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The homeomorphism problem for closed 3–manifolds

PETER SCOTT

HAMISH SHORT

We give a geometric approach to an algorithm for deciding whether two hyper-
bolic 3–manifolds are homeomorphic. We also give an algebraic approach to the
homeomorphism problem for geometric, but nonhyperbolic, 3–manifolds.

57M50; 20F65, 57M99

1 Introduction

The homeomorphism problem for closed orientable triangulated 3–manifolds has been
studied for many years, with partial results by many authors. The work of Perelman
proving Thurston’s geometrization conjecture [17; 18; 19] finally allowed a complete
solution for irreducible such manifolds, which has been described by Jaco in his
Beijing Lectures [10] and in the first chapter of the book by Bessières, Besson, Maillot,
Boileau and Porti [3]. The work of many previous authors is put together, and different
algorithms are used to deal with the Haken case, to find the JSJ decomposition and to
deal with different geometries. In the case of two closed hyperbolic 3–manifolds M1

and M2 , Mostow rigidity tells us that M1 and M2 are homeomorphic if and only if
their fundamental groups are isomorphic. Thus the homeomorphism problem for M1

and M2 can be solved by appealing to Sela’s solution [22] of the isomorphism problem
for torsion–free word hyperbolic groups. The initial aim of this paper was to give a more
geometric approach to the homeomorphism problem in this case, which avoids quoting
Sela’s work. But in addition, we also give a more algebraic approach to some other parts
of the homeomorphism problem, though the geometric results of Jaco and Oertel [11]
are still needed for the existence of incompressible surfaces. We are not claiming that
the algorithms we present are in any way superior to those referred to by Jaco and
by Bessières et al. Our aim is simply to increase the range of applicable algorithms
from which to choose. In this paper, we will mostly consider closed, orientable and
irreducible 3–manifolds. It is known that given two triangulated closed orientable 3–
manifolds M1 and M2 , there is an algorithm to find the geometric structures on the
geometric pieces of each, and then there is an algorithm to decide whether or not the
pieces of M1 are homeomorphic to the pieces of M2 (see eg [14, 1.4]). This algorithm
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is described in [3, 1.4.1], where it is claimed that this solves the homeomorphism
problem for triangulated closed orientable 3–manifolds. (A similar claim is made by
Matveev in his book [15, page 214], using his method of spines for Haken manifolds.) It
was pointed out to us by Henry Wilton, that there remains an orientation problem when
considering connected sums. If M and N denote two closed orientable 3–manifolds
and SN denotes N with the opposite orientation, it is not clear how to decide whether
the connected sum M # SN is homeomorphic to M # N (though the geometric pieces
are clearly homeomorphic).

In [14], Manning gave an algorithm to decide if there exists a hyperbolic structure on
a closed orientable 3–manifold given by a triangulation. If there is such a structure,
then Manning’s algorithm constructs a finite sided polyhedral fundamental region in
hyperbolic 3–space. In Section 2 of this paper we use Manning’s work to give a
new algorithm to decide whether or not two closed 3–manifolds M1 and M2 are
homeomorphic, when they are given by triangulations and known to be hyperbolic.
Manning’s algorithm will construct a finite sided polyhedral fundamental region Pi

in H3 for each manifold Mi , and we show how to estimate how many copies of P2

must be glued together to contain P1 and vice versa. This allows one to bound the
number of maps from the generators of �1.M1/ to �1.M2/ which might give rise
to an isomorphism, and vice versa, enabling one to check each such map in turn and
decide whether or not it is an isomorphism.

In Section 3 of this paper, we take a more algebraic point of view. The main ingredients
are the existence of a biautomatic structure on the fundamental groups of most geometric
3–manifolds and the fact that Perelman’s work essentially reduces the homeomorphism
problem for closed orientable irreducible 3–manifolds to the isomorphism problem for
their fundamental groups (with the notable exception of lens spaces).

