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Low-dimensional linear representations of the
mapping class group of a nonorientable surface

BŁAŻEJ SZEPIETOWSKI

Suppose that f is a homomorphism from the mapping class group M.Ng;n/ of a
nonorientable surface of genus g with n boundary components to GL.m;C/ . We
prove that if g � 5 , n� 1 and m� g� 2 , then f factors through the abelianization
of M.Ng;n/ , which is Z2 �Z2 for g 2 f5; 6g and Z2 for g � 7 . If g � 7 , nD 0

and mD g� 1 , then either f has finite image (of order at most two if g ¤ 8), or
it is conjugate to one of four “homological representations”. As an application we
prove that for g� 5 and h<g , every homomorphism M.Ng;0/!M.Nh;0/ factors
through the abelianization of M.Ng;0/ .

20F38; 57N05

1 Introduction

For a compact surface F , its mapping class group M.F / is the group of isotopy
classes of all, orientation-preserving if F is orientable, homeomorphisms F ! F

equal to the identity on the boundary of F . A compact surface of genus g with n

boundary components will be denoted by Sg;n if it is orientable, and by Ng;n if it is
nonorientable. If nD 0 then we drop it in the notation and write simply Sg or Ng .
The first integral homology group of F will be denoted by H1.F /.

After fixing a basis of H1.Sg/, the action of M.Sg/ on H1.Sg/ gives rise to a
homomorphism M.Sg/ ! Sp.2g;Z/, which is well-known to be surjective, and
whose kernel is known as the Torelli group. Gluing a disc along each boundary
component of Sg;n induces an epimorphism M.Sg;n/!M.Sg/, and by composing
it with M.Sg/! Sp.2g;Z/, and then with the inclusion Sp.2g;Z/ ,! GL.2g;C/,
we obtain the map ˆWM.Sg;n/! GL.2g;C/. Recently, the following two results
were proved by J Franks, M Handel and M Korkmaz.

Theorem 1.1 (Franks and Handel [8], and Korkmaz [15]) Let g � 2, m � 2g� 1

and let f WM.Sg;n/! GL.m;C/ be a homomorphism. Then f is trivial if g � 3,
and Im.f / is a quotient of Z10 if g D 2.
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We say that two homomorphisms f1 , f2 from a group G to a group H are conjugate
if there exits h 2H such that f2.x/D hf1.x/h

�1 for x 2G .

Theorem 1.2 (Korkmaz [16]) For g � 3, every nontrivial homomorphism

f WM.Sg;n/! GL.2g;C/

is conjugate to the map ˆ.

In this paper we prove analogous results for M.Ng/. Fix g � 3. Let Rg denote
the quotient of H1.Ng/ by its torsion. Hence Rg is a free Z–module of rank g� 1.
There is a covering P W Sg�1 ! Ng of degree two. By a theorem of Birman and
Chillingworth [3], M.Ng/ is isomorphic to the subgroup of M.Sg�1/ consisting of the
isotopy classes of orientation-preserving lifts of homeomorphisms of Ng , which gives
an action of Ng on H1.Sg�1/. Let Kg�H1.Sg�1/ be the kernel of the composition of
the induced map P�W H1.Sg�1/!H1.Ng/ with the canonical projection H1.Ng/!
Rg . Then Kg is a M.Ng/–invariant subgroup of rank g � 1 and we have two
homomorphisms

‰1WM.Ng/! GL.Kg/ and ‰2WM.Ng/! GL.H1.Sg�1/=Kg/;

which after fixing bases will be treated as representations of M.Ng/ in GL.g� 1;C/.
One may see ‰1 and ‰2 as stemming from the actions of M.Ng/ on homology groups
of Ng with (local) coefficients in Z with non-trivial and trivial ZŒ�1.Ng/�–module
structure respectively (see Remark 4.4). We will see that these representations are not
conjugate, although ker‰1 D ker‰2 .

Our first result is the following.

Theorem 1.3 Suppose that n� 1, g � 5, m� g�2 and f WM.Ng;n/!GL.m;C/
is a nontrivial homomorphism. Then Im.f / is either Z2 or Z2 �Z2 , the latter case
being possible only for g D 5 or 6.

Theorem 1.3 was proved in [15], in the more general setting of punctured surfaces,
under the additional assumption that m� g�3 if g is even. Therefore the only novelty
of our result is that it also covers the case mD g� 2 for even g . As an application of
Theorem 1.3, we prove the following result, which solves Problem 3.3 in [19].

Theorem 1.4 Suppose that g � 5, h< g and f WM.Ng/!M.Nh/ is a nontrivial
homomorphism. Then Im.f / is as in Theorem 1.3.

The analogous theorem for mapping class groups of orientable surfaces was proved by
Harvey and Korkmaz [13]. In the orientable case the two surfaces need not be closed,
as shown in recent theorems of Castel [5], and Aramayona and Souto [1].
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We will prove that both Theorem 1.3 and Theorem 1.4 fail for g D 4, by showing
that there is a homomorphism from M.N4/ to M.N3/Š GL.2;Z/ whose image is
isomorphic to the infinite dihedral group.

Suppose that g � 7. Then the abelianization of M.Ng/ is Z2 and we denote by
abWM.Ng/! Z2 the canonical projection. For i D 1; 2 we set ‰0i D .�1/ab‰i . Our
next result is the following.

Theorem 1.5 Suppose that g � 7, g ¤ 8 and f WM.Ng/ ! GL.g � 1;C/ is a
nontrivial homomorphism. Then either Im.f /Š Z2 , or f is conjugate to one of ‰1 ,
‰0

1
, ‰2 , ‰0

2
.

For gD 8, other representations of M.N8/ in GL.7;C/ occur, related to the fact that
there is an epimorphism �WM.N8/! Sp.6;Z2/ and the last group admits irreducible
representations in GL.7;C/ (see [4]). We prove the following result.

Theorem 1.6 Suppose that f WM.N8/! GL.7;C/ is a nontrivial homomorphism.
Then one of the following holds.

(1) Im.f /Š Z2

(2) f or .�1/abf factors through �WM.N8/! Sp.6;Z2/.

(3) f is conjugate to one of ‰1 , ‰0
1

, ‰2 , ‰0
2

.

To prove our theorems we use the ideas and results from [8; 15; 16] with necessary
modifications. While the case of odd genus is relatively easy, the case of even genus
requires much more effort. This phenomenon is typical for the mapping class group of
a nonorientable surface.

Throughout this paper we will often have to solve an equation of the form LDR, where
L and R are products of matrices from GL.m;C/ with some unknown coefficients.
Although the dimension m is variable, the calculations of L and R always reduce to
multiplication of blocks of size at most 7� 7. With some patience, such calculations
could be done by hand, but it is definitely easier to use a computer. We used GAP, but
of course, any program that performs symbolic operations on matrices could be used
as well.

2 Notation and algebraic preliminaries

Suppose that m � 2 is fixed. We denote by Im the identity matrix of dimension m.
We will sometimes write simply I , if m is clear from the context. We denote by
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Eij the elementary matrix with 1 on the position .i; j / and 0 elsewhere. Suppose
that M1; : : : ;Mk are nonsingular square matrices of dimensions m1; : : : ;mk , where
m1C � � �Cmk Dm. Then we denote by diag.M1; : : : ;Mk/ the m�m matrix with
M1; : : : ;Mk on the main diagonal and zeros elsewhere. Set

V D
�

1 1

0 1

�
; yV D

�
1 0

�1 1

�
; W D

0BB@
1 1 0 �1

0 1 0 0

0 �1 1 1

0 0 0 1

1CCA :
For 2� 2i �m we define

Ai D diag.I2i�2;V; Im�2i/; Bi D diag.I2i�2; yV ; Im�2i/;

and for 2� 2j �m� 2,

Cj D diag.I2j�2;W; Im�2�2j /:

The proof of the following lemma is straightforward and we leave it as an exercise
(cf [16, Lemma 2.2]).

Lemma 2.1 Suppose that 1�k� l�m=2 and M 2GL.m;C/ satisfies AiM DMAi ,
BiM DMBi and Cj M DMCj for all i; j such that k � i � l , k � j � l �1. Then
M has the form 0@� 0 �

0 �I2.l�kC1/ 0

� 0 �

1A
for some � 2 C� , where the top left � of the block �I2.l�kC1/ is at the position
.2k � 1; 2k � 1/.

Suppose that L 2 GL.m;C/ and � is an eigenvalue of L. Then we denote by #� the
multiplicity of �. For k � 1, we denote by Ek.L; �/ the space ker.E ��I/k . Thus
E1.L; �/ is the eigenspace of L with respect to �, and it will be also denoted by
E.L; �/. Note that if L0 2 GL.m;C/ commutes with L, then the spaces Ek.L; �/

are L0–invariant for k � 1.

For k � 2 we denote by Sk the full symmetric group of the set f1; : : : ; kg. It is
generated by the transpositions �i D .i; i C 1/ for 1 � i � k � 1. We will need the
following result from the representation theory of the symmetric group; see for example
Fulton and Harris [9, Exercise 4.14].

