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Positive links

TIM D COCHRAN

EAMONN TWEEDY

Given a link L� S3 , we ask whether the components of L bound disjoint, nullho-
mologous disks properly embedded in a simply connected positive-definite smooth
4–manifold; the knot case has been studied extensively by Cochran, Harvey and
Horn [11]. Such a 4–manifold is necessarily homeomorphic to a (punctured)
#k CP .2/ . We characterize all links that are slice in a (punctured) #k CP .2/ in
terms of ribbon moves and an operation which we call adding a generalized positive
crossing. We find obstructions in the form of the Levine–Tristram signature function,
the signs of the first author’s generalized Sato–Levine invariants [6], and certain
Milnor’s invariants. We show that the signs of coefficients of the Conway polynomial
obstruct a 2–component link from being slice in a single punctured CP .2/ and
conjecture these are obstructions in general. These results have applications to the
question of when a 3–manifold bounds a 4–manifold whose intersection form is that
of some #k CP .2/ . For example, we show that any homology 3–sphere is cobordant,
via a smooth positive-definite manifold, to a connected sum of surgeries on knots
in S3 .

57M25; 57M27, 57N70

1 Introduction

There has been significant interest in studying cobordisms between closed, oriented,
connected 3–manifolds. In particular, given some non-zero subring R of Q (for
example, RDQ or RD Z), which 3–manifolds are R–homology cobordant? This
question is closely related to the study of knot concordance, in particular, when two
knots K0;K1 � S3 are concordant in S3� I , then the manifolds obtained by .p=q/–
framed surgery on K0 and K1 are Z–homology cobordant. Moreover, the n–fold
cyclic branched covers of K0 and K1 are Q–homology cobordant for any prime-power
integer n.

A natural generalization of the equivalence relation of homology cobordism is to a
sort of inequality. In [10], Cochran and Gompf gave the following definition: for
two 3–manifolds, M1 � M0 if there is a smooth positive-definite cobordism W
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from M0 to M1 , that is, a smooth 4–manifold W with positive-definite intersection
form and with @W D .�M0/ t .M1/. They also defined a relation “�” on knots
in S3 , where K1 �K0 if there is a nullhomologous annulus A properly embedded
in a positive-definite cobordism from S3 to S3 such that @A D .�K0/ t .K1/. If
K1 �K0 , they show (by performing .p=q/–surgery on the concordance annulus) that
MK1

.p=q/ �MK0
.p=q/, where MKi

.p=q/ denotes the .p=q/–framed surgery on
Ki � S3 . In [11], Cochran, Harvey and Horn generalize Cochran and Gompf’s knot
inequality via a family of relations f�ngZ�0

for knots in S3 .

These relations inspire the question: which 3–manifolds can be related via a cobordism
with unimodular positive-definite intersection form? Notice in particular that if K1 �n

K0 for any n, then there is a unimodular positive-definite cobordism from MK0
.p=q/

to MK1
.p=q/. This motivates the question: Which knots are “n–positive”, that is, �n

the unknot? The inequality �n descends to the smooth knot concordance group C , and
one main thrust of [11] is to study the filtration on C provided by the subsets Pn of
n–positive concordance classes (for various n).

In [11] it is shown that the signs of several knot concordance invariants obstruct mem-
bership in P0 , including Ozsváth and Szabó’s � arising in knot Floer homology [27],
Rasmussen’s s arising in Khovanov homology [30], and the “correction term” d for
.˙1/–surgery on K (see Ozsváth and Szabó [28] and Peters [29].

In the present paper, we study 0–positivity for concordance classes of links (see
Definition 2.6); a natural extension, as many 3–manifolds can’t be constructed by
performing surgery on a knot in S3 . One says that ŒL� 2 P0 if L� S3 is slice in a
positive-definite simply-connected four-manifold. This manifold is called a 0–positon
for L. We abuse notation by writing “L 2 P0 ” .

If L 2 P0 , then each of its components is a 0–positive knot. Since the question of
which knots lie in P0 has been treated elsewhere, we seek to focus on aspects of
linking modulo the knot type of the components. In this regard it is natural to ask
when L�0 L0 for some link L0 that is totally split (that is, one can find some pairwise
disjoint open three-balls in S3 each containing exactly one component of L0 ). If each
of the components of the totally split link L0 were a 0–positive knot, it would follow
that L is a 0–positive link. We show that:

Proposition 3.3 A fusion of a boundary link is �0 a totally split link.

This proposition has a rather interesting consequence:

Corollary 3.4 Let M 3 be a homology sphere. Then M is cobordant to a connected
sum of homology spheres M 3

1
;M 3

2
; : : : ;M 3

k
via a positive-definite unimodular cobor-

dism W 4 , with H1.W /D 0, where each Mi is .˙1/–surgery on a knot Ki � S3 .
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Recall that the class of links that are concordant to fusions of boundary links is
conjectured to be equal to the class of links with vanishing Milnor’s invariants (see
Cochran [7, Corollary 2.5] and [8, Question 16, page 66] and Levine [19, page 572]).
This suggests that Milnor’s invariants might obstruct being �0 a totally split link. We
investigate this in Section 4. Recall that the simplest Milnor’s invariants are x�L.ij /,
x�L.ij k/ and x�L.i ijj / which can be identified with, respectively, the linking numbers,
the triple linking numbers, and the Sato–Levine invariants. Further recall that in [8],
the first author defined a sequence fˇn.L/g of link concordance invariants for a two-
component link L; these generalize the Sato–Levine invariant ˇ.L/D ˇ1.L/. The
first non-zero invariant ˇn.L/ in the sequence coincides with the Milnor’s invariant
x�L.1111111 : : : 22/. We prove the following:

Proposition 1.1 Let L� S3 be a link which is �0 a totally split link. Then:

(1) For each i; j , x�L.ij /D 0 (Lemma 4.1).

(2) For each i; j ; k , x�L.ij k/D 0 (Lemma 4.2, this was first due to Otto [26]).

(3) For each i ¤ j , the first non-vanishing ˇn.Lij / for the two-component sublink
Lij is non-positive (Corollary 4.7).

Item .3/ is significant because it indicates that Milnor’s invariants of arbitrary length
may obstruct membership in P0 . On the other hand, we give an example of a link in
P0 for which x�.1234/ is positive and an example for which x�.1234/ is negative. This
indicates that precisely which Milnor’s invariants obstruct membership is subtle. This
also shows that a link in P0 need not be null-link-homotopic.

Proposition 3.3 might seem to suggest that if all of the components of L are 0–positive
knots (for example, if all components are slice knots), then Milnor’s invariants may
provide a complete obstruction to 0–positivity of L. However, this is not the case, since
the process used to “separate” the components of L in the proof of Proposition 3.3 may
lead to a totally split link with very complicated components; in a sense, one trades
linking for knotting. Indeed, let L be a two-component link obtained by negative-
Whitehead-doubling each component of either of the Hopf links (see Example 7.2).
This link has unknotted components and is a boundary link (and thus �0 a split
link). However, the classical link signature of L is positive, and thus the following, a
generalization of the classical work of Murasugi and Tristram on links, and of Cochran,
Harvey and Horn [11, Proposition 4.1] on knots, implies that L 62 P0 :

Theorem 7.1 If L 2 P0 , then the Levine–Tristram signature function of L is non-
positive.

Algebraic & Geometric Topology, Volume 14 (2014)
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Although one may obstruct membership in P0 using many concordance invariants, it
remains to completely characterize these concordance classes. Notice that if V is a
0–positon for L, then V is a smooth manifold that is homeomorphic to a punctured
connected sum of several copies of CP .2/. Although it is not known at this time
whether #j CP .2/ has a unique smooth structure, we proceed to study the set �P0 of
concordance classes of links L such that L is slice in a (non-exotic) #j CP .2/. In
Section 5 we give two characterizations of this set. We define a particular family of
links called null generalized Hopf links and a closely related operation called adding
a generalized positive crossing (these notions promise to be of independent interest).
Then we show:

Theorem 5.7 Every concordance class in �P0 contains a representative which is a
fusion of null generalized Hopf links, and contains a representative which is obtained
from a ribbon link by adding generalized positive crossings.

Recall that it is known that the first non-vanishing coefficient of the Conway polynomial
of a link is a concordance invariant (see Cochran [5]). This suggests another possible
source of obstructions, especially since it is known that such coefficients are equal to a
sum of Milnor’s invariants (see Cochran [5] and Levine [20]). More specifically, recall
that when LD .L1;L2/ is a two-component link, the coefficient of z in the Conway
polynomial rL.Z/D z.a0Ca1z2Ca2z4C� � � / of L is equal to �`k.L1;L2/. When
a0 vanishes, then a1 D�ˇ.L/, where the Sato–Levine invariant ˇ.L/ is non-positive
when L 2P0 by Proposition 1.1. Hence one should ask whether there is a general rule
governing the sign of the smallest degree non-vanishing coefficient of rL.z/ when
L 2 P0 (or L 2 �P0 ). We give evidence for this by proving the following:

Theorem 6.1 Let L� S3 be a 2–component link which is slice in a punctured CP2 ,
and suppose that the Conway polynomial rL of L is of the form

rL.z/D z
�
akz2k

C a.kC1/z
2kC2

C � � �C anz2n
�
;

where ak ¤ 0. Then .�1/kak � 0.

We conjecture that an analogous rule holds for any link in P0 (where the sign is some
fixed function of the leading degree k and the number of components m).

There are other obstructions to membership in P0 that can be applied that we do
not here investigate. These arise from branched covering arguments, d –invariants
associated to branched covers, and s or � invariants of knots obtained as fusions of
the components. The latter are discussed briefly in Section 8.
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Contemporaneous work by Cha and Powell [3] investigates the entire family of relations
�n for links. Their focus is on links that are slice in the topological category (and
thus would resist many of the obstructions discussed here). Their results are striking,
indicating that the filtration �n is highly non-trivial even when restricted to topologically
slice links.

Acknowledgements The first author was partially supported by the National Science
Foundation (DMS-1006908).