Given a triangulated closed orientable 3–manifold, Jaco and Tollefson [12, Section 7]
give an algorithm producing a decomposition into irreducible pieces. When the manifold
is Haken, they give [12, Section 8] algorithms for finding its JSJ decomposition and
finding the Seifert invariants for each Seifert piece. Thus for a Haken closed Seifert
fibre space, their algorithm will yield all the Seifert invariants and hence a geometric
structure. Now suppose M is a closed orientable 3–manifold which is known to satisfy
Thurston’s geometrization conjecture. In [14, 1.4], Manning combined the algorithms
in Jaco and Tollefson [12] with his algorithm for finding hyperbolic structures to
obtain an algorithm which finds the geometric structures on all the pieces of M . In
this section we describe a somewhat simpler algorithm, with substantial algebraic
ingredients, which can answer a somewhat simpler question. Namely, if M is a closed
orientable 3–manifold which is known to be geometric, then our algorithm can decide
on which geometry M is modelled. To answer this simpler question, we do not need
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Manning’s algorithm for hyperbolic manifolds, and our procedure differs from that
of Manning in the other cases. One natural application of our algorithm would be
when M is orientable and irreducible and not Haken, as then Perelman’s work implies
that M must be geometric. Our approach also works in the Haken case and is rather
different from that in [12]. Our algorithm starts by finding a biautomatic structure for
the fundamental group of M , when such a structure exists. As for many algorithms
for 3–manifolds, the main topological ingredient is an algorithm due to Jaco and
Oertel [11] to decide whether a triangulated 3–manifold is Haken, and if so, to produce
embedded incompressible surfaces.

2 A new algorithm to decide if two hyperbolic 3–manifolds
are homeomorphic

Let M1 and M2 be closed 3–manifolds each given by a triangulation and known to be
hyperbolic. It is straightforward to use these triangulations to write down finite presenta-
tions for �1.M1/ and �1.M2/. In order to apply Manning’s algorithm in [14], we first
need an algorithm for solving the word problem in each �1.Mi/. Since Mi is known
to be hyperbolic, its fundamental group is word hyperbolic and so biautomatic. Then,
the algorithm of [6, 3.4.1] (extended to the biautomatic case, as stated in Gersten and
the second author [8, after Lemma 8.2]) produces a biautomatic structure. Alternatively
Papasoglu [16] gives an algorithm for calculating the hyperbolicity constant ı of the
presentation, and with that a solution to the word problem is easily built as in Alonso,
Brady, Cooper, Ferlini, Lustig, Mihalik, Shapiro and the second author [1]. It follows
that there is an algorithm which can be applied to the given presentation for �1.Mi/

which will find the biautomatic structure. (We note that Chapter 5 of Epstein, Cannon,
Holt, Levy, Paterson and Thurston [6] gives the algorithm to find automatic structures;
the additional languages and axioms needed to extend to biautomatic structures are
easily added.) Once this is done, there is an algorithm for solving the word problem
in �1.Mi/ (alternatively one can use the fact that the groups are residually finite). Now,
for each Mi , Manning’s algorithm in [14] constructs a convex finite sided polyhedral
fundamental region Pi in H3 . His algorithm describes the vertices, edges and faces
of Pi . In addition, the algorithm describes the face pairing isometries needed to
recover Mi from Pi . It is now straightforward to write down a new presentation
for �1.Mi/ with the face pairing isometries of Pi as generators. In what follows
we will use these presentations rather than the presentations obtained from the initial
triangulations.

Now we consider the tiling of H3 by translates of P2 . Given a union X of such
translates, we let star.X / denote the union of all translates of P2 which meet X in
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at least one point, and let starn.X / denote the result of applying the star operation n

times to X . Thus star2.X /D star.star.X //. It may sometimes be convenient to write
star0.X /DX . We consider the sequence starn.P2/, n� 0, of subsets of H3 . As the
union of these subsets equals H3 , their diameters must tend to infinity. We will refine
this obvious fact in the following way. We will show in Lemma 2.1 below that there
is an algorithm to find a positive number R, such that starn.P2/ contains the metric
ball B.P2; nR/.

