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The coarse geometry of the Kakimizu complex

JESSE JOHNSON

ROBERTO PELAYO

ROBIN WILSON

We show that the Kakimizu complex of minimal genus Seifert surfaces for a knot in
the 3–sphere is quasi-isometric to a Euclidean integer lattice Zn for some n� 0 .

57M25; 57N10

1 Introduction

In general, a knot K � S3 may have multiple nonisotopic minimal genus Seifert
surfaces. To understand all these possibilities, Kakimizu [6] defined a simplicial
complex MS.K/, later referred to as the Kakimizu complex. Each vertex � of MS.K/
is an isotopy class of minimal genus Seifert surfaces for K , and n–simplices are
spanned by isotopy classes with pairwise disjoint Seifert surface representatives. The
metric on MS.K/ is defined by the minimal lengths of edge paths between vertices.
Kakimizu [6] defined an alternative metric on the complex using the infinite cyclic
cover of K and showed that this metric is equal to the edge path metric.

Recently, MS.K/ has been shown to be connected (Scharlemann and Thompson [12]),
simply connected, and contractible (Przytycki and Schultens [9]). In fact, MS.K/
for several classes of knots has been computed, including special arborescent knots
(Sakuma [10]) and certain composite knots [6]. The Kakimizu complex has also been
computed for all prime knots up to 10 crossings (Kakimizu [7]).

For hyperbolic knots, Pelayo [8] and Sakuma and Shackleton [11] give a bound on
the diameter of the Kakimizu complex that is quadratic in the genus of the knot, and
Wilson [13] shows that MS.K/ is finite. For satellite knots, however, MS.K/ may
be infinite, and may even be locally infinite (Banks [1]).

The goal of this paper is to describe the coarse geometry of the Kakimizu complex.
Recall that a quasi-isometry is a map f W X ! Y between metric spaces X , Y such
that 1

L
dY .f .x/; f .y//�L� dX .x;y/�LdY .f .x/; f .y//CL for some constant L

and every point of Y is within an L–neighborhood of the image f .X /. For torus and
hyperbolic knots, MS.K/ is finite and therefore quasi-isometric to a single point. For
satellite knots, the large-scale structure may be more exciting.
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Theorem 1 For any knot K�S3 , the Kakimizu complex MS.K/ is quasi-isometric
to Zn for some n� 0.

An upper bound on the dimension n can be calculated in a relatively straightforward
fashion. Below, we define a subset of the complementary pieces in the JSJ decomposi-
tion for the complement of K called the core. It follows from the proof that the value
of n is less than or equal to the number of JSJ tori in the interior of the core minus the
number of fibered complementary components in the core. We believe this is also a
lower bound on the rank, but do not include a proof of this in the present paper.

The outline of the paper is as follows: In Section 2, we examine how Seifert surfaces
for K interact with the incompressible tori in a JSJ decomposition for the knot com-
plement. In Section 3, we define a group action on MS.K/ by an abelian group,
generated by twisting around the tori in the JSJ decomposition, then in Section 4 we
prove that this action induces a quasi-isometry from MS.K/ to Zn .

Note that the proof here is for knots in the 3–sphere, rather than links. Przytycki and
Schultens [9] discuss ways of generalizing the Kakimizu complex to manifolds with
multiple boundary components, but our proof relies on certain properties that are unique
to knots in S3 , particularly the classification (proved by Ryan Budney [3]) of Seifert
fibered components of the complement of a JSJ decomposition. However, there are no
known counterexamples to the obvious generalization of our theorem to links.

2 The Kakimizu complex and the JSJ decomposition

In [6], Kakimizu computes the Kakimizu complex for the connected sum of two
nonfibered knots K1 and K2 with unique incompressible Seifert surfaces. In this case,
MS.K1 # K2/ is isometric to Z � R. These Seifert surfaces come from taking the
canonical Seifert surface obtained by forming the connected sum of the minimal genus
Seifert surfaces for each knot and spinning it around the incompressible swallow-follow
torus in the complement of the composite knot. When a knot has more than two factors,
more incompressible tori would mean more ways to potentially create new Seifert
surfaces by spinning.