2 Link inequalities and an operation preserving positivity

We first recall some terminology regarding links in S3 .

Definition 2.1 Let LD .L1; : : : ;Ln/;L
0 D

�
gcL0

1
; : : : ;L0n

�
gc be oriented n–com-

ponent links in S3 and let V be a smooth, oriented, compact 4–manifold with @V D
S3q�S3 . We say that L is concordant to L0 in V if there exist oriented annuli
A1; : : : ;An smoothly, disjointly, and properly embedded in V and trivial in H2.V; @V /

such that for each i , @Ai DLiq�L0i � S3q .�S3/.

Definition 2.2 Let LD .L1; : : : ;Ln/ be an n–component link in S3 and let V be
a smooth, oriented, 4–manifold with @V D S3 . We say that L is slice in V if there
exist disks D1; : : : ;Dn smoothly, disjointly, and properly embedded in V and trivial
in H2.V; @V / such that for each i , @Di DLi .

Remark 2.3 Notice that the homological triviality condition on the concordance annuli
(respectively, slice disks) in Definition 2.1 (respectively, Definition 2.2) implies that
H2.V / has a basis representable by surfaces disjointly and smoothly embedded in the
complement of the annuli (respectively, slice disks).

Cochran and Gompf [10, Definition 2.1] defined a relation K �K0 on knots which
generalized the relation that K can be transformed to K0 by changing only positive
crossings. More recently Cochran, Harvey and Horn [11] generalized and filtered this
relation to “�n ”. We extend the nD 0 version to links in a straightforward way via
the following definitions.

Definition 2.4 Let L;L0 � S3 be m–component links. We say that L �0 L0 if
L is concordant to L0 in a smooth, simply-connected 4–manifold V such that the
intersection form on H2.V / is positive-definite.

Remark 2.5 Since V is smooth and has S3 boundary components, the intersection
form on H2.V / is that of a closed smooth 4–manifold. Thus it is unimodular and
diagonalizable by Donaldson’s Theorem. It follows that V is homeomorphic to a doubly-
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punctured connected sum of CP .2/’s, but possibly has an exotic smooth structure. The
above relation clearly descends to one on C , the smooth link concordance group. While
the relation is indeed reflexive and transitive, it fails to by symmetric. If L�0 L0 then
any sublink of L is �0 the corresponding sublink of L0 . If L�0 L0 then �L0 �0 �L

(here �L denotes the reverse of the mirror image of L).

The following extends the notion of 0–positive knots described by Cochran, Harvey
and Horn in [11].

Definition 2.6 Let L� S3 be an m–component link. We say that L is 0–positive,
or L 2 P0 , if L is slice in a smooth, simply-connected 4–manifold V such that the
intersection form on H2.V / is positive-definite. The 4–manifold V will be referred
to as a 0–positon for L.

Notice that L is 0–positive if and only if L�0 U , where U denotes the unlink. As
above, any 0–positon is homeomorphic to a punctured connected sum of CP .2/’s, but
possibly has an exotic smooth structure. We’ll often abuse notation by writing L 2 P0 ,
meaning P0 . Denote by �P0 the set of concordance classes of links which are slice in
a (non-exotic) closure.#j CP .2/ nB4/ for any integer j � 0.

(a)

  

(b)

D

(c)

Figure 1

It was observed in [11] that if a knot KC can be obtained from another knot K�
by changing a negative crossing to a positive one, then KC is concordant to K�
in a doubly-punctured CP .2/. It follows that is a knot K admits a diagram with
only positive crossings, then K 2 �P0 . Consider the operation on knots consisting of
inserting a full negative twist in an oriented band on some Seifert surface or, equivalently,
changing a negative crossing into a positive as illustrated in Figure 1. Performing
.C1/–framed Dehn surgery on the dotted unknot in Figure 1(a) effectively replaces the
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negative crossing in Figure 1(a) with the positive one in Figure 1(c). We shall define a
generalization of this operation on colored links.

An m–component k–colored link L is a link of m components each of which has been
assigned one of k colors. This assignment is in general not assumed to be surjective.
However if L 2 P0 then we will implicitly assume the natural coloring where the i th

component is assigned the color i .

Definition 2.7 The operation of adding a generalized positive crossing to a colored
link is the transformation (a)  (c) depicted in Figure 2, where we require that, for
each color, the union of the components of that color links algebraically zero times
with the bold unknot in (b). Obviously this is one of the Kirby moves together with an
extra linking number restriction.

...

(a)

  ...

(b)

Š

C1

...

(c)

�1

Figure 2

Lemma 2.8 If L0 is a link which is obtained by adding a generalized positive crossing
to a link L, then L0 �0 L.

Proof Consider some diagram of L which looks like Figure 2(a) in some local region,
and let L0 be the result of adding a GPC in that region as shown in Figure 2(c). There is
a positive-definite cobordism C obtained from S3 � Œ0; 1� by adding the single .C1/–
framed two handle to the unknotted circle in S3�f1g as shown in Figure 2(b). Moreover
L is concordant to L0 in C . This shows that L0 �0 L. Note that the requirement
that each component Li passes algebraically zero through the generalized crossing is
necessary to establish that the annuli between Li and L0i are null-homologous.

Corollary 2.9 P0 and �P0 are closed under the operation of adding a generalized
positive crossing.

Algebraic & Geometric Topology, Volume 14 (2014)
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Proof Lemma 2.8 implies closure of P0 by transitivity of �0 . However, notice that
the cobordism C appearing in the proof is diffeomorphic to a twice punctured CP .2/.
So, if L is slice in #j CP .2/, then in fact L0 is slice in #jC1 CP .2/.

3 Fusions of boundary links

Definition 3.1 Suppose L is an oriented link of m components. A fusion band B

for L is an embedding of an oriented I � I in S3 for which B \L D @I � I , B

connects two different components of L, and the orientation on B is such that the
.m�1/–component link given by L� .B \L/[ .I � @I/ can be given an orientation
compatible with that of L. Such an .m�1/–component link is called a fusion of L

corresponding to the band B . More generally, given pairwise disjoint fusion bands
fB1; : : : ;Bng the result of these simultaneous fusions is called a fusion of L if the
resulting number of components is m� n (see Kawauchi [16, Section 13.1]).

Note that the last hypothesis is equivalent to saying that, for each 1 � i � n, Bi is
a fusion band for the result of fusion along fB1; : : : ;Bi�1g. It is also equivalent to
requiring that the graph whose vertices are the components of L and whose edges are
the core arcs, .I � f1

2
g/i of the bands, is a “forest” (a disjoint union of one or more

trees).

Definition 3.2 Let L� S3 be a n–component link. Then we call L totally split if
one can find n pairwise-disjoint open three-balls each containing one component of L.

Proposition 3.3 Let L be a fusion of a boundary link. Then there are totally split
links L1 and L2 such that L1 �0 L�0 L2 .

It is known that any integer-homology–S3 can be obtained as surgery on a boundary
link with all framings coming from the set f˙1g (see Cochran, Gerges and Orr [9,
Proposition 3.17] and Matveev [22, Theorem A]). Together with Proposition 3.3, this
immediately implies the following:

Corollary 3.4 If M is an integer homology three-sphere, then there is a four-manifold
W and knots K1;K2; : : : ;Km � S3 such that:

(1) @W DM t
�
gc #m

iD1 S3
ni
.Ki/

�
gc , where ni 2 f˙1g

(2) W has positive-definite diagonalizable intersection form.

(3) H1.W /D 0

Here S3
n .K/ denotes n–framed surgery on the knot K � S3 .
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Proof of Proposition 3.3 Suppose L is a fusion of B , a boundary link with compo-
nents B1; : : : ;Bn . Let fFig be a set of pairwise disjoint Seifert surfaces for the Bi ’s.
Each Fi may be viewed as a “disk Di with bands”. We may assume that the fusion
bands attach only along @Di and otherwise intersect Fi only in the interior of Di . The
bands of the various Fi can link with one-another arbitrarily. However, by adding a
sequence of GPC’s in one of the two ways depicted in Figure 3, we can unlink the
bands of Fi from the bands of Fj for i ¤ j , thus transforming B to some totally split
link B0 . If we perform the very same moves on L, we arrive at a link L0 , which is a
fusion of the totally split link B0 . Lemma 2.8 implies that L0 �0 L.

C1

Š

(a)

C1

Š

(b)

Figure 3: Two ways to change a crossing of oriented bands by adding a GPC

In [25], Miyazaki showed that if a fusion of a totally split link produces a knot, then
the smooth concordance class of that knot is independent of the band data, that is, his
proof shows that a fusion of a totally split link is ribbon concordant to a connected
sum. However, his proof doesn’t rely on the number of components of the resulting
fusion. Applying this we see that L0 is concordant to a link L1 obtained by performing
connected sums of several components of the totally split link B0 , and so L1 is itself
totally split. Thus L1 �0 L where L1 is totally split.

Applying this process to �L produces a totally split link L2 with �L2 �0 �L.

4 Some obstructions arising from Milnor’s invariants

Proposition 3.3 is suggestive. For, recall that the class of links that are concordant to
fusions of boundary links is conjectured to be the same as the class of links all of whose
Milnor’s x�–invariants vanish (see Cochran [7, Corollary 2.5] and [8, Question 16,
page 66] and Levine [19, page 572]). This leads one to suspect that the complete
obstruction to a link’s being �0 a totally split link might be phrased in terms of
Milnor’s invariants. We proceed to investigate this possibility. Milnor’s invariants
may be loosely described as “higher-order linking numbers” (see [8] for a proof of
this general meta-statement). Indeed the simplest non-zero Milnor’s invariant of L,
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x�L.ij /, is identifiable with the linking number between the i th and j th components,
`ij .

Lemma 4.1 If L�0 L0 then the pairwise linking numbers for L and L0 are equal. In
particular if L is �0 a totally split link then `ij D 0.