Assuming this lemma for the moment, we now proceed as follows. If M1 and M2

are homeomorphic, Mostow’s rigidity theorem implies that they must be isometric
with their hyperbolic metrics. This yields an isometry ' from H3 tiled by translates
of P1 to H3 tiled by translates of P2 . By composing with the action of an element
of �1.M2/ on H3 , we can suppose that '.P1/ meets P2 . Let d1 denote the diameter
of P1 . Then '.P1/ must be contained in the metric ball B.P2; d1/. If n is an integer
such that nR > d1 , it follows that '.P1/ is contained in starn.P2/. Let ˛ be a face
pairing isometry of P1 . Then the isometry '˛'�1 of H3 pairs faces of '.P1/. As ˛
lies in �1.M1/, the isometry '˛'�1 lies in �1.M2/, and so preserves the tiling by
translates of P2 . Hence '˛'�1 must send a certain translate of P2 which is contained
in starn.P2/ to another such. Pick a path in starn.P2/ which joins the interiors of these
two translates of P2 , does not meet any edges and is transverse to the faces, and let N

denote the number of times this path meets a face. Then '˛'�1 can be written as a
word in the face pairing generators of �1.M2/ of length N .

Let k1 denote the maximum number of translates of P2 around an edge, and k2

denote the maximum number of translates of P2 around a vertex, and let k denote
the maximum of k1 and k2 . Then in star.P2/, we can join any point in the interior
of P2 to any point in the interior of any translate of P2 , by a path which crosses at
most k faces. Note that a translate of P2 in star.P2/ may have just a vertex in common
with P2 . It follows immediately that in starn.P2/, we can join P2 to any translate
of P2 , by a path which crosses at most nk faces. Hence, in starn.P2/, we can join any
two translates of P2 , by a path which crosses at most 2nk faces. We conclude that
if there is an isomorphism from �1.M1/ to �1.M2/, there is one which maps each
face pairing generator of �1.M1/ to a word of length no more than 2nk in the face
pairing generators of �1.M2/. Similarly we can find integers m and k 0 such that if
there is an isomorphism from �1.M2/ to �1.M1/, there is one which is inverse to the
previous one, which maps each face pairing generator of �1.M2/ to a word of length
no more than 2mk 0 in the face pairing generators of �1.M1/. This gives us a finite
list of possible maps from generators of �1.M1/ to elements of �1.M2/, and vice
versa. For each such map we can check whether it is a homomorphism, and for each
pair of such maps, can check if their composite is the identity. Each of these checks
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again requires the solution of the word problem. Thus we can check whether or not
there is an isomorphism between �1.M1/ and �1.M2/.

Before giving the proof of Lemma 2.1, we need to discuss algorithms for bounding
various distances related to the convex polyhedra Pi .

We will consider the upper half space model of H3 , and all coordinates used will be
euclidean. Recall that in this model a hyperbolic geodesic is either a vertical line, or a
semicircle in a vertical plane centred at some point of the base plane R2 of the model.
The two points which form the intersection of such a semicircle with the base plane R2

of the model will be called the boundary of the geodesic. If a hyperbolic geodesic is a
vertical line in this model, its boundary consists of one point in R2 and one point at
infinity. Also a hyperbolic plane in this model is either a vertical plane or is a euclidean
hemisphere centred at some point of the base plane R2 of the model. The circle which
is the intersection of such a hemisphere with the base plane R2 of the model will be
called the boundary of the hyperbolic plane. If a hyperbolic plane is a vertical plane in
this model, its boundary consists of a line in R2 and one point at infinity.