Lemma 2.2 For k � 5, Sk has no irreducible representation (over C ) of dimension
1 <m < k � 1. If k � 7, then Sk has two irreducible representations of dimension
k�1: the standard one and the tensor product of the standard and sign representations.
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Figure 1: The surface Ng;n and the curve �I for I D fi1; i2; : : : ; ikg

i i C 1

u1�

Figure 2: The crosscap transposition ui

3 Mapping class group of a nonorientable surface

Let n 2 f0; 1g and g � 2. Let us represent Ng;n as a sphere (if nD 0) or a disc (if
nD 1) with g crosscaps. This means that the interiors of g small pairwise disjoint
discs should be removed from the sphere/disc, and then antipodal points in each of
the resulting boundary components should be identified. Let us arrange the crosscaps
as shown on Figure 1 and number them from 1 to g . For each nonempty subset
I � f1; : : : ;gg let �I be the simple closed curve shown on Figure 1. Note that �I is
two-sided if and only if I has even number of elements. In this case t�I will be the
Dehn twist about 
I in the direction indicated by arrows on Figure 1.

We will write �i instead of �fig . The following curves will play a special role and so
we give them different names:

� ıi D �fi;iC1g for 1� i � g� 1

� "j D �f1;2;:::;2jg for 2� 2j � g

Note that "1 D ı1 .

For 1� i � g� 1 we define the crosscap transposition ui to be the isotopy class of
the homeomorphism interchanging the i th and the .i C 1/st crosscaps as shown on
Figure 2, and equal to the identity outside a disc containing these crosscaps.
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2450 Błażej Szepietowski

The groups M.N1;n/ are trivial for n� 1 by Epstein [7, Theorem 3.4], and M.N2/Š
Z2 �Z2 by Lickorish [21]. Birman and Chillingworth obtained in [3, Theorem 3]
a finite presentation for M.N3/, from which it is easy to deduce that this group is
isomorphic to GL.2;Z/. A direct geometric proof of this fact is given in González-
Acuña and Márquez-Bobadilla [12]. For g � 3, a finite generating set for M.Ng;n/

was given in Chillingworth [6] for nD 0 and in Stukow [25] for n> 0. For n� 1 this
set can be reduced to the one given in the following theorem, which can be deduced
from the main result of Paris and Szepietowski [23].

Theorem 3.1 For g � 4 and n 2 f0; 1g, M.Ng;n/ is generated by ug�1 , t"2
and tıi

for 1� i � g� 1.

If n > 1, then we consider Ng;n as the result of gluing S0;nC1 to Ng;1 along the
boundary component. We will need the following relations, satisfied in M.Ng;n/.
Those between Dehn twists are the well-known disjointness and braid relations.

(R1) tıi
tıj D tıj tıi

for ji � j j> 1

(R2) t"i
t"j D t"j t"i

for all i; j

(R3) t"i
tıj D tıj t"i

for j ¤ 2i

(R4) tıi
tıiC1

tıi
D tıiC1

tıi
tıiC1

for 1� i � g� 2

(R5) t"i
tı2i

t"i
D tı2i

t"i
tı2i

for 2i < g

The relations involving crosscap transpositions are not so well known and we refer the
reader to Paris and Szepietowski [23], and Szepietowski [28], for their proofs.

(R6) tıi
uj D uj tıi

for ji � j j> 1

(R7) uiuj D uj ui for ji � j j> 1

(R8) t"i
uj D uj t"i

for j > 2i

(R9) uiuiC1ui D uiC1uiuiC1 for 1� i � g� 2

(R10) tıi
uiC1ui D uiC1ui tıiC1

for 1� i � g� 2

(R11) uiC1tıi
tıiC1

ui D tıi
tıiC1

for 1� i � g� 2

(R12) tıi
ui tıi

D ui for 1� i � g� 1

If follows from (R4) that all tıi
are conjugate for 1� i � g� 1, from (R5) that t"j is

conjugate to tı2j
for 2j < g , and from (R12) that tıi

is conjugate to t�1
ıi

. Similarly,
by (R9) all ui are conjugate for 1� i � g� 1, and by (R11) ui is conjugate to u�1

i .

For a group G we denote the abelianization G=ŒG;G� by Gab . The following theorem
is proved in Korkmaz [17] for nD 0 and generalised to n> 0 in Stukow [25].
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Theorem 3.2 For n � 1 and g � 3, M.Ng;n/
ab has the following presentation as a

Z–module: ˝
Œtı1
�; Œt"2

�; Œu1� j 2Œtı1
�D 2Œt"2

�D 2Œu1�D 0
˛

if g D 4˝
Œtı1
�; Œu1� j 2Œtı1

�D 2Œu1�D 0
˛

if g 2 f3; 5; 6g˝
Œu1� j 2Œu1�D 0

˛
if g � 7

In particular, for g � 7 we have Œtı1
�D 0.

Lemma 3.3 For g � 5 and n� 1, let ˛ , ˇ be two-sided curves on Ng;n , intersecting
transversally in one point. If f WM.Ng;n/!G is a homomorphism, such that f .t˛/
commutes with f .tˇ/, then Im.f / is abelian.

Proof Let N DNg;n and MDM.Ng;n/. Fix a regular neighbourhood A of ˛[ˇ .
Note that A is homeomorphic to S1;1 and N nA is homeomorphic to Ng�2;1 . It
follows that for each i � g � 2 there is a homeomorphism hW N ! N such that
h.˛/D ıi and h.ˇ/D ıiC1 . It follows that ht˛h�1 D t"1

ıi
and htˇh�1 D t"2

ıiC1
, where

"j 2 f�1; 1g for j D 1; 2. Hence f .tıi
/ commutes with f .tıiC1

/, and by the braid
relation (R4), f .tıi

/ D f .tıiC1
/. Analogously, f .t"2

/ D f .tı4
/. By Theorem 3.1,

Im.f / is generated by f .tı1
/ and f .ug�1/, and since ug�1 commutes with tı1

,
Im.f / is abelian.

Lemma 3.4 Suppose that g � 4 and f WM.Ng;n/ ! G is a homomorphism. If
f .t"i

/D f .tıj / for some 2i C 1� j � g� 1, then f .t2
ı1
/D 1.

Proof Set x D f .t"i
/ D f .tıj / and y D f .uj /. By the relation (R8) we have

xy D yx , and by (R12), xyx D y . Hence x2 D 1, which finishes the proof, because
tıj is conjugate to tı1

.

Let g D 2r C s , where r � 1, s 2 f1; 2g and S D Sg�1 . Consider S as being
embedded in R3 in such a way that it is invariant under the reflections about the xy ,
xz and yz planes, as shown on Figure 3. We define a homeomorphism j W S ! S

as j .x;y; z/D .�x;�y;�z/. The quotient space S=j is a nonorientable surface of
genus g and the projection pW S! S=j is a covering map of degree 2. Let S 0 be the
subsurface of S consisting of points .x;y; z/ 2 S with x � �", where " is a positive
constant, so small that S 0 is homeomorphic to Sr;s . If g is even, then one of the
boundary components of S 0 is isotopic to ˛rC1 . In this paper we identify isotopic
curves, and therefore we will treat ˛rC1 as a curve on S 0 . Note that the restriction of
p to S 0 is an embedding. For odd g we define 
 0 to be the arc of 
r consisting of
points with x � 0. For even g we define ˇ0 to be the arc of ˇrC1 consisting of points
with x � 0. Note that p.
 0/ and p.ˇ0/ are one-sided simple closed curves on S=j .
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2452 Błażej Szepietowski

ˇ1

˛1


1

� � �

�


r�1

ˇr

ˇrC1

r 
rC1

˛r

˛rC1

� � �

ˇ2r

˛2r


2r�1

y

x

ˇ1

˛1


1

� � �

ˇr

ˇrC2

ˇrC1

˛r

˛rC2

�

˛rC1


r 
rC1

� � �

ˇ2rC1

˛2rC1


2r

y

x

Figure 3: The surface Sg�1 for g D 2r C 1 (top) and g D 2r C 2 (bottom)

Proposition 3.5 There is a homeomorphism 'W Sg�1=j ! Ng such that, for P D
' ıp , up to isotopy:

(1) P .ˇi/D ı2i for 1� i � r

(2) P .˛i/D "i for 2� 2i � g

(3) P .
i/D ı2iC1 for 2� 2i � g� 2

(4) P .
 0/D �g if g is odd

(5) P .ˇ0/D �g if g is even

Proof By altering the curves ıi , "j and �g by a small isotopy, we may assume that they
intersect each other minimally. The curves ıi for 1� i �g�1 form a chain of two-sided
curves, which means that ıi and ıj intersect at one point if ji � j j D 1, and they are
disjoint otherwise. The one-sided curve �g intersects ıg�1 at one point and is disjoint
from ıi for i<g�1. Let † be a regular neighbourhood of the union of ıi for 1� i�g�
1, and let M be the union of † with a regular neighbourhood of �g . Observe that † and
M are homeomorphic to Sr;s and Ng;1 respectively. We may choose † big enough to
contain the curves "i for 2� 2i �g (if g is even, then one of the boundary components
of † is isotopic to "rC1 ). Let M 0 � Sg�1=j be the union of p.S 0/ and a regular
neighbourhood of the one-sided curve p.
 0/ if g is odd, or p.ˇ0/ if g is even. There
is a homeomorphism 'W M 0!M such that for P D ' ıp we have P .S 0/D† and
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P maps the chain .˛1; ˇ1; 
1; ˇ2; 
2; : : : ; ˇr ; 

0/ (or .˛1; ˇ1; 
1; ˇ2; 
2; : : : ; 
r ; ˇ

0/)
on .ı1; : : : ; ıg�1; �g/. Such a P satisfies conditions (1), (3), (4), (5) of the lemma.
Since "i , "iC1 and ı2iC1 bound a pair of pants in † for 2 � 2i � g� 2, ' may be
taken to also satisfy (2). Finally, since .Sg�1=j /nM 0 and NgnM are discs, ' may
be extended to 'W Sg�1=j !Ng .

