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Homological perturbation theory
for algebras over operads

ALEXANDER BERGLUND

We extend homological perturbation theory to encompass algebraic structures gov-
erned by operads and cooperads. The main difficulty is to find a suitable notion
of algebra homotopy that generalizes to algebras over operads O . To solve this
problem, we introduce thick maps of O–algebras and special thick maps that we call
pseudo-derivations that serve as appropriate generalizations of algebra homotopies
for the purposes of homological perturbation theory.

As an application, we derive explicit formulas for transferring �.C/–algebra struc-
tures along contractions, where C is any connected cooperad in chain complexes.
This specializes to transfer formulas for O1–algebras for any Koszul operad O ,
in particular for A1–, C1–, L1– and G1–algebras. A key feature is that our
formulas are expressed in terms of the compact description of �.C/–algebras as
coderivation differentials on cofree C–coalgebras. Moreover, we get formulas not
only for the transferred structure and a structure on the inclusion, but also for structures
on the projection and the homotopy.

18D50, 55P48

1 Introduction

Perturbation methods have proved to be very useful in algebraic topology, homological
algebra and deformation theory; see E Brown [4], R Brown [5], Gugenheim [11],
Halperin and Stasheff [15], Hess [16], Huebschmann and Kadeishvili [20], Hueb-
schmann and Stasheff [21], Johansson, Lambe and Sköldberg [22], Lambe and Stash-
eff [26], and Schlessinger and Stasheff [32]. Homological perturbation theory suffers
from the defect of not handling algebra structures where symmetries play a role well,
such as Lie or commutative algebras, or more generally algebras over an operad O in
chain complexes. The lack of a good notion of “algebra homotopy” for these types of
algebras has obstructed the theory’s effectiveness; see for instance Gugenheim, Lambe
and Stasheff [14, Remark, end of Section 2.2], Huebschmann and Stasheff [21] or
Huebschmann [17, Remark 12.2].
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The goal of this paper is to solve this problem. We do this by introducing the notion of
thick maps of O–algebras. Thick maps are a simultaneous generalization of morphisms
and derivations. We single out special thick maps that we call pseudo-derivations,
and we show that these are appropriate generalizations of algebra homotopies for
the purposes of homological perturbation theory. Our main technical results are the
“O–algebra perturbation lemma” (Theorem 1.1) and the “O–algebra tensor trick”
(Theorem 1.2).

A classical application of homological perturbation theory is the streamlined proof of the
transfer theorem for A1–algebras; see [14, Section 4.2]. Due to the defect mentioned
above, it has not been possible to treat more general types of strong homotopy algebras in
the same way. But as an application of the results presented here, we obtain simple and
explicit formulas for transferring O1–algebra structures along contractions, or more
generally �.C/–algebra structures for any connected cooperad C ; see Theorem 1.3
(if C DO¡ is the Koszul dual cooperad of a Koszul operad O , then �.C/DO1 ). A
key feature is that our formulas are expressed in terms of the compact description of
�.C/–algebras as coderivation differentials on cofree C–coalgebras. Another feature
is that we obtain explicit formulas not only for the transferred �.C/–algebra structure,
but for �.C/–structures on all maps in the contraction. A curious discovery is that
the structures on the projection and the homotopy depend on the choice of pseudo-
derivation extending the original homotopy, whereas the transferred structure and the
structure on the inclusion do not; see Theorem 1.4. This observation seems to be new
even in the case of A1–algebras.

We should point out that existence of a transferred structure is well known and follows
from general principles (see Berger and Moerdijk [2], Boardman and Vogt [3], Johnson
and Yau [23] and Markl [30]), essentially because operads of the form �.C/ are
cofibrant. But such abstract considerations do not yield tractable explicit formulas.
Explicit formulas for transferring O1–algebra structures, for a Koszul operad O ,
have been obtained independently by Loday and Vallette [28, Theorem 10.3.3]. The
advantage of our approach is that we obtain simple and transparent formulas in terms
of the compact description of O1–algebras as coderivation differentials on cofree
O¡ –coalgebras. The compact description is for many purposes the most convenient one
to work with, and it is desirable to have a transfer theorem in this form. Furthermore,
we can recover the Loday–Vallette formulas from our formulas; see Theorem 1.4.

A perturbation lemma for cocommutative coalgebras, yielding transfer of L1–algebra
structures, has been obtained by Huebschmann [18; 19] using different methods.
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Foundation through the Centre for Symmetry and Deformation (DNRF92).
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Statement of results

Let us first introduce the two new notions: thick maps and pseudo-derivations.

Definition 1.1 Let A and B be chain complexes over a commutative ring k. A thick
map f W A! B is a sequence of maps of the same degree jf j,

fnW A
˝n
! B˝n; n� 0:

We say that f is a symmetric thick map if each fn is equivariant with respect to
the action of the symmetric group †n permuting tensor factors. If A and B are
algebras over an operad O then we say that f is a thick map of O–algebras if
f1�A D .�1/jf jj�j�Bfn for all � 2O.n/.

Thick maps of O–algebras are a simultaneous generalization of morphisms and deriva-
tions. Indeed, morphisms of O–algebras may be identified with thick maps of O–
algebras f W A! B that satisfy fpCq D fp˝fq , and derivations may be identified
with thick maps of O–algebras d W A!A that satisfy dpCq D dp˝ 1C 1˝dq ; see
Proposition 7.1. Levelwise composition, addition and differentiation of thick maps
make O–algebras together with thick maps of O–algebras into a dg–category, ie a
category enriched in chain complexes. Just as in any dg–category, a contraction is a
diagram

DW A
f //

h << B;
g
oo

where jf j D jgj D 0, jhj D 1 and

@.f /D 0; @.g/D 0; @.h/D gf � 1;

fg D 1; fhD 0; hhD 0; hg D 0:

Definition 1.2 (Contraction of O–algebras) If A and B are O–algebras, then we
say that a contraction D is a contraction of O–algebras if f ;g are morphisms and
if h is a pseudo-derivation, by which we mean that

.hp˝ 1� 1˝hq/hpCq D hp˝hq;

hpCq.hp˝ 1� 1˝hq/D�hp˝hq

for all p; q � 0.

When O is the operad governing associative algebras, pseudo-derivations generalize
algebra homotopies in the sense of [14; 20] (see Proposition 4.2), and the following
theorem is a generalization of the “algebra perturbation lemma” [20, .2:1�/]. A
perturbation of an O–algebra A is a derivation tW A!A satisfying @.t/C t2 D 0.

Algebraic & Geometric Topology, Volume 14 (2014)



2514 Alexander Berglund

Theorem 1.1 (O–algebra perturbation lemma) Let D be a contraction of O–algebras.
If t is a perturbation of A then, provided the series tCthtC� � � converges, the recursive
formulas

f 0 D f Cf 0th; g0 D gChtg0;

h0 D hCh0th; t0 D f tg0;

define a perturbation t0 of B and a contraction of O–algebras

Dt
W .A; dAC t1/

f 0 //
h0 :: .B; dBC t0

1
/:

g0
oo

In particular, f 0 , g0 are morphisms, t0 is a derivation and h0 is a pseudo-derivation.

There is also a dual of Theorem 1.1 for coalgebras over cooperads; see Theorem 9.1.
In practice, convergence is often ensured by having suitable filtrations on the objects.

Another interesting feature of thick maps is that they provide means of linearizing
nonadditive functors. More precisely, we show that the free O–algebra functor OŒA�DL

n�0 O.n/˝†n
A˝n extends to a dg–functor O�Œ�� from the dg–category of chain

complexes and symmetric thick maps to the dg–category of O–algebras and symmetric
thick maps of O–algebras; see Proposition 8.1. A consequence of this is the following
theorem, which is a generalization of the “tensor trick”; see [20; 14].

Theorem 1.2 (O–algebra tensor trick) Consider a contraction of chain complexes

DW A
f //

h << B:
g
oo

If h is a symmetric pseudo-derivation such that h1 D h and @.h/D gf � 1, hhD 0,
fhD0, hgD0, where fnDf

˝n and gnDg˝n , then there is an induced contraction
of O–algebras

O�ŒD�W OŒA�
O�Œf � //O�Œh� :: OŒB�:
O�Œg�

oo

If O is a nonsymmetric operad, then one may drop the condition that h be symmetric.
There is always a nonsymmetric pseudo-derivation h with the requisite properties,
namely

hn D

X
pC1CqDn

1˝p
˝ h˝ .gf /˝q:

Algebraic & Geometric Topology, Volume 14 (2014)
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If k contains the rational numbers Q as a subring then, with hn as above,

h†n D
1

n!

X
�2†n

��1hn�

defines a symmetric pseudo-derivation h† with the requisite properties.

We also give the dual of Theorem 1.2 for cooperads; see Theorem 9.2. If we demand
the existence of a symmetric pseudo-derivation with the requisite properties for any
given contraction, then the condition Q� k is necessary; see Proposition 8.2.