We recall that Manning’s paper [14] produces the hemispheres which contain the
faces of Pi , and that each of these hemispheres has centre with coordinates which
are algebraic numbers and has euclidean radius which is also an algebraic number.
If the intersection of two of these hemispheres is nonempty, it is a semicircle whose
boundary points have coordinates which are algebraic numbers and whose euclidean
radius is also an algebraic number. Further the vertices of Pi , each of which is the
intersection of three of these hemispheres, also have coordinates which are algebraic
numbers. These numbers can be approximated to any required degree of accuracy over
the rational numbers (to lie within an “isolating interval” with rational endpoints) using
standard methods of symbolic computation, as described by Manning (with reference
to Becker and Weispfenning [2] and Loos [13]). The algorithmic process starts from
the results of Manning’s algorithm, which gives coordinates (ie minimal polynomials
and isolating intervals for their roots) for the vertices of the polyhedra Pi , and for the
centres of the semicircles and hemispheres defining the edges and faces of Pi , and
estimates of their radii. Suppose that all these isolating intervals are of width at most � ,
and to begin, suppose that � has been chosen so that 1=2cC1 < � < 1=2c . We refer to
this number as the error in our calculations.

In the upper half-space model, after estimating euclidean distances, we can then estimate
hyperbolic distances using the usual formulae. For simplicity in the following seven
statements, we will say that a point in the upper half space model of H3 is algebraic if
its coordinates are algebraic, that an infinite geodesic in this model is algebraic if its
boundary points are algebraic (we count 1 as being algebraic here), that a hemisphere

Algebraic & Geometric Topology, Volume 14 (2014)



2436 Peter Scott and Hamish Short

in this model is algebraic if its euclidean centre (in the base plane zD 0) and radius are
algebraic, and that a vertical plane is algebraic if it contains at least two finite algebraic
points (or has at least one finite algebraic boundary point). Finally a compact geodesic
segment is algebraic if its endpoints are algebraic.

(1) The distance between two distinct algebraic points is not algorithmically com-
putable, but we can compute a positive lower bound which will suffice for our
requirements. The error incurred here is at most 2� .

(2) For this point and the next, we use the upper half space model of the hyperbolic
plane H2 . Finding the distance between an algebraic point X and a disjoint
algebraic geodesic � in the hyperbolic plane can be algorithmically reduced to
finding the distance between two algebraic points as follows. Let � denote the
semicircle through X which meets � at right angles and has its centre on the
base line R. We can find this centre by solving quadratic equations specifying
that the centre is equidistant from X and the point �\�, and that the line from
the centre to �\� is tangent to �. Hence we can also find �\�. Now the
required distance equals the distance from X to the point �\ �, so we can
apply (1).

(3) In the same way, finding the distance between two disjoint algebraic geodesics
(without a common boundary point) in the hyperbolic plane can be algorithmically
reduced to (1).

(4) In the same way, finding the distance between an algebraic point X and a disjoint
algebraic hyperbolic plane … in hyperbolic 3–space can be algorithmically
reduced to (1).

(5) In the same way, finding the distance between two disjoint algebraic hyperbolic
planes whose boundaries are also disjoint can be algorithmically reduced to (1).

(6) To find a lower bound for the distance between an algebraic geodesic � and a
disjoint algebraic hyperbolic plane …, such that the boundaries of � and … are
also disjoint, we will choose an algebraic hyperbolic plane † which contains �
and is disjoint from …, so that their boundaries are also disjoint. Once such †
has been found, the distance between † and …, which can be found as in (5),
gives the required lower bound.
If � is a vertical line, … must be a hemisphere, and we choose † to be the
vertical plane through � which is orthogonal to the vertical plane which contains
both � and the centre of the hemisphere †.
Otherwise � is a semicircle with endpoints a and b in the plane z D 0. Now
we apply the Moebius transformation ' given by '.z/D .z�a/=.z�b/, which
takes � to the vertical line �0 above the origin, and takes … to an algebraic
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hyperbolic plane …0 . The distance between �0 and …0 can be bounded below
as in the preceding two paragraphs. As ' is a hyperbolic isometry, this is the
required lower bound for the distance between � and ….