Proof Let Ai and Aj be the annuli in V as given by Definition 2.4. Let Fj , �F 0j
be Seifert surfaces for Lj and �L0j . Then of course `ij and `0ij , respectively, are
the algebraic intersection numbers Fj �Li and F 0j �L

0
i . Let Bj be the closed surface

Aj [ �Fj [ F 0j . Since Ai and Aj are disjoint, the algebraic intersection number
ŒBj � � ŒAi � is equal to the difference `ij � `

0
ij . But this algebraic intersection number is

zero since ŒAi �D 0 by hypothesis. Notice that we never used the hypothesis that Aj

and Ai are annuli, and we needed only one of the two to be null-homologous. This
observation will be used in the proof of the next lemma.

Henceforth we restrict attention to links with pairwise linking numbers zero. Among
such links the next simplest Milnor’s invariants are the length three invariants, x�L.ij k/

(for i; j ; k pairwise distinct). The integer x�L.ij k/ depends only on the sublink
fLi ;Lj ;Lkg and is equal to the negative of the linking number between Lk and an
oriented circle obtained as the intersection of Seifert surfaces for Li and Lj (see
Cochran [8, page 71]).

The following result is a consequence of a much more general result of C Otto [26,
Theorem 3.1, nD0]. We sketch a simple proof along the lines of the proof of Lemma 4.1.

Lemma 4.2 (C Otto) If L �0 L0 then for each i ¤ j ¤ k , x�L.ij k/ D x�L0.ij k/.
Thus if L �0 a totally split link then, for each i ¤ j ¤ k , the Milnor’s invariant
x�L.ij k/ is zero.

Proof It suffices to consider 3–component links L. Let L and L0 be 3–component
links such that L �0 L0 and L0 is totally split. Then L is concordant to L0 in
some smooth, positive-definite, simply-connected 4–manifold V . We shall show that
x�L.123/ D 0. For i D 1; 2; 3 let Ai be the disjoint concordance annuli in V ; by
definition, 0D ŒAi � 2H2.V; @V / for each i . Let Fi and F 0i be Seifert surfaces for Li

and �L0i . Since the pairwise linking numbers are zero these may be chosen in the link
exteriors. We may assume that F1\F2 is a circle that we denote L12 and that F 0

1
\F 0

2

is a circle L0
12

. Note that x�L.123/D�`k.L12;L3/ and x�L0.123/D�`k.L0
12
;L0

3
/.

For i D 1; 2 let Bi denote the closed surface obtained by gluing Fi and F 0i onto Ai .
We claim that the Bi bound 3–manifolds Mi in V �A3 . We only sketch the proof.
The Seifert surfaces correspond, by the Pontryagin construction, to continuous maps
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on the link exteriors, f W E.L/! S1 �S1 and f 0W E.L0/! S1 �S1 , wherein the
Seifert surfaces are obtained as the inverse image of the point f1g 2 S1 under the
two projections to the circle. Since the annuli are null-homologous, the exterior of
the union of all annuli in V is a product on first homology. It follows that the maps
f and f 0 extend to a map on the exterior of the annuli. The 3–manifolds are then
obtained as the inverse images of f1g under the two projection maps to the circle. Then
M1\M2 is an oriented surface A12 disjoint from A3 in V . It follows from the proof
of Lemma 4.1, that the linking numbers of the boundaries of these surfaces are equal.
Here we use the fact that ŒA3�D 0, but we do not need A12 to be an annulus, nor to
be null-homologous, as observed in the proof of Lemma 4.1.

The next most complicated Milnor’s invariants are of length four. In particular, for
links of 2 components with linking number zero there is only one, x�.1122/, which
equals �ˇ.L/ where ˇ.L/ is the Sato–Levine invariant of the 2–component link L

(see Cochran [8, page 71; 6, Theorem 9.1; 5, Section 4]. The latter is, by definition,
the self-linking of the circle L12 obtained as the intersection, F1\F2 , of two Seifert
surfaces, with respect to a push-off using a normal vector field to either surface.

Proposition 4.3 Let L;L0�S3 be 2–component links. If L�0 L0 then x�L.1122/�

x�L0.1122/ (alternatively ˇ.L/� ˇ.L0/).

Proof For i D 1; 2, let Fi , F 0i , Ai be as in the proof of Lemma 4.2 and let L12 D

F1 \F2 and L0
12
D F 0

1
\F 0

2
. As above let Bi be constructed by gluing Fi and F 0i

onto Ai . Again construct 3–manifolds Mi bounding the Bi and let A12 DM1\M2 .
Let F12 and F 0

12
be Seifert surfaces for L12 and L0

12
. Let B12 be constructed by

gluing �F12 and F 0
12

onto A12 . Let AC
12

denote the pushoff of A12 . On the one
hand we have that the self-intersection number of B12 is non-negative because the
intersection form of V is positive-definite. On the other hand, this intersection number
may be calculated as the algebraic count of the transverse intersections of B12 with
AC

12
. Since AC

12
is disjoint from A12 , this intersection number is equal to

�F12�A
C

12
CF 012�A

C

12
D�`k

�
gcL12;L

C

12

�
gcC`k

�
gcL012; .L

0
12/
C
�
D�ˇ.L/Cˇ.L0/:

Thus ˇ.L/� ˇ.L0/.

Corollary 4.4 Let L is �0 a totally split link then for all i; j , x�L.i ijj / � 0 (alter-
natively the Sato–Levine invariant of each 2–component sublink is non-positive).

For very simple 2–component links, the conditions above completely determine whether
or not that link is �0 a split link, as the next result shows.
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Proposition 4.5 Suppose L is a 2–component link for which each component admits
a genus-1 Seifert surface in the exterior of the other. Then L is �0 a split link if and
only if x�L.1122/� 0 (alternatively ˇ.L/� 0).

Proof One implication follows from Corollary 4.4. For the other implication suppose
ˇ.L/ � 0. By Proposition 3.3 it suffices to show that L �0 a fusion of a boundary
link.

For i D 1; 2, we can choose genus-1 Seifert surfaces Fi for Li which intersect in an
oriented multicurve on each surface.

After isotopies of the Fi and Li , we can assume that for each i , this multicurve lies
abstractly on Fi as the union of several parallel copies of a meridional curve, several
boundary-parallel curves, and several curves bounding disks in Fi .

First, we can dispense with any components of the multicurve which are boundary-
parallel on Fi by modifying Li by an isotopy that effectively “shrinks the neck” of
the surface.

Now suppose that some component ˇ bounds a disk D � F1 . Then either ˇ bounds
a disk in F2 or ˇ is meridional in F2 . In the first case, we can eliminate ˇ from
F1\F2 via an isotopy of F1 . In the second, we can cut F2 along a pushoff of ˇ and
cap off the new boundary components with pushoffs D˙ of D to obtain a disk F 0

2

bounded by L2 . Furthermore, F 0
2

can be chosen up to isotopy to be disjoint from F1 ,
realizing L as a totally split link (and thus a boundary link).

F1\F2

Li
Fi

Figure 4: A multicurve that is the intersection of two Seifert surfaces

Henceforth, we assume that all components of F1\F2 are meridional, as in Figure 4.
Now we choose an oriented meridional curve  on F1 , and suppose that the multicurve
F1\F2 is composed of n1 copies of  and n2 copies of � . Then

0� ˇ.L/D `k
�
gcF1\F2;

�
F1\F2

�
gcC

�
gc D .n1� n2/

2`k.; C/:

If n1 D n2 , then we can match components of F1\F2 in oppositely-oriented pairs.
We can then progressively eliminate these components in pairs by attaching tubes
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connecting the corresponding sheets of F2 , as in Figure 5. Although this modification
increases the genus of F2 , we eventually obtain a pair of disjoint Seifert surfaces for
the components of L. Therefore, L is itself a boundary link.

F1

F2 F2

(a) The surface F1 intersecting a pair of sheets of the
surface F2

F1

F2 F2

(b) A tube has been attached to connect the sheets

Figure 5: Removing two circles of intersection between Seifert surfaces by
adding a tube.

Now instead we assume that n1¤ n2 . Then n WD�`k.; C/ is a non-negative integer,
and the surfaces F1 and F2 can be carried by isotopies to those shown in Figure 6(a).
A “�n” box indicates n left-handed twists in the strands, a “K” box indicates that the
strands are tied in the knot K in a zero-twisted fashion, and the symbol “�” indicates
that a band twists, knots, and links with other bands arbitrarily.

One could instead then view L as a fusion of the four-component link shown in
Figure 6(b), where one band fuses together the red components and another the blue
components. Let L0 denote the link obtained from L by omitting the box of twists;
L0 is in fact a fusion of the boundary link consisting of four parallel copies of K . It’s
easy to see that L can be obtained from L0 by adding n GPC’s, and so L�0 L0 .

In [8] the first author greatly generalized the Sato–Levine invariant of a 2–component
link L by defining two sequences of integral invariants fˇn.L/g and f x̌n.L/g, n� 1
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* *K K

�
n

�
n

(a) The Seifert surfaces bounded by the components Li ; the
curve  appears as a dashed green circle on each surface.

K

�n

(b) L can be obtained from the link above by fusing the
components with matching colors.

Figure 6: Two views of the link L appearing in the proof of Proposition 4.5.

that are independent except for nD 1, where they each agree with the Sato–Levine
invariant ˇ.L/. That is, ˇ1.L/ D x̌1.L/ D ˇ.L/. These sequences are defined
as follows. Given L D .L1;L2/ one defines a new 2–component link D.L/, the
derivative of L with respect to the first component, to be the link .L12;L2/ where L12

is the oriented circle obtained as the intersection, F1\F2 , of some Seifert surfaces
for L1 and L2 . Then ˇ1.L/ is defined to be the Sato–Levine invariant ˇ.L/ of L,
and for n> 1, the numbers ˇn.L/ are defined recursively via

ˇn.L/� ˇn�1.D.L//:

In other words, the invariant ˇn.L/ is the Sato–Levine invariant of the derivative
Dn�1.L/DD.D.: : :D.L// : : :/, the result of applying the derivative operation n� 1

times. The isotopy class of D.L/ is not well-defined of course since there are many
choices for the Fi . Nonetheless the numbers ˇn.L/ are well-defined. Note that these
derived links are obtained by always retaining the second component. By retaining
the first component, one defines a derivative with respect to the second component
and hence a second sequence x̌n.L/. For simplicity we suppress the latter since
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by symmetry all of our results hold for this other sequence. These sequences were
later shown to be integral lifts of Milnor’s invariants f.�1/nx�L.1122 : : : 22/g and
f.�1/nx�L.11 : : : 1122/g of length 2nC 2 (see Cochran [8, Theorem 6.10]).