Application: Transfer theorem

Let C be a cooperad, which we assume to be connected in the sense that C.0/D 0 and
C.1/D k. For a chain complex A, the “cofree C–coalgebra” is defined as

CŒA�D
M
n�0

C.n/˝†n
A˝n:

Elements of the nth summand are said to be of weight n. Let �.C/ denote the cobar
construction on C . An �.C/–algebra structure on a chain complex A may be identified
with a weight decreasing coderivation perturbation t of CŒA�; see Section 11. The bar
construction of an �.C/–algebra .A; t/ is the C–coalgebra

B.A; t/D .CŒA�; dCŒA�C t/:

If .A; t/ and .B; t 0/ are �.C/–algebras, and if f W A! B is a morphism between
the underlying chain complexes, then an �.C/–structure on f is a morphism of C–
coalgebras F W B.A; t/! B.B; t 0/ whose linear part is identified with f . We will also
call such an F a lax morphism of �.C/–algebras.

An important special case is when C is the Koszul dual cooperad of a Koszul operad O .
Then �.C/–algebras are exactly O1–algebras, or “strongly homotopy” O–algebras,
and a chain map with an �.C/–structure is the same as an O1–map. In the case
when O is the associative operad, then the above amounts to the familiar compact
definition of an A1–algebra as a graded k–module A together with a coderivation
differential on the tensor coalgebra T c.sA/. Other familiar examples of this form
are C1–, L1– or G1–algebras. If the operad O is not necessarily Koszul, one may
define strongly homotopy O–algebras as algebras over the operad �BO , where the
cooperad BO is the bar construction on O .

Algebraic & Geometric Topology, Volume 14 (2014)
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Theorem 1.3 (Transfer theorem; compact form) Let C be a connected cooperad.
Given a contraction of chain complexes

A
f //

h << B
g
oo

and an �.C/–algebra structure t on A, there are explicit formulas for an �.C/–algebra
structure t 0 on B and �.C/–structures F 0;G0;H 0 on f;g; h that make

(1) B.A; t/
F 0 //

H 0 :: B.B; t 0/
G0

oo

into a contraction of C–coalgebras. The formulas are given by

F 0 D F CFtH CF.tH /2C � � � ;

G0 DGCHtGC .Ht/2GC � � � ;

H 0 DH CHtH CH.tH /2C � � � ;

t 0 D FtGCFtHtGCFt.Ht/2GC � � � ;

where the maps

CŒA�
F //

H :: CŒB�
G
oo

are defined by letting F , G be the morphisms of C–coalgebras induced by f , g . There
are different possible choices for the homotopy H : for every choice of symmetric
pseudo-derivation hW A!A that extends h and satisfies

@.h/D gf � 1; fhD 0; hg D 0; hhD 0;

where fn D f
˝n and gn D g˝n , we may take H D CŒh�. If C is a nonsymmetric

cooperad, then one may drop the condition that h be symmetric, and a possible choice
of pseudo-derivation is

hn D

X
pC1CqDn

1˝p
˝ h˝ .gf /˝q:

If Q� k then a possible choice of symmetric pseudo-derivation is the symmetrization
of hn above:

h†n D
1

n!

X
�2†n

��1hn�:
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Remark 1.1 Convergence of the formulas is ensured because t decreases weight.
The hard part of the theorem is to show that t 0 becomes a C–coderivation and that F 0

and G0 become morphisms of C–coalgebras. The key point is that it is exactly the
pseudo-derivation property that ensures this, and furthermore that it is always possible
to find a suitable pseudo-derivation.

Expanded form of the transfer theorem

An �.C/–algebra structure t on a chain complex A may alternatively be described
as a family of maps t� W A˝n! A of degree j�j � 1, indexed by elements � 2 C.n/,
satisfying certain relations; see Section 11 for details. Similarly, if .A; t/ and .B; t 0/
are �.C/–algebras, then an �.C/–structure on a chain map f W A ! B may be
described as a family of maps f � W A˝n ! B of degree j�j, indexed by elements
� 2 C.n/, such that f 1 D f , subject to certain relations; see Section 11. In the
case when C is the Koszul dual cooperad of the associative operad, the above sim-
ply amounts to the description of an A1–algebra as a chain complex A together
with a family of maps mnW A

˝n ! A, n D 2; 3; : : :, satisfying the familiar rela-
tions.

The formulas in Theorem 1.3 may be expanded to recursive formulas expressed in terms
of this alternative description of �.C/–algebras. To state them we need to introduce
some notation. For � 2 C.n/ where n� 2 we will write the coproduct as

�.�/D � ı 1˝n
C 1 ı �C

pX
qD1

�q
ı .�

q
1
˝ � � �˝ �q

rq
/�q 2 .C ı C/.n/;

where �q and �q
i are elements of C of arity less than n and where �q 2†n . Furthermore,

we let

�.1/.�/D

uX
iD1

.�0i ıei
�00i /�i

denote the quadratic part of the coproduct; see Section 6.

Theorem 1.4 (Transfer theorem, expanded form) With notation as in Theorem 1.3,
we have the following recursive formulas for the transferred �.C/–algebra structure t 0

on B and for the �.C/–structures F 0;G0;H 0 on f;g; h.

Algebraic & Geometric Topology, Volume 14 (2014)
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For � 2 C.n/ where n� 2, we have

.t 0/� D f t�g˝n
C

pX
qD1

f t�
q

.g�
q

1 ˝ � � �˝g�
q
rq /�q;

g� D ht�g˝n
C

pX
qD1

ht�
q

.g�
q

1 ˝ � � �˝g�
q
rq /�q;

f � D .�1/j�jf t�hnC

uX
iD1

.�1/j�
00
i
j.f �

0
i ıei

t�
00
i /�ihn;

h� D .�1/j�jht�hnC

uX
iD1

.�1/j�
00
i
j.h�

0
i ıei

t�
00
i /�ihn:

In particular, t 0 and G0 do not depend on the choice of pseudo-derivation h extending h.
However, F 0 and H 0 do depend on this choice.

These recursive formulas may be interpreted as tree formulas. In Section 12 we explain
this point of view in detail in the special case of A1–algebras. In fact, in that case
we recover exactly the formulas written down by Kontsevich and Soibelman [25, Sec-
tion 6.4]; see also [17]. In the case when C is the Koszul dual cooperad of a Koszul
operad, similar considerations show more generally that the structure we obtain agrees
with the one in Loday and Vallette [28, Theorem 10.3.3].

If the ground ring k is a field then it is always possible to find a contraction between a
chain complex A and its homology H�.A/. Therefore, the following is a corollary to
Theorem 1.4.

Corollary 1.1 (Minimality theorem for �.C/–algebras) Suppose that k is a field
of characteristic zero and let C be a connected cooperad. Let A be a chain complex
with an �.C/–algebra structure t . Then there exist an �.C/–algebra structure t 0 on
the homology H�.A/, with trivial differential, and a lax contraction of �.C/–algebras

.A; t/
f � //

h� :: .H�.A/; t 0/:
g�

oo

In particular, every �.C/–algebra .A; t/ is quasi-isomorphic to a minimal �.C/–
algebra .H�.A/; t 0/. If C is a nonsymmetric operad, then one may drop the assumption
that k is of characteristic zero.

Algebraic & Geometric Topology, Volume 14 (2014)
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Outline of the paper

In Section 2 we review the relevant background material on homological perturbation
theory. In Section 3 we introduce some machinery for handling thick maps. The proofs
of Theorems 1.1 and 1.2 are both separated into two parts, a first part dealing with
formal properties of thick maps without reference to any operad, and a second part
where the operad enters. Section 4 contains the first part of the proof of Theorem 1.1.
In it, we introduce and study pseudo-derivations and thick contractions. The first part
of the proof of Theorem 1.2 is contained in Section 5 where we show how to extend
any contraction to a symmetric thick contraction. Section 6 contains a review of the
basic definitions concerning operads and cooperads that we will use. The second part
of the proof of Theorem 1.1 is contained in Section 7. In Section 8 we extend the
free O–algebra functor to the dg–category of thick maps, and we use this to finish the
proof of Theorem 1.2. In Section 9 we define thick maps of C–coalgebras, where C is
a cooperad, and we give the duals of Theorems 1.1 and 1.2. In Section 10 we prove
a general result about thick maps between “cofree” C–coalgebras which is used in
the proof of Theorem 1.4. In Section 11 we give the proofs of Theorems 1.3 and 1.4.
In Section 12 we illustrate how the formulas in Theorem 1.4 work in the case of
A1–algebras.

Conventions

In this paper, the term “chain complex” will mean unbounded chain complex over a
commutative ground ring k. The differential of a chain complex A will be denoted
by dA and we take it to be of degree �1. Recall that a dg–category is a category
A enriched over chain complexes, ie a collection of objects Ob A and for every two
objects A and B a chain complex HomA.A;B/, elements of which we will refer to as
maps from A to B , together with natural composition and unit morphisms that satisfy
standard unit and associativity axioms; see for instance Keller [24]. We will use @ as a
generic notation for the differential in HomA.A;B/. Thus, in the dg–category C of
chain complexes, @.f /D dBf � .�1/jf jfdA for maps f 2 HomC.A;B/.