(7) Finding the distance between an algebraic geodesic segment e and a disjoint
algebraic hyperbolic plane … in hyperbolic 3–space can be algorithmically
reduced to the preceding cases as follows. Let � denote the geodesic which
contains e . If � and … are disjoint and do not have a common boundary point,
we can apply (6) to find a lower bound for the distance between them. This is
also a lower bound for the distance between e and …. Otherwise, the distance
between e and … equals the distance between @e and …, which reduces the
problem to (4).

Lemma 2.1 There is an algorithm to find a positive number R, such that starn.P2/

contains the metric ball B.P2; nR/.

Proof We will find R such that for each n� 1, the R–neighborhood of @ starn.P2/,
does not meet starn�1.P2/. Thus any path in H3 which starts on @ starn.P2/ and ends
on @ starn�1.P2/ must have length at least R. By induction it follows that any path
which starts on @ starn.P2/ and ends on @P2 must have length at least nR. It follows
immediately that starn.P2/ contains the metric ball B.P2; nR/, as required.

We first give a description of the exact calculation before considering the error term.
We use the above seven points to find positive lower bounds for various distances.

The distance between disjoint vertices of P2 can be bounded below using (1).

The distance between a vertex v of P2 and a disjoint edge e of P2 can be estimated as
follows. Let � denote the geodesic which contains e . As v cannot lie on �, it suffices
to estimate the distance of v from �. If � is a vertical line, this can be done as in (2).
Otherwise, as in (6), let a and b denote the endpoints of �, and apply the Moebius
transformation ' given by '.z/D .z� a/=.z� b/. This takes � to a vertical line �0

and takes v to an algebraic point v0 , so we can now estimate the distance of v0 from �0

as in (2).

The distance between a vertex v of P2 and a disjoint face F of P2 can be estimated
using (4), as v cannot lie in the plane which contains F .

The distance between disjoint edges e and f of P2 can be estimated as follows. Let �
and � denote the geodesics which contain e and f respectively. If � meets � at
a finite point or at infinity, the distance between e and f is equal to the distance
between @e and @f , which can be bounded as in (1). If � and � are disjoint, and
disjoint at infinity, we will find an algebraic plane … which contains � and is disjoint
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from �, and is also disjoint from � at infinity. If � is a vertical line, so that � must
be a semicircle, we take … to be the vertical plane through � which is parallel to the
base line of the semicircle �. If � is not a vertical line, then, as in (6), we can apply a
Moebius transformation which takes � to a vertical line and takes � to an algebraic
geodesic.

The distance between an edge e of P2 and a disjoint face F of P2 can be estimated
using (7), as e must be disjoint from the plane which contains F .

Finally the distance between disjoint faces E and F of P2 can be estimated as follows.
Let …E and …F denote the planes which contain E and F respectively. If these
planes are disjoint, and disjoint at infinity, we can estimate the distance between them
using (5), and this will be a lower bound for the distance between E and F . Otherwise,
the distance between E and F is bounded below by the distance between E and …F .
This last distance equals the distance between …F and some edge of E , and so equals
one of the numbers already estimated.

Now let R denote half the minimum of all these numbers.

Let W denote a vertex, edge or face of P2 . Then the definition of R implies that
the R–neighborhood of W meets only those vertices, edges or faces of P2 which
meet W .

Hence if Q is a translate of P2 in starn.P2/ which meets @ starn.P2/, then the R–
neighborhood of @ starn.P2/ does not meet any vertex, edge or face of Q except
those which meet @ starn.P2/. In particular, it follows that the R–neighborhood
of @ starn.P2/, does not meet starn�1.P2/, as required. Note that both @ starn.P2/

and starn�1.P2/ are disjoint.

