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Classifying spaces of algebras over a prop

SINAN YALIN

We prove that a weak equivalence between cofibrant props induces a weak equivalence
between the associated classifying spaces of algebras. This statement generalizes
to the prop setting a homotopy invariance result which is well known in the case of
algebras over operads. The absence of model category structure on algebras over
a prop creates difficulties and we introduce new methods to overcome them. We
also explain how our result can be extended to algebras over colored props in any
symmetric monoidal model category tensored over chain complexes.

18G55; 18D10, 18D50

Introduction

The notion of a prop was introduced to algebra by MacLane [11]. The name prop
is actually an acronym for “product and permutation.” Briefly, a prop P is a double
sequence of objects P .m; n/ whose elements represent operations with m inputs and n

outputs.

Certain categories of algebras, like associative, Poisson or Lie algebras, have a structure
which is fully determined by operations with a single output. These categories are
associated to props P of a certain form, where operations in components P .m; 1/

generate the prop. Boardman and Vogt coined the name “categories of operators of
standard form” to refer to props of this particular form [1]. Peter May introduced the
axioms of operads to deal with the components P .m; 1/ which define the core of such
prop structures [14]. The work of these authors was initially motivated by the theory
of iterated loop spaces in topology (see Boardman and Vogt [2] and [14]). Operads
have now proved to be a powerful device to handle a variety of algebraic structures
occurring in many branches of mathematics.

However, if one wants to deal with bialgebras it becomes necessary to use general
props instead of operads. Important examples appear in particular in mathematical
physics and string topology: the Frobenius bialgebras (whose category is equivalent to
the category of two-dimensional topological quantum field theories), the topological
conformal field theories (which are algebras over the chain Segal prop), or the Lie
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bialgebras introduced by Drinfeld in quantization theory are categories of bialgebras
associated to props.

The purpose of this article is to set up a theory for the homotopical study of algebras over
a (possibly colored) prop. In a seminal series of papers at the beginning of the 1980s,
Dwyer and Kan investigated the simplicial localization of categories. They proved
that the simplicial localization gives a good device to capture secondary homology
structures usually defined in the framework of Quillen’s model categories (see Dwyer
and Kan [3]). An important homotopy invariant of a model category is its classifying
space, defined as the nerve of its subcategory of weak equivalences. The interest of
such a classifying space has been shown in the work of Dwyer and Kan [3], who proved
that this classifying space encodes information about the homotopy types of the objects
and their internal symmetries, ie their homotopy automorphisms. They also proved that
such a classifying space is homotopy invariant under Quillen equivalences of model
categories.

The algebras over an operad in a model category themselves form, under suitable
assumptions, a model category. A consequence of usual results about model categories
is that the classifying space of such a category is homotopy invariant up to the weak
homotopy type of the underlying operad. Unfortunately, there is no model category
structure on the algebras over a prop in general. We cannot handle our motivating
examples of bialgebras occurring in mathematical physics and string topology by using
this approach, and we aim to overcome this difficulty.

The basic problem is to compare categories of algebras over a prop. In order to bypass
difficulties due to the absence of model structure on these algebras, our overall strategy
is to stay at the prop level as far as possible, and to use factorization and lifting properties
in the model category of props. The structure of an algebra over a prop P can be
encoded by a prop morphism P ! EndA , where EndA is the endomorphism prop
associated to A. One can construct a version of endomorphism props modeling P –
algebra structures on diagrams. We can in particular use these diagrams endomorphisms
props to define path objects in the category of P –algebras. But we need an analogue
of this device for a variable P –algebra A, not a fixed object. The idea is to perform
such a construction on the abstract prop P itself before moving to endomorphism
props. Combining this “prop of P –diagrams” construction with lifting and factorization
techniques, we endow the category of P –algebras with functorial path objects.

Consequently, the first main outcome of our study is the following homotopy invariance
theorem. Let ChK be the category of Z–graded chain complexes over a field K of
characteristic zero. Let .ChK/

P be the category of algebras associated to a prop P

in this category and w.ChK/
P its subcategory obtained by restriction to morphisms

which are weak equivalences in ChK . Our result reads:
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Theorem 0.1 Let 'W P
�

�! Q be a weak equivalence between two cofibrant props.
The map ' gives rise to a functor '�W w.ChK/

Q! w.ChK/
P which induces a weak

equivalence of simplicial sets N'�W Nw.ChK/
Q �

�!Nw.ChK/
P .

We can remove the hypothesis about the characteristic of K if we suppose that P is
a prop with nonempty inputs or outputs (see Definition 1.9 and Theorem 1.10). We
explain in Section 2.7 how to extend Theorem 0.1 to the case of a category tensored
over ChK . In Section 3, we also briefly show that the proof of Theorem 0.1 extends
readily to the colored props context if we suppose that K has characteristic zero (this
hypothesis is needed to put a model category structure on colored props in ChK , see
the work of Johnson and Yau[10]). Recall that examples include cofibrant resolutions
of the props encoding associative bialgebras, Lie bialgebras, Frobenius bialgebras or
Poisson bialgebras for instance. Algebras over a cofibrant resolution of a given prop P

are called homotopy P –algebras. Theorem 0.1 implies that the classifying space does
not depend on the choice of the cofibrant resolution and thus provides a well-defined
homotopy invariant.