Corollary 3.6 There is a homomorphism �WM.S 0/!M.Ng;n/ such that:

� �.tˇi
/D tı2i

for 1� i � r

� �.t˛i
/D t"i

for 2� 2i � g

� �.t
i
/D tı2iC1

for 2� 2i � g� 2

Here the Dehn twists about the curves on S 0 are right-handed with respect to the
standard orientation.

Proof By the proof of Proposition 3.5, the restriction of P to S 0 is a homeomorphism
onto † satisfying conditions (1), (2), (3). There is an induced isomorphism M.S 0/!
M.†/, which may be composed with the homomorphism M.†/!M.Ng;n/ induced
by the inclusion † ,!Ng;n , for any n� 0, to obtain �.

For any homeomorphism hW Ng ! Ng there is a unique orientation preserving lift
zhW Sg�1 ! Sg�1 such that h ı P D P ı zh. By [3], the mapping h 7! zh induces a
monomorphism � WM.Ng/!M.Sg�1/. The following proposition follows from [3]
and [28, Theorem 10], where the lift of a crosscap transposition is determined.

Proposition 3.7 There is a monomorphism � WM.Ng/!M.Sg�1/ such that

�.t"i
/D t˛i

t�1
˛g�i

; �.tı2i
/D tˇi

t�1
ˇg�i

; �.tı2jC1
/D t
j

t�1

g�1�j

;

for 1� i � r , 2� 2j � g� 2 and

�.ug�1/D
�

t�1
ˇr

tˇrC1
.t
r

tˇr
tˇrC1

/2t�1
� if g D 2r C 1;

t�1

r

t
rC1
.tˇrC1

t
r
t
rC1

/2t�1
�

if g D 2r C 2:

4 Homological representations

Fix g � 3 and let S D Sg�1 , N DNg and P W S !N be as in the previous section.
The group H1.S/ is a free Z–module of rank 2.g � 1/ and the homology classes
ai D Œ˛i �, bi D Œˇi � for 1� i � g� 1 form its basis, which is a symplectic basis with
respect to the algebraic intersection form:

hai ; aj i D 0; hbi ; bj i D 0; hai ; bj i D ıij
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Let ˆWM.S/! Sp.H1.S// be the homomorphism induced by the action of M.S/

on H1.S/. If 
 is an oriented simple closed curve on S , Œ
 � 2H1.S/ is its homology
class, and t
 is the right Dehn twist, then ˆ.t
 / is the transvection

(1) ˆ.t
 /.h/D hChŒ
 �; hiŒ
 � for h 2H1.S/:

From (1) we immediately obtain that, with respect to the basis .a1; b1; : : : ; ag�1; bg�1/,
we have

ˆ.t˛i
/DAi ; ˆ.tˇi

/D Bi ; ˆ.t
j
/D Cj ;

for 1 � i � g� 1, 1 � j � g� 2, where Ai , Bi and Cj are the matrices defined in
Section 2.

The group H1.N / has the following presentation, as a Z–module:

H1.N /D hx1; : : : ;xg j 2.x1C � � �Cxg/D 0i;
where xi D Œ�i �. Set k D x1C � � �Cxg and RDH1.N /=hki. Observe that k is the
unique element of order two in H1.N / and R is a free Z–module of rank g� 1.

The map P W S !N induces P�W H1.S/!H1.N /, such that, for 1� i � r ,

P�.ai/D x1C � � �Cx2i D�P�.ag�i/;

P�.bi/D x2i Cx2iC1 D P�.bg�i/;

and if g D 2r C 2, then

P�.arC1/D x1C � � �Cxg D k; P�.brC1/D 2xg:

Let qW H1.S/!R be the composition of P� with the canonical projection H1.N /!
R, and set K D ker q . Observe that K has rank g � 1 and the following elements
form its basis:

ei D ai C ag�i ; erCi D bi � bg�i for 1� i � r

e2rC1 D arC1 for g D 2r C 2

We also set
fi D bi ; frCi D ag�i for 1� i � r;

f2rC1 D brC1 for g D 2r C 2:

The elements ei , fi for 1� i � g� 1 form a symplectic basis of H1.S/. It follows
that H1.S/=K is a free Z–module of rank g � 1 that is canonically isomorphic to
R if g is odd, or to an index-two subgroup of R if g is even. The group M.N /
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acts on H1.S/ by the composition ˆ ı � WM.N /! Sp.H1.S//. Observe that K is
M.N /–invariant and hence we have two .g� 1/–dimensional representations

‰1WM.N /! GL.K/; ‰2WM.N /! GL.H1.S/=K/:

Lemma 4.1 ker‰1 D ker‰2 and �.ker‰1/� kerˆ.

Proof Fix the basis .e1; : : : ; eg�1; f1; : : : ; fg�1/ of H1.S/. For any x 2M.N / let
X be the matrix of ˆ.�.x//. Since ˆ.�.x// preserves K , we have

X D
�

X1 Y

0 X2

�
;

where X1;X2;Y are .g � 1/� .g � 1/ matrices. Furthermore, X1 is the matrix of
‰1.x/ with respect to the basis .ei/1�i�g�1 of K , and X2 is the matrix of ‰2.x/

with respect to the basis .fi CK/1�i�g�1 of H1.S/=K . The algebraic intersection
form on H1.S/ has the matrix

�D
�

0 Ig�1

�Ig�1 0

�
:

Since X is symplectic, we have X t�X D �, which gives X t
1
X2 D I . Therefore

X1 D I ,X2 D I , which proves ker‰1 D ker‰2 .

To prove the second assertion, suppose that x 2 ker‰1 . Then

X D
�

Ig�1 Y

0 Ig�1

�
;

and we have to show Y D 0. Let j�W H1.S/! H1.S/ be the map induced by the
covering involution j . We have j�.ai/D�ag�i and j�.bi/D bg�i for 1� i � g�1.
It follows that the matrix of j� with respect to the basis .e1; : : : ; eg�1; f1; : : : ; fg�1/

has the form

J D
��Ig�1 T

0 Ig�1

�
for some T . Since �.x/ commutes with j , we have XJ D JX , which gives Y CT D
�Y CT , hence Y D 0.

Note that kerˆ is the Torelli group, which is well known to be torsion-free, and since
� is a monomorphism, we immediately obtain the following.

Corollary 4.2 ker‰1 is torsion-free.
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Remark 4.3 Let H denote the subgroup of M.N / consisting of the elements induc-
ing the identity on H1.N /. It was proved in Gastesi [11] that �.H /� kerˆ. We leave
it as an exercise to check that if g is odd, then H D ker‰2 , whereas if g is even, then
H is an index-two subgroup of ker‰2 . In the latter case, if gD 2r C 2, then we have
ker‰2 DH [ t"rC1

H .

Remark 4.4 There is a nontrivial action of �1.N / on Z defined as follows: 
 2
�1.N / acts by multiplication by 1 or �1 according to whether 
 preserves or reverses
local orientations of N . This action gives rise to homology groups with local coefficients
H�.N; zZ/, where zZ is Z with the nontrivial ZŒ�1.N /�–module structure. By Hatcher
[14, Example 3H.3], we have the exact sequence

H2.N /!H1.N; zZ/!H1.S/
P���!H1.N /;

which is a part of a long exact sequence of homology groups. Since H2.N / D 0,
we have a M.N /–equivariant isomorphism H1.N; zZ/ Š ker P� . If g is odd, then
ker P� D K , whereas if g is even, then ker P� is an index-two subgroup of K .
Therefore the representations ‰1 and ‰2 may be seen as coming from the actions of
M.N / on H1.N; zZ/ and H1.N / respectively.