In the actual algorithm, when dealing with approximations, all the calculations above
incur increasing error, but the fact that the number of operations is finite means that
there is a constant C >0 such that the error in the estimate of each of these numbers is at
most C� , so that R must be replaced by R�C� . It is of course possible that R<C� in
which case the algorithm must restart, replacing � by �=2, recalculating the coordinates
in Manning’s algorithm to this increased degree of accuracy, and recalculating R.
Continue to do so until R> C� , and then replace R by R�C� , once this number is
positive.

3 Algorithm to find the geometry

In this section we consider closed orientable irreducible geometric 3–manifolds, given
by finite triangulations. There are eight geometries (as discussed in the first author’s
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article [21]), and it is well known that a closed 3–manifold can have a geometric
structure modelled on at most one of these geometries. This can be proved by exhibiting
properties of the fundamental groups which distinguish the geometries. For example
only closed manifolds modelled on S3 can have finite fundamental group. The point
of what we do in this section is that we can decide algorithmically on which geometry
a given geometric manifold is modelled. Such an algorithm is described by Manning
in [14, 1.4], but here we provide a more algebraic treatment.

As we are considering orientable irreducible 3–manifolds, the geometry S2�R cannot
occur. For the only closed orientable manifolds modelled on this geometry are S2�S1

and RP3 #RP3 , neither of which is irreducible. We start by listing the remaining seven
geometries together with some selected properties of the closed manifolds modelled on
these geometries.

Geometry Selected properties of any closed orientable 3–manifold M

modelled on given geometry

S3 �1.M / is finite.

E3 �1.M / is virtually Z3 and M is Haken. Any two–sided
incompressible surface in M must be a torus.

H3 �1.M / has no subgroup isomorphic to Z2.

H2 �R
M is a Seifert fibre space with hyperbolic base orbifold.
M is Haken and contains an embedded incompressible
hyperbolic surface.

Nil M is a Seifert fibre space with euclidean base orbifold.

Solv M is Haken. Any two–sided incompressible surface in M

must be a torus.

ASL2R
M is a Seifert fibre space with hyperbolic base orbifold. A
two–sided incompressible surface in M must be a torus.

A crucial fact for us is that if M is modelled on one of the above seven geome-
tries, then �1.M / is biautomatic, except in the cases when the geometry is Nil or
Solv ([6, Chapter 12] proves automaticity). In order to apply the theory of biautomatic
structures, we first need to be able to decide whether M is modelled on Nil or Solv.

The key topological algorithm we will need is that of Jaco and Oertel [11] which
decides whether a given triangulated 3–manifold M is Haken. Their paper also shows
how to decide whether M has an incompressible surface which is a torus and how to
find such a torus. We will use these algorithms several times in what follows.
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As usual T denotes the 2–torus S1 �S1 . We also need to be able to decide whether
a compact orientable manifold M 0 is homeomorphic to T � I . If M 0 is irreducible,
this is a special case of [12, Algorithm 9.7]. Note that the algorithms of Jaco and
Oertel also find essential discs, and in this case cutting along a properly embedded disc
gives a 3–ball, which can be recognised (by Rubinstein [20] and Thompson [23], or by
Perelman’s solution of the Poincaré conjecture).

Lemma 3.1 [21, Theorem 5.5] If M is orientable and is obtained from T � I by
gluing T � f0g to T � f1g by some homeomorphism h, then M is geometric and is
modelled on one of E3 , Nil or Solv.

Proof The action of h on H1.T /Š Z2 is given by an integer 2� 2 matrix A. We
consider the trace, tr.A/, of A. If jtr.A/j < 2, or if AD˙I , then A, and hence h,
must be periodic, so that M is modelled on E3 . If jtr.A/j > 2, then A has distinct
real eigenvalues, so that M is modelled on Solv. If jtr.A/j D 2, then A has a repeated
eigenvalue equal to ˙1. So long as A¤˙I , this implies M is modelled on Nil.