Remark 0.2 We do not address the case of simplicial sets. However, the work
in [10, Theorem 1.4] endows the algebras over a colored prop in simplicial sets with
a model category structure. Moreover, the free algebra functor exists in this case.
Therefore one can transpose the methods used in the operadic setting to obtain a
simplicial version of Theorem 0.1. We also conjecture that our results have a version
in simplicial modules which follows from arguments similar to ours.

Organization The overall setting is reviewed in Section 1. We recall some definitions
about symmetric monoidal categories over a base category and axioms of monoidal
model categories. Then we introduce the precise definition of props and algebras over
a prop. We conclude these preliminaries with a fundamental result, the existence of a
model structure on the category of props.

The heart of this paper consists of Section 2, devoted to the proof of Theorem 0.1. The
proof of Theorem 0.1 is quite long and has been consequently divided in several steps.
Section 2.1 gives a sketch of our main arguments. In Sections 2.3, 2.4 and 2.5, we
define particular props called props of P –diagrams, which allow us to build a functorial
path object in P –algebras. In Section 2.6, we give a proof of Theorem 0.1. At the end
of Section 2 we generalize Theorem 0.1 to categories tensored over ChK . Finally, we
quickly present in Section 3 the extension of our arguments to colored props.
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1 Recollections and general results

1.1 Symmetric monoidal categories over a base category

Definition 1.1 Let C be a symmetric monoidal category. A symmetric monoidal cate-
gory over C is a symmetric monoidal category .E ;˝E ; 1E/ endowed with a symmetric
monoidal functor �W C! E , that is, an object under C in the 2–category of symmetric
monoidal categories.

This defines on E an external tensor product ˝W C � E! E by C ˝X D �.C /˝E X

for every C 2 C and X 2 E . This external tensor product is equipped with the following
natural unit, associativity and symmetry isomorphisms:

(1) For all X 2 E ; 1C ˝X ŠX .

(2) For all X 2 E , for all C;D 2 C; .C ˝D/˝X Š C ˝ .D˝X /.

(3) For all C 2 C , for all X;Y 2 E ;C ˝ .X ˝Y /Š .C ˝X /˝Y ŠX ˝ .C ˝Y /.

The coherence constraints of these natural isomorphisms (associativity pentagons,
symmetry hexagons and unit triangles which mix both internal and external tensor
products) come from the symmetric monoidal structure of the functor �.

We will implicitly assume throughout the paper that all small limits and small colimits
exist in C and E , and that each of these categories admit an internal hom bifunctor. We
suppose moreover the existence of an external hom bifunctor HomE.�;�/W Eop�E!C
satisfying an adjunction relation

for all C 2 C; for all X;Y 2 E ; MorE.C ˝X;Y /ŠMorC.C;HomE.X;Y //

(so E is naturally an enriched category over C ).

Examples (1) The differential graded K–modules (where K is a commutative ring)
form a symmetric monoidal category over the K–modules. This is the main category
used in this paper.

(2) Any symmetric monoidal category C forms a symmetric monoidal category over
Set (the category of sets) with an external tensor product defined by

˝W Set� C! C;

.S;C / 7!
M
s2S

C:

(3) Let I be a small category; the I –diagrams in a symmetric monoidal cate-
gory C form a symmetric monoidal category over C . The internal tensor product
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is defined pointwise, and the external tensor product is defined by the functor �
which associates to X 2 C the constant I –diagram CX on X . The external hom
HomCI .�;�/W CI � CI ! C is given by

HomCI .X;Y /D

Z
i2I

HomC.X.i/;Y .i//:

Proposition 1.2 Let F W D � E W G be a symmetric monoidal adjunction between two
symmetric monoidal categories over C . If F preserves the external tensor product
then F and G satisfy an enriched adjunction relation

HomE.F.X /;Y /Š HomD.X;G.Y //

at the level of the external hom bifunctors (see Fresse [6, Proposition 1.1.16]).

We now deal with symmetric monoidal categories equipped with a model structure.
We assume that the reader is familiar with the basics of model categories. We refer
to the paper of Dwyer and Spalinski [4] for a complete and accessible introduction
and to Hirschhorn [8] and Hovey [9] for a comprehensive treatment. We just recall the
axioms of symmetric monoidal model categories formalizing the interplay between the
tensor and the model structures.

Definition 1.3 Let C be a category with small colimits and F W A�B! C a bifunctor.
The pushout-product of two morphisms f W A! B 2 A and gW C ! D 2 B is the
morphism

.f�;g�/W F.A;D/˚F.A;C / F.B;C /! F.B;D/

given by the commutative diagram:

F.A;C /

F.A;g/

��

F.f;C / // F.B;C /

��
.F.B;g/

��

F.A;D/

F.f;D/ //

// F.A;D/˚F.A;C / F.B;C /

.f�;g�/

))
F.B;D/

Definition 1.4 (1) A symmetric monoidal model category is a symmetric monoidal
category C equipped with a model category structure such that the following axiom
holds:

MM1 The pushout-product .i�; j�/W A˝D ˚A˝C B ˝ C ! B ˝D of cofibra-
tions i W A � B and j W C � D is a cofibration which is also acyclic as soon as i

or j is so.
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(2) Suppose that C is a symmetric monoidal model category. A symmetric monoidal
category E over C is a symmetric monoidal model category over C if the axiom MM1
holds for both the internal and external tensor products of E .