For K we fix the basis

.e1; erC1; : : : ; er ; e2r / if g D 2r C 1;

.e1; erC1; : : : ; er ; e2r ; e2rC1/ if g D 2r C 2:

For H1.S/=K we fix the basis

.a1CK; b1CK; : : : ; ar CK; br CK/ if g D 2r C 1;

.a1CK; b1CK; : : : ; ar CK; br CK; brC1CK/ if g D 2r C 2:

Having fixed bases for K and H1.S/=K we can now compute, for ‰1 and ‰2 , the
images of the generators of M.N /. This is done by a straightforward calculation,
using Proposition 3.7 and the formula (1). For k D 1; 2 and 1� i � r , 1� j � r � 1,
we have

‰k.t"i
/DAi ; ‰k.tı2i

/D Bi ; ‰k.tı2jC1
/D Cj :

If g D 2r C 1, then

‰1.ug�1/D
0@Ig�3 0 0

0 1 0

0 1 �1

1A ; ‰2.ug�1/D
0@Ig�3 0 0

0 �1 0

0 �1 1

1A :
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If g D 2r C 2, then

‰1.tıg�1
/D

0BB@
Ig�4 0 0 0

0 1 1 0

0 0 1 0

0 0 �2 1

1CCA ; ‰2.tıg�1
/D

0BB@
Ig�4 0 0 0

0 1 1 �2

0 0 1 0

0 0 0 1

1CCA ;

‰1.ug�1/D

0BB@
Ig�4 0 0 0

0 1 �1 1

0 0 1 0

0 0 2 �1

1CCA ; ‰2.ug�1/D

0BB@
Ig�4 0 0 0

0 1 1 �2

0 0 1 0

0 0 1 �1

1CCA :
It is easy to see that ‰1 and ‰2 are not conjugate as homomorphisms to GL.g�1;C/.
For, suppose that there is M 2 GL.g� 1;C/ such that ‰1.x/DM‰2.x/M

�1 for
all x 2M.N /. Then M commutes with Ai , Bi , Cj for 1 � i � r , 1 � j � r � 1,
and by Lemma 2.1, M D ˛I2r if g D 2r C 1, or M D diag.˛I2r ; ˇ/ if g D 2r C 2,
for ˛; ˇ 2C . In either case it is impossible that ‰1.ug�1/DM‰2.ug�1/M

�1 .

5 Homomorphisms from M.Ng;n/ to GL.m;C/ for
m< g � 1

The aim of this section is to prove Theorem 1.3. The proof is divided in two parts.

Proof of Theorem 1.3 for .g;m/¤ .6; 4/ Suppose that n 2 f0; 1g, g D 2r C s for
r � 2, s 2 f1; 2g, m� g� 2 and f WM.Ng;n/!GL.m;C/ is a homomorphism. By
Theorem 3.2, it suffices to prove that Im.f / is abelian. Let S 0DSr;s and �WM.S 0/!
M.Ng;n/ be the homomorphism from Corollary 3.6. Set f 0 D f ı � and observe that
if Im.f 0/ is abelian, then so is Im.f /, by Lemma 3.3.

Suppose that m� 2r � 1. Then Im.f 0/ is either trivial or cyclic by Theorem 1.1 and
we are done. This finishes the proof for odd g .

Suppose that g D 2r C 2 for r � 3 and mD 2r . By Theorem 1.2, f 0 is either trivial
or conjugate to the homological representation ˆ. In the former case we are done. In
the latter case, by the definition of ˆ we have ˆ.t
r

/ D ˆ.t˛r
/ because the curves


r and ˛r become isotopic after gluing discs to the boundary of S 0 . It follows that
f .tı2rC1

/D f .t"r
/ and, by Lemma 3.4, f .t2

ı1
/D 1. This is a contradiction because

ˆ.t˛1
/ has infinite order.

In order to prove Theorem 1.3 for .g;m/D .6; 4/, we first prove some lemmas.

Lemma 5.1 Suppose that n� 1 and f WM.N6;n/! GL.4;C/ is a homomorphism
such that f .t2

ı1
/D 1. Then Im.f / is abelian.
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Proof Let H be the normal closure of t2
ı1

in M.N6;n/ and set G DM.N6;n/=H .
We have an induced homomorphism f 0W G! GL.4;C/ such that f D f 0 ı� , where
� WM.N6;n/!G is the canonical projection. By the relations (R1), (R4), the mapping
�.�i/ D �.tıi

/, where �i is the transposition .i; i C 1/ for 1 � i � 5, defines a
homomorphism �W S6!G . Let �W S6! GL.4;C/ be the composition f 0 ı � . By
Lemma 2.2, � is the direct sum of one-dimensional representations. In particular the
image of � is abelian, and so is Im.f / by Lemma 3.3.

Let R be the subsurface obtained by removing from N6;n a regular neighbourhood
of ı1[ ı2 . Note that R is homeomorphic to N4;nC1 . The homomorphism M.R/!
M.N6;n/ induced by the inclusion of R in N6;n is injective, and we will treat M.R/

as a subgroup of M.N6;n/.

Lemma 5.2 Suppose that hWM.R/! GL.2;C/ is a homomorphism. Then, with
respect to some basis, one of the following cases holds:

(a) h.tı4
/D h.tı5

/D h.t"2
/D �I , � 2 f�1; 1g

(b) h.tı4
/D h.tı5

/D h.t"2
/D � 1 0

0 �1

�
(c) h.tı5

/D h.t"2
/D � 1 1

0 �1

�
, h.tı4

/D ��1 0
1 1

�
In particular, h.t2

ı4
/D 1.

Proof For i D 4; 5, let Li D h.tıi
/, M D h.t"2

/ and U D h.u5/. Recall that the
twists tıi

and t"2
are pairwise conjugate, and each of them is conjugate to its inverse

(by (R12)).

Case 1 M has only one eigenvalue � Since M is conjugate to M�1 we have
�2f�1; 1g. If dim E.M; �/D2, then we have case (a). Suppose that dim E.M; �/D1.
Then with respect to some basis we have M D � � 1

0 �

�
, and since L5 commutes with

M , L5 D
�
� x
0 �

�
for some x .

If E.M; �/ ¤ E.L4; �/, then we may arrange that the second vector of the basis
is from E.L4; �/; thus, L4 D

�
� 0
y �

�
for some y . From ML4M D L4ML4 we

obtain y D�1, and from L4L5L4 DL5L4L5 we have x D 1, hence M DL5 . By
Lemma 3.4 (for i D 2, j D 5) we have M 2 D I , which is a contradiction.

If E.M; �/ D E.L4; �/, then L4 D
�
� y
0 �

�
for some y . From ML4M D L4ML4

and L4L5L4 D L5L4L5 we obtain x D y D 1, hence M D L5 , which leads to a
contradiction as above.

Case 2 M has two eigenvalues �;� With respect to some basis we have M D�
� 0
0 �

�
, and since L5 and U commute with M , they are also diagonal. In particular
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we have UL5DL5U and L5UL5DU (R12) gives L2
5
D 1, which implies f�;�g D

f�1; 1g. Either L5DM or L5D�M . In the latter case the braid relations L5L4L5D
L4L5L4 and ML4M DL4ML4 imply L4ML4 D 0, a contradiction, hence M D
L5 .

If E.M; 1/ ¤ E.L4; 1/, then with respect to some basis we have M D �
1 1
0 �1

�
,

L4 D
��1 0

x 1

�
. From ML4M D L4ML4 we have x D 1 and we are in case (c).

Analogously, if E.M;�1/ ¤ E.L4;�1/, then with respect to some basis we have
M D ��1 1

0 1

�
, L4D

�
1 0
1 �1

�
, and since E.M; 1/¤E.L4; 1/, we are in case (c) again.

Finally, if E.M; 1/ D E.L4; 1/ and E.M;�1/ D E.L4;�1/, then with respect to
some basis we have M DL4 D

�
1 0
0 �1

�
and we are in case (b).

Lemma 5.3 Suppose that n� 1, f WM.N6;n/! GL.4;C/ is a homomorphism and
there exists a splitting C4DV1˚V2 such that Vi is a 2–dimensional M.R/–invariant
subspace for i D 1; 2. Then Im.f / is abelian.

Proof Let f 0 be the restriction of f to M.R/. With respect to the splitting C4 D
V1 ˚ V2 we have f 0 D f1 ˚ f2 for some fi WM.R/ ! GL.2;C/, i D 1; 2. By
Lemma 5.2 we have fi.t

2
ı4
/D 1 for i D 1; 2, hence f .t2

ı4
/D 1 and we are done by

Lemma 5.1.

Lemma 5.4 Suppose that n � 1, f WM.N6;n/ ! GL.4;C/ is a homomorphism,
f .tı1

/ has only one eigenvalue and there exists a 2–dimensional M.R/–invariant
subspace. Then Imf is abelian.