2 Background on homological perturbation theory

In this section we will review some of the classical results of homological perturbation
theory. The central notion, which goes back to Eilenberg and Mac Lane [6, Section 12],
is that of a contraction.

Algebraic & Geometric Topology, Volume 14 (2014)
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Definition 2.1 A contraction is a diagram of maps of chain complexes

DW A
f //

h << B;
g
oo

where jf j D jgj D 0, jhj D 1, @.f /D 0, @.g/D 0 and

@.h/D gf � 1A; fg D 1B:

Furthermore, we impose the annihilation conditions

f hD 0; hhD 0; hg D 0:

We say that D is a filtered contraction if A and B are equipped with bounded below
exhaustive filtrations which are preserved by the maps f , g and h.

In plain English, f and g are morphisms of chain complexes with fg D 1B and h is
a chain homotopy from gf to 1A . Thus, B is a strong deformation retract of A. For
this reason, the term “SDR-data” is often used as an alternative to “contraction”.

Remark 2.1 It is harmless to assume the annihilation conditions, as was pointed
out in [26]. If they are not satisfied, then one can replace h by h00 D�h0dh0 , where
h0 D @.h/h@.h/, to get a contraction.

A perturbation of A is a map t W A! A of degree �1 such that @.t/C t2 D 0, or,
equivalently, .dAC t/2 D 0. Let At denote the chain complex A endowed with the
new differential dAC t . The following result is the basis for the theory.

Theorem 2.1 (Basic perturbation lemma [5; 11]) If t is a perturbation of A such
that 1� ht is invertible then setting †D t.1� ht/�1 the following formulas define a
perturbation t 0 of B and a new contraction

Dt
W At

f 0 //
h0 ;; Bt 0 ;

g0
oo

where

f 0 D f Cf †h; g0 D gC h†g; h0 D hC h†h; t 0 D f †g:

Remark 2.2 In the original statement of the basic perturbation lemma [11] one assumes
that D is a filtered contraction and that the perturbation t lowers the filtration on A.
Then the infinite series

P
n�0.ht/n converges pointwise and defines an inverse of 1�ht .

It was observed by Barnes and Lambe in [1] that invertibility of 1� ht is a sufficient
hypothesis. Observe also that invertibility of 1� ht is equivalent to invertibility of
1� th. Indeed, .1� th/�1 D 1C t.1� ht/�1h.

Algebraic & Geometric Topology, Volume 14 (2014)
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Definition 2.2 [14; 20] A contraction of algebras is a contraction D where A

and B are differential graded algebras, ie chain complexes equipped with morphisms
�AW A˝A! A and �BW B˝B! B , where f and g are morphisms of algebras
and where h is an algebra homotopy, which means that

h�A D �B.h˝gf C 1˝ h/:

Theorem 2.2 (Algebra perturbation lemma [14, Section 2.2; 20, .2:1�/]) If D is a
contraction of algebras and if the perturbation t is a derivation, ie t�A D �A.t ˝ 1C

1˝ t/, then Dt is a contraction of algebras.

The “tensor trick” is a way of producing an algebra contraction starting from any
contraction. Recall that the tensor algebra on a chain complex A is the chain complex

T .A/D
M
n�0

A˝n

with multiplication �W T .A/˝T .A/! T .A/ induced by the canonical isomorphisms
A˝p˝A˝q ŠA˝.pCq/ .

Theorem 2.3 (Tensor trick [12, Section 3.2; 14, Section 3; 20, .2:2:0�/]) For any
contraction D the following is a contraction of algebras

T .D/W T .A/
F //

H :: T .B/;
G
oo

where F , G and H act on tensors of length n by, respectively,

f ˝n; g˝n;
X

iC1CjDn

1˝i
˝ h˝ .gf /˝j :

As remarked in [14, Remark, end of Section 2.2], if �A is a commutative operation,
then the left-hand side of the equation

h�A D �A.h˝gf C 1˝ h/

is symmetric but the right-hand side is not. For this reason, the present notion of
an algebra homotopy is not useful for commutative algebras or, more generally, for
algebras where symmetries play a role. In what follows, we will look for a symmetric
generalization of the notion of an algebra homotopy such that Theorems 2.2 and 2.3,
appropriately modified, remain valid.

Algebraic & Geometric Topology, Volume 14 (2014)
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3 Thick maps

Definition 3.1 Let A and B be chain complexes. We define a thick map f W A! B

to be a sequence of maps

f D ffnW A
˝n
! B˝n

gn�0

of the same degree jf j. We say it is symmetric if each fn is equivariant with respect
to the action of the symmetric group †n permuting tensor factors.

There is a dg–category TN.C/ of thick maps. It has the same objects as the dg–
category C of chain complexes but HomTN.C/.A;B/ is the chain complex of thick
maps from A to B . The k–linear structure, differentials and compositions are defined by

.af C bh/n D afnC bhn;

@.f /n D dB˝nfn� .�1/jf jfndA˝n ;

.g ıf /n D gn ıfn;

for f ;hW A!B , gW B!C , a; b 2k, and where dA˝n is the ordinary tensor product
differential on A˝n . Chain complexes together with symmetric thick maps form a
dg–subcategory T†.C/ of TN.C/. The identity 1W A!A and the zero map 0W A!B

are the thick maps with 1n D 1A˝n and 0n D 0. We will now give names to thick
maps with special properties.

Definition 3.2 (1) We say that a thick map f W A! B is a morphism if fpCq D

fp˝fq for all p; q � 0.

(2) Let l and r be morphisms from A to B . We say that a thick map d W A! B

is an .l ; r/–derivation if dpCq D dp˝ rqC lp˝dq for all p; q � 0.

(3) For simplicity, a .1; 1/–derivation d W A!A will be called a derivation.

Let us also introduce a notational device. If f W A! B and gW C !D are two thick
maps, we can form the bi-indexed sequence

f ˝g D ffp˝gqW A
˝p
˝C˝q

! B˝p
˝D˝q

gp;q�0:

We can also form the bi-indexed sequence

m�.f /D ffpCqW A
˝p
˝A˝q

! B˝p
˝B˝q

gp;q�0:

Then it is clear that a thick map f W A!B is a morphism if and only if m�.f /Df˝f

and that a thick map d W A ! B is an .l ; r/–derivation if and only if m�.d/ D

d ˝ rC l ˝d .

Algebraic & Geometric Topology, Volume 14 (2014)
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4 Thick contractions

Using thick maps we can reformulate the notion of an algebra contraction in a way
that lends itself to generalizations. By a thick contraction we mean a contraction in the
dg–category TN.C/.

Proposition 4.1 Any contraction D has a unique extension to a thick contraction

DW A
f //

h << B;
g
oo

where f and g are morphisms and h is a .1;gf /–derivation. Furthermore, if A

and B are algebras then D is an algebra contraction if and only if f , g and h are
compatible with the algebraic structure in the sense that

f1�A D �Bf2; g1�B D �Ag2; h1�A D �Ah2:

Proof Requiring that f , g are morphisms and that h is a .1;gf /–derivation leaves
us with no choice but to set

fn D f
˝n; gn D g˝n; hn D

X
iC1CjDn

1˝i
˝ h˝ .gf /˝j :

But these formulas coincide with the formulas in the tensor trick (Theorem 2.3), and it
is a consequence of that theorem that they define a thick contraction. Next, D is an
algebra contraction (Definition 2.2) if and only if

fmA DmBf
˝2; g�B D �Ag˝2; h�A D �A.h˝gf C 1˝ h/:

In view of our definition of f , g and h, these conditions are the same as the conditions
in the statement of the proposition.

We repeat that the problem with algebra homotopies is the asymmetry in the expression
h˝ gf C 1˝ h. In other words, the problem is that if a thick map h is a .1;gf /–
derivation, then it can hardly be symmetric in the sense of Definition 3.1. The goal
for the remainder of this section is the following: Generalize the condition “h is a
.1;gf /–derivation” to a condition that makes sense for symmetric thick maps. There
are two constraints.

� The condition should be sufficiently close to the .1;gf /–derivation condition
so that the proof of the algebra perturbation lemma goes through.

� The condition should be flexible enough so as to allow for a “symmetric tensor
trick”, ie an extension of any contraction to a symmetric thick contraction which
satisfies the condition.
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We will argue that the following definition contains the solution to this problem.

Definition 4.1 A thick map hW A!A is a pseudo-derivation if

.h˝ 1� 1˝h/m�.h/D h˝h;

m�.h/.h˝ 1� 1˝h/D�h˝h:

In other words, h is a pseudo-derivation if for all p; q � 0,

.hp˝ 1� 1˝hq/hpCq D hp˝hq;

hpCq.hp˝ 1� 1˝hq/D�hp˝hq:

For the rest of the section, fix a thick contraction

DW A
f //

h << B:
g
oo

To begin with, let us note that pseudo-derivations generalize .1;gf /–derivations.

Proposition 4.2 If the homotopy h in D is a .1;gf /–derivation then h is a pseudo-
derivation.