Example The category ChK of chain complexes over a field K is our main working
example of symmetric monoidal model category. The weak equivalences of ChK are the
quasi-isomorphisms, that is, the morphisms of chain complexes inducing isomorphisms
of graded vector spaces at the homology level. The fibrations are the degreewise
surjections and the cofibrations the degreewise injections.

Lemma 1.5 In a symmetric monoidal model category E over C the axiom MM1 for
the external tensor product is equivalent to the following one:

MM1 0 The morphism

.i�;p�/W HomE.B;X /! HomE.A;X /�HomE .A;Y / HomE.B;Y /

induced by a cofibration i W A � B and a fibration pW X � Y is a fibration in C which
is also acyclic as soon as i or p is so (cf [9, Lemma 4.2.2]).

One can use the internal hom bifunctor to see that the axiom MM1 for the internal
tensor product is in the same way equivalent to a “dual” axiom MM1 0 .

1.2 On †–bimodules, props and algebras over a prop

Let C be a symmetric monoidal category admitting all small limits and small colimits,
whose tensor product preserves colimits, and which is endowed with an internal hom
bifunctor. Let B be the category having the pairs .m; n/ 2N2 as objects together with
morphism sets such that

MorB..m; n/; .p; q//D

�
†

op
m �†n if .p; q/D .m; n/;

∅ otherwise:

The †–biobjects in C are the B–diagrams in C . So a †–biobject is a double sequence
fM.m; n/ 2 Cg.m;n/2N2 where each M.m; n/ is equipped with a right action of †m

and a left action of †n commuting with each other. Let A be the discrete category of
pairs .m; n/ 2N2 . We have an obvious forgetful functor ��W CB! CA . This functor
has a left adjoint �!W CA! CB defined on objects by

�!M.m; n/D 1C Œ†n �†
op
m �˝M.m; n/Š

M
†n�†

op
m

M.m; n/

for all M 2 CA and for all .m; n/ 2N2 .
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Definition 1.6 Let C be a symmetric monoidal category. A prop in C is a symmetric
monoidal category P , enriched over C , with N as object set and the tensor product
given by m˝ nDmC n on objects. Let us unwrap this definition. Firstly we see that
a prop is a †–biobject. Indeed, the group †m acts on mD 1C� � �C1D 1˝m and the
group †op

n acts on nD 1C� � �C1D 1˝n by permuting the variables at the morphisms
level. A prop is endowed with horizontal products

ıhW P .m1; n1/˝P .m2; n2/! P .m1Cm2; n1C n2/

which are defined by the tensor product of homomorphisms, since

P .m1˝m2; n1˝ n2/D P .m1Cm2; n1C n2/

by definition of the tensor product on objects. It also admits vertical composition
products

ıvW P .k; n/˝P .m; k/! P .m; n/

corresponding to the composition of homomorphisms, and units 1! P .n; n/ corre-
sponding to identity morphisms of the objects n 2N in P . These operations satisfy
relations coming from the axioms of symmetric monoidal categories. We refer the
reader to Enriquez and Etingof [5] for an explicit description of props in the context of
modules over a ring. We denote by P the category of props.

Another construction of props is given in [10]: props are defined there as �h –monoids
in the �v–monoids of colored †–biobjects, where �h and �v denote respectively a
horizontal composition product and a vertical composition product.

Fresse [7, Appendix A] provides a construction of the free prop on a †–biobject. The
free prop functor is left adjoint to the forgetful functor

F W CB � P W U:

Definition 1.7 (1) To any object X of C we can associate an endomorphism prop
EndX defined by

EndX .m; n/D HomC.X
˝m;X˝n/:

The actions of the symmetric groups are the permutations of the input variables and of
the output variables, the horizontal product is the tensor product of homomorphisms
and the vertical composition product is the composition of homomorphisms. The
units 1C! HomC.X

˝n;X˝n/ represent idX˝n .

(2) An algebra over a prop P , or P –algebra, is an object X 2 C equipped with a
prop morphism P ! EndX .

Algebraic & Geometric Topology, Volume 14 (2014)
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We can also define a P –algebra in a symmetric monoidal category over C :

Definition 1.8 Let E be a symmetric monoidal category over C .

(1) The endomorphism prop of X 2E is given by EndX .m; n/DHomE.X
˝m;X˝n/,

where HomE.�;�/ is the external hom bifunctor of E .

(2) Let P be a prop in C . A P –algebra in E is an object X 2 E equipped with a
prop morphism P ! EndX .

