470882
http://www.ams.org/mathscinet-getitem?mr=1720368
http://www.ams.org/mathscinet-getitem?mr=0384917
http://dx.doi.org/10.1016/S0040-9383(96)00031-6
http://www.ams.org/mathscinet-getitem?mr=1432421
http://www.ams.org/mathscinet-getitem?mr=1392221
http://dx.doi.org/10.1016/S0001-8708(03)00072-0
http://www.ams.org/mathscinet-getitem?mr=2028495
http://dx.doi.org/10.1007/978-3-0348-8707-6
http://www.ams.org/mathscinet-getitem?mr=1711612
http://dx.doi.org/10.2307/3062122
http://www.ams.org/mathscinet-getitem?mr=1906592
http://www.gap-system.org/
http://www.gap-system.org/
http://dx.doi.org/10.1016/0040-9383(92)90065-P
http://dx.doi.org/10.1016/0040-9383(92)90065-P
http://www.ams.org/mathscinet-getitem?mr=1153240
http://dx.doi.org/10.1017/S0305004100001638
http://dx.doi.org/10.1017/S0305004100001638
http://www.ams.org/mathscinet-getitem?mr=1401955
http://dx.doi.org/10.1515/CRELLE.2007.078
http://dx.doi.org/10.1515/CRELLE.2007.078
http://www.ams.org/mathscinet-getitem?mr=2361088
http://dx.doi.org/10.1007/s00222-012-0383-6
http://dx.doi.org/10.1007/s00222-012-0383-6
http://www.ams.org/mathscinet-getitem?mr=2995181
http://dx.doi.org/10.1080/00927879408824911
http://www.ams.org/mathscinet-getitem?mr=1261265
http://www.ams.org/mathscinet-getitem?mr=0234452


Homotopy colimits of classifying spaces of abelian subgroups of a finite group 2257

[19] S D Smith, Subgroup complexes, Mathematical Surveys and Monographs 179, Amer.
Math. Soc. (2011) MR2850680

[20] P Webb, An introduction to the representations and cohomology of categories, from:
“Group representation theory”, EPFL Press, Lausanne (2007) 149–173 MR2336640

[21] V Welker, G M Ziegler, R T Živaljević, Homotopy colimits: Comparison lemmas for
combinatorial applications, J. Reine Angew. Math. 509 (1999) 117–149 MR1679169

Department of Mathematics, The University of British Columbia
Vancouver BC V6T 1Z2, Canada

okay@math.ubc.ca

http://www.math.ubc.ca/~okay/

Received: 18 July 2013 Revised: 12 September 2013

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://www.ams.org/mathscinet-getitem?mr=2850680
http://www.ams.org/mathscinet-getitem?mr=2336640
http://dx.doi.org/10.1515/crll.1999.035
http://dx.doi.org/10.1515/crll.1999.035
http://www.ams.org/mathscinet-getitem?mr=1679169
mailto:okay@math.ubc.ca
http://www.math.ubc.ca/~okay/
http://msp.org
http://msp.org



	1. Introduction
	2. Filtrations of classifying spaces
	2.1. Preliminaries
	2.2. p–local version

	3. The case of finite groups
	3.1. Homotopy colimits
	3.2. A stable decomposition of B(q,G)
	3.3. Homotopy types of B(q,G) and B(q,G)_p

	4. Higher limits
	4.1. Higher limits of the representation ring functor

	5. K–theory of B(2,G)
	5.1. K–theory of B(2,G)

	6. Colimits of abelian groups
	7. Colimit of abelian subgroups of extraspecial 2–groups
	8. Examples
	8.1. Transitively commutative groups
	8.2. Extraspecial 2–groups

	Appendix A. Simplicial sets
	References