Proof This is a simple calculation:

.h˝ 1� 1˝h/m�.h/D .h˝ 1� 1˝h/.1˝hCh˝gf /

D h˝h� 1˝hhChh˝gf Ch˝hgf D h˝h:

Here we have used the annihilation conditions hhD 0 and hg D 0. Similarly, one
verifies that �m�.h/.h˝ 1� 1˝h/D h˝h.

Fix a thick perturbation t of A, ie a thick map of degree �1 satisfying @.t/C t2 D 0.
Suppose that 1 � ht (or equivalently 1 � th) is invertible, so that we can use the
formulas of the basic perturbation lemma (Theorem 2.1) to define thick maps f 0 ,
g0 , h0 , t0 . The following theorem, which shows that the pseudo-derivation property
is sufficient to make the algebra perturbation lemma work, is the main result of this
section.

Theorem 4.1 Let D be a thick contraction. If f and g are morphisms, h a pseudo-
derivation and t a derivation, then f 0 and g0 are morphisms, h0 a pseudo-derivation,
t0 a derivation, t D t1 and t 0 D t0

1
are perturbations of A and B , respectively, and

Dt
W At

f 0 //
h0 ;; Bt 0

g0
oo

is a thick contraction. Furthermore, if h is symmetric, then so is h0 .
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The proof of this theorem will occupy the rest of the section.

Proposition 4.3 If h is a pseudo-derivation and t is a derivation then h0 is a pseudo-
derivation.

Proof We need to show that .h0˝1�1˝h0/m�.h0/D�m�.h0/.h0˝1�1˝h0/D

h0˝h0 . If we multiply the right-hand side from the left with .1�ht/˝ .1�ht/ and
from the right with m�.1� th/ and use that .1�ht/h0 D h0.1� th/D h we get

..1�ht/˝ .1�ht//.h0˝ 1� 1˝h0/m�.h0/m�.1� th/

D .h˝ .1�ht/� .1�ht/˝h/m�.h/

D .h˝ 1� 1˝h/m�.h/� .h˝h/.t˝ 1C 1˝ t/m�.h/

D h˝h� .h˝h/m�.th/

D .h˝h/m�.1� th/

D ..1�ht/˝ .1�ht//.h0˝h0/m�.1� th/:

Since .1�ht/ and .1� th/ are invertible, the above equation implies that

.h0˝ 1� 1˝h0/m�.h0/D h0˝h0:

Similarly one verifies that �m�.h0/.h0˝ 1� 1˝h0/D h0˝h0 .

We will see in Proposition 4.6 below that the hypotheses in Theorem 4.1 imply the
following additional conditions:

Module conditions

.f ˝ 1/m�.h/D f ˝h m�.h/.g˝ 1/D g˝h

.1˝f /m�.h/D h˝f m�.h/.1˝g/D h˝g

The module conditions together with the pseudo-derivation property are exactly what
we need to ensure that f 0 and g0 are morphisms and that t0 is a derivation provided
that f and g are morphisms and t is a derivation.

Proposition 4.4 Suppose that h is a pseudo-derivation, that the module conditions are
satisfied and that t is a derivation.

(1) If f is a morphism then so is f 0 .

(2) If g is a morphism then so is g0 .

(3) If f and g are morphisms then t0 is a derivation.
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Proof (1) We need to verify that m�.f 0/Df 0˝f 0 under the assumption m�.f /D

f ˝f . Observe that f 0 D f Cf 0th. Therefore,

.f 0˝f 0/m�.th/D .f 0˝f 0/.t˝ 1C 1˝ t/m�.h/

D .f 0t˝ .f Cf 0th/C .f Cf 0th/˝f 0t/m�.h/

D .f 0t˝ 1/.1˝f /m�.h/C .1˝f 0t/.f ˝ 1/m�.h/

� .f 0t˝f 0t/.h˝ 1� 1˝h/m�.h/

D .f 0t˝ 1/.h˝f /C .1˝f 0t/.f ˝h/� .f 0t˝f 0t/.h˝h/

D f 0th˝f Cf ˝f 0thCf 0th˝f 0th

D .f 0�f /˝f Cf ˝ .f 0�f /C .f 0�f /˝ .f 0�f /

D f 0˝f 0�f ˝f :

Here we have used that h is a pseudo-derivation, that t is a derivation and the module
conditions involving f . The above gives that

.f 0˝f 0/m�.1� th/D f ˝f Dm�.f /Dm�.f 0.1� th//Dm�.f 0/m�.1� th/;

and this implies that f 0˝f 0 Dm�.f 0/ since 1� th is invertible.

(2) This is proved as (1) but uses the module conditions involving g instead.

(3) Note that t0 D f 0tg . Since hg D 0 and f 0.1� th/D f , we have that f 0g D
f 0.1� th/g D fg D 1. By (1), f 0 is a morphism. Combining these facts we get that

m�.t0/Dm�.f 0/m�.t/m�.g/D .f 0˝f 0/.t˝ 1C 1˝ t/.g˝g/

D f 0tg˝f 0gCf 0g˝f 0tg D t0˝ 1C 1˝ t0;

so t0 is indeed a derivation.

To show that the module conditions are satisfied under the hypotheses of Theorem 4.1,
we will introduce an auxiliary set of conditions on D, called the “annihilation condi-
tions”, summarized as follows: all possible ways of forming maps m�.x/.y ˝ z/ or
.x˝y/m�.z/ where fhg � fx;y ; zg � ff ;g;hg should yield the zero map.

Annihilation conditions

.h˝h/m�.h/D 0 m�.h/.h˝h/D 0

.h˝h/m�.g/D 0 m�.f /.h˝h/D 0

.f ˝h/m�.h/D 0 m�.h/.g˝h/D 0

.h˝f /m�.h/D 0 m�.h/.h˝g/D 0

.f ˝f /m�.h/D 0 m�.h/.g˝g/D 0
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.f ˝h/m�.g/D 0 m�.f /.g˝h/D 0

.h˝f /m�.g/D 0 m�.f /.h˝g/D 0

The annihilation conditions, albeit outnumbering the module conditions, are easier
to verify, and, getting ahead of ourselves, we will take advantage of this in proving
Theorem 5.1.

Proposition 4.5 (1) The homotopy h is a pseudo-derivation if and only if the
annihilation conditions in the four first rows are satisfied.

(2) The module conditions are equivalent to the annihilation conditions in the five
last rows.

Proof (1) Consider the differential of the map .h˝h/m�.h/:

@..h˝h/m�.h//

D ..gf � 1/˝h/m�.h/� .h˝ .gf � 1//m�.h/C .h˝h/m�.gf � 1/

D .h˝ 1� 1˝h/m�.h/�h˝h

C .g˝ 1/.f ˝h/m�.h/� .1˝g/.h˝f /m�.h/� .h˝h/m�.g/m�.f /:

From this expression, one sees that the equality .h˝1�1˝h/m�.h/Dh˝h follows
from the first four annihilation conditions in the left column. Conversely, these four
annihilation conditions follow from .h˝ 1� 1˝h/m�.h/D h˝h:

.h˝h/m�.h/D .h˝ 1� 1˝h/m�.h/m�.h/D .h˝ 1� 1˝h/m�.hh/D 0;

and similarly .h˝h/m�.g/D 0. Next,

.f ˝h/m�.h/D .f ˝ 1/.1˝h/m�.h/D .f ˝ 1/..h˝ 1/m�.h/�h˝h/

D .fh˝ 1/m�.h/�fh˝hD 0;

and similarly .h˝f /m�.h/D 0. The condition �m�.h/.h˝1�1˝h/D h˝h is
likewise equivalent to the first four annihilation conditions in the right column.

(2) By the same token, each individual module condition is equivalent to three annihi-
lation conditions. The module condition .f ˝ 1/m�.h/D f ˝h is equivalent to the
three annihilation conditions

.f ˝h/m�.h/D 0; .f ˝h/m�.g/D 0; .f ˝f /m�.h/D 0:

The proof is similar to the proof of (1) and is left to the reader. One direction is seen
by differentiating the expression .f ˝h/m�.h/. After doing the same thing for each
module condition, one sees that they are collectively equivalent to the annihilation
conditions in the five last rows.
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As promised, we can now prove the following:

Proposition 4.6 If f and g are morphisms and h is a pseudo-derivation then all
annihilation conditions are satisfied, and hence the module conditions are automatically
satisfied.

Proof By Proposition 4.5(1), if h is a pseudo-derivation then the annihilation condi-
tions in the four first rows are satisfied. If f and g are morphisms, then the annihilation
conditions in the three remaining rows follow from the conditions fhD 0 and hgD 0:

.f ˝f /m�.h/Dm�.f /m�.h/Dm�.fh/D 0;

.f ˝h/m�.g/D .f ˝h/.g˝g/D fg˝hg D 0;

and so on. That the module conditions hold then follows from Proposition 4.5(2).