Example We recall from [7] an explicit definition in the case of a diagram category
over E : Let fXigi2I be a I –diagram in E . Then we have

EndfXi gi2I
D

Z
i2I

HomE.X
˝m
i ;X˝n

i /:

This end can equivalently be defined as a coreflexive equalizer

EndfXi g
.m; n/

��Q
i2I

HomE.X
˝m
i ;X˝n

i /
d0

d1

// //
Q

uW i!j2mor.I /
HomE.X

˝m
i ;X˝n

j /;

s0

jj

where d0 is the product of the maps

u�W HomE.X
˝m
i ;X˝n

i /! HomE.X
˝m
i ;X˝n

j /

induced by the morphisms uW i ! j of I and d1 is the product of the maps

u�W HomE.X
˝m

j ;X˝n
j /! HomE.X

˝m
i ;X˝n

j /:

The section s0 is the projection on the factors associated to the identities idW i ! i .

Further, this construction is functorial in I : given a J –diagram fXj gj2J , every
functor ˛W I!J gives rise to a prop morphism ˛�W EndfXj gj2J

! EndfX˛.i/gi2I
.

1.3 The semimodel category of props

Suppose that C is a cofibrantly generated symmetric monoidal model category. The
category of †–biobjects CB is a diagram category over C , so it inherits a cofibrantly
generated model category structure. The weak equivalences and fibrations are defined
componentwise. The generating (acyclic) cofibrations are given by i ˝ �!G.m;n/ ,
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where .m; n/2N2 and i ranges over the generating (acyclic) cofibrations of C . Here ˝
is the external tensor product of CB and G.m;n/ is the double sequence defined by

G.m;n/.p; q/D

�
1C if .p; q/D .m; n/;
0 otherwise:

We can also see this result as a transfer of cofibrantly generated model category structure
via the adjunction �!W CA � CB W�� (via exactly the same proof as in the case of †–
objects; see for instance [6, Proposition 11.4.A]). The question is to know whether the
adjunction F W CB � P W U transfer this model category structure to the props. In the
general case it works only with the subcategory P0 of props with nonempty inputs or
outputs and does not give a full model category structure. We give the precise statement
in Theorem 1.10.

Definition 1.9 A †–biobject M has nonempty inputs if it satisfies

M.0; n/D

�
1C if nD 0;

0 otherwise:

We define in a symmetric way a †–biobject with nonempty outputs. The category
of †–biobjects with nonempty inputs is noted CB

0
.

The composite adjunction

CA � CB � P

restricts to an adjunction

CA
0 � CB

0 � P0:

We define the weak equivalences (respectively fibrations) in P0 componentwise, ie
their images by the forgetful functor U W P0! CA

0
are weak equivalences (respectively

fibrations) in CA
0

. We define the generating (acyclic) cofibrations as the images under
the free prop functor of the generating (acyclic) cofibrations of CB

0
. We have the

following result:

Theorem 1.10 (cf [7, Theorem 4.9]) Let C be a cofibrantly generated symmetric
monoidal model category. Suppose moreover that the unit of C is cofibrant. Then the
category P0 of props with nonempty inputs (or outputs) equipped with the classes
of weak equivalences, fibrations and cofibrations defined above forms a semimodel
category. Moreover the forgetful functor U W P0 ! CA

0
preserves cofibrations with

cofibrant domain.
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A semimodel category structure is a slightly weakened version of model category
structure: the lifting axioms hold only for cofibrations with cofibrant domain, and the
factorization axioms hold only on maps with cofibrant domain (see the relevant section
of [7]). The notion of a semimodel category is sufficient to do homotopy theory. In
certain categories we recover a full model structure on the whole category of props:

Theorem 1.11 (cf [7, Theorem 5.5]) If the base category C is the category of dg–
modules over a ring K such that Q�K, simplicial modules over a ring, simplicial sets
or topological spaces, then there is a transfer of model category structure on the whole
category of props via the adjunction CA � P .

2 Homotopy invariance of the classifying space

The purpose of this section is to establish Theorem 0.1. We give the details of our
arguments in the case E D C D ChK (the Z–graded chain complexes over a field K
of characteristic zero). Afterwards, we briefly explain the generalization of these
arguments when E is a cofibrantly generated symmetric monoidal model category
over ChK .

2.1 Statement of the result and outline of the proof

In the work of Dwyer–Kan [3], the classifying space of a category M equipped with a
subcategory of weak equivalences wM is the simplicial set N.wM/, where N is the
simplicial nerve functor. This simplicial set satisfies the following crucial property:

Theorem 2.1 (Dwyer–Kan) Let M be a category, W a class of morphisms of M

and wM the subcategory of M defined by ob.wM /D ob.M / and mor.wM /DW .
Then one has a homotopy equivalence

NwM �
a
ŒX �

SWLwM.X;X /;

where N is the simplicial nerve functor, ŒX � ranges over the weak equivalence classes
of the objects of M , SW is the simplicial classifying space (see May [13]) and L.�/ is
the simplicial localization functor. When M is a model category, one has moreover

NwM �
a
ŒX �

SW haut.X /;

where haut.X / is the simplicial monoid of self weak equivalences on a fibrant–cofibrant
resolution of X .
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In the case of EP (the P –algebras in E for a prop P defined in C ) we use the name
“classifying space” to refer to the simplicial set Nw.Ecf /P , where w.Ecf /P is the
subcategory of P –algebra morphisms whose underlying morphisms in E are weak
equivalences between fibrant–cofibrant objects.