We can now greatly generalize Proposition 4.3:

Theorem 4.6 Let L;L0 be 2–component links with zero linking number such that
L�0 L0 . If ˇi.L/D ˇi.L0/ for 1� i < n, then ˇn.L/� ˇn.L0/.

Corollary 4.7 If L is �0 a totally split link, then for each two-component sublink
Lij , the first non-zero invariant ˇn.Lij / invariant is non-positive.

m

n

Figure 7: The link M.n;m/; the box represents m full twists

Example 4.8 Consider the two component link M.n;m/ depicted in Figure 7 (where
m; n 2Z with n� 0 and m¤ 0). It’s straightforward to verify that ˇk.M.n;m//D 0

for 1�k �n while ˇ.nC1/.M.n;m//Dm. Thus if m> 0 then ˇ.nC1/.M.n;m//> 0

so, by Corollary 4.7, M.n;m/ is not �0 a totally split link and hence not 0–positive.
But in this case the crossings inside the box in Figure 7 are negative crossings. Since
M.n;m/ can be changed to a trivial link by changing some of these crossings, it is
0–negative. This example shows that the sign of Milnor’s invariants of arbitrarily large
length can be involved in the question of whether or not a link is �0 a split link.

Moreover these examples also show that the hypothesis of Proposition 4.5 regarding
genus-one Seifert surfaces is necessary. It cannot even be relaxed to merely assume that
each component is knot of genus at most 1. For the components of the link M.1; 1/ are
an unknot and a figure-eight knot, respectively, and ˇ.M.1; 1//D ˇ1.M.1; 1//D 0.
However, ˇ2.M.1; 1//D 1 and thus M.1; 1/ is not �0 a split link.

Theorem 4.6 will be proved without much work by relaxing the relation �0 to a relation
�w

0
which is respected by the derivative operation. This will enable an inductive proof.
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Definition 4.9 The links L D .L1;L2/ and L0 D .L0
1
;L0

2
/ are weakly cobordant

in V if there a compact oriented surface A1 and an oriented annulus A2 , smoothly,
disjointly, and properly embedded in V such that for each i , @Ai DLiq�L0i , Ai is
trivial in H2 .V; @V /, and moreover there is a null homology for A2 in the exterior
of A1 .

Definition 4.10 We say that L �w
0

L0 if L is weakly cobordant to L0 in a smooth,
simply-connected 4–manifold V such that the intersection form on H2.V / is positive-
definite.

Therefore, compared to �0 , we have greatly relaxed the requirement that A1 be an
annulus but imposed a stronger null-homology property for A2 . Corollary 4.7 will
follow from the following two lemmas. First we generalize Proposition 4.3.

Lemma 4.11 Let L;L0�S3 be 2–component links. If L�w
0

L0 then ˇ.L/� ˇ.L0/
(or x�L.1122/� x�L0.1122/).

Then we prove the following lemma:

Lemma 4.12 If L�w
0

L0 and ˇ.L/D ˇ.L0/ then D.L/�w
0

D.L0/.

Proof of Theorem 4.6 assuming Lemmas 4.11 and 4.12 We proceed by induction
on the parameter n. If nD 1, then the result follows immediately from Lemma 4.11.
For some k � 1, we assume that the statement holds with nD k (for any pair of links
L and L0 satisfying the hypotheses). We now prove the statement for nD kC 1. Let
L and L0 be links with zero linking number such that L�w

0
L0 and ˇi.L/D ˇi.L0/

for 1� i < kC 1. Then notice that

ˇi.D.L//� ˇiC1.L/D ˇiC1.L0/� ˇi.D.L0// for 1� i < k:

Additionally, D.L/�w
0

D.L0/ by Lemma 4.12, and so the nD k statement applied to
the links D.L/ and D.L0/ implies that

ˇkC1.L/� ˇk.D.L//� ˇk.D.L0//� ˇkC1.L0/:

Proof of Lemma 4.11 In looking at the proof of Proposition 4.3, one sees that we
never used the fact that the Ai were annuli. All we needed was the existence of the
3–manifolds Mi . This follows if B1 is null-homologous in the exterior of A2 and
B2 is null-homologous in the exterior of A1 . Under the hypothesis that L�w

0
L0 , the

second of these two is explicitly given in Definition 4.9. From this definition we also
know that A1 is zero in H2.V; @V / and hence that B1 is zero in H2.V /. However,
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we claim that the map i�W H2.V �N.A2//!H2.V / is injective (which would finish
the proof). For, from the exact sequence

H3.V;V �N.A2//
@�
�!H2.V �N.A2//

i�
�!H2.V /

we know that B1 is in the image of @� . But by excision (note that since A2 is a
null-homologous annulus it has a trivial normal bundle)

H3.V;V �N.A2//ŠH3.A2 �D2;A2 � @D
2/ŠH3.S

1
�D2;S1

�S1/Š Z;

generated by the solid torus neighborhood of L2 in S3 . The image of this class under
@� is the boundary of the regular neighborhood of L2 which is null-homologous in
S3�N.L2/ and hence zero in H2.V �N.A2//. Thus B1 is null-homologous in the
exterior of A2 .

Proof of Lemma 4.12 For i D 1; 2 let Fi , F 0i be Seifert surfaces with connected
intersection L12 D F1 \F2 and L012 D F 0

1
\F 0

2
. For i D 1; 2 let Bi be the closed

surfaces defined by gluing �Fi and F 0i onto Ai . By hypothesis (Definition 4.9) B2 is
null-homologous in the exterior of A1 and A1 is zero in H2.V; @V /. But, as in the
proof of Lemma 4.11, since A2 is an annulus, it follows that B1 is null-homologous
in the exterior of A2 . Thus again there exist a 3–manifold M1 bounding B1 in the
exterior of A2 and there exists a 3–manifold M2 bounding B2 in the exterior of A1 .
Let A12 DM1 \M2 , an oriented surface with trivial normal bundle in the exterior
of A2 . A push-off AC12 does not intersect M2 . The link .LC12;L2/ is isotopic to
D.L/ and the link ..L012/

C;L2/ is isotopic to D.L0/. Assuming these identifications,
we claim that .AC12;A2/ is a weak cobordism in V between these two links. Since
M2 is a null-homology for B2 in the exterior of AC12 , the only thing to show is
that AC12 is zero in H2.V; @V /. Let FC12 and .F 012/

C be Seifert surfaces for LC12

and .L012/
C . Since H2.V /ŠH2.V; @V /, it suffices to show that the closed surface

BC12DAC12[�FC12[.F
0
12/
C is zero in H2.V /. Since the intersection form is positive-

definite, this is equivalent to showing that B12 �B12D0. The latter may be computed by
counting intersections between B12 and AC12 . Since A12\AC12 D∅, this intersection
is equal to �F12 �L

C
12 plus F 012 � .L

0
12/
C . The latter are the self-linking numbers of

L12 and L012 respectively. Thus

B12 �B12 D�ˇ.L/Cˇ.L
0/D 0

by hypothesis. Thus we have shown that D.L/ is weakly cobordant to D.L0/ in V

so D.L/�w
0

D.L0/.

At this point it might be reasonable to conjecture that if L 2 P0 and Milnor’s x�–
invariants of length less than n vanish, then for all sequences I of length n, x�L.I/ is
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non-negative (or non-positive according to the parity of n). But such a result is not
likely to be true because, for example, P0 is closed under changing the orientation of
the i th component, while the effect on x�.I/ is to change by .�1/ni where ni is the
number of occurrences of i in I (see Milnor [24]). Example 4.13 below confirms that
this conjecture is false. A correct conjecture would have to be more complicated.

�1

Figure 8: This zero-positive link is not null-homotopic

Example 4.13 Recall that two n–component links L0;L1 � S3 are link homotopic
(or sometimes merely homotopic) if there is a homotopy

H W

� na
kD1

S1

�
� Œ0; 1�! S3

such that H..
`n

kD1 S1/ � fig/ D Li for i D 0; 1 and such that the images of the
circles are pairwise-disjoint for each t 2 Œ0; 1� (see Milnor [23]). In other words, the
components may cross themselves during the homotopy but may not cross one another.
Recall also that concordant links are link homotopic, and in particular any slice link is
link homotopic to the unlink. P0 is closed under concordance but not closed under link
homotopy since any two component link with zero linking number is link homotopic to
the trivial link, but membership in P0 is obstructed by, for example, the signs of ˇn.L/.
Link homotopy is controlled by x�L.I/, where the sequence I contains no repeated
indices. So for example the invariants x�.ij / and x�.ij k/ that we have discussed are
invariants of link homotopy (see Milnor [24]). Since these are known to be the only
invariants of link homotopy for 2 and 3–component links, it follows from Lemmas 4.1
and 4.2, that for such links being 0–positive implies being link homotopic to a trivial
link. But this pattern does not continue. The following example shows that there are
4–component links in P0 that have x�.1234/¤ 0. Hence being 0–positive does not
imply that L is null-homotopic. Let L denote the four-component link appearing in
Figure 8. Clearly L 2 �P0 since it is obtained from the trivial link by the addition of a
generalized positive crossing. However, L is link homotopic to the Bing double of a
Hopf link which is known to have x�L.1234/D˙1 (see Milnor [23, Figure 7, nD4]).
Thus L is not link homotopic to the trivial link. Moreover, by changing the orientation
of the first component we can make x�L.1234/ achieve both signs.
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5 A characterization of links that are slice in a connected sum
of CP.2/’s

In this section we give two characterizations, up to concordance, of the set �P0 . If
#j CP .2/, for each j , has a unique smooth structure (which is unknown at this time),
this would completely characterize P0 . We first define a distinguished family of
0–positive links that generalize the positive Hopf link.