Proof Fix a basis of C4 whose first two vectors span the M.R/–invariant subspace.
For x 2M.R/ we have

f .x/D
�

h1.x/ �
0 h2.x/

�
;

where h1.x/ and h2.x/ are 2–dimensional matrices. We apply Lemma 5.2 to the
homomorphisms h1 and h2 . Because f .tı4

/ has only one eigenvalue, case (a) holds.
It follows that f .tı4

/D � �I X
0 �I

�
, f .tı5

/D � �I Y
0 �I

�
, for some 2�2 matrices X;Y and

� 2 f�1; 1g. In particular f .tı4
/ and f .tı5

/ commute and we are done by Lemma 3.3.

Proof of Theorem 1.3 for gD6, mD4 Suppose that n2f0; 1g and f WM.N6;n/!
GL.4;C/ is a homomorphism. For 1� i � 5, we set Li D f .tıi

/ and M D f .t"2
/,

U5 D f .u5/. We consider the following cases.
(1) L1 has 4 eigenvalues.
(2) L1 has 3 eigenvalues.
(3) L1 has 2 eigenvalues with equal multiplicities.
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(4) L1 has 2 eigenvalues with different multiplicities.

(5) L1 has 1 eigenvalue.

In cases (1), (2), (3) it is easy to find a splitting C4 D V1 ˚ V2 such that Vi is a
2–dimensional M.R/–invariant subspace for i D 1; 2. For example, suppose that
L1 has 3 eigenvalues �1; �2; �3 such that #�1 D #�2 D 1 and #�3 D 2. Then we
take V1 D E.L1; �1/˚E.L1; �2/ and V2 D E.L1; �3/ if dim E.L1; �3/ D 2 or
V2 DE2.L1; �3/ if dim E.L1; �3/D 1. Therefore in cases (1), (2), (3), we are done
by Lemma 5.3.

Assume (5). Let � be the unique eigenvalue of L1 and kDdim E.L1; �/. If kD4 then
L1D �I and the image of f is cyclic. If kD 2 or kD 1, then, respectively, E.L1; �/

or E2.L1; �/ is a 2–dimensional M.R/–invariant subspace, and we are done by
Lemma 5.4. Suppose that k D 3. If E.L1; �/¤E.L2; �/ then E.L1; �/\E.L2; �/

is a 2–dimensional M.R/–invariant subspace, and we are done by Lemma 5.4. If
E.L1; �/DE.L2; �/, then with respect to some basis we have

L1 D

0BB@
� 0 0 0

0 � 0 0

0 0 � 1

0 0 0 �

1CCA ; L2 D

0BB@
� 0 0 x

0 � 0 y

0 0 � z

0 0 0 �

1CCA :
In particular L1 and L2 commute and we are done by Lemma 3.3.

It remains to consider case (4). Suppose that L1 has eigenvalues �, �, with #�D 1

and #� D 3. Since L1 is conjugate to L�1
1

, we have f�; �g D f�1; 1g. It follows
from Theorem 3.2 that there is a homomorphism �.M.N6// ! f�1; 1g such that
�.tı1

/D �1. By multiplying f by � if necessary, we may assume �D �1, �D 1.
The Jordan form of L1 is one of the three matrices

.i/

0BB@
�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCA ; .ii/

0BB@
�1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

1CCA ; .iii/

0BB@
�1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

1CCA :
In case (i) we have L2

1
D I and we are done by Lemma 5.1.

In case (ii) the following subspaces are M.R/–invariant: E.L1;�1/, E.L1; 1/,
E2.L1; 1/, E3.L1; 1/. It follows that

M D

0BB@
x1 0 0 0

0 x2 v1 v2

0 0 x3 v3

0 0 0 x4

1CCA ; L4 D

0BB@
y1 0 0 0

0 y2 w1 w2

0 0 y3 w3

0 0 0 y4

1CCA :
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The braid relation ML4M DL4ML4 implies xi D yi for 1� i � 4. Since the first
two vectors of the basis are eigenvectors of M , they have to correspond to different
eigenvalues of M . Therefore x2 D �x1 , x3 D x4 D 1 and x1 D 1 or x1 D �1. In
either case ML4M DL4ML4 holds only if M DL4 . We are done by Lemma 3.3.

In case (iii) the following subspaces are M.R/–invariant: E.L1;�1/, E.L1; 1/,
E2.L1; 1/. We have dim E.L1; 1/D 2. For x 2M.R/ let h.x/ be the restriction of
f .x/ to E.L1; 1/. By applying Lemma 5.2 to h we obtain three sub-cases.

Case (iii a) h satisfies (a) of Lemma 5.2. We have

M D

0BB@
�1 0 0 0

0 1 0 x1

2 0 1 x2

0 0 0 1

1CCA ; L4 D

0BB@
�1 0 0 0

0 1 0 y1

0 0 1 y2

0 0 0 1

1CCA :
As in case (ii), the braid relation implies M DL4 and we are done by Lemma 3.3.

Case (iii b) h satisfies (b) of Lemma 5.2. By changing the basis of E.L1; 1/, we
may assume that

M D

0BB@
1 0 0 0

0 �1 0 x1

0 0 1 x2

0 0 0 1

1CCA ; L4 D

0BB@
1 0 0 0

0 �1 0 y1

0 0 1 y2

0 0 0 1

1CCA :
As in case (ii), the braid relation implies M DL4 and we are done by Lemma 3.3.

Case (iii c) h satisfies (c) of Lemma 5.2. By changing the basis of E.L1; 1/ we may
assume that

M D

0BB@
1 0 0 0

0 1 1 x1

0 0 �1 x2

0 0 0 1

1CCA ; L4 D

0BB@
1 0 0 0

0 �1 0 y1

0 1 1 y2

0 0 0 1

1CCA ; L5 D

0BB@
1 0 0 0

0 1 1 z1

0 0 �1 z2

0 0 0 1

1CCA :
By solving the equations ML4M D L4ML4 and L5L4L5 D L4L5L4 , we obtain
x2D�.2x1Cy1C2y2/, z2D�.2z1Cy1C2y2/, and from ML5DL5M we obtain
x2D z2 . Thus M DL5 , and, by Lemma 3.4, L2

1
D 1. We are done by Lemma 5.1.

6 Homomorphisms between mapping class groups

The aim of this section is to prove Theorem 1.4. Fix g � 5 and set MDM.Ng/. We
are going to use the fact that s D tı1

� � � tıg�1
has finite order in M (equal to g if it is
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even, or 2g otherwise; see [23, Proposition 3.2]). By the relations (R1), (R4), we have

(2) tıiC1
s D stıi

for 1� i � g� 2:

By Theorem 3.2 we have s 2 ŒM;M� for g � 7 and g D 5, s2 2 ŒM;M� for g D 6.

Proof of Theorem 1.4 Suppose that g � 5, h < g and f WM.Ng/!M.Nh/ is a
homomorphism. Since M.Nh/ is abelian for h� 2, we are assuming h� 3.

Let f 0WM.Ng/! GL.h� 1;C/ be the composition ‰1 ı f and K D ker‰1 . By
Theorem 1.3, Im.f 0/ is abelian, hence f .ŒM.Ng/;M.Ng/�/�K . Suppose that g�7

or g D 5. Then f .s/ 2K , and since K is torsion-free by Corollary 4.2, f .s/D 1.
This gives, by (2), f .tı1

/ D f .tı2
/ and we are done by Lemma 3.3. If g D 6 then

f .s2/ 2K , which gives f .s2/D 1 and f .tı2
/D f .tı4

/. Since tı1
commutes with

tı4
, f .tı1

/ commutes with f .tı2
/ and we are done by Lemma 3.3.

Note that Theorems 1.3 and 1.4 are trivially true for g � 3 because GL.1;C/DC� ,
M.N2/ŠZ2�Z2 , M.N1/D 1 are abelian groups. On the other hand, Corollary 6.2
below shows that both theorems are false for g D 4 (recall that M.N3/Š GL.2;Z/).
Let D1 denote the infinite dihedral group, defined by the presentation

D1 D hx;y j x2 D y2 D 1i:

Lemma 6.1 There is an epimorphism �WM.N4/!D1 .

Proof According to the main result of Szepietowski [27], simplified in [23], M.N4/

admits a presentation with generators t"2
, tıi

, ui for i D 1; 2; 3 and relations (R1),
(R3), (R4), (R6), (R7), (R9), (R10), (R11), (R12) and

tıiC1
uiuiC1 D uiuiC1tıi

for i D 1; 2;

.t"2
u3/

2 D 1; tı1
.tı2

tı3
u3u2/tı1

D .tı2
tı3

u3u2/:

It is easy to check that the mapping �.t"2
/D xy , �.tıi

/D 1, �.ui/D y for i D 1; 2; 3

respects the defining relations of M.N4/, hence it defines a homomorphism onto D1 .

Corollary 6.2 For h� 3, there is a homomorphism f WM.N4/!M.Nh/ such that
Im.f / is isomorphic to D1 .