Proof of Theorem 4.1 By Proposition 4.6, the module conditions are satisfied, so
by Proposition 4.4, f 0 and g0 are morphisms, h0 is a pseudo-derivation and t0 is a
derivation. We need to show that t D t1 and t 0 D t0

1
are perturbations of A and B ,

respectively, and that Dt is a thick contraction. The nth level of the diagram Dt is
equal to the diagram

Dtn
n W .A˝n/tn

f 0n //
h0n 99 .B˝n/t

0
n

g0n

oo

obtained by perturbing the nth level Dn of the thick contraction D using the perturba-
tion tn of A˝n . By the basic perturbation lemma, t0n is a perturbation of B˝n and Dtn

n

is a contraction. In particular, t and t 0 are perturbations of A and B , respectively.
Furthermore, the relations f 0g0 D 1, f 0h0 D 0, h0h0 D 0 and h0g0 D 0 hold because
they do so levelwise. However, to verify that Dt is a thick contraction, it is not enough
to know that each individual level is a contraction, we will also need the fact that t

and t0 are derivations. Observe that

@.h0/n D d.At /˝nh0nCh0nd.At /˝n :

Since t is a derivation, the tensor product differential d.At /˝n in .At /˝n coincides
with the perturbed differential dA˝nC tn of .A˝n/tn . Since each Dtn

n is a contraction,
this implies that @.h0/ D g0f 0 � 1. Similarly, using that t0 is also a derivation one
verifies that @.f 0/D 0 and that @.g0/D 0. This finishes the proof.

Remark 4.1 The reason for the name “module conditions” is the following: suppose
that A and B are associative algebras and that g1W B!A is a morphism of algebras.
Then A can be viewed as a left B–module via �A.g1˝ 1/W B˝A! A. Suppose
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moreover that �Ah2Dh1�A . Then the module condition h2.g1˝1/Dg1˝h1 implies
that h1 is a morphism of B –modules (of degree 1). The other module conditions have
similar interpretations.

5 Symmetric tensor trick

By Proposition 4.1 any contraction D can be extended to a thick contraction D

where f and g are morphisms and h is a .1;gf /–derivation. In this section we
will symmetrize h to obtain a symmetric thick contraction D† which extends D. The
symmetrized homotopy h† is no longer a .1;gf /–derivation, but we will show that
it is a pseudo-derivation. Throughout this section we will assume that Q � k. This
assumption is necessary; see Proposition 8.2.

Fix a contraction D, and consider its extension to a thick contraction D given by
Proposition 4.1:

fn D f
˝n; gn D g˝n; hn D

X
iC1CjDn

1˝i
˝ h˝�˝j :

Here � D gf . Evidently, the thick maps f and g are symmetric, but h is not.

Definition 5.1 The symmetrized tensor trick homotopy h†W A!A is the thick map
defined by

h†n D
1

n!

X
�2†n

h�n ;

where h�n D �
�1hn� .

The idea of symmetrizing the tensor trick homotopy appears in Gugenheim, Lambe
and Stasheff [13] and [21; 18; 19] and presumably in many other places, but the author
is not aware of any written source where the formal properties of the symmetrized
homotopy are worked out in detail. In particular, we believe that the discovery that h†

is a pseudo-derivation is new; see Theorem 5.1 below.

Proposition 5.1 The symmetrized homotopy h†W A!A can be decomposed as

h† D qhder
D hderq

where hder and q are the symmetric thick maps from A to itself given by

hder
n D

X
iC1CjDn

1˝i
˝ h˝ 1˝j ; qn D

X
�2f0;1gn

Qn
j�j�

�1 ˝ � � �˝��n :
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Here, � D gf , j�j D �1C � � �C �n and

Qn
k D

k!.n�1�k/!

n!

if k < n. We define Qn
n D 0.

Proof The nth component of the symmetrized homotopy is given by the formula

h†n D
1

n!

X
�2†n

h�n ;

where h�n D �
�1hn� . Every � 2†n determines a total order <� of f1; : : : ; ng by

i <� j ” �.i/ < �.j /:

We have that

h�n D

nX
jD1

˛1˝ � � �˝ j̨�1˝ h˝ j̨C1˝ � � �˝˛n;

where, for i ¤ j ,

˛i D

�
1 if i <� j ,
� if j <� i .

Therefore, the sum of all h�n is a linear combination of terms of the form

��1 ˝ � � �˝��j�1 ˝ h˝��jC1 ˝ � � �˝��n ;

where �i 2 f0; 1g. The coefficient of such a term is the number of total orders on the
set f1; : : : ; ng with the property that j is the j th element and all elements of the set
fi j �i D 0g precede all elements of the set fi j �i D 1g. The number of such orders is
k!.n� 1� k/!, where k D jfi j �i D 1gj D j�j. Hence,

h†n D

nX
jD1

X
�2f0;1gn

�jD0

Qn
j�j�

�1 ˝ � � �˝��j�1 ˝ h˝��jC1 ˝ � � �˝��n :

Since h� D �hD 0, this may be written as h† D hderq D qhder , as claimed.

Remark 5.1 Observe that since h� D �hD 0 it does not matter how Qn
n is defined,

but we define it to be zero for definiteness.

Theorem 5.1 The diagram

D†W A
f //

h† << B
g
oo
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is a symmetric thick contraction which extends D. Furthermore, f and g are mor-
phisms and h† is a pseudo-derivation.

Proof The relation @.h†/Dgf �1 follows from the relation @.h/Dgf �1 because
symmetrization is a morphism of chain complexes

HomC.A
˝n;A˝n/! HomC.A

˝n;A˝n/†n ;

and because the thick map gf � 1 is symmetric. The relation fg D 1 is clear. By
Proposition 5.1 we have h† D qhder D hderq . Since f hD 0, hg D 0 and hhD 0, it
follows that fhderD 0, hderg D 0 and hderhderD 0. Therefore, fh† D fhderq D 0,
h†g D qhderg D 0 and h†h† D qhderhderq D 0. We have thus verified that D† is a
contraction.

The maps f and g are by definition the morphisms that extend f and g . To prove
that h† is a pseudo-derivation, it suffices by Proposition 4.5 to verify the annihilation
conditions. To do this, use the decomposition h†D qhderDhderq and the fact that hder

is a derivation that annihilates f , g and hder . For instance,

.f ˝h†/m�.h†/D .f ˝ qhder/m�.hder/m�.q/

D .f ˝ qhder/.hder
˝ 1C 1˝hder/m�.q/

D .�fhder
˝ qhder

Cf ˝ qhderhder/m�.q/D 0:

The other annihilation conditions are verified in a similar manner.

Remark 5.2 We have proved that h† is a pseudo-derivation and that D† satisfies
the module conditions via Proposition 4.5 by verifying the annihilation conditions.
The module conditions can also be verified directly. These verifications boil down to
statements about the coefficients Qn

k
. For example, in proving that

.f ˝ 1/m�.h†/D f ˝h†;

one comes across the statement that the equality

rX
jD0

�
r

j

�
Qn

jCk DQn�r
k

holds for all nonnegative integers r; k; n with r C k < n. Verifying directly that h†

is a pseudo-derivation involves a similar but more complicated equality. It is quite
interesting that these combinatorial equalities are consequences of Proposition 4.5.
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6 Operads and cooperads

For the convenience of the reader we have included this section with standard definitions
and facts about operads and cooperads. Most things in this section can be found in
Fresse [8], and the reader familiar with operads can safely skip this section, referring
back for notation if necessary.

A symmetric sequence is a collection OD fO.n/gn�0 where O.n/ is a chain complex
with a right action of the symmetric group †n . The Schur functor associated to a
symmetric sequence O is the functor OŒ�� from the category of chain complexes to
itself given on objects by

OŒA�D
M
n�0

O.n/˝†n
A˝n;

and on morphisms f W A! B by

OŒf �D
M
n�0

1˝†n
f ˝n
W OŒA�!OŒB�I

see [8, Section 2.1.1]. There is a parallel story for nonsymmetric operads and cooperads;
here one considers sequences O D fO.n/g�0 , where O.n/ is just a chain complex
without any †n –action. In this case, one sets OŒA� D

L
n�0 O.n/˝A˝n . All the

constructions in this section have obvious nonsymmetric analogs.

The tensor product of two symmetric sequences O and P is the symmetric sequence
O˝P given by

.O˝P/.n/D
M

pCqDn

Ind†n

†p�†q
O.p/˝P.q/:

Here Ind†n

†p�†q
O.p/˝ P.q/ denotes the induced †n –representation. This tensor

product has the property that there is an isomorphism of functors from C to itself

.O˝P/Œ��ŠOŒ��˝P Œ��;

and it makes the category of symmetric sequences into a symmetric monoidal dg–
category; see [8, Section 2.1].