2.1.1 The operadic case In the operadic context, algebras over operads satisfy the
following fundamental property: a weak equivalence between two cofibrant operads
induces a weak equivalence between their associated classifying spaces of algebras.
The proof of this result is done in three steps. Firstly, one shows the existence of an
adjunction between the two categories of algebras: if �W P ! Q is a morphism of
operads, it induces an adjunction

�!W EP � EQ
W��;

where �� is given on each Q–algebra Q! EndX by the precomposition

P
�
�!Q! EndX

and �! is obtained via a certain coequalizer for which we refer the reader to [6]. Secondly
one proves that if � is a weak equivalence and P and Q are “well-behaved” operads,
then this adjunction actually forms a Quillen equivalence, presented in full generality
in [6]. This Quillen equivalence is precisely obtained between semimodel categories
of algebras over weakly equivalent †–cofibrant operads, in a cofibrantly generated
symmetric monoidal model category E over a base category C (see [6, Theorem 12.5.A
proved in Chapter 16]). Finally, according to the results of Dwyer–Kan, a Quillen
equivalence induces a weak homotopy equivalence of the classifying spaces (actually it
induces much more, that is, a Dwyer–Kan equivalence of the simplicial localizations).

2.1.2 The key statement Such a method fails in the prop setting: one does not know
how to construct a left adjoint of the functor �� . And even if such an adjoint exists,
there is no free algebra functor and a model structure does not exist on the category of
algebras over a prop except in some particular cases such as simplicial sets (see [10]).
So the difficult part is to deal with this absence of model structure to get a similar result
for algebras over props. Therefore, our method is entirely different from this one. The
crux of our proof is given by the following statement:

Theorem 2.2 Let P be a cofibrant prop. The mappings

N'�;N �W Nw.Ecf /P � Nw.Ecf /P

associated to homotopic prop morphisms '; W P � P are homotopic in sSet.

Algebraic & Geometric Topology, Volume 14 (2014)
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Let us outline the main steps of the proof of Theorem 2.2 in the case E D C D ChK .
The idea is to construct a zigzag of natural transformations '�

�

 �Z
�

�!  � , where Z

is a functorial path object in ChP
K . For this, we need in particular to obtain such

a functorial path object. The existence of a path object for algebras over props is
proved in [7, Section 8], but this path object is not functorial. The main point of
our proof is to solve this functoriality problem by “correcting” in a certain sense
the P –algebra structure on the path object, and then following arguments similar to
those of [7] but with functorial P –actions. We proceed as follows. We use functional
notation Y.X /, Z.X / and V.X / to refer to diagrams functorially associated to an
object X which, in our constructions, ranges within (some subcategory of) ChK . We
first consider the functorial path object diagram associated to any X in ChK ,

X

Y.X / W X

D
00

D ..

//
s

� // Z.X /

d0

�

== ==

d1

�
!! !!

X

and its subdiagram Z.X /DfX0
�� Z.X /

�� X1g. We prove that the natural P –action
on the diagram

X

V.X / W X

D

99

D

%%
X

extends to a natural P –action on Y.X /. For this, we consider “props of P –diagrams”,
which are built by replacing all the operations X˝m!X˝n in the endomorphism prop
of a given diagram by operations of P .m; n/. We use notation EndY.P/ , EndZ.P/ and
EndV.P/ to refer to these props of P –diagrams. We verify that these constructions
give rise to props acting naturally on the endomorphism prop of the associated diagram.
We use these props of P –diagrams to give a P –action on the zigzag of endofunctors
id
�� Z

�� id. We check that we retrieve the action given by ' and  on the extremity
of this zigzag. We thus have a zigzag connecting '� and  � and yielding the desired
homotopy between N'� and N � .
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2.1.3 The argument line of the proof Let us first define the notion of a functorial P –
action via a prop of P –diagrams:

About functorial P –actions on diagrams We consider a diagram D.X / depend-
ing on X , which will be one of the three aforementioned diagrams (V.X /, Z.X /
and Y.X /) and correspond to a certain functor denoted by D.X /W I ! ChK . We
will associate to EndD.X / a prop of P –diagrams EndD.P/ . When there exists a P –
algebra structure on X , that is, a prop morphism P ! EndX , this prop is equipped
by construction with a morphism of props evX W EndD.P/ ! EndD.X / . This eval-
uation morphism sends every � 2 EndD.P/.m; n/ on a collection of morphisms
�X .i/W D.X /.i/˝m ! D.X /.i/˝n satisfying the following commutative diagram
for every morphism uW i ! j of I :

D.X /.i/˝m

D.X /.u/˝m

��

�X .i/ // D.X /.i/˝n

D.X /.u/˝n

��
D.X /.j /˝m

�X .j/

// D.X /.j /˝n;

where D.X /.u/ is the morphism in the diagram D.X / induced by u. By construction
of EndD.P/ , the prop morphism evX satisfies a functoriality property with respect
to X . If f W X ! Y is a morphism of P –algebras, then the following diagrams are
commutative for every � 2 EndD.P/.m; n/ and every i 2 I :

D.X /.i/˝m

.D.f /.i//˝m

��

�X .i/ // D.X /.i/˝n

.D.f /.i//˝n

��
D.Y /.j /˝m

�Y .j/

// D.Y /.j /˝n

The commutativity of these diagrams implies that every morphism of props P !