To understand this structure, let MK be the knot complement, and consider the JSJ
decomposition of MK : Let T1; : : : ;Tn be a minimal collection of pairwise disjoint,
incompressible tori such that the complement of

S
Ti consists of Seifert fibered pieces

and atoroidal (hyperbolic) pieces. Each Ti bounds a solid torus in S3 containing K

on one side; we will transversely orient each Ti so that the knot is on the negative side.
If we consider a neighborhood N .Ti/ of each torus and take the complement of the
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interior of these neighborhoods in MK , then MK �
Sn

iD1 int.N .Ti// is a collection
of compact connected components that we will call blocks.

Let B be a block not containing the knot and let M be the component of the complement
MK nB that contains K . If K is not nullhomologous in M , then we will say that B

is a core block. This implies that every minimal genus Seifert surface for K must
intersect the torus @M and therefore the interior of the core block B . So in particular,
every minimal genus Seifert surface for K must intersect every core block. If the
block B contains the knot, then we also define it to be a core block. We refer to the
union of all the core blocks as the core of the JSJ decomposition of MK . The reader
can check that the core is a connected subset of MK .

One consequence of the definition of the core is that minimal genus Seifert surfaces
must intersect tori in the interior of the core in a very controlled manner.

Proposition 2 Let T be a JSJ torus in the interior of the core. There is a fixed slope ˛
of T such that every Seifert surface S for the knot must intersect T in one or more
parallel loops with exactly this slope.

Proof Since T is a JSJ torus, it separates S3 into two components M and M 0 ,
where M is a solid torus containing the knot and M 0 is on the opposite side. The
component M 0 is homeomorphic to the complement of a (different) knot in S3 so the
inclusion map H1.T /!H1.M

0/ has infinite cyclic image and infinite cyclic kernel.
Let ˛ � T be a loop representing a generator of this kernel.

The intersection S\T is a collection of parallel loops with orientations induced from S

and T . Since T is in the interior of the core, this intersection must be homologically
nontrivial in M . (Otherwise, S would represent a 2–cycle in M with boundary K .)
Thus the loops S\T define a nontrivial element of the first homology group of T . On
the other side of T , the surface S 0 D S \M 0 implies that the loops S \T determine
a trivial element of the first homology of M 0 . Since these loops define a nontrivial
element of H1.T /, they must represent a power of the generator of the kernel map, ie
S \T is a collection of parallel copies of the longitude ˛ .

Lemma 3 Let S be a minimal genus Seifert surface for K and let T D
Sn

iD1 Ti

be the collection of all JSJ tori. If S is isotoped to intersect T minimally, then
jS \T j � 6g� 4, where g is the genus of S .

Proof Let B1; : : : ;Bk denote the blocks of the JSJ decomposition. Each Bi is a
submanifold of MK that is either a hyperbolic link complement and hence is atoroidal,
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or Seifert fibered. Notice that S meets each Bi in a collection of orientable, disjoint,
essential surfaces that are properly embedded in Bi .

Since S is a once-punctured surface of genus g , there are at most 3g � 2 pairwise
disjoint isotopy classes of essential loops in S . Consider the components of S \T ,
each of which is a simple closed curve. Since both S and T are incompressible and
the complement of K is irreducible, we can assume that all intersection curves are
essential in both surfaces. (Otherwise we could reduce the number of intersections,
contradicting the minimality of S \ T .) Therefore, there are no more than 3g � 2

isotopy classes in S of curves S \T .

In order to bound the number of components in S \T , it suffices to bound the number
of parallel pairwise disjoint curves of S \T . Disjoint curves in S \T that are parallel
in S cobound an annulus A in S , and this annulus must be incompressible and properly
embedded in some block Bi . If A were boundary parallel then we could reduce S\T .
Thus A is an essential annulus so Bi must be Seifert fibered with A isotopic to a union
of fibers.

Assume for contradiction there are three adjacent pairwise disjoint curves in S \T

that are parallel in S . Then the three curves correspond to two adjacent essential annuli
A1 and A2 contained in adjacent Seifert fibered blocks. Without loss of generality, we
can assume that A1 is properly embedded in block B1 and A2 is properly embedded
in block B2 . Because each Ai is a union of fibers, the two fiberings of the common
boundary torus Tj induced from the Seifert fiberings of B1 and B2 have the same slope.
Therefore these two fiberings can be isotoped to agree on Tj (see [5]), contradicting
the minimality of the JSJ decomposition since Tj can be removed from the collection
of JSJ tori. Therefore, there can be at most two adjacent curves of S \ T that are
parallel in S in each isotopy class of curves. Hence jS \T j � 2.3g�2/D 6g�4.