Definition 5.1 A k–colored null generalized Hopf link (or NGHL) of 2n–components
is a colored link L obtained by taking 2n parallel fibers of the Hopf fibration, orienting
n of them in each direction, and finally assigning each component with one of k colors
such that the total algebraic count of fibers representing each color is equal to zero.

When nD 1, one obtains the positive Hopf link where both components have the same
color. Figure 9 illustrates the general form of a two-colored NGHL.

Remark 5.2 Notice that a k–colored NGHL of 2n components is simply the result of
adding a GPC to a 2n–component k–colored unlink in such a way that each component
links the .C1/–framed unknot achieving the GPC addition geometrically once.

... ...

�1
n1 pairs n2 pairs

Figure 9: A two-colored null generalized Hopf link

Remark 5.3 NGHL’s arise naturally as the links of certain singularities. Namely
consider a disjoint collection fD1; : : : ;Dkg of oriented connected null-homologous
surfaces embedded disjointly in CP .2/ in such a way that each meets the exceptional
curve EDCP1 transversely as shown schematically in Figure 10(a). The condition that
Di is null-homologous means that it intersects E in 2ni points, where ni are positive
intersections and ni are negative intersections. If we were to blow down the CP .2/ we
would get a k–colored singularity in B4 , as shown schematically in Figure 10(b), where
the link of this singularity is a k–colored link, L, in S3 with 2nD 2n1C � � �C 2nk

components. We claim that L is precisely a k–colored 2n–component NGHL as in the
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(a) (b)

Figure 10: Blowing down a CP .2/ to obtain a singularity of the slice disk(s).
The exceptional sphere is dotted.

previous paragraph. This is seen as follows. Let N.E/ be a tubular neighborhood of
E which may be identified with the total space of the normal 2–disk bundle to E . It
is known that the circle bundle @N.E/!E is precisely the Hopf fibration S3! S2 .
Then L is the same the intersection of the union of the Di with @N.E/Š S3 . Thus
the components of L are parallel fibers of the Hopf fibration, colored with the color
i if they arise from Di \E . Since ŒDi � � ŒE�=0, ni of the i –colored components are
oriented one way and ni are oriented the other way.

Definition 5.4 An n–component link L (viewed as an n–colored link in the canonical
manner) is a fusion of NGHL’s if it is obtained as a fusion of a disjoint union of n–
colored NGHL’s where the fusion bands connect only components of the same color.

The following observation will be useful.

Lemma 5.5 The split union of a k–colored NGHL with a k–colored trivial link of n

components is a fusion of another k–colored NGHL.

Proof Let L be the split union of a k–colored NGHL and a k–colored trivial link of
n components, and consider a diagram for L which appears as in Figure 11(a) in the
region of the GPC addition. Figure 11(b) is a diagram of another L0 we assume that
the diagrams for L and L0 agree outside of the regions depicted in the figures; notice
in particular that L0 is a disjoint union of a k–colored NGHL and a k–colored trivial
link of .n� 1/ components. Performing the fusion indicated by the dashed segment
yields the diagram for L depicted in Figure 11(c). Since “is a fusion of” is a transitive
relation on links, this proves the lemma.

There is a more naive perspective on fusions of NGHL’s.
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...

...

�1

(a) L

...

...

�1

(b) L0

...

...

�1

(c) L

Figure 11

Lemma 5.6 The set of n–component fusions of k NGHL’s is a subset of the set
of links obtained from n–component ribbon links by adding k generalized positive
crossings.

Proof An n–component link L which is a fusion of k NGHL’s is obtained by starting
from a trivial link, adding k generalized positive crossings (all of which are compatible
with the technical restriction mentioned in Remark 5.2), and then performing fusions
to get to an n–component link. But since fusions correspond to bands whose cores are
one-dimensional, and since the application site for a generalized positive crossing also
is one-dimensional, these two operations commute. That is to say, that L may equally
be obtained from the same trivial link by adding fusion bands (yielding a ribbon link),
and then adding k generalized positive crossings.

Note that equality of these two sets does not necessarily hold. If one views the addition
of arbitrary GPC’s to a ribbon link as addition of GPC’s to an unlink prior to fusing,
there’s no a priori guarantee that the latter GPC additions result in a disjoint union of
NGHL’s (or even a fusion of NGHL’s).

Having made these observations, our characterizations follow easily.

Theorem 5.7 Fix k; n 2 Z>0 . Let L� S3 be an n–component link. The following
are equivalent:

(1) L is slice in a (punctured) #k CP .2/.

(2) L is concordant to a fusion of k NGHL’s.

(3) L is concordant to a link L0 which is obtained from a ribbon link by adding k

positive generalized crossings.

Proof .1/) .2/ Suppose that L is slice in V WD closure.#k CP .2/ nB4/. Let
L1;L2; : : : ;Ln denote the components of L and D1;D2; : : : ;Dn denote their respec-
tive slice disks in V . Since each Di is trivial in H2.V; @V /, it intersects Ei , the
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exceptional sphere of the i th CP .2/ summand, in an even number of points, which
cancel when counted with sign. After removing open tubular neighborhoods of the
exceptional spheres E1; : : : ;Ek , we are left with n planar surfaces embedded in a
smooth manifold W that is diffeomorphic to B4 with k open sub-balls deleted. Choose
k � 1 arcs in W that avoid the surfaces and connect the 3–spheres @N.Ei/. Remove
neighborhoods of these arcs from W . The result is a collection, P , of n planar surfaces
properly embedded in a manifold diffeomorphic to S3 � Œ0; 1�, forming a cobordism
from L to a link which is the disjoint union of k NGHL’s (using Remark 5.3). After an
isotopy of P we can assume that the induced height function P ,! S3� Œ0; 1�! Œ0; 1�

is a Morse function f where f .L/D 1, whose minima all occur at height 1
4

, maxima
occur at height 3

4
, and where f �1.1

2
/ is an n–component link L0 which is concordant

to L. The link L00 D f �1.1
4
C �/ is the disjoint union of k NGHL’s together with a

trivial link created by the local minima. Thus L0 is a fusion of L00 . But the latter is a
fusion of k NGHL’s by Lemma 5.5. Thus L0 is itself a fusion of k NGHL’s.

.2/) .3/ This follows from Lemma 5.6.

.3/) .1/ Any ribbon link is slice in B4 . Thus, by the last line in the proof of
Corollary 2.9, L0 is slice in a (punctured) #k CP .2/. Thus L is slice in a (punctured)
#k CP .2/.

Corollary 5.8 zP0 is the smallest set that contains all trivial links and is closed under
concordance and adding generalized positive crossings.

6 The Conway polynomial of a two-component link that is
slice in CP 2

Let L� S3 be a k–component link, and choose a connected Seifert surface F � S3

for L. Then if V is the Seifert matrix for F recall that the Conway polynomial rL.z/

of L is obtained by substituting z D x�x�1 into the expression

det
�
gcxV �x�1V t

�
gc:

Recall that in fact the Conway polynomial has the form

rL.z/D zk�1
�
gca0C a1z2

C a2z4
C � � �C amz2m

�
gc

for some coefficients ai 2 Z.

When computing Conway polynomials below, the following notational convention
will be useful. Let A WDA.x/ be a matrix whose entries are Laurent polynomials in
ZŒx;x�1�. Then define a new matrix xA WDA.�x�1/. Notice in particular that:
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(i) For any .n�m/ matrices A and B , ACB D xAC xB .

(ii) For any .n�m/ matrix A and .m� k/ matrix B , A �B D xA � xB .

(iii) For any square matrix A, det. xA/D det.A/.

(iv) If B is obtained from A via some elementary row or column operation, then
the result of performing the same operation on xA is xB .

We develop the following obstruction to a two-component link being slice in a punctured
(non-exotic) CP2 .

Theorem 6.1 Let L� S3 be a 2–component link which is slice in a punctured CP2 ,
and suppose that the Conway polynomial rL of L is of the form

rL.z/D z
�
gcakz2k

C a.kC1/z
2kC2

C � � �C anz2n
�
gc;

where ak ¤ 0. Then .�1/kak � 0.

Corollary 6.2 Let L� S3 be a 2–component link which is both slice in a punctured
CP .2/ and slice in a punctured CP .2/. Then rL.z/D 0.

Conjecture 6.3 The conclusion of Theorem 6.1 holds whenever L 2 P0 (though in
general, the sign .�1/k should be replaced with .�1/s.k;m/ for some function s.k;m/

depending on the leading degree k and the number of components m).

Remark 6.4 Recall that the components of 0–positive links must have linking number
equal to zero. As a result, a0D 0 and we recover that ˇ.L/D�a1� 0. The first author
showed in [5] that if a 2–component link L has pairwise linking zero and ˇ.L/D 0,
then the coefficient of z5 in rL.z/ is equal to ˛C  � 2ı , where ˛ WD x�L.111122/,
 WD x�L.112222/, and ı WD x�L.111222/=2. Theorem 6.1 then implies that when such
a link is slice in CP .2/,

x�L.111222/� x�L.111122/C x�L.112222/D x̌2.L/Cˇ2.L/:

Furthermore, if L is slice in both of ˙CP .2/, then

x�L.111222/D x̌2.L/Cˇ2.L/D 0C 0D 0:

In [5, Figure 4.6] the first author exhibited a family of such two-component links
realizing any integer values of the concordance invariants ˛ ,  , and ı . Let L be the
link from that family with ˛ D  D�1 and ı D�2, for instance. Then Theorem 6.1
implies that L is not slice in a punctured CP .2/. While Corollary 4.7 implies that L

is not slice in a punctured #k CP .2/ for any value of k , it gives no conclusion as to
whether L can be slice in a punctured #k CP .2/.
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Proof of Theorem 6.1 By Theorem 5.7, we have that L is concordant to some two-
component link L0 which is a fusion of a 2–colored NGHL like the one depicted
in Figure 9. While the Conway polynomial itself isn’t a concordance invariant, [5,
Theorem 3.2] guarantees that the smallest degree non-vanishing coefficient (and its
degree) is, so it suffices to prove the theorem for the link L0 .