Remark Suppose that we have found an incompressible torus T in an orientable 3–
manifold M , using the algorithms of normal surface theory, and that we have checked
that cutting M along T yields a manifold homeomorphic to T � I . In this situation,
one can algorithmically calculate the action of h on H1.T /Š Z2 , and so can decide
on which geometry M is modelled.

We now discuss the geometries Nil and Solv in more detail and describe an algorithm
to decide which geometry occurs.

If M is modelled on Solv, then M is a bundle over a 1–dimensional orbifold with
fibre the torus. Thus either M is a bundle over S1 with fibre the torus, or M is double
covered by such a manifold.

If M is modelled on Nil, there are several cases. If M is Haken, then it is a Seifert
fibre space whose base orbifold is a torus, Klein bottle, S2.2; 2; 2; 2/ or P2.2; 2/.
If this orbifold is not a torus, there is a regular cover of M of degree 2 or 4 whose
base orbifold is a torus. If M is not Haken, it is a Seifert fibre space whose base
orbifold is S2.p; q; r/, where .p; q; r/ is one of .3; 3; 3/, .2; 2; 4/ or .2; 3; 6/. Now
the orbifold fundamental group of S2.p; q; r/ is the triangle group �.p; q; r/, and in
these cases, �.p; q; r/ has a homomorphism to Z3 , Z4 or Z6 with kernel isomorphic
to Z2 . Thus there is a homomorphism of �1.M / to f1g, Z3 , Z4 or Z6 whose kernel
determines a finite cover of M which is a circle bundle over the torus. If M is modelled
on Nil and is a circle bundle over the torus, then any two–sided incompressible surface
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in M must be a vertical torus, and if we cut M along such a torus, the result will be
homeomorphic to T � I .

We can apply the preceding paragraph as follows. For any triangulated closed orientable
irreducible 3–manifold M , we can check whether there is a homomorphism of �1.M /

to f1g, Z2 , Z3 , Z4 , Z2 �Z2 , or Z6 whose kernel determines a finite cover of M

with infinite first homology group. If this does not occur, then M cannot be modelled
on Nil or Solv. If this does occur, we can check whether the covering contains an
incompressible torus, and if it does, we can check whether cutting along this torus
yields T � I . If this occurs, the remark above tells us how to determine the geometry
on this finite cover and hence on M .

Thus we can decide whether or not M is modelled on Nil or Solv, and if it is so
modelled can decide which.

This reduces us to considering the five remaining geometries.

Given a triangulated closed orientable irreducible 3–manifold M , we can write down a
presentation for �1.M /. If we know that �1.M / is biautomatic, we can algorithmically
find a biautomatic structure. Part of this structure is a regular (or rational) language of
representatives for the elements of the group. We can suppose, using [6, Theorem 2.5.2],
that each group element has a unique representative in the language, and it is easy to
check whether a regular language is finite or infinite (see for instance Hopcroft and
Ullman [9, Theorem 3.7]). Thus we can algorithmically check whether �1.M / is
finite, and so can decide whether M is modelled on S3 .

This reduces us to the four remaining geometries, which are E3 , H3 , H2 � R
and ASL2R .

If M is modelled on E3 , there are several cases. In all cases, M is Haken. It is a
Seifert fibre space whose base orbifold is a torus, Klein bottle, S2.2; 2; 2; 2/, P2.2; 2/,
or S2.p; q; r/, where .p; q; r/ is one of .3; 3; 3/, .2; 2; 4/ or .2; 3; 6/. Thus, as for
Nil geometry, there is a homomorphism of �1.M / to f1g, Z2 , Z3 , Z4 , Z2 �Z2 ,
or Z6 whose kernel determines a finite cover of M whose base orbifold is the torus.
But now this finite cover must be a 3–torus, and so have free abelian fundamental
group.