The following is a slight generalization of the main result in [13]. The proof can
be found in [13], however the statement is for manifolds with one toroidal boundary
component. It is not difficult to modify the proof to also hold for manifolds with a
finite number of toroidal boundary components, by a minor modification of the normal
surface equations.

Theorem 4 [13] Let ML be a link complement. Let ˛1; : : : ; ˛k be a set of preferred
longitudes for the link L. If ML contains an infinite collection of essential surfaces Si

of the same Euler characteristic such that @Si is isotopic to a subcollection of the ˛i

and there exists an integer N such that j@Si j � N for each i , then ML contains a
closed incompressible torus.

Algebraic & Geometric Topology, Volume 14 (2014)



The coarse geometry of the Kakimizu complex 2553

The following corollary follows immediately from Theorem 4.

Corollary 5 Let ML be a link complement and N 2N . Suppose that ML contains
no closed essential tori. Let ˛1; : : : ; ˛k be a set of preferred longitudes for the link L.
Then ML contains at most finitely many essential surfaces Si of maximal Euler
characteristic such that @S is isotopic to a subcollection of the ˛i and j@Si j �N for
each i .

A Seifert fibered block of a JSJ decomposition may be toroidal, but the Seifert fibered
blocks of a knot complement in S3 are much more restricted. Budney [3, Proposi-
tion 3.2] gives the following classification of Seifert fibered submanifolds of S3 .

Lemma 6 [3] Let V ¤ S3 be a Seifert fibered submanifold of S3 , then V is
diffeomorphic to one of the following:

� A Seifert fibered space over an n–times punctured sphere with two exceptional
fibers, appearing as the complement of n regular fibers in a Seifert fibering of S3 .

� A Seifert fibered space over an n–times punctured sphere with 1 exceptional
fiber, appearing as the complement of n� 1 regular fibers in a Seifert fibering
of an embedded solid torus in S3 .

� A Seifert fibered space over an n–times punctured sphere with no exceptional
fibers.

We will use the lemma above to show that there are only finitely many incompressible
surfaces in a Seifert fibered block for a knot complement.

Theorem 7 Let K be a knot and B a core block of the JSJ decomposition for MK .
There exist finitely many essential surfaces S1;S2; : : : ;Sm such that for any minimal
genus Seifert surface S for K in the core of MK , every component of S \ B is
isotopic to one of the Si .

Proof If B is a hyperbolic block, then it is atoroidal and @.S\B/ is fixed and bounded
by Proposition 2 and Lemma 3. In this case, the conclusion follows directly from
Corollary 5. If B is a Seifert fibered block, then Lemma 6 gives us three possibilities. In
the first case, B is Seifert fibered over an n–times punctured sphere with two singular
fibers, arising as the complement of n solid tori. Since MK is a knot complement, there
can only be one such solid torus in the complement of B . To see this, note that any
solid torus contains a compressing disk for its boundary. Since the boundary tori of B

are incompressible in the knot complement, the knot must intersect this compressing
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disk. However, since there is only one knot, there exists only one solid torus in the
complement of the block. Thus nD 1 and B is Seifert fibered over a once-punctured
sphere with two critical fibers. Such Seifert fibered spaces are known to contain no
closed essential surfaces and thus are atoroidal. Applying Corollary 5, the conclusion
again follows.

In the second case, B is Seifert fibered over an n–punctured sphere with one critical
fiber, arising as the complement of n�1 solid tori in a Seifert fibered solid torus. Once
again, as B is a subset of a knot complement, there can be at most 1 solid torus, so
n� 2. These Seifert fibered spaces are also atoroidal and thus applying Corollary 5,
the conclusion follows. In the last case, B is Seifert fibered over an n–times punctured
sphere with no exceptional fibers and is thus a product. Since B is a core block, by
Proposition 2, the boundary of S\B is specified. Because S2 contains only separating
loops, there is a unique incompressible surface boundary of a specified homotopy class
in this product space.