The composition product of two symmetric sequences O and P is the symmetric
sequence

O ıP D
M
n�0

O.n/˝†n
P˝n:
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The composition product has the property that there is an isomorphism of functors
from C to itself

.O ıP/Œ��ŠOŒP Œ���;

and it makes the category of symmetric sequences into a monoidal category; see [8, Sec-
tion 2.2]. The unit object for the composition product is the symmetric sequence I
with I.1/D k and I.n/D 0 for n¤ 1. Concretely, elements of .O ıP/.n/ are linear
combinations of formal composites

� ı .�1˝ � � �˝ �r /�;

where

� 2O.r/; �1 2 P.a1/; : : : ; �r 2 P.ar /; � 2†n; a1C � � �C ar D n:

These formal composites are subject to k–linearity in each variable and the equivariance
conditions

.��/ ı .�1˝ � � �˝ �r /D � ı .���1.1/˝ � � �˝ ���1.r//�i1;:::;ir
;(2)

� ı .�1�1˝ � � �˝ �r�r /D � ı .�1˝ � � �˝ �r /�1 t � � � t �r :(3)

Here �i1;:::;ir
2 †n is the block permutation whose action is given by first dividing

f1; 2; : : : ; ng into r blocks of sizes i1; : : : ; ir and then permuting the blocks according
to � 2†r . If �j 2†ij for j D 1; : : : ; r , then �1t� � �t�r 2†n denotes the permutation
which permutes the elements within the j th block according to �j . The right action
of †n is given by formally multiplying to the right.

An operad is a monoid in the monoidal category of symmetric sequences with the compo-
sition product, ie a symmetric sequence O together with a multiplication  W OıO!O
and a unit �W I!O satisfying associativity and unit axioms; see [8, Section 3.1]. If O is
an operad then the associated Schur functor OŒ�� becomes a monad (see Mac Lane [29,
Chapter VI]), and an algebra over O is an algebra over the monad OŒ��, ie an object
A together with a morphism AW OŒA� ! A satisfying a unit and an associativity
constraint; see [8, Section 3.2; 29, page 140]. An O–algebra structure on A can
equivalently be defined as a morphism of operads O! EndA . The image of � 2O.n/
in EndA.n/D Homk.A

˝n;A/ is an operation �AW A
˝n!A.

A cooperad C is a comonoid in the monoidal category of symmetric sequences with the
composition product, ie a symmetric sequence C together with a coproduct �W C!CıC
and a counit �W C! I satisfying coassociativity and counit axioms; see Fresse [7, Sec-
tion 1.2.17], Getzler and Jones [10, Section 1.7] or [28, Section 4.7]. If C is a cooperad,
then the associated Schur functor CŒ�� becomes a comonad [29, page 139], and
a C–coalgebra is a coalgebra over this comonad, ie an object A together with a
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morphism �AW A! CŒA� satisfying a coassociativity constraint; see [7, Section 1.2.17;
10, Section 1.7; 28, Section 4.7.4].

Let C be a connected cooperad, ie a cooperad satisfying C.0/D 0 and C.1/D k. By
the description of elements of a composition product above and by the counit axiom
for C we may write �.�/ 2 .C ı C/.n/ as

�.�/D � ı 1˝n
C 1 ı �C

pX
qD1

�q
ı .�

q
1
˝ � � �˝ �q

rq
/�q

for some �q 2C.rq/, �
q
i 2C.a

q
i / and �q 2†n , where we have

P
i a

q
i Dn, 2� rq�n�1,

1 � a
q
i � n� 1 and a

q
i > 1 for at least one i . We will sometimes use the shorter

notation

�.�/D

pC1X
qD0

�0q ı �
00
q ;

where �00q D .�
q
1
˝� � �˝ �

q
rq
/�q 2 C˝rq .n/ for 0< q < pC 1 and where we let the 0th

and .pC 1/st terms be � ı 1˝n and 1 ı � , respectively.

Let �.1/ be the quadratic part of �.�/, by which we mean the sum of the terms
in �.�/ with a

q
i > 1 for exactly one i . This may be written in the form

�.1/.�/D

uX
iD1

.�0i ıei
�00i /�i

for �0i 2 C.a
0
i/, �

00
i 2 C.a

00
i / and �i 2†n , where

�0i ıei
�00i D �

0
i ı .1

˝ei�1
˝ �00i ˝ 1˝a0

i
�ei /:

7 Perturbation lemma for algebras over operads

Definition 7.1 Let O be an operad and let A, B be O–algebras. We define a thick
map of O–algebras to be a symmetric thick map f W A! B such that the diagram

OŒA�
A

��

OŒf � // OŒB�
B

��
A

f1 // B

commutes, where the upper horizontal map is given by

OŒf �D
M
n�0

1˝†n
fnW OŒA�!OŒB�:

Algebraic & Geometric Topology, Volume 14 (2014)



Homological perturbation theory for algebras over operads 2535

In more elementary terms, a thick map of O–algebras f W A! B is a sequence

f D ffnW A
˝n
! B˝n

gn�0

of †n –equivariant maps of the same degree jf j such that

f1�A D .�1/j�jjf j�Bfn

for every � 2O.n/.

Thick maps of O–algebras simultaneously generalize morphisms and derivations
(see [10, Definition 2.5; 28, Section 5.3.8]) of O–algebras. O–algebras together with
thick maps of O–algebras form a dg–category that contains the ordinary category of
O–algebras as a subcategory.

Proposition 7.1 Let A, B , C be O–algebras.

� If f ;gW A! B and hW B ! C are thick maps of O–algebras, then so are
h ıf , @.f / and af C bg , for a; b 2 k. In other words, O–algebras and thick
maps of O–algebras form a dg–subcategory TO.C/ of the dg–category T†.C/

of chain complexes and symmetric thick maps.

� Morphisms of O–algebras f W A! B may be identified with thick maps of
O–algebras f W A! B that satisfy fpCq D fp˝fq for all p; q .

� Derivations of O–algebras d W A! A may be identified with thick maps of
O–algebras d W A!A that satisfy dpCq D dp˝ 1C 1˝dq for all p; q .

Proof This is an exercise in manipulating the definitions.

Definition 7.2 We define an O–algebra contraction to be a contraction

DW A
f //

h << B
g
oo

in the dg–category TO.C/, where f and g are morphisms and h is a pseudo-derivation.

Proof of Theorem 1.1 By Theorem 4.1, Dt is a thick contraction, f 0 and g0 are
morphisms, h0 is a pseudo-derivation, t0 is a derivation, and t D t1 and t 0 D t0

1
are

perturbations of A and B . We need to verify that the perturbed objects At and Bt 0

are O–algebras and that f 0 , g0 and h0 are thick maps of O–algebras between At

and Bt 0 .

Since t and h are thick maps of O–algebras from A to itself, it follows that so are
1�ht , the inverse .1�ht/�1 and † D t.1�ht/�1 . Hence the perturbed maps f 0 ,
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g0 , h0 and t0 , being built by composing and adding thick maps of O–algebras, are
again thick maps of O–algebras, viewed as thick maps between A and B .

Since tW A! A is a derivation and a thick map of O–algebras, t is a derivation of
O–algebras. Therefore At , which is just A with perturbed differential dACt , becomes
an O–algebra with the same structure maps as A. Similarly, since t0W B ! B is a
derivation and a thick map of O–algebras, Bt 0 is an O–algebra with the same structure
maps as B .

Since the O–algebra structure maps for At and Bt 0 are the same as those for A and B

respectively, the thick maps f 0 , g0 , h0 and t0 are indeed thick maps of O–algebras
between At and Bt 0 .

Invertibility of 1�ht can be ensured by having suitable filtrations on the objects.

8 Tensor trick for algebras over operads

Proposition 8.1 Let O be a symmetric sequence. The associated Schur functor
OŒ��W C! C extends to a dg–functor O�Œ��W T†.C/! T†.C/. This extended Schur
functor preserves morphisms and pseudo-derivations. If O is an operad and if f is any
symmetric thick map then O�Œf � is a symmetric thick map of O–algebras.

Similarly, for a nonsymmetric sequence O there is an extension of the associated
Schur functor to a dg–functor O�Œ��W TN.C/! TN.C/ which preserves morphisms
and pseudo-derivations. If O is a nonsymmetric operad then O�Œf � is a thick map of
O–algebras for any thick map f .

Proof We will consider the symmetric case. The nonsymmetric case is practically
identical. The extension will be carried out in two steps. Firstly, note that the Schur
functor OŒ��W C!C extends to a dg–functor T†.C/!C. Indeed, if f W A!B is a
symmetric thick map then let

OŒf �D
M
n�0

1˝†n
fnW OŒA�!OŒB�:

It is straightforward to check that OŒ�� is k–linear, that OŒ@.f /�D @.OŒf �/ and that
OŒf ıg�DOŒf � ıOŒg�.

Secondly, for a symmetric thick map f W A!B , the nth level OnŒf � of the thick map
O�Œf �W OŒA�!OŒB� is defined by requiring commutativity of the following diagram:
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OŒA�˝n

Š

��

OnŒf � // OŒB�˝n

Š

��
O˝nŒA�

O˝nŒf � // O˝nŒB�

Here, the lower horizontal map O˝nŒf � is obtained by applying the dg–functor

O˝nŒ��W T†.C/! C

obtained in the first step to the symmetric thick map f . The vertical maps are given by
the natural isomorphism OŒ��˝n ŠO˝nŒ�� of functors from C to itself. To be more
explicit, observe that there is an isomorphism

OŒA�˝n
Š

M
r1;:::;rn�0

.O.r1/˝ � � �˝O.rn//˝†r1
�����†rn

A˝.r1C���Crn/:

On the summand indexed by .r1; : : : ; rn/, the map OnŒf � acts as fr1C���Crn
. The

thick map O�Œf � is symmetric because O 7!OŒ�� is a symmetric monoidal functor
(see [8, Proposition 2.1.5]). The map O�Œ�� is a dg–functor because it is so at each
level. Thus, we have obtained the required extension.