Thus to decide whether or not M is modelled on E3 , we simply check whether there
is a homomorphism of �1.M / to Z2 , Z3 , Z4 , Z2 � Z2 , or Z6 whose kernel is
free abelian of rank 3. For M is modelled on E3 , if and only if there is such a
homomorphism.

This reduces us to the three remaining geometries, which are H3 , H2 �R and ASL2R .
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Using the biautomatic structure on �1.M / one can check the answers to the following
questions. Does �1.M / have nontrivial centre? Does �1.M / have a subgroup of
index 2 with nontrivial centre? (A regular language for the centre of a biautomatic
group is constructed in Gersten and the second author [7, Corollary 4.4.1], and as noted
earlier, it is easy to check whether the language is infinite or finite, and in the latter
case deduce how many elements are in the centre. It is also straightforward to obtain a
biautomatic structure for all subgroups of a given finite index, as in [6, Theorem 4.1.1].)
If the answer to both questions is negative, then M must be hyperbolic. If we find
a positive answer, then M must be modelled on one of H2 � R and ASL2R . To
distinguish these cases, we use the facts that if M is modelled on ASL2R , then any
incompressible surface in M must be a (vertical) torus, whereas if M is modelled on
H2 �R, there must be horizontal incompressible surfaces in M none of which can be
a torus. Thus we can apply the algorithm of Jaco and Oertel [11] to decide whether M

contains an incompressible surface which is not a torus.

The referee pointed out an alternative algebraic approach to distinguishing the H2 �R
and ASL2R cases. It is based on two observations. The first is that if M is modelled
on one of these two geometries, then M has a finite cover M1 which is a bundle over
a surface with fibre the circle, such that the centre of �1.M1/ is infinite cyclic. The
second is that if M1 is such a manifold, one can decide on which geometry M1 (and
hence M ) is modelled by checking whether the centre of �1.M1/ injects into H1.M1/.
If it does, then the geometry is H2�R, and if it does not, then the geometry is ASL2R . It
will be helpful to add a third observation. This is that if the centre of �1.M / is infinite
cyclic, and if the centre of �1.M / injects into H1.M /, then M must be modelled
on H2 �R. This is true because the assumption that the centre of �1.M / injects
into H1.M / immediately implies that the centre of �1.M1/ injects into H1.M1/.

To distinguish these two geometries algorithmically, we proceed as follows. Suppose
that �1.M / has nontrivial centre. (If not, replace M by the double cover which does
have this property.) Now this centre, which we denote by A, is infinite cyclic and
the quotient �1.M /=A is a Fuchsian group � . If � is torsion free, it is a surface
group, and we take M1 to equal M . We can decide whether � is torsion free. First �
is ı–hyperbolic for some ı > 0, and such a ı can be found algorithmically (see for
instance [16]). Now any torsion element of � must have length at most 4ıC2 (Bridson
and Haefliger [4, proof of Theorem III.�:3:2]) and so the orders of all torsion elements
can be found. If there is any nontrivial torsion, we let k denote the least common
multiple of these orders. It follows from Edmonds, Ewing and Kulkarni [5, Theorem 1]
that there is a torsion free subgroup �1 of index 2k in � . Thus there is a degree 2k

cover M1 of M , such that �1.M1/ has centre A, and �1.M1/=A is the surface
group �1 . We can now algorithmically find finite presentations for the (finitely many)
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subgroups of � of index 2k , one of which is �1 . At this point one could simply
check each of these subgroups of � to decide whether it is torsion free, but it seems
simpler to proceed in the following way. Instead consider the index 2k subgroups
of �1.M / with centre A and quotient one of the index 2k subgroups of � . For each
such subgroup G of �1.M /, we check whether A injects into the abelianisation of G .
If this does not occur for any of these subgroups we immediately deduce that M

has ASL2R geometry. If this does occur for some such subgroup, say �1.M2/, we can
apply the third observation above to see that M2 , and hence M , has H2�R geometry,
without ever needing to check whether the quotient �1.M2/=A is torsion free.
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