3 Group actions on the Kakimizu complex

Every automorphism of the knot complement induces an automorphism of the Kakimizu
complex. For a given Ti , let U be a closed regular neighborhood homeomorphic
to I �Ti . We will define an automorphism of the knot complement that is the identity
outside of U and spins around the JSJ torus in a given direction. Consider the universal
cover of Ti , which is homeomorphic to the plane. Choose a coordinate system on this
plane. For every integer vector .m; n/ 2 Z�Z, there is a family of automorphisms �t

of Ti for t 2 I that lift to translations of the plane taking .0; 0/ to .m; n/ and such that
�0 and �1 are the identity on Ti . We obtain an automorphism of the knot complement
as follows:

ˆ.x/D

�
.t; �t .z// if x D .t; z/ 2 I �Ti

x else

For a fixed Ti , each choice of integer vector .m; n/ 2 Z�Z gives one of these auto-
morphisms of the knot complement. Furthermore, composition of these automorphisms
corresponds to integer vector addition in Z � Z, which forms an abelian group of
rank 2. For each torus Ti in the interior of the core, let ˛ be a loop in Ti defining the
slope on T given by Proposition 2. Then spinning parallel to ˛ takes every Seifert
surface onto itself, and thus acts by the identity on MS.K/. The quotient of Z2 by
the infinite cyclic subgroup generated in this way is an infinite cyclic group, and we
will let ˆi be a representative for the generator of this quotient group, ie an element of
the corresponding coset in Z2 .
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To prove Theorem 1, we will first prove that the result holds for a particular subcomplex
of MS.K/ that is locally finite (MS.K/ is not locally finite in general [1]). We
define the core Kakimizu complex MS.C / to be the subcomplex spanned by Seifert
surfaces that can be isotoped into the core C .

Consider G0 , the group of all automorphisms of the knot complement generated by the
homeomorphisms ˆi defined above. Because each ˆi takes each block onto itself, the
action of G0 restricts to an action on MS.C /. For i ¤ j , the support of ˆi is disjoint
from that of ĵ , so such homeomorphisms commute and G0 is abelian. Let N be the
(normal) subgroup of G0 that acts trivially on the core Kakimizu complex MS.C /.
Then G DG0=N is also a finitely generated abelian group. In order to understand the
action of G0 on MS.C /, we will first describe some key properties of MS.C /.

Claim 8 MS.C / is nonempty.

Proof Let S be a Seifert surface for the knot K such that S \ .
S

Ti/ is minimal
over all Seifert surfaces for K . If S stays inside the core, then MS.C / is nonempty.
If S exits the core, then it must do so by intersecting some JSJ torus T that separates
a core block from a non-core block. Assume that S intersects T minimally. Since T

is not in the interior of the core, the knot is homologically trivial in the component X

of the complement of T that contains the knot. As noted above, X is a solid torus.
Because S is orientable, the intersection curves of S with T define the trivial element
of the first homology group of X .

If these loops are nonmeridional then each individual loop defines a nontrivial element
of the homology of X , so there must be an equal number with each orientation. If the
loops are meridional then the complement S nX defines a meridional surface for the
knot complement S3 nX . Since the meridian is homologically nontrivial in S3 nX ,
this implies that there are again an equal number of loops with each orientation. So in
either case, the loops S \T occur in pairs with opposite orientations.

Choose a pair of adjacent curves of intersection ˇ and  with opposite orientations.
Then ˇ and  cobound an annulus A�T with interior disjoint from S . Cut the Seifert
surface S along the curves ˇ and  and attach the resulting boundary components
to @A, then push the resulting surface slightly into the interior of the block, reduc-
ing the number of intersections of S with T and thus contradicting the assumption
that S \ .

S
Ti/ is minimal. Therefore the vertex representing S is in MS.C /, so

MS.C /¤∅.

Claim 9 MS.C / is connected.
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Proof To show that the subcomplex MS.C / is connected, we examine the construc-
tion used by Scharlemann and Thompson [12] to find a path in the Kakimizu complex
between any vertices v1 and v2 . Let S and S 0 be Seifert surfaces representing the
vertices v1 and v2 , respectively. By taking double curve sums, Scharlemann and
Thompson create a sequence of minimal genus Seifert surfaces Si for 0� i � k such
that Si \SiC1 D∅ for 0� i < k , with S0 isotopic to S and Sk isotopic to S 0 . If S

and S 0 are both in C then so are all the double curve sums. Thus, Si � C for each i

and the path is contained in MS.C /�MS.K/.