Suppose that hW A!A is a pseudo-derivation. We need to show that the thick map
H DO�Œh�W OŒA�!OŒA� is a pseudo-derivation. Indeed, for any p; q the restriction
of the map

.Hp˝ 1� 1˝Hq/HpCqW OŒA�˝.pCq/
!OŒA�˝.pCq/

to the summand indexed by .r1; : : : ; rpCq/ acts on the right factor A˝.r1C���CrpCq/ as

.hi ˝ 1� 1˝hj /hiCj ;

where i D r1C � � �C rp and j D rpC1C � � �C rpCq . Since h is a pseudo-derivation,
this is equal to hi ˝hj . But this is exactly how the map Hp˝HqW OŒA�˝.pCq/!

OŒA�˝.pCq/ restricted to the component indexed by .r1; : : : ; rpCq/ acts on the right
factor. Thus,

.Hp˝ 1� 1˝Hq/HpCq DHp˝Hq:

By the same argument

�HpCq.Hp˝ 1� 1˝Hq/DHp˝Hq;

and so H is a pseudo-derivation. The proof that the dg–functor O�Œ��W T†.C/!
T†.C/ takes morphisms to morphisms is similar.
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Finally, suppose that O is an operad and let f W A! B be any symmetric thick map.
We need to show that F DO�Œf � is a thick map of O–algebras. It is straightforward
to check that the diagram

OŒOŒA��

Š

��

OŒF � // OŒOŒB��

Š

��
.O ıO/ŒA�

.OıO/Œf � // .O ıO/ŒB�

commutes. Since the O–algebra structure on OŒA� is given by the composite

OŒOŒA�� Š //.O ıO/ŒA�
OŒA� //OŒA� ;

see [8, Section 3.2.13], this implies that F is a thick map of O–algebras.

Proof of Theorem 1.2 With h as in Theorem 1.2, we get a contraction in the dg–
category T†.C/

A
f //

h << B
g
oo

that extends the original contraction D. Any dg–functor preserves contractions, so if
we apply the extended Schur functor O�Œ�� from Proposition 8.1 we get a contraction
of O–algebras with the desired properties. The second part of Theorem 1.2 follows
from Proposition 4.1 and Theorem 5.1.

We will now show the necessity of the assumption Q� k in Theorem 5.1.

Proposition 8.2 If every contraction D can be extended to a symmetric thick contrac-
tion D then necessarily Q� k.

Proof For integers n and m, let Dn.m/ denote the chain complex whose under-
lying graded k–module has one generator x in degree n and one generator y in
degree n � 1, and where the differential is given by d.x/ D my and d.y/ D 0.
Defining hW D2.1/! D2.1/ by h.x/ D 0, h.y/ D x , and f D 0, g D 0, we get a
contraction

DW D2.1/
f //

h 99 0:
g
oo

If this had an extension to a symmetric thick contraction D, then we could apply OŒ��
to this, for any symmetric sequence O . Consider the particular symmetric sequence S
with S.0/ D 0 and S.n/ D k, the trivial representation of †n , for n � 1. The
value at A of the associated Schur functor is the (nonunital) symmetric algebra on A.
Applying S Œ�� to the symmetric thick contraction D, we would get a contraction
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S ŒD2.1/�
F //

H 99 S Œ0�:
G

oo

But S Œ0�D 0, so this can only happen if S ŒD2.1/� is contractible. As a graded module,
S ŒD2.1/� has basis xnC1 , xny , where jxnC1j D 2nC 2 and jxnyj D 2nC 1. The
differential is given by d.xnC1/D .nC 1/xny and d.xny/D 0, so there is a direct
sum decomposition

S ŒD2.1/�Š
M
n�0

D2nC2.nC 1/:

Therefore, S ŒD2.1/� is contractible if and only if D2nC2.nC 1/ is contractible for all
n� 0. But D2nC2.nC1/ is contractible if and only if nC1 is invertible in k. Hence,
S ŒD2.1/� is contractible if and only if Q� k.

9 Perturbation lemma and tensor trick for coalgebras over
cooperads

In this section we will dualize the results of the previous sections. The proofs are
virtually the same and will therefore be omitted.

Definition 9.1 Let C be a cooperad and let A and B be C–coalgebras. We define
a thick map of C–coalgebras to be a symmetric thick map f W A! B such that the
diagram

A

�A

��

f1 // B

�B

��
CŒA�

CŒf � // CŒB�

commutes.

Proposition 9.1 Let A,B ,C be C–coalgebras.

� If f ;gW A! B and hW B ! C are thick maps of C–coalgebras, then so are
hıf , @.f / and af Cbg , for a; b 2k. In other words, C–coalgebras and thick
maps of C–coalgebras form a dg–subcategory TC.C/ of the dg–category T†.C/

of chain complexes and symmetric thick maps.
� Morphisms of C–coalgebras f W A! B may be identified with thick maps of

C–coalgebras f W A! B that satisfy fpCq D fp˝fq for all p; q .
� Coderivations of C–coalgebras d W A!A may be identified with thick maps of

C–coalgebras d W A!A that satisfy dpCq D dp˝ 1C 1˝dq for all p; q .
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Definition 9.2 We define a contraction of C–coalgebras to be a contraction

DW A
f //

h << B
g
oo

in the dg–category TC.C/, where f and g are morphisms and h is a pseudo-derivation.

Theorem 9.1 (C–coalgebra Perturbation Lemma) Let D be a contraction of C–
coalgebras. If t is a perturbation of A then, provided the series tCthtC� � � converges,
the recursive formulas

f 0 D f Cf 0th; g0 D gChtg0;

h0 D hCh0th; t0 D f tg0;

define a perturbation t0 of B and a contraction of C–coalgebras

Dt
W .A; dAC t1/

f 0 //
h0 :: .B; dBC t0

1
/

g0
oo :

In particular, f 0 , g0 are morphisms, t0 is a coderivation and h0 is a pseudo-derivation.

Theorem 9.2 (C–coalgebra tensor trick) Consider a contraction of chain complexes

DW A
f //

h << B:
g
oo

For any choice of symmetric pseudo-derivation h such that h1D h and @.h/Dgf �1,
hh D 0, fh D 0, hg D 0, where fn D f

˝n and gn D g˝n , there is an induced
contraction of C–coalgebras

C�ŒD�W CŒA�
C�Œf � //C�Œh� :: CŒB�:
C�Œg�

oo

If C is a nonsymmetric cooperad, then one may drop the condition that h be symmetric.
There is always a nonsymmetric pseudo-derivation h with the requisite properties,
namely

hn D

X
pC1CqDn

1˝p
˝ h˝ .gf /˝q:

If Q� k then, with hn as above,

h†n D
1

n!

X
�2†n

��1hn�;

defines a symmetric pseudo-derivation h† with the requisite properties.
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10 Thick maps between “cofree” coalgebras

Proposition 10.1 Let C be a connected cooperad. A symmetric thick map of C–
coalgebras F W CŒA�! CŒB� determines maps

F �
W A˝n

! B˝m

for � 2 C˝m.n/, m; n� 1, such that the k–linear structure, differentials and symmetric
group actions are respected in the sense that

F a�Cb�0
D aF �

C bF �0 ;

.aF C bG /� D aF �
C bG � ;

@.F �/D @.F /� C .�1/jF jF d.�/;

F ���
D �F ��;

for any symmetric thick maps F ;G W CŒA�! CŒB�, and any �; �0 2 C˝m.n/, a; b 2 k,
� 2 †m , � 2 †n . Composition of thick maps is respected in the sense that for any
� 2 C.n/,

.FG /� D
X

q

.�1/jG jj�
0
q jF �0q G �00q ;

where �.�/D
P

q �
0
q ı�

00
q 2 .C ıC/.n/ for �0q 2 C.rq/ and �00q 2 C˝rq .n/. Furthermore,

we have the following.

(1) The map F1 is determined by the collection of maps F � , for � 2 C˝m.n/.

(2) If F is a morphism of C–coalgebras then F �1˝���˝�m D F �1 ˝ � � �˝F �m for
any �1; : : : ; �m 2 C . In particular, F is determined by the collection of maps F �

for � 2 C.n/.
(3) If tW CŒA�! CŒA� is a weight decreasing coderivation, t�1˝���˝�m D 0 unless �i

has arity greater than 1 for exactly one i and t1˝i˝�˝1˝j D 1˝i ˝ t� ˝ 1˝j .
In particular, t is determined by the collection of maps t� for � 2 C.n/.

(4) If F is induced by a symmetric thick map f W A! B then F � D 0 unless
mD n, and for 1 2 C˝m.m/ we have F 1 D fm .