Proof Fix h� 3. By the proof of Szepietowski [26, Theorem 3], tı1
can be written in

M.Nh/ as a product of two involutions �; � . Since tı1
has infinite order in M.Nh/,

the mapping x 7! � , y 7! � defines an embedding D1!M.Nh/. By precomposing
this embedding with the epimorphism � from Lemma 6.1, we obtain f .
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The following two theorems can be proved by the same method as Theorem 1.4. We
leave the details to the reader.

Theorem 6.3 Suppose that g � 5, g � 2h C 2 and f WM.Ng/ ! M.Sh/ is a
homomorphism. Then Im.f / is abelian.

Theorem 6.4 Suppose that g � 3 and h � 2g . Then the only homomorphism from
M.Sg/ to M.Nh/ is the trivial one.

7 Homomorphisms from M.Ng/ to GL.g � 1;C/

The aim of this section is to prove Theorem 1.5. The proof is divided into two cases,
according to the parity of the genus.

Let gD2rCs , s2f1; 2g, S 0DSr;s and �WM.S 0/!M.Ng;n/ be the homomorphism
from Corollary 3.6. If f WM.Ng;n/! GL.m;C/ is a homomorphism, then we set
f 0 D f ı �.

Proof of Theorem 1.5 for odd g Suppose that N DN2rC1 , r �3 and f WM.N /!
GL.2r;C/ is a homomorphism such that Im.f / is not abelian. By Theorem 1.2, f 0
is conjugate to the homological representation ˆ, and thus there exists a basis such
that f .t"i

/ D f 0.t˛i
/ D Ai , f .tı2i

/ D f 0.tˇi
/ D Bi for 1 � i � r and f .tı2jC1

/ D
f 0.t
j

/D Cj for 1� j � r � 1. Set Uk D f .uk/ for 1� k � 2r .

Since U2r commutes with Ai and Bi for 1� i � r , and with Cj for j D 1; : : : ; r �2

(R6), (R8), by Lemma 2.1 we have

U2r D
�
�I2r�2 0

0 X

�
for some 2 � 2 matrix X . Since U2r is conjugate to U�1

2r
we have � 2 f�1; 1g

and by multiplying f by .�1/ab if necessary, we may assume � D 1. The relation
Br U2r Br D U2r (R12) implies

X D
�

x 0

y �x

�
:

From (R11) and (R7), we have

U2r�2 D .Cr�1Br Br�1Cr�1/
�1U2r .Cr�1Br Br�1Cr�1/;

U2r U2r�2�U2r�2U2r D 0;
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and since the left hand side of the last equation is equal to

.1�x2/.E2r;2r�3CE2r�2;2r�1/;

where Ei;j is the elementary matrix defined in Section 2, x2D1. We have U�1
2r
DU2r ,

and from (R11) and (R9),

U2r�1 D .Cr�1Br /
�1U2r .Cr�1Br /;

U2r U2r�1U2r �U2r�1U2r U2r�1 D 0:

By considering the cases x D 1 and x D �1 separately, we find that the left hand
side of the last equation is of the form .y �x/2Z , where Z ¤ 0. Hence x D y and
U2r D‰1.u2r / if x D 1, or U2r D‰2.u2r / if x D�1. By Theorem 3.1, f is equal
to ‰1 or ‰2 on the generators of M.N /.

Now we will borrow some arguments from [16] to prove Lemma 7.3 below, which will
be a starting point for the proof of Theorem 1.5 for even genus.

Lemma 7.1 Suppose that n � 1, g � 5 and f WM.Ng;n/! GL.m;C/ is a homo-
morphism. If there is a flag 0DW0 �W1 � � � � �Wk DCm of M.Ng;n/–invariant
subspaces such that dim.Wi=Wi�1/ < g� 1 for i D 1; : : : ; k , then Im.f / is abelian.

Proof We use a similar argument as in the proof of [16, Lemma 4.8]. For i D 1; : : : ; k ,
set mi D dim.Wi=Wi�1/. Fix a basis .v1; : : : ; vm/ of Cm , such that the vectors vj
for 1� j �m1C� � �Cmi form a basis of Wi . For x 2M.Ng;n/, the matrix of f .x/
with respect to this basis is 0B@X1 � �

0
: : : �

0 0 Xk

1CA ;
where Xi is a square matrix of dimension mi for i D 1; : : : ; k . Thus we have k

homomorphisms fi WM.Ng;n/!GL.mi ;C/ defined by fi.x/DXi . Since mi<g�1,
the image of each fi is abelian by Theorem 1.3. It follows that f ŒM.Ng;n/;M.Ng;n/�

is contained in the subgroup of upper triangular matrices with 1 on the diagonal. Since
this subgroup is nilpotent and ŒM.S 0/;M.S 0/� is perfect [20, Theorem 4.2], it follows
that f 0ŒM.S 0/;M.S 0/� is trivial, which means that Im.f 0/ is abelian, hence so is
Im.f /.

Lemma 7.2 Suppose that N DN2rC2 , r � 3 and f WM.N /! GL.2r C 1;C/ is a
homomorphism, such that Im.f / is not abelian. Then L1 D f .tı1

/ has an eigenvalue
� such that dim E.L1; �/D 2r .
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Proof By [16, Corollary 4.6] applied to f 0 , L1 has at most two eigenvalues. It
follows that there is an eigenvalue � with #� � r C 1 � 4. Set m D dim E.L1; �/.
Since Im.f / is not abelian, m� 2r . We are going to show that mD 2r .

Let R be the subsurface obtained by removing from N a regular neighbourhood of
ı1[ ı2 . We have R�N2r;1 . We treat M.R/ as a subgroup of M.N /.

Suppose m � 2r � 2. Let W D Ek.L1; �/, where k D maxf4 �m; 1g. Observe
that W is a M.R/–invariant subspace with 3 � dim W � 2r � 2. By Lemma 7.1,
f .M.R// is abelian, hence f .tı4

/ and f .tı5
/ commute. By Lemma 3.3, Im.f / is

abelian, a contradiction.

Suppose that m D 2r � 1 and set L2 D f .tı2
/. If E.L1; �/ ¤ E.L2; �/, then

E.L1; �/\E.L2; �/ is a M.R/–invariant subspace of dimension 2r � 3 or 2r � 2

and we can use the same argument as above to obtain a contradiction. If E.L1; �/D
E.L2; �/, then by [16, Lemma 4.3] applied to f 0 , E.L1; �/ is a M.S 0/–invariant
subspace of dimension 2r � 1, and by [16, Lemma 4.8] f 0 is trivial. It follows that
Imf is abelian, a contradiction.

Lemma 7.3 Suppose that N DN2rC2 , r � 3 and f WM.N /! GL.2r C 1;C/ is a
homomorphism. If r D 3 then assume that 1 is the unique eigenvalue of f .tı1

/. Then
either Im.f / is abelian, or with respect to some basis f .t"i

/DAi , f .tı2i
/D Bi for

i D 1; : : : ; r .

Proof Suppose that Im.f / is not abelian. The result will follow from [16, Lemma 4.7]
applied to f 0WM.S 0/!GL.2rC1;C/. Therefore it suffices to show that f 0 satisfies
the hypothesis of [16, Lemma 4.7], namely: (1) the Jordan form of f 0.t˛1

/ is
�

V 0
0 I2r�1

�
,

and (2) E.f 0.t˛1
/; 1/¤E.f 0.tˇ1

/; 1/.

By Lemma 7.2, L1Df 0.t˛1
/Df .tı1

/ has an eigenvalue � with dim E.L1; �/D2r . If
r D 3, then �D 1 by assumption. For r � 4 we will prove �D 1 by using the argument
from the proof of [16, Lemma 5.2]. Set t1 D t˛1

and choose 6 Dehn twits t2; : : : ; t7
about nonseparating simple closed curves on S 0 such that the lantern relation t1t2t3t4D
t5t6t7 holds in M.S 0/. By applying f 0 to both sides we obtain L1L2L3L4 D
L5L6L7 , where Li Df 0.ti/. Since the Li are conjugate, we have dim E.Li ; �/D 2r

for i D 1; : : : ; 7. Set W DT7
iD1 E.Li ; �/ and observe that dim W > 0. For a nonzero

vector v 2W , we have �4v D L1L2L3L4.v/ D L5L6L7.v/ D �3v , hence � D 1.
Since M.S 0/ is perfect (Korkmaz [18]), det L1D 1 and �D 1 is the unique eigenvalue.
It follows that L1 has the desired Jordan form.
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Set M D f 0.tˇ1
/D f .tı2

/ and suppose E.L1; 1/DE.M; 1/. Then L1 and M com-
mute by the same argument as in case (5) of the proof of Theorem 1.3 for .g;m/D .6; 4/.
By Lemma 3.3, Im.f / is abelian, a contradiction. Thus E.L1; 1/¤E.M; 1/.

Proof of Theorem 1.5 for even g Suppose that N DN2rC2 , r � 4, and

f WM.N /! GL.2r C 1;C/

is a homomorphism such that Im.f / is not abelian. By Lemma 7.3, there is a basis such
that f .t"i

/D Ai and f .tı2i
/D Bi for 1 � i � r . Set Di D f .tı2iC1

/ for 1 � i � r

and Uj D f .uj / for 1� j � 2r C 1.