Claim 10 MS.C / is locally finite.

Proof Let S be a minimal genus Seifert surface representing a vertex v 2MS.C /.
For any minimal genus Seifert surface S 0 � C disjoint from S , there are finitely many
possibilities for the intersection of S 0 with each core block of the JSJ decomposition
by Theorem 7. The surface S 0 is determined by these intersections and the annuli
that connect these subsurfaces inside the regular neighborhoods of the JSJ tori in the
interior of the core. Because S intersects every component of T in the interior of the
core and S 0 is disjoint from S , there are finitely many ways the subsurfaces can be
connected together (in particular, no annulus can spin all the way around such a torus
without crashing through S ) so there are finitely many minimal genus Seifert surfaces
(up to isotopy) disjoint from S .

In order to prove that our main theorem holds for the subcomplex MS.C /, we will
need Theorem 25 from [4], which is stated below.

Theorem 11 [4] Let X be a metric space that is geodesic and proper, let G be a
group and let G �X !X be an action by isometries. Assume that the action is proper
and that the quotient X=G is compact.

Then the group G is finitely generated and quasi-isometric to X . More precisely, for
any x0 2X , the mapping G!X given by g 7! gx0 is a quasi-isometry.

We will first show that MS.C /=G is finite.

Lemma 12 There are a finite number of minimal genus Seifert surfaces in the core,
called fundamental surfaces, such that every Seifert surface for K in the core is either
fundamental or can be obtained by spinning a fundamental surface around some number
of JSJ tori in the interior of the core. In other words, there are a finite number of
isotopy classes of minimal genus Seifert surfaces �1; : : : ; �j in the core such that any
other isotopy class of minimal genus Seifert surfaces � 0 2MS.C / can be written as
� 0 D g�k for some g 2G and some fundamental surface �k .
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Proof Let S be a minimal genus Seifert surface for the knot K and assume that S

meets the JSJ tori T1; : : : ;Tn transversally and minimally. Let N .Ti/ be a neighbor-
hood of Ti . Recall that the blocks Bk are the components of the complement of the
JSJ tori.

For each k , each component of S \Bk is isotopic to one of the finitely many possible
properly embedded surfaces as given in Theorem 7. Inside each neighborhood N .Ti/,
each component of S \N .Ti/ is an incompressible annulus.

Therefore, the Seifert surface S is obtained from some finite collection of the incom-
pressible surfaces in each block by connecting these pieces with annuli across T . Up to
spinning around the torus, there are finitely many ways to connect the incompressible
surfaces on either side of each torus. Therefore, every Seifert surface S is in the orbit of
one of finitely many isotopy classes of Seifert surfaces coming from the finite number
of ways of putting together the finite components in each block.

Next, we will show that the action is proper.

Lemma 13 The action of the group G on MS.C / is proper. That is, the stabilizer
Gv D fg 2G j g.v/D vg is finite for every vertex v in MS.C /.

Proof Let v 2MS.C / be a vertex of the core Kakimizu complex. To prove that Gv

is finite, we will show that there is a monomorphism from Gv to a finite group.

By Lemma 12, there are finitely many orbits O1;O2; : : : ;Or of the group G . Choose
a representative of each orbit vi 2 Oi . Let V D fv; v1; : : : ; vr g, and let d be the
diameter of V . Let B be a ball in MS.C / of diameter d centered at the vertex v .
By construction, V � B . Notice that each automorphism of Gv preserves distance
between vertices, so the ball B is fixed setwise. Since MS.C / is locally finite by
Claim 10, there are finitely many vertices in B . This induces a homomorphism from
the stabilizer Gv to the permutation group of the (finitely many) vertices of B .

To see that this homomorphism is injective, we note that the kernel consists of all
elements of Gv that fix B pointwise. Let g be such an automorphism in the kernel.
Since g fixes B pointwise, then g.vi/D vi for all i . For any x 2MS.C /, xD h.vi/

for some i , where h is some element of G . Since G is abelian, gh D hg , so
g.x/D g.h.vi//D h.g.vi//D h.vi/D x . Thus, g fixes every x 2MS.C /. Because
we quotiented out by the elements of G0 that act trivially, g is the identity element
in G and in Gv . Thus, the homomorphism from Gv to the finite permutation group is
injective, and thus Gv is finite.