Proof For � 2 C˝m.n/, let �� W A˝n ! C˝mŒA� be the map a 7! � ˝ a. Let
�W CŒA�!A denote the map induced by the counit of C . Given a symmetric thick map
of C–coalgebras F W CŒA�! CŒB�, we let F � be the composite

A˝n �� //C˝mŒA�Š CŒA�˝m Fm //CŒB�˝m �˝m
//B˝m;

F �
D �˝mFm�� :
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From this description, it is immediate that the k–linear structures, symmetric group
actions and differentials are respected. We get a commutative diagram

CŒA�
F1 //

�
��

CŒB�

�
��

CŒCŒA��
CŒF �

// CŒCŒB��
CŒ��
// CŒB�

where the square commutes by definition of thick maps of C–coalgebras and the triangle
commutes because of the counit axiom for cooperads. This shows that F1 is determined
by the collection of maps �˝mFm , and hence also by the maps F � for � 2 C˝m.n/.
The above diagram shows moreover that

F1��.a/D CŒ�F ��.�˝ a/D
X

q

.1˝ �˝˛q F˛q
/.�0q˝ �

00
q ˝ a/

D

X
q

.�1/jF jj�
0
q j�0q˝ �

˝˛q F˛q
.�00q ˝ a/;

for any � 2 C.n/ and any a 2 A˝n , where �.�/ D
P

q �
0
q ı �

00
q for �0q 2 C.rq/ and

�00q 2 C˝rq .n/. In other words,

F1�� D
X

q

.�1/j�
0
q jjF j��0q F �00q :

Thus,

.FG /� D �F1G1�� D
X

q

.�1/j�
0
q jjG j�F ��0q G �00q D

X
q

.�1/jG jj�
0
q jF �0q G �00q :

The remaining properties are straightforward to check.

11 Transfer theorem

Let C be a connected cooperad and let �.C/ denote the cobar construction; see
Fresse [9] and [10]. The following two propositions are well known; see [9; 10]. They
can also be proved easily using Proposition 10.1.

Proposition 11.1 An �.C/–algebra structure on a chain complex A is described by
any of the following.

� A weight decreasing coderivation t W CŒA�! CŒA� of degree �1 which satisfies
@.t/C t2 D 0.
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� Maps t� W A˝n!A of degree j�j � 1 for all � 2 C.n/, n� 1, which satisfy

@.t�/C td.�/
C

uX
iD0

.�1/j�
0
i
j.t�
0
i ıei

t�
00
i /�i D 0;

and ta�Cb�0 D at� C bt�
0

, t�� D t�� for �; �0 2 C.n/, a; b 2 k and � 2†n .

Proposition 11.2 Let t and t 0 be �.C/–algebra structures on A and B , respectively.
A lax morphism of �.C/–algebras .A; t/! .B; t 0/ is described by any of the following.

� A morphism of C–coalgebras f W CŒA�! CŒB� which satisfies

.dCŒB�C t 0/f D f .dCŒA�C t/:

� Maps f � W A˝n! B , of degree j�j for all � 2 C.n/, n� 1, which satisfy (with
f WD f 1 )

@.f �/C .t 0/�f ˝n
C

pX
qD1

.t 0/�
q

.f �
q

1 ˝ � � �˝f �
q
rq /�q

D f d.�/
Cf t� C

uX
iD1

.�1/j�
0
i
j.f �

0
i ıei

t�
00
i /�i ;

and f a�Cb�0 D af �Cbf �
0

, f �� D f �� for �; �0 2 C.n/, a; b 2k and � 2†n .

Proof of Theorems 1.3 and 1.4 By the C–coalgebra tensor trick, Theorem 9.2, a
suitable choice of pseudo-derivation h gives rise to a contraction of C–coalgebras

CŒA�
C�Œf � //C�Œh� :: CŒB�:
C�Œg�

oo

For ease of notation, let F D C�Œf �, G D C�Œg�, H D C�Œh�. The �.C/–algebra struc-
ture on A is encoded in a weight decreasing coderivation perturbation t W CŒA�! CŒA�.
That t is a coderivation perturbation implies that the thick map t with

tn D

X
pC1CqDn

1˝p
˝ t ˝ 1˝q

is a thick map of C–coalgebras that satisfies @.t/C t2 D 0. Now, we can apply
the C–coalgebra perturbation lemma, Theorem 9.1, to obtain a new contraction of
C–coalgebras

.CŒA�; dCŒA�C t/
F 0 //

H 0 99 .CŒB�; dCŒB�C t 0/
G 0
oo
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determined by the recursive formulas

F 0 D F CF 0tH ; G 0 DG CHtG 0;

H 0 DH CH 0tH ; t0 D FtG 0:

This proves Theorem 1.3.

To prove Theorem 1.4, we need to expand the above formulas. Let us write f �D .F 0/� ,
g� D .G 0/� , t� D t� , .t 0/� D .t0/� , h� D .H 0/� . Observe that f 1 D f , g1 D g ,
h1 D h and t1 D 0 since t decreases weight. By Proposition 10.1, we have that for
any � 2 C.n/ where n> 1,

.G 0/� D .G CHtG 0/� DG �
C h.tG 0/�

D

pC1X
qD0

ht�
q

.G 0/.�
q

1
˝���˝�

q
rq /�q

D ht�g˝n
C

pX
qD1

ht�
q

.g�
q

1 ˝ � � �˝g�
q
rq /�q:

The recursive formula for .t 0/� is derived in the same way. Similarly,

.F 0/� D .F CF 0tH /� D F �
C .�1/j�j.F 0t/�hn

D .�1/j�j
pC1X
qD0

.�1/j�
q jf �

q

t�
q

1
˝���˝�

q
rq hn

D .�1/j�jf t�hnC

uX
iD1

.�1/j�
00
i
j.f �

0
i ıei

t�
00
i /�ihn;

where we have used Proposition 10.1(3) in the last step. The recursive formula for h�

is derived in the same way.

12 Example: A–infinity algebras

Let us illustrate how the formulas of Theorem 1.4 work in the case of A1–algebras.
A1–algebras are exactly �.A¡/–algebras and A1–morphisms are exactly lax mor-
phisms of �.A¡/–algebras, where A¡ D .ƒA/_ is the Koszul dual cooperad of the
associative operad A. For n� 1, A¡.n/ is the free right k†n –module on one generator
�n of degree n� 1. Write �1 D 1. The differential is zero and the coproduct is given
by

�.�n/D
X

i1C���CirDn

.�1/��r ı .�i1
˝ � � �˝�ir

/;
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where the sign is given by

� D
X
j<k

ij .ik � 1/:

The quadratic part of the coproduct is thus given by

�.1/.�n/D
X

rCsCtDn

.�1/r.s�1/�u ı .1
˝r
˝�s˝ 1˝t /;

where uD r C 1C t . Thus, in view of Proposition 11.1 an �.A¡/–algebra structure t

on a chain complex A is the same thing as a sequence of maps mn WD t�n W A˝n!A

of degree n� 2 such that for all n� 2,

ı.mn/D
X

rCsCtDn

.�1/rsCrCumu ı .1
˝r
˝ms˝ 1˝t /:

Noting that r C u has the same parity as t C 1 in the above, this recovers the
usual definition of an A1–algebra with the same sign convention as in Lefèvre-
Hasegawa [27, Définition 1.2.1.1]. In the transfer theorem, writing fn WD f

�n etc, we
see that

m0n D
X

i1C���CirDn
r>1

.�1/�fmr .gi1
˝ � � �˝gir

/;

gn D

X
i1C���CirDn

r>1

.�1/�hmr .gi1
˝ � � �˝gir

/;

fn D

X
pCuCqDn
rDpC1Cq

.�1/.pC1/.uC1/fr .1
˝p
˝mu˝ 1˝q/hn;

hn D

X
pCuCqDn
rDpC1Cq

.�1/.pC1/.uC1/hr .1
˝p
˝mu˝ 1˝q/hn:

One choice of pseudo-derivation hn is given by

hn D

X
iC1CjDn

1˝i
˝ h˝ .gf /˝j ;

but other choices are possible. The sign .�1/� in the formulas for m0n and gn is the
same as in the description of the coproduct above.

If one unwinds these recursive formulas then one obtains “tree formulas”. To make
this idea precise, let us see how this works for gn for low values of n. We have
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g2D hm2.g1˝g1/D hm2.g˝g/, and this may be represented pictorially as follows:

g2 D

gg

m2

h

Next,

g3 D hm3.g1˝g1˝g1/C hm2.g2˝g1/� hm2.g1˝g2/

D hm3.g˝g˝g/C hm2.hm2.g˝g/˝g/� hm2.g˝ hm2.g˝g//:

This may be represented by the picture:

g3 D

g g g

m2

m2

h

h
�

ggg

m2

m2

h

h
C

g g g

m3

h

In general, we have that gn is the alternating sum over all trees T with n leaves,
where the leaves are decorated by g , the vertices by mr , where r is the number of
incoming edges of the vertex at hand, and the root by h. The sign attached to a tree T

is determined by the parity of the number of pairs .`; v/ where ` is a leaf and v is a
vertex with an even number of incoming edges such that ` is to the left of v in T . The
formula for m0n is the same except that the root is decorated by f instead of h. These
are exactly the formulas written down by Kontsevich and Soibelman [25, Section 6.4],
based on Merkulov [31].
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