EndD.P/ induces a functorial P –action P ! EndD.X / , that is, a functor

DW ChP
K! Func.I;ChP

K/D Func.I;ChK/
P

fitting in a commutative square

ChK
D // Func.I;ChK/

ChP
K D

//

OO

Func.I;ChK/
P

OO

in which the vertical arrows are the forgetful functors.
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Our argument line is divided into two steps.

Step 1 For every X 2 ChP
K , we have EndV.X / Š EndX so the morphism P ! EndX

trivially induces a functorial P –action P ! EndV.X / . In our first step we build a
diagram

EndY.P/
evX //

� �

����

EndY.X /

��
P

;;

D // P
evX // EndV.X / :

In ChK , the endomorphism prop EndY.X / is built via the two pullbacks

EndY.X / //

��

EndZ.X /

s�ıpr

��
EndX s�

// HomX ;Z.X /

EndZ.X / //

��

EndX0
�EndX1

d�
0
�d�

1

��
EndZ.X /

.d0;d1/�

// HomZ.X /;X0
�HomZ.X /;X1

where s� and .d0; d1/� are maps induced by the composition by s and .d0; d1/,
and s� , d�

0
and d�

1
are maps induced by the precomposition by s , d0 and d1 .

The projection prW EndZ.X / ! EndZ.X / is induced by the inclusion of diagrams
fZ.X /g ,! fX0

��Z.X /
��X1g (see [7, Section 8]). The idea is to define a prop of

P –diagrams EndY.P/ with a form similar to that of EndY.X / , in order to get the prop
morphism evX W EndY.P/! EndY.X / induced by the morphism P ! EndX for each
X 2 ChP

K . For this aim we use two pullbacks similar to those above with props of
P –diagrams and †–biobjects replacing the usual ones.

Step 2 In our second step, we show that � is an acyclic fibration in P in order to
obtain the desired lifting P ! EndY.P/ inducing natural P –actions

P ! EndY.P/! EndY.X /

for every X 2 ChP
K , which respect the P –algebra structures on the diagrams V.X /. It

endows the category of P –algebras with a functorial path object. Finally, we prove
Theorem 2.2 in Section 2.6, by using lifting properties in the category of props and
providing the desired zigzag of natural transformations '�

�

 � Z
�

�!  � . Then we
show how to deduce Theorem 0.1.
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Remark 2.3 We can also wonder about the homotopy invariance of the classifying
space up to Quillen equivalences. Let P be a prop in E1 . Let F W E1 � E2 WG be a sym-
metric monoidal adjunction. The prop F.P / is defined by applying the functor F entry-
wise to P : the fact that F is symmetric monoidal ensures the preservation of the com-
position products of P , giving to F.P / a prop structure. Further, [10, Lemma 7.1] says
that the adjoint pair .F;G/ induces an adjunction xF W EP

1
� EF.P/

2
W xG . Now suppose

that .F;G/ forms a Quillen adjunction. By Brown’s lemma, the functor F preserves
weak equivalences between cofibrant objects and the functor G preserves weak equiva-
lences between fibrant objects. If all the objects of E1 and E2 are fibrant and cofibrant,
then the adjoint pair . xF ; xG/ restricts to an adjunction xF W w.E1/

P � w.E2/
F.P/ W xG

and thus gives rise to a homotopy equivalence Nw.E1/
P �Nw.E2/

F.P/ .

2.2 The path object Z.X/DZ ˝X

Recall that in the model category structure of ChK , the fibrations are the degreewise
surjections, the cofibrations are the degreewise injections, and the weak equivalences are
the morphisms inducing isomorphisms in homology. The category ChK has moreover
the simplifying feature that finite products and coproducts coincide. Let Z be the chain
complex defined by

Z DK�0˚K�1˚K�0˚K�1˚K�:

The elements � , �0 and �1 are three generators of degree 0 and �0 , �1 two generators
of degree �1. The differential dZ is defined by dZ .�0/D dZ .�1/D 0, dZ .�/D 0,
dZ .�0/D �0 and dZ .�1/D �1 .

Lemma 2.4 The chain complex Z˝X defines a path object on X in ChK , fitting in
a factorization X

��s Z˝X �.d0;d1/ X ˚X of the diagonal

�D .idX ; idX /W X !X ˚X

such that s is an acyclic cofibration and .d0; d1/ a fibration.

Proof Let sW X !Z˝X be the map defined by s.x/D �˝x . Given the differential
of Z , the map s is clearly an injective morphism of ChK , ie a cofibration. We can
also write Z˝X Š . zZ˝X /˚X , where

zZ DK�0˚K�1˚K�0˚K�1

is an acyclic complex. The acyclicity of zZ implies that s is an acyclic cofibration.
We now define a map .d0; d1/W Z˝X � X ˚X such that .d0; d1/ ı s D .idX ; idX /

and .d0; d1/ is a fibration. The map d0 is determined for every x2X by d0.�˝x/Dx
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and d0.�0˝x/Dd0.�1˝x/Dd0.�0˝x/Dd0.�1˝x/D0. The map d1 is determined
for every x 2 X by d1.�0˝ x/ D x , d1.� ˝ x/ D x , d1.�0˝ x/ D d1.�1˝ x/ D

d1.�1˝x/D 0. The map .d0; d1/ is clearly a surjective chain complexes morphism,
ie a fibration and satisfies the equality .d0; d1/ ı s D .idX ; idX /.