Let the two colors on components arising in the construction of L0 be red and blue,
and let Lr and Lb denote the red and blue components of L0 , respectively. Before
fusing, for each i , choose a matching of the 2n red components of zL in oppositely-
oriented pairs and let Ai

r denote the annulus cobounded by the i th pair (1 � i � n);
similarly match the 2m blue components in pairs and define annuli Ai

b
for 1� i �m.

Abstractly, let the immersed surface zFr (respectively, zFb ) be the union of the red
annuli (respectively, the blue annuli) with the red fusion bands (respectively, the blue
fusion bands).

We form an immersed connected surface zF with boundary L by tubing together the
annuli A1

r and A1
b

. After possibly deforming zF (“sliding the feet” of bands along
other bands and pushing ribbon intersections along bands), we can assume that the
following hold:

(i) All ribbon intersections occur on the annuli A1
r and A1

b
.

(ii) One red (respectively, blue) band fuses the two boundary components of A1
r

(respectively, A1
b

).

(iii) Each of the other .2n�2/ red bands (respectively, .2m�2/ blue bands) fuses the
same boundary component of A1

r (respectively, A1
b

) to a boundary component
of one of the other .n� 1/ red annuli (respectively, .m� 1/ blue annuli).

(iv) Exactly one band is incident to each boundary component of each of Ai
r and

Ai
b

for i > 1.

We introduce some terminology related to a ribbon intersection between a band and
an annulus:

(i) An intersection between a red band and A1
r is called r-monochromatic.

(ii) An intersection between a red band and A1
b

is called r-polychromatic.

(iii) An intersection between a blue band and A1
b

is called b-monochromatic.

(iv) An intersection between a blue band and A1
r is called b-polychromatic.
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Figure 12: Resolving a ribbon intersection on an immersion of a connected
surface increases the genus by one

Abstractly, zF has two boundary components and is of genus .m C n/, where m

and n are as above. We can resolve each of the k ribbon intersections as shown in
Figure 12 to obtain an embedded surface F of genus g WDmC nC k . Label the red
(respectively, blue) bands B1

r ;B
2
r ; : : : ;B

.2n�1/
r (respectively, B1

b
;B2

b
; : : : ;B

.2m�1/

b
)

in any order. For 1� i � .2n�1/ and 1� j � ni , let T
i;j
r denote the tube added while

resolving the j th ribbon intersection involving the band Bi
r (where the intersections are

ordered sequentially along Bi
r starting near A1

r ); analogously label tubes arising from
resolving blue-band ribbon intersections as T

i;j

b
for 1� i � .2m�1/ and 1� j �mi .

By abuse of terminology, we’ll say (for instance) that “T
i;j
r is r-monochromatic” if the

ribbon intersection whose resolution produced T
i;j
r was r-monochromatic. Note that

2n�1X
iD1

ni C

2m�1X
iD1

mi D k:

We now describe a set of .2gC 1/ simple closed curves on F representing a basis
for H1.F IZ/. Let ai

r be the core of Ai
r for 1� i � n and let ai

b
be the core of Ai

b

for 1 � i � m. Then let c1
r (respectively, c1

b
) be the dual curve to a1

r (respectively,
a1

b
) which traverses the band fusing the two boundary components of A1

r (respectively,
A1

b
). For 2� i � n, let ci

r be the dual curve to ai
b

which travels along a band from A1
r

to Ai
r and returns to A1

r along another band; for 2� i �m, the curves ci
b

are defined
similarly.

Now for 1� i � .2n�1/ and for 1� j � ni , let p
i;j
r be a meridian curve of the tube

T
i;j
r and let q

i;j
r be a curve dual to p

i;j
r which is chosen according to the following

rules:

(i) If T
i;j
r is r-monochromatic, then q

i;j
r starts at a point x near where T

i;j
r attaches

to Bi
r , travels longitudinally along T

i;j
r to A1

r , then along A1
r to the attachment

point of Bi
r , and finally back along Bi

r to x .
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e

ai
r

a
j

b

ck
b

q
k;1
b

q
k;2
b

p
k;1
b

p
k;2
b

A
j

b

Ai
r

Bk
b

Figure 13: An example illustrating representatives for several members of
our chosen basis for H1.F IZ/

(ii) If T
i;j
r is r-polychromatic, then q

i;j
r starts at a point x near where T

i;j
r attaches

to Bi
r , travels longitudinally along T

i;j
r to A1

b
, then along the tube to A1

r , then
along A1

r to the attachment point of Bi
r , and finally back along Bi

r to x .

For 1� i � .2m�1/ and for 1� j �mi , p
i;j

b
and q

i;j

b
are defined similarly. Finally,

let e be a meridian of the tube connecting A1
r and A1

b
; this completes the basis for

H1.F IZ/. Figure 13 exhibits an example of a piece of such a surface F with several
of the curves we’ve described labeled.

Notice that the .2gC 1/ curves that we’ve described can be chosen to be pairwise
disjoint aside from the following exceptions:

(i) For each 1 � i � .2n � 1/ (respectively, 1 � i � .2m � 1/) and � j � ni

(respectively, 1 � j � mi ), the curves p
i;j
r and q

i;j
r (respectively, p

i;j

b
and

q
i;j

b
) intersect once.

(ii) For each 1� i � .2n� 1/ (respectively, 1� i � .2m� 1/), the curves ai
r and

ci
r (respectively, ai

b
and ci

b
) intersect once.
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(iii) For each 1 � i � .2n � 1/ (respectively, 1 � i � .2m � 1/) and � j � ni

(respectively, 1 � j � mi ), if T
i;j
r is r-polychromatic (respectively, T

i;j

b
is

b-polychromatic), then the curves q
i;j
r (respectively, q

i;j

b
) and e intersect once.

Linking among these curves is as follows:

(i) For any 1� i; j � .2n� 1/ and 1� k; l � .2m� 1/,

`k
�
gcai

r ; .a
j
r /
C
�
gc D `k

�
ak

b ; .a
l
b/
C
�
D `k

�
gcai

r ; .a
k
b /
C
�
gc D `k

�
ak

b ; .a
i
r /
C
�
D�1:

(ii) For any 1� i; j � .2n� 1/ and 1� k; l � .2m� 1/, each of

`k.ci
r ; .c

j
r /
C/D `k.cj

r .c
i
r /
C/

`k.ck
b ; .c

l
b/
C/D `k.cl

b.c
k
b /
C/

`k.ci
r ; .c

k
b /
C/D `k.ck

b ; .c
i
r /
C/

can be arbitrary.

(iii) For any 1 � i; j � .2n � 1/ and 1 � k; l � .2m � 1/, `k.ci
r ; .a

j
r /
C/ and

`k.ck
b
; .al

b
/C/ can be arbitrary and

`k.aj
r ; .c

i
r /
C/D

�
`k.ci

r ; .a
j
r /
C/C 1 if j D i;

`k.ci
r ; .a

j
r /
C/ otherwise;

`k.al
b; .c

k
b /
C/D

�
`k.c

j

b
; .a

j

b
/C/C 1 if j D i;

`k.c
j

b
; .a

j

b
/C/ otherwise:

(iv) For an element x in the basis and for any 1� i � .2n� 1/ and 1� j � ni ,

(1)

`k
�
pi;j

r ;xC
�
D

8̂̂̂<̂
ˆ̂:
�

i;j
r if x D q

i;j
r ;

1 if x D q
i;k
r ; k > j ;

�i
r if x D ci

r ;

0 otherwise;

`k
�
x; .pi;j

r /C
�
D

8̂̂̂<̂
ˆ̂:

1�� if x D q
i;j
r ;

1 if x D q
i;k
r ; k > j ;

�i
r if x D ci

r ;

0 otherwise;

where �i;j
r 2 f0; 1g depends on the sign of the ribbon intersection generating

T
i;j
r and �i

r 2 f�1; 1g depends on the band Bi
r . Similar statements hold for

`k
�
gcp

i;j

b
;xC

�
gc and `k

�
x; .p

i;j

b
/C
�
gc .
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(v) For an element x in the basis, `k.e;xC/D 0. Furthermore,

`k.x; eC/D

8<:
1 if x D q

i;j
r and T

i;j
r is r-polychromatic;

�1 if x D q
i;j

b
and T

i;j

b
is b-polychromatic;

0 otherwise:

(vi) For an element x in the basis and for any 1� i � .2n� 1/, 1� k � .2m� 1/,
1� j � ni , and 1� l �mk ,

`k
�
gcqi;j

r ;xC
�
gc D `k

�
gcx;

�
qi;j

r

�
gcC

�
`k
�
gcq

k;l
b
;xC

�
gc D `k

�
x;
�
q

k;l
b

�
gcC

�
can be arbitrary as long as x 62 fp

k;l
r gk;l [fp

k;l
b
gk;l [feg.

Let ar denote the list of ar
i ordered sequentially (and similarly for ab , cr , and cb .