Fix i 2 f1; : : : ; r � 1g. For j … fi; i C 1g we have DiAj DAj Di and DiBj DBj Di .
Setting M DDi and k D l D j in Lemma 2.1, we obtain

Di D
0@� 0 �

0 �I2 0

� 0 �

1A ;
where � is at the positions .2j � 1; 2j � 1/ and .2j ; 2j /. Since Di is conjugate to
A1 , 1 is its unique eigenvalue, hence �D 1. It follows that Di has the form

Di D

0BBBB@
I2.i�1/ 0 0 0 0

0 F11 F12 0 X1

0 F21 F22 0 X2

0 0 0 I2.r�i�1/ 0

0 Y1 Y2 0 z

1CCCCA ;
where Fkl are 2 � 2 matrices, Xk are 2 � 1 vectors, Yk are 1 � 2 vectors and z

is a complex number. The relations DiAi D AiDi and DiAiC1 D AiC1Di give:
VFkk D FkkV , VXk D Xk , YkV D Yk for k D 1; 2, and VFkl D Fkl D FklV for
k ¤ l . It follows that

F11 D
�

s1 t1
0 s1

�
; F12 D

�
0 v1

0 0

�
; X1 D

�
x1

0

�
;

F21 D
�

0 v2

0 0

�
; F22 D

�
s2 t2
0 s2

�
; X2 D

�
x2

0

�
;

Y1 D
�
0 y1

�
; Y2 D

�
0 y2

�
:

Since s1 , s2 are eigenvalues, we have s1 D s2 D 1 and det Di D z , which gives
z D 1. Now, by solving the equations BiDiBi �DiBiDi D 0 and BiC1DiBiC1 �
DiBiC1Di D 0, we obtain t1D t2D 1, v1v2D 1, y2D y1v1 , x2D x1v2 , x1y1D 0.
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Thus, for i D 1; : : : ; r � 1 we have

Di D

0BBBBBBBBB@

I2.i�1/ 0 0 0 0 0 0

0 1 1 0 ˛i 0 ˛ixi

0 0 1 0 0 0 0

0 0 ˛�1
i 1 1 0 xi

0 0 0 0 1 0 0

0 0 0 0 0 I2.r�i�1/ 0

0 0 yi 0 ˛iyi 0 1

1CCCCCCCCCA
; xiyi D 0:

Analogous calculations, using the relations AiDr D Dr Ai and BiDr D Dr Bi for
1 � i � r , Ar Dr D Dr Ar and Dr Br Dr D Br Dr Br , lead to the following form
of Dr :

Dr D

0BB@
I2r�2 0 0 0

0 1 1 xr

0 0 1 0

0 0 yr 1

1CCA ; xr yr D 0

It is not possible that xr D yr D 0, because then Dr D Ar and Lemma 3.4 would
give a contradiction. For 1 � i � r � 1, by solving the equation DiDr �Dr Di D 0

we obtain xiyr D 0 and xr yi D 0. It follows that either xi D 0 for all i D 1; : : : ; r ,
or yi D 0 for all i D 1; : : : ; r . We are going to show that it is possible to change the
basis so that ˛i D �1 for i D 1; : : : ; r � 1 and xr C yr D �2. Suppose that the old
basis is ˇ1 D .v1; w1; : : : ; vr ; wr ; vrC1/. We consider two cases.

Case 1 xr D 0. Then yr ¤ 0 and the new basis is

v0i D .�1/r�i˛i � � �˛r�1vi ; w0i D .�1/r�i˛i � � �˛r�1wi ; i D 1; : : : ; r � 1;

v0r D vr ; w0r D wr ; v0rC1 D�
yr

2
vrC1 :

In the new basis, we have Dr D‰1.tı2rC1
/, Di D Ci Cx0i.E2rC1;2i �E2rC1;2iC2/

for i D 1; : : : ; r � 1.

Case 2 yr D 0. Then xr ¤ 0 and the new basis is

v0i D .�1/r�iC1˛i � � �˛r�1

xr

2
vi ; w0i D .�1/r�iC1˛i � � �˛r�1

xr

2
wi ;

i D 1; : : : ; r � 1; v0r D�
xr

2
vr ; w0r D�

xr

2
wr ; v0rC1 D vrC1:

In the new basis we have: Dr D‰2.tı2rC1
/, Di DCiCx0i.E2i�1;2rC1�E2iC1;2rC1/

for i D 1; : : : ; r � 1.
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Since U2rC1 commutes with Ai and Bi for 1� i � r � 1, by Lemma 2.1 we have

U2rC1 D diag.�1I2; �2I2; : : : ; �r�1I2;X /

for some 3�3 matrix X . The relations Ar U2rC1DU2rC1Ar (R8) and Dr U2rC1DrD
U2rC1 (R12) imply that X has the form

X D
0@�r ˛ �r

0 �r 0

0 ˇ ��r

1A or X D
0@�r ˛ ˇ

0 �r 0

0 �r ��r

1A ;
respectively, in Case 1 and Case 2. For 1 � i � r � 1, by the relation (R6) we have
DiU2rC1�U2rC1Di D 0. By solving this equation we obtain �i D �iC1 and x0i D 0,
hence Di D Ci . We also see that U2rC1 has two eigenvalues �r ,��r with #�r D 2r .
Since U2rC1 is conjugate to U�1

2rC1
, we have �r 2 f�1; 1g and by multiplying f by

.�1/ab if necessary, we may assume �r D 1.

By the relation (R11), we have

U2r D .Br Cr /
�1U�1

2rC1.Br Cr /;

U2r�1 D .Br Cr Cr�1Br /
�1U2rC1.Br Cr Cr�1Br /:

Similarly as in the proof for odd g , by solving U2rC1U2r�1�U2r�1U2rC1 D 0, we
obtain ˇ D �2˛ , and then by solving U2rC1U2r U2rC1 � U2r U2rC1U2r D 0, we
obtain ˛ D�1 in Case 1, or ˛ D 1 in Case 2. Hence U2rC1 D‰1.u2rC1/ in Case 1,
or U2rC1 D‰2.u2rC1/ in Case 2. By Theorem 3.1, f is equal to ‰1 in Case 1, and
equal to ‰2 in Case 2, on generators of M.N /.

8 Homomorphisms from M.N8/ to GL.7;C/

The aim of this section is to prove Theorem 1.6. First we have to define the epimorphism
�WM.N2rC2/! Sp.2r;Z2/.

Fix r � 1 and set V DH1.N2rC2;Z2/. V is a vector space over Z2 of dimension
2rC2 with basis xiD Œ�i �2 for 1� i �2rC2, where Œ�i �2 denotes the mod 2 homology
class of the curve �i . The mod 2 intersection pairing is the symmetric bilinear form on
V satisfying hxi ;xj i D ıij . We define another basis for V . For 1� i � r we set

vi D Œ"i �2 D x1C � � �Cx2i ; wi D Œı2i �2 D x2i Cx2iC1;

c D x2rC2; d D x1C � � �Cx2rC2:

For i; j 2 f1; : : : ; rg we have hvi ; vj i D hwi ; wj i D 0, hvi ; wj i D ıij and hvi ; ci D
hwi ; di D 0. We also have hc; ci D hc; di D 1 and hd; di D 0.
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Lemma 8.1 Let Iso.V / be the group of automorphisms of V preserving the form
h � ; � i. Then Iso.V / is isomorphic to a semi-direct product Sp.2r;Z2/Ë Z2rC1

2
.

Proof Note that d is the unique vector of V such that hxi ; di D hxi ;xii for i D
1; : : : ; r . It follows that d is the unique vector satisfying hx; diD hx;xi for all x 2V ,
hence d is fixed by all elements of Iso.V /.

Let W D spanfvi ; wi j i D 1; : : : ; rg and observe that the restriction of h�; �i to W is
nondegenerate and hx;xi D 0 for x 2W , hence it is a symplectic form on W . For
R 2 Sp.W /, we define AR 2 Iso.V / as

AR.d/D d; AR.c/D c; AR.x/DR.x/ for x 2W:

Any x 2V can be written as xD 
 cCıdCw , where w 2W and 
; ı 2Z2 . We have
hx; ci D 
 C ı and hx; di D 
 . It follows that W D fx 2 V j hx; di D hx; ci D 0g.
Suppose L2 Iso.V / fixes c . Then, since L.d/D d , L preserves W . Hence LDAR

for some R 2 Sp.W /. It follows that the mapping R 7!AR defines an isomorphism
Sp.W /! StabIso.V /.c/.