The two advantages of this path object on X are its writing in the form of a tensor
product with X and its decomposition into a direct sum of X with an acyclic complex.

2.3 The prop EndZ.P/

Consider the endomorphism prop of Z.X /:

EndZ.X /.m; n/D HomChK.Z.X /
˝m;Z.X /˝n/

Š HomChK.Z
˝m
˝X˝m;Z˝n

˝X˝n/

Š .Z˝m/�˝Z˝n
˝EndX .m; n/:

We define a prop of P –diagrams such that

EndZ.P/.m; n/D .Z
˝m/�˝Z˝n

˝P .m; n/

D

M
t�1 ˝ � � �˝ t�m˝ t1˝ � � �˝ tn˝P .m; n/;

where ti 2 f�0; �1; �0; �1; �g, together with the following structure maps:

Vertical composition product Let

˛ 2 t�1 ˝ � � �˝ t�k ˝ t1˝ � � �˝ tn˝P .k; n/;

ˇ 2 u�1˝ � � �˝u�m˝u1˝ � � �˝uk ˝P .m; k/:

We set

˛ ıv ˇ D

�
˛ ıPv ˇ if .u1; : : : ;uk/D .t1; : : : ; tk/;

0 otherwise;

where ıPv is the vertical composition product of P .

Horizontal product Let

˛ 2 t�1 ˝ � � �˝ t�m1
˝ t1˝ � � �˝ tn1

˝P .m1; n1/;

ˇ 2 u�1˝ � � �˝u�m2
˝u1˝ � � �˝un2

˝P .m2; n2/:
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We set

˛ ıh ˇ D t�1 ˝ � � �˝ t�m1
˝u�1˝ � � �˝u�m2

˝t1˝ � � �˝ tn1
˝u1˝ � � �˝un2

˝
�
˛ jP.m1;n1/ ı

P
h ˇ jP.m2;n2/

�
2 t�1 ˝ � � �˝ t�m1

˝u�1˝ � � �˝u�m2

˝t1˝ � � �˝ tn1
˝u1˝ � � �˝un2

˝P .m1C n1;m2C n2/;

where ıP
h

is the horizontal product of P .

Actions of the symmetric groups Let ˛ D t�
1
˝ � � � ˝ t�m ˝ t1 ˝ � � � ˝ tn ˝ ˛P 2

EndZ.P/.m; n/ with ˛P 2 P .m; n/. The action of a permutation � 2†m on the right
of this prop element is given by ˛:� D t�

�.1/
˝ � � � ˝ t�

�.m/
˝ t1 ˝ � � � ˝ tn ˝ ˛P :� .

The action of a permutation � 2 †n on the left of this prop element is given by
�:˛ D t�

1
˝ � � �˝ t�m˝ t��1.1/˝ � � �˝ t��1.n/˝ �:˛P .

Let X 2 ChP
K be a P –algebra. From the definition of EndZ.P/.m; n/, we easily see

that the prop morphism P ! EndX induces a prop morphism

evX W EndZ.P/! EndZ.X /

satisfying the appropriate functoriality diagrams (see Section 2.1.3).

2.4 The prop EndZ.P/

2.4.1 The pullback defining EndZ.X / and its explicit maps For every .m;n/2N2 ,
we have a pullback:

EndZ.X /.m; n/ //

��

EndX0
.m; n/˚EndX1

.m; n/

.d
˝m
0

/�˚.d
˝m
1

/�

��

EndZ.X /.m; n/

.d
˝n
0
;d
˝n
1
/� ++

HomZ.X /;X0
.m; n/˚HomZ.X /;X1

.m; n/

For every X 2 ChP
K and .m; n/ 2N2 we have the isomorphisms

HomX ;Z.X /.m; n/D HomChK.X
˝m;Z.X /˝n/

Š HomChK.X
˝m;Z˝n

˝X˝n/ŠZ˝n
˝EndX .m; n/
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and

HomZ.X /;Xi
.m; n/D HomChK.Z.X /

˝m;X˝n/

Š HomChK.Z
˝m
˝X˝m;X˝n/Š .Z˝m/�˝EndXi

.m; n/:

Applying these isomorphisms, we get a pullback:

EndZ.X /.m; n/ //

��

EndX0
.m; n/˚EndX1

.m; n/

.d
˝m
0

/�˚.d
˝m
1

/�

��

.Z˝m/�˝Z˝n˝EndX .m; n/

.d
˝n
0
;d
˝n
1
/� **

.Z˝m/�˝EndX0
.m; n/

˚.Z˝m/�˝EndX1
.m; n/

We have to make explicit the maps .d˝n
0
; d˝n

1
/� and .d˝m

0
/�˚ .d˝m

1
/� and replace

EndX0
.m; n/, EndX1

.m; n/ and EndX .m; n/ by P0.m; n/, P1.m; n/ and P .m; n/ to
obtain a prop of P –diagrams fEndZ.P/.m; n/g.m;n/2N2 acting naturally on the chain
complexes EndZ.X /.m; n/, X 2ChP

K . Then we apply the same method to build a prop
of P –diagrams EndY.P/ acting naturally on EndY.X / , X 2 ChP

K .