Let pr denote the list of pr
i;j , ordered lexicographically (and similarly for pb , qr , and

qb ). Then order our basis as ar , ab , cr , cb , e , pr , pb , qr , qb . The Seifert matrix
with respect to this ordered basis is then

VD

.ar /C; .ab/C .cr /C; .cb/C eC .pr /C; .pb/C .qr /C; .qb/C0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA

ar ; ab �1 A2 0 0 Bt

)
mCn

cr ; cb A1 C 0 Dt F t

)
mCn

e 0 0 0 0 E2

pr ;pb 0 D 0 0 P2

)
k

qr ;qb B F E1 P1 Q

)
k

„ ƒ‚ …
mCn

„ ƒ‚ …
mCn

„ ƒ‚ …
k

„ ƒ‚ …
k

in Z.2gC1/�.2gC1/ , where the “�1” indicates a matrix with all entries equal to �1.
Notice also that C and Q are symmetric matrices. Now letting A WD xA1�x�1At

2
,

E WD xE1 � x�1Et
2

, and P WD xP1 � x�1P t
2

, we have that M WD xV � x�1V t is
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given by

M D

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

�Z xAt 0 0 zBt

)
mC n

A zC 0 zDt zF t

)
mC n

0 0 0 0 xEt

0 zD 0 0 xP t

)
k

zB zF E P zQ

)
k

„ ƒ‚ …
mCn

„ ƒ‚ …
mCn

„ ƒ‚ …
k

„ ƒ‚ …
k

where every entry of Z is equal to z D x�x�1 . Notice also that Equation (1) implies
that P is a lower-triangular matrix whose diagonal entries are x1;x2; : : : ;xk with
xi 2 fx;�1=xg.

Notice that

det
�

0 xP t

P zQ

�
D det.�P � xP t /D

kY
iD1

.�xi/

kY
iD1

�
gc �

1

xi

�
gc D 1:

Recall that if a matrix N has block form N D
�
gc U W

X Y

�
gc , where U and Y are

square matrices and Y is non-singular, then det.N /D det.Y / � det.U �W Y �1X /.

As a result,

rL.z/D det.M /

D det

0@0@�Z xAt 0
A zC 0
0 0 0

1A�
0@ 0 zBt

zDt zF t

0 xEt

1A �� 0 xP t

P zQ

��1

�

�
0 zD 0

zB zF E

�1A
D det

0@0@�Z xAt 0
A zC 0
0 0 0

1A�
0@ 0 zBt

zDt zF t

0 xEt

1A ���zP�1Q. xP�1/t P�1

. xP�1/t 0

�
�

�
0 zD 0

zB zF E

�1A
D det

0@�Z xS t 0
S R zT
0 z xT t 0

1A ;
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where

(2)

R WD zC C z2
�
gczDtP�1Q. xP�1/t �F t . xP�1/t

�
gcD� z2DtP�1F;

S WDA� z2DtP�1B;

T WD �DtP�1E:

Notice that S and R are .m C n/ � .m C n/ matrices and T is a .m C n/ � 1

matrix. Furthermore, a careful examination of Equation (2) reveals that the entries of
S (respectively, T ) are elements of ZŒx;x�1� with terms of only odd (respectively,
even) degree.

Let Z0 be an .mCn/�.mCn/ with z as the .1; 1/ entry and all other entries equal
to zero. Let S0 be the result of subtracting the first column of S from every other
column, and let S1 be the matrix obtained from S0 by deleting the first column. Then

det

0@�Z xS t 0

S R zT

0 z xT t 0

1AD det

0@�Z0
xS t

0
0

S0 R zT

0 z xT t 0

1A
D�z det

0@ 0 xS t
1

0

S1 R zT

0 z xT t 0

1AC
0@ 0 xS t

0
0

S0 R zT

0 z xT t 0

1A
D�z det

0@ 0 xS t
1

0

S1 R zT

0 z xT t 0

1A
D�z3 det

0@ 0 0 xS t
1

0 0 xT t

S1 T R

1A
D�z3.�1/.mCn/ det

�
S1 T

�
det

�
xS1
xT
�

D z3 det
�
xS1 T

�
det

�
xS1 T

�
:

Thus there exists a polynomial f 2 ZŒt � such that

rL.z/D det.M /D z3f .x2/f .x�2/:

Proposition A.1 in Appendix A below indicates that the term f .x2/f .x�2/ can be
written as a polynomial p.z/ whose terms all have even degree, and that the sign of the
lowest-degree non-vanishing term of p.z/ is .�1/k , where the degree of that lowest
term is 2k . Since the Conway polynomial is

rL.z/D z
�
gcz2p.z/

�
gc

the result follows.
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7 Signature obstructions

Let L� S3 be a link with m components, choose a connected Seifert surface F � S3

for L and let V be a Seifert matrix for F associated to H1.F /. Given a norm-1
complex number ! , recall that the Levine–Tristram !–signature of L, denoted �L.!/,
is defined to be the signature of the Hermitian form

.1�!/V C .1� x!/V t :

However, for ! equal to a zero of the determinant of this matrix, we redefine �L.!/ to
be the average of the two limits lim˛!!˙ �L.˛/. The resulting function, �LW S

1!Z,
we shall call the Levine–Tristram signature function of L. Note that when mD 1 (that
is, L is a knot), the determinant vanishes for at most finitely-many ! 2 S1 . Although
this might not be true when m> 1, the function �L is still locally constant away from
a finite number of points in S1 . This function is a concordance invariant. If p is a
prime the signatures corresponding to !j , where ! D exp.2� i=pr / and 0< j < pr

are called the pr –signatures of L. In particular the case p D 2; r D j D 1D�! is
the signature of V CV T , the classical signature of L.

The following generalizes [11, Proposition 4.1] of Cochran, Harvey and Horn. The
proof is almost identical.

Theorem 7.1 If L 2 P0 , then the Levine–Tristram signature function of L is non-
positive.

Example 7.2 Signatures can sometimes obstruct zero-positivity for links which elude
our other methods. Let L be the two-component link obtained by taking positive
untwisted Whitehead doubles of both components of a Hopf link, as shown in Figure 14.
Since L is a boundary link, all of its Milnor’s invariants (and its Conway polynomial)
vanish. Notice that L is �0 a totally split link and has unknotted components; however,
the reader can verify that the ordinary signature �L.�1/ is positive, and so L is not a
zero-positive link.

Figure 14: The classical signature obstructs this link’s membership in P0
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Proof of Theorem 7.1 We follow the proof of [11, Proposition 4.1]. Since L 2 P0 ,
the components Li ; 1� i �m of L bound disjoint slice disks �i in a manifold V as
in Definition 2.6. Let d D pr be a prime power. The kernel of the map to Zd that
sends each meridian to 1 corresponds to a d –fold covering space of the link exterior.
Let † denote the corresponding d –fold cyclic cover of S3 branched over L. Let �
denote the disjoint union of the �i . Note that H1.V ��/Š Zm , generated by the
meridians, while H2.V ��/ŠH2.V / and H3.V ��/ŠH3.V /D 0. The d –fold
cyclic cover of V branched over � will be denoted zV .

Let .B4;FL/ be the 4–ball together with a connected Seifert surface for L pushed into
its interior. Let .Y;F /D .V; �/[ .�B4;�FL/, let �W denote the branched cover of
.B4;FL/, and let zY be the branched cover of .Y;F /. Since H1.Y /D 0, H1.B

4/D 0,
H1.Y �F /ŠZŠH1.B

4�FL/, it follows from the proof of Casson and Gordon [2,
Lemma 4.2], applied to B4 and to Y , that H1. zY IZp/ D 0 D H1. �W IZp/. Thus
ˇ1. zY /D 0D ˇ1. �W /.

Let Hi. zY ; j IC/, 0� j < d , denote the exp.2� ij=d/–eigenspace for the action of a
generator, � , of the group of deck transformations on Hi. zY IC/; let ˇi. zY ; j / denote
its rank, and let �. zY ; j / denote the alternating sum of these ranks (similarly for zV and�W ). Let �. zY ; j / denote the signature of the eigenspaces of �� acting on H2. zY IC/
(similarly for zV and �W ). By Rohlin [31] and Casson and Gordon [2, Lemma 2.1],

�. zY ; j /D �.Y /;

which yields
�. zV ; j /� �. �W ; j /D �.V /� �.B4/:

Since the intersection form of V is, by assumption, positive-definite, we have

(3) �. �W ; j /D �. zV ; j /�ˇ2.V /:

By Gilmer [12, Proposition 1.1],

(4) �.V ��/D �. zV � z�; j /:

Now assume that j > 0. We will evaluate the Betti numbers for each side of this
equation. First we have already established that ˇ0.V ��/ D 1, ˇ1.V ��/ D m,
ˇ2.V ��/D ˇ2.V / and ˇ3.V ��/D 0.

Since � acts by the identity on H0. zV � z�/, since j ¤ 0, ˇ0. zV � z�; j / D 0. The
inclusion-induced map on rational homology

H1. zV � z�; j /!H1. zV ; j /
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is surjective and its kernel is generated by the lifts of the m meridians. Since �
acts by the identity on the first homology of these meridians, this epimorphism is
an isomorphism when j ¤ 0. Thus ˇ1. zV � z�; j / D ˇ1. zV ; j /. Now consider the
Mayer–Vietoris sequence with Q–coefficients:

(5) H1.z†/!H1. zV /˚H1. �W /!H1. zY /

Since ˇ1. �W /D ˇ1. zY /D 0, the first map is surjective and H1. zV ; z†/D 0. It follows
from Lefshetz duality that ˇ3. zV /D 0.