For x 2 Z2 and z 2W , we define Bx;z 2 Iso.V / as

Bx;z.d/D d; Bx;z.c/D cCxd C z; Bx;z.w/D wChw; zid for w 2W:

For arbitrary v 2 V , we have

Bx;z.v/D vChd; vizChzCxd; vid:
Set N D fBx;z j x 2 Z2; z 2W g. This is a subgroup of Iso.V / with the group law

Bx1;z1
Bx2;z2

D Bx1Cx2Chz1;z2i;z1Cz2
:

It follows that N is abelian and B2
x;zD 1 for all x; z . Thus N is isomorphic to Z2rC1

2
.

Let L 2 Iso.V / be arbitrary. Since hL.c/; di D hL.c/;L.d/i D hc; di D 1, L.c/D
cCxdCz for some x 2Z2 , z 2W . It follows that B�1

x;zL 2 StabIso.V /.c/ and hence
LD Bx;zAR for some R 2 Sp.W /. This decomposition is clearly unique, and since
ARBx;zA�1

R
D Bx;R.z/ , N is normal in Iso.V / and Iso.V /DN Ì StabIso.V /.c/.

Lemma 8.2 For r � 2, there is an epimorphism

�WM.N2rC2/! Sp.2r;Z2/;

whose kernel is normally generated by tı2rC1
u2rC1 and tı2rC1

t�1
"r

.
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Proof Let MDM.N2rC2/. The action of M on V DH1.N2rC2;Z2/ induces a
homomorphism �WM! Iso.V /, which was proved to be surjective in Gadgil and
Pancholi [10], and McCarthy and Pinkall [22], and whose kernel is the normal closure
of tı2rC1

u2rC1 by Szepietowski [29]. By Lemma 8.1, there exists a normal subgroup
N of Iso.V / such that Iso.V /=N is isomorphic to Sp.2r;Z2/. We define � to be the
composition of � with the canonical projection Iso.V /! Iso.V /=N .

Let K be the normal closure of tı2rC1
u2rC1 and tı2rC1

t�1
"r

in M. We claim that K �
ker � . We have tı2rC1

u2rC12ker ��ker � . Since Œ"r �2Dvr and Œı2rC1�2DvrCd , for
x2V we have �.t"r

/.x/DxChvr ;xivr and �.tı2rC1
/.x/DxChvrCd;xi.vrCd/D

B1;vr
.�.t"r

/.x//. Thus �.tı2rC1
t�1
"r
/D B1;vr

2 N and tı2rC1
t�1
"r
2 ker � . It follows

that there is an induced epimorphism

�0WM=K! Iso.V /=N Š Sp.2r;Z2/:

To prove that �0 is an isomorphism, it suffices to show ŒM WK�� jSp.2r;Z2/j. We are
going to prove the last inequality by exhibiting an epimorphism Sp.2r;Z2/!M=K .

Observe that the map �WM.S 0/!M=K defined to be the composition of �WM.S 0/!
M from Corollary 3.6 with the canonical projection � WM ! M=K is surjec-
tive because M is generated by twists about curves on P .S 0/ and tı2rC1

u2rC1 by
Theorem 3.1. Gluing a disc along the boundary component of S 0 bounding a pair of
pants with ˛r and 
r induces an epimorphism M.S 0/!M.Sr;1/ whose kernel is nor-
mally generated by t
r

t�1
˛r

(see [16, Proposition 3.8]). Since �.t
r
t�1
˛r
/D tı2rC1

t�1
"r
2K ,

it follows that we have an induced epimorphism �0WM.Sr;1/!M=K . There is an epi-
morphism M.Sr;1/! Sp.2r;Z2/ induced by the action of M.Sr;1/ on H1.Sr;1;Z2/

whose kernel is normally generated by t2
˛1

(see Berrick, Gebhardt and Paris [2, The-
orem 5.7]; here we are using the assumption r � 2). By applying Lemma 3.4 (with
i D r , j D 2r C 1) to � WM!M=K , we have �0.t2

˛1
/D �.t2

ı1
/D 1. It follows that

there is an induced epimorphism �00W Sp.2r;Z2/!M=K .

M.S 0/ � //

��

M � //M=K

M.Sr;1/

��

�0
55

Sp.2r;Z2/

�00

;;

The existence of �00 proves that �0 is an isomorphism and K D ker � .
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Lemma 8.3 Suppose that f WM.N8/ ! GL.7;C/ is a homomorphism such that
f .tı1

/ has order 2. Then f or .�1/abf factors through the epimorphism �WM.N8/!
Sp.6;Z2/.

Proof Let H be the normal closure of t2
ı1

in MDM.N8/ and G DM=H . Since
H � kerf , we have a homomorphism f 0W G ! GL.7;C/ such that f D f 0 ı � ,
where � WM!G is the canonical projection. There is a homomorphism �W S8!G ,
defined as �.�i/D�.tıi

/, where �i D .i; iC1/, for 1� i � 7. Let �W S8!GL.7;C/
be the composition � D f 0 ı� . If � is reducible, then Im.�/ is abelian by Lemma 2.2,
f .tı1

/D �.�1/D �.�2/D f .tı2
/, and Im.f / is also abelian by Lemma 3.3, which

implies f .tı1
/D 1 by Theorem 3.2, a contradiction. Hence � is irreducible and since

detf .tı1
/ D 1 (by Theorem 3.2), � is the tensor product of the standard and sign

representations (by Lemma 2.2). For 1� i � 7, set Li D f .tıi
/D �.�i/. With respect

to some basis .v1; : : : ; v7/, we have

L1 D diag.A;�I5/; L7 D diag.�I5;B/; Li D diag.�Ii�2;C;�I6�i/

for 2� i � 6, where

AD
�

1 �1

0 �1

�
; B D

��1 0

�1 1

�
; C D

0@�1 0 0

�1 1 �1

0 0 �1

1A :
Let M be the matrix of f ."3/. Since M commutes with Li for i¤6 (R5), it preserves
E.Li ; 1/D spanfvig. Hence M.vi/D xivi for i ¤ 6 and M.v6/D y1v1C� � �Cy7v7

for some complex numbers xi ;yj . By solving the equations MLiDLiM for 1� i �5

and i D 7, we obtain

xi D x1; yi D iy1 for 1� i � 5; y6 D x1C 6y1; x7 D y6� 2y7:

Since M and Li are conjugate, they have the same eigenvalues, which gives x1 D�1

and y6 D �x7 . If y6 D 1, then y1 D 1=3 and y7 D 1, which contradicts the braid
relation ML6M D L6ML6 (R5). Hence y6 D �1, y1 D 0 and y7 D �1, which
means M DL7 .

For i D 1; : : : ; 7, let Ui be the matrix of f .ui/. Since U7 commutes with Lj for
1� j � 5 (R6) and with M DL7 (R8), we obtain, as above, that

U7.vi/D xvi for 1� i � 5;

U7.v6/D y.v1C 2v2C 3v3C 4v4C 5v5/C .xC 6y/v6C zv7;

U7.v7/D .xC 6y � 2z/v7;
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for some complex numbers x;y; z . Since U7 is conjugate to its inverse, and x

is an eigenvalue of multiplicity at least 5, we have x D ˙1, and by multiplying
f by .�1/ab if necessary, we may assume x D �1. By (R11) we have U5 D
.L6L7L5L6/

�1U7.L6L7L5L6/, and by solving U5U7 D U7U5 we obtain y D 0.
Since det U7 D ˙1, either �1 � 2z D 1 or �1 � 2z D �1. In the latter case we
have U7 D�I , and since U6 is conjugate to U7 , we have U6 D�I , and the relation
L6U7U6 D U7U6L7 (R10) gives L6 D L7 , a contradiction. Hence z D �1 and
U7 DL7 .

We have M D U7 DL7 , and since L2
7
D I , we have ftı7

t�1
"3
; tı7

u7g � kerf , which
implies, by Lemma 8.2, that f factors through � .

Proof of Theorem 1.6 Suppose that f WM.N8/! GL.7;C/ is a homomorphism,
such that Im.f / is not abelian. By Lemma 7.2, LD f .tı1

/ has an eigenvalue � such
that dim E.L; �/D 6. Since L is conjugate to L�1 , we have �2 D 1. Suppose that
�D�1. Then since det LD 1 we have #�D 6, and there is another eigenvalue �D 1.
It follows that L has order 2 and the case (2) holds by Lemma 8.3. If �D 1 then it
must be the unique eigenvalue, and the case (3) holds by Lemma 7.3 and the proof of
Theorem 1.5 for even g .

Remark 8.4 Suppose that G is a finite quotient of M.Ng/ for g � 7, g ¤ 8,
and f W G ! GL.g � 1;C/ is a homomorphism. Then, by Theorem 1.5, Im.f / is
abelian. For example, by Lemma 8.2, for r � 4 the image of every homomorphism
Sp.2r;Z2/ ! GL.2r C 1;C/ is abelian. It is a classical result that Sp.2r;Zd / is
perfect for r � 3 and all d (note that the last group is a quotient of M.Sr /, which
is perfect for r � 3 [24]). It follows that for r � 4 the only homomorphism from
Sp.2r;Z2/ to GL.2r C 1;C/ is the trivial one.
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