We can now combine these results to prove the following:

Algebraic & Geometric Topology, Volume 14 (2014)



2558 Jesse Johnson, Roberto Pelayo and Robin Wilson

Lemma 14 MS.C / is quasi-isometric to a finitely generated abelian group.

Proof As noted above, the metric on MS.C / is the path metric, so the complex is
properly geodesic. Since each automorphism of G takes disjoint surfaces to disjoint
surfaces, it preserves distances between vertices and thus acts isometrically on MS.C /.
By Lemma 12, MS.C /=G is finite and hence compact, and by Lemma 13, the action
of G on MS.C / via left multiplication is proper. Thus Theorem 11 implies that
MS.C / is quasi-isometric to G , a finitely generated abelian group.

4 Proof of the main theorem

In the previous section, we proved that the core Kakimizu complex MS.C / is quasi-
isometric to a finitely generated abelian group. To prove our main result, it remains to
show that for any knot K , MS.K/ is quasi-isometric to MS.C /.

Lemma 15 The core Kakimizu complex MS.C / is quasi-isometric to the entire
Kakimizu complex MS.K/.

Proof We will show that MS.C / is quasi-isometric to MS.K/ by showing that the
inclusion map MS.C / ,!MS.K/ preserves distances and every vertex � in MS.K/
is within a bounded distance from some vertex � 0 in MS.C /. First we note that the
proof of Proposition 5 from [12] uses double curve sums to produce geodesics in
MS.K/ (as opposed to just paths). Since a double curve sum in C produces a new
surface in C , this implies that the geodesics between vertices of MS.C / constructed
in this way will be contained in MS.C /. Thus, given two vertices in the core of the
Kakimizu complex MS.C /, measuring their distance in MS.C / is equivalent to
measuring their distance in the entire Kakimizu complex MS.K/. So, the inclusion
map preserves distances.

Let S be a minimal genus Seifert surface for K in the isotopy class � . If S is
contained in the core, then � 2MS.C /. If not, then, S must intersect a JSJ torus T

that bounds a block B inside the core and B0 outside the core. The torus T separates
the Seifert surface S into a compact surface S 0 inside the core and finitely many
annuli Ai outside the core (because S has minimal genus). In fact, there are at most
3g � 2 annuli Ai since any minimal genus Seifert surface intersects the JSJ tori in
at most 6g� 4 circles by Lemma 3. The boundaries CCi [C�i of each annulus Ai

can be joined by annuli Di that lie inside of B . Attaching these Di to S 0 yields a
minimal genus Seifert surface zS that lies completely in the core C and is represented
by an isotopy class � 0 2MS.C /.
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Each time we surger the surface at a single annulus in this way, the new surface is
disjoint from the previous surface. Thus � and � 0 are connected by a path in MS.K/
of distance at most the number of annuli outside C , ie at most 3g� 2. Thus, every
� 2MS.K/ is within a bounded distance from MS.C /, so the two complexes are
quasi-isometric.

Proof of Theorem 1 In Lemma 15, we showed that MS.K/ is quasi-isometric to
MS.C /. Because quasi-isometry defines an equivalence relation, this implies, by
Lemma 14, that MS.K/ is quasi-isometric to a finitely generated abelian group, and
therefore quasi-isometric to Zn for some n.

Note that the proof of Theorem 1 implies that the abelian group G that is quasi-isometric
to MS.K/ is generated by spinning around tori in the interior of the core, so its rank
is at most the number of such tori. Moreover, for each block B that is homeomorphic
to the complement of a fibered link, spinning around the torus closest to the knot K is
equivalent (up to isotopy) to spinning around the remaining boundary tori. Thus the
rank is at most the number of JSJ tori in the interior of the core minus the number of
fibered core blocks.

We believe it should be possible to show that this is also a lower bound on the rank by
generalizing the proof of Theorem 1.2 from [2]. However, the mechanics of such a
proof would be mostly independent of the techniques above, and thus out of the scope
of the current paper.
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