The set of meridians of the �i is linearly independent in H1.V ��IQ/. Their inverse
images form the set of meridians of z� and thus the latter set is linearly independent
in H1. zV � z�IQ/. Since zV is obtained from zV � z� by adding 2–handles along
homologically independent loops,

ˇ2. zV � z�; j /D ˇ2. zV ; j /;

ˇ3. zV � z�; j /D ˇ3. zV ; j /D 0:

Thus, collecting all our information, Equation (4) becomes

(6) 1�mCˇ2.V /D�ˇ1. zV ; j /Cˇ2. zV ; j /:

Combining this with Equation (3) , we have

(7) �. �W ; j /D �. zV ; j /�ˇ2. zV ; j /Cˇ1. zV ; j /C 1�m:

The term �. zV ; j /�ˇ2. zV ; j / is always non-positive. By Equation (5), ˇ1. zV ; j / is at
most ˇ1.z†; j /. Thus we have

(8) �. �W ; j /� ˇ1.z†; j /C 1�m:

It is known that ˇ1.z†; j / equals the !–nullity of L, �!.L/, where !D exp.2� i=d/;
and that this is bounded above by m�1 (see Kauffman [15, page 213] and Tristram [32,
Corollary 2.24]). Thus �. �W ; j / is non-positive. But it is known that if j > 0, �. �W ; j /

is a pr –signature of L (see Viro [33] and Gordon [13, Chapter 12]); specifically

�. �W ; j /D �!j .L/:

Since the roots of unity, as pr varies, are dense in the circle, this implies that the entire
signature function of L is non-positive.
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8 Using Rasmussen’s s–invariant to obstruct membership in
P0

It is sometimes possible to obstruct the membership of a link in P0 by obstructing
membership of the knots which are its components; many obstructions for knots are
studied by Cochran, Harvey and Horn in [11]. However, this strategy fails when the
link’s components are slice knots, for example. Notice that P0 is closed under taking
fusions, in particular, one may in principle obstruct the membership of a link L in
P0 by fusing L into a knot KL (in one of many possible ways) and then using knot
concordance invariants to obstruct membership of KL . The following was proved by
Kronheimer and Mrowka (rephrased to fit out notation here):

Theorem 8.1 (Kronheimer and Mrowka [17, Corollary 1.1]) If a knot K is in P0 ,
then s.K/� 0.

Example 8.2 Recall that the link in Example 7.2 above was obstructed from member-
ship in P0 by its signature function. Let L denote the three-component link exhibited
in Figure 15, which is obtained by negative-Whitehead-doubling all components of
the Borromean link. This boundary link not only has trivial components, but also has
vanishing signature function, thus eluding the methods provided above for obstructing
membership in P0 .

Figure 15: The s–invariant of the knot obtained by performing the indicated
fusion obstructs this link’s membership in P0

Letting KL be the knot obtained by performing the fusion indicated in Figure 15, we
verified via computer that s.KL/ D �2; as a result, L 62 P0 . This calculation was
done using the function UniversalKh [14], a component of the package KnotTheory
that makes use of the program JavaKh; the reader should be warned that much of the
mathematics underlying the function UniversalKh and its relationship to s.K/ is not
in print.
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Notice also that one can obtain the unlink by adding a GPC to L, so that �L 2 P0 .
It isn’t known whether the link L is topologically slice, but A Levine [18] used the
Ozsváth–Szabó � –invariant from knot Floer homology [27] to show that L isn’t
smoothly slice.

Many other examples which elude the above classical obstructions can be obtained
via Bing doubling, as the Bing double B.K/ of a knot K � S3 is a boundary link
with vanishing Levine–Tristram signature function and unknotted components. In [4],
Cimasoni observed that when TB.K/� 0, s.B.K//D 1 and so B.K/ is not smoothly
slice (here s denotes the extension of Rasmussen’s invariants to links described by
Beliakova and Wehrli in [1]); we mimic his approach here. A particular fusion of
B.K/ yields the negative untwisted Whitehead double Wh�.K/ of K . A result of
Livingstone and Naik [21, Theorem 2] implies that if the Thurston–Bennequin invariant
TB.K/ of K is non-negative, then s.WhC.K// D 2. Therefore, choosing K with
TB.�K/� 0, one can see that s.Wh�.K//D�2 and thus B.K/ 62 P0 .

Appendix A: Some particular Laurent polynomials

The goal of this section is to prove the following fact, which in turn completes the
proof of Theorem 6.1 above. Recall that we let x be a formal variable and define
z WD x�x�1 .

Proposition A.1 Let f 2 ZŒt � be non-zero. Then there are integers a¤ 0 and k � 0

and some polynomial g 2 ZŒt � such that

f .x2/f .x�2/D .�1/ka2z2k
C z2.kC1/g.z2/:

In particular, f .x2/f .x�2/ is a polynomial in z2 and the sign of the coefficient of its
lowest degree non-vanishing term is .�1/k , where k is half the degree of that term.

We’ll need several lemmas in order to prove Proposition A.1.

Lemma A.2 For each integer k � 0, x2kCx�2k is a polynomial in z2 with constant
coefficient equal to 2.

Proof Notice that for m� 1,

x2.mC1/
C

1

x2.mC1/
D

�
gcx2m

C
1

x2m

�
gc

�
gcx2

C
1

x2

�
�

�
gcx2.m�1/

C
1

x2.m�1/

�
gc:

Considering that x0C
1

x0 D 2 and x2C
1

x2 D z2C 2, the result follows by strong
induction.
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Lemma A.3 Let m 2 Z�0 and let f 2 ZŒt � be a polynomial given by

f .t/D

mX
iD1

˛i t
.m�i/:

Then the Laurent polynomial f .x2/f .x�2/ 2 ZŒx;x�1� is equal to a polynomial in
z2 with constant coefficient given by

.˛1C˛2C � � �C˛m/
2:

Proof Notice that

f .x2/f .x�2/D

mX
iD1

˛2
i C

m�1X
jD1

�
gcx2j

C
1

x2j

�
gc

�
gc

m�jX
kD1

˛k˛kCj

�
gc

D

mX
iD1

˛2
i C 2

X
i¤j

˛i j̨ C z2g.z2/

D .˛1C˛2C � � �C˛m/
2
C z2g.z2/;

where g 2ZŒt � is a polynomial. The first equality follows from the definition of f and
the second equality follows from Lemma A.2.

Lemma A.4 Let m� 1, choose ˛i 2Z for i D 1; : : : ;m, and let ˇi WD ˛1C� � �C˛i

for each i with 1� i �m. Let the polynomials f;g 2 ZŒt � be given by

f .t/ WD ˛mC˛.m�1/t C˛.m�2/t
2
C � � �C˛1t .m�1/;

g.t/ WD ˇ.m�1/Cˇ.m�2/t Cˇ.m�3/t
2
C � � �Cˇ1t .m�2/:

Then if ˇm D 0, f .x2/f .x�2/D�z2g.x2/g.x�2/.

Proof For each i with 2� i �m, let the polynomials fi and gi be given by

fi.t/ WD �ˇ.i�1/C˛.i�1/t C˛.i�2/t
2
C � � �C˛1t .i�1/;

gi.t/ WD ˇ.i�1/Cˇ.i�2/t Cˇ.i�3/t
2
C � � �Cˇ1t .i�2/:

In particular, fm.t/D f .t/ and gm.t/D g.t/. Now notice that for each i ,

fi.x
2/D x2f.i�1/.x

2/Cxzˇ.i�1/; fi.x
�2/D

f.i�1/.x
�2/

x2
�

z

x
ˇ.i�1/;

gi.x
2/D x2g.i�1/.x

2/Cˇ.i�1/; gi.x
�2/D

g.i�1/.x
�2/

x2
Cˇ.i�1/:

(9)

Now fix some i .
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Claim For each j with 2� j � i ,

(10) fj .x
2/x2.i�j/C1

�
fj .x

�2/

x2.i�j/C1
D z

�
gcgj .x

2/x2.i�j/C2
C

gj .x
�2/

x2.i�j/C2

�
gc:

The claim can be proved by induction on j . The j D 2 case can be verified directly,
and for 2� j < i , the .j /D) .j C 1/ inductive step follows easily from the relations
appearing in (9).

Setting j D i in (10) provides that

(11) xfi.x
2/�

fi.x
�2/

x
D z

�
gcx2gi.x

2/C
gi.x

�2/

x2

�
gc:

Claim For each i with 2� i �m, fi.x
2/fi.x

�2/D�z2gi.x
2/gi.x

�2/

We proceed by induction on i . It can be verified directly that

f2.x
2/f2.x

�2/D�z2g2.x
2/g2.x

�2/:

Equations (9) and (11) imply that when 2� i �m� 1,

g.iC1/.x
2/g.iC1/.x

�2/D gi.x
2/gi.x

�2/Cˇi

�
gcgix

2
C

gi.x
�2/

x2

�
gcCˇ2

i ;

and so

f.iC1/.x
2/f.iC1/.x

�2/

D fi.x
2/fi.x

�2/� zˇi

�
gcxfi.x

2/�
fi.x

�2/

x

�
gc � z2ˇ2

i

D fi.x
2/fi.x

�2/� z2
�
gcg.iC1/.x

2/g.iC1/.x
�2/�gi.x

2/gi.x
�2/

�
gc:

The above provides the .i/D) .i C 1/ induction step and the claim is proved.

Proof of Proposition A.1 Let F.z/ WD f .x2/f .x�2/. Suppose that the smallest
degree of a non-vanishing term in F.z/ is 2k . For 1� i; j �m, define the numbers
˛i;j recursively via the rule

˛0;j WD j̨ and ˛i;j WD

jX
lD1

˛.i�1/;l :

Then for each i with 0� i �m, define the polynomial fi by

fi.t/D

m�iX
jD1

˛i;j t .m�i�j/:

Algebraic & Geometric Topology, Volume 14 (2014)



2296 Tim D Cochran and Eamonn Tweedy

Claim f .x2/f .x�2/D .�z2/kfk.x
2/fk.x

�2/

Lemma A.3 tells us that for each i , fi.x
2/fi.x

�2/ is a polynomial in z2 with
constant coefficient equal to

�
˛i;1C˛i;2C � � �C˛i;.m�i/

�2 ; we proceed by induc-
tion on i . Notice first that f0.x

2/ D f .x2/. Assume that for some 0 � i < k ,
f .x2/f .x�2/D .�z2/ifi.x

2/fi.x
�2/. The coefficient of z2i in f .x2/f .x�2/ van-

ishes by assumption, and so

˛i;.m�i/ D�
�
˛i;1C˛i;2C � � �C˛i;.m�i�1/

�
D�˛.iC1/;.m�i�1/:

Then by Lemma A.4, fi.x
2/fi.x

�2/ D �z2f.iC1/.x
2/f.iC1/.x

�2/ and the claim
follows.

The coefficient of z2k in f .x2/f .x�2/ is nonzero by assumption, and by Lemma A.3
it is equal to

.�1/k
�
gc˛k;1C˛k;2C � � �C˛k;.m�k/

�
gc2:
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