Lemma 2.5 Let fzigi2I be a basis of Z˝m . The map

.d˝m
1

/�W EndX .m; n/! .Z˝m/�˝EndX .m; n/

is defined by the formula

.d˝m
1

/�.�/D
X
j2J

. z�j ˝ �/D

�X
j2J

z�j

�
˝ �;

where J is the subset of I such that d˝m
1

.zj ˝x/D x for x 2X˝m and j 2 J .

Proof First we give an explicit inverse to the well-known isomorphism

�W U �˝HomChK.V;V
0/
Š
�!HomChK.U ˝V;V 0/;

'˝f 7!Œu˝ v 7! '.u/:f .v/�;
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where U is supposed to be of finite dimension. Let fuigi2I be a basis of U . We
have �D

P
i2I

�i , where

�i W Ku�i ˝HomChK.V;V
0/! HomChK.Kui ˝V;V 0/;

u�i ˝f 7! u�i :f W ui ˝ v 7! u�i .ui/:f .v/D f .v/;

so

��1
W HomChK.U ˝V;V 0/! U �˝HomChK.V;V

0/;

f 7!
X
i2I

.u�i ˝f jKui˝V /:

Let � W Z˝m ˝ X˝m ! .Z ˝ X /˝m be the map permuting the variables. Recall
that the map d1 is determined for every x 2 X by d1.�0˝x/D x , d1.� ˝x/D x ,
d1.�0˝x/D d1.�1˝x/D d1.�1˝x/D 0. The map

.d˝m
1

/�W HomChK.X
˝m;X˝n/! HomChK.Z

˝m
˝X˝m;X˝n/

Š
�! .Z˝m/�˝HomChK.X

˝m;X˝n/

is defined by

� 7! � ı d˝m
1
ı � 7!

X
i2I

�
z�i ˝ .� ı d˝m

1
ı �/ jKzi˝V

�
We obtain finally

.d˝m
1

/�W EndX .m; n/! .Z˝m/�˝EndX .m; n/;

� 7!
X
j2J

.z�j ˝ �/D

�X
j2J

z�j

�
˝ �;

where J is the subset of I such that d˝m
1

.zj ˝ x/ D x for x 2 X˝m and j 2 J .
If j 62 J then d˝m

1
jKzj˝X˝mD 0.

Recall that the map d0W Z˝X !X is defined for every x 2X by

d0.� ˝x/D x and d0.�0˝x/D d0.�1˝x/D d0.�0˝x/D d0.�1˝x/D 0:

As before, the map .d˝m
0

/� has a form similar to that of the map .d˝m
1

/� , and we
have determined

.d˝m
0

/�˚ .d˝m
1

/�:
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Lemma 2.6 The map .d˝n
0
; d˝n

1
/� is determined by

.d˝n
0
; d˝n

1
/�W z

�
j ˝ z0i ˝ � 7!

X
k2I

�
z�k ˝

��
d˝n

0
; d˝n

1

�
ı z�j .�/:z

0
i ˝ �

�
jKzk˝X˝m

�
:

Proof Let fz0igi2I 0 be the basis of Z˝n . We have the isomorphism

.Z˝m/�˝Z˝n
˝HomChK.X

˝m;X˝n/! HomChK.Z
˝m
˝X˝m;Z˝n

˝X˝n/;

z�j ˝ z0i ˝ � 7! z�j .�/:z
0
i ˝ �;

that we compose with

.d˝n
0
; d˝n

1
/W Z˝n

˝X˝n
!X˝n

0
˚X˝n

1
;

zj ˝x 7!

�
x˚x if j 2 J 0;

x˚ 0 or 0˚x otherwise;

where J 0 is the subset of I such that d0 jKzj˝X˝n¤ 0 and d1 jKzj˝X˝n¤ 0 for
j 2 J 0 . Finally we compose with the isomorphism

HomChK.Z
˝m
˝X˝m;X˝n

0
˚X˝n

1
/
Š
�! .Z˝m/�˝HomChK.X

˝m;X˝n
0
˚X˝n

1
/;

f 7!
X
i2I

.z�i ˝f jKzi˝X˝m/;

and get the map

.d˝n
0
; d˝n

1
/�W z

�
j ˝ z0i ˝ � 7!

X
k2I

.z�k ˝ ..d
˝n
0
; d˝n

1
/ ı z�j .�/:z

0
i ˝ �/ jKzk˝X˝m/:

This completes the proof.

2.4.2 The associated prop of P –diagrams The key observation is that the two maps

.d˝m
0

/�˚ .d˝m
1

/� and .d˝n
0
; d˝n

1
/�

that fix the prop structure on EndZ.X /.m; n/ in term of those of .Z˝m/�˝Z˝n˝

EndX .m; n/ and EndX0
.m; n/ ˚ EndX1

.m; n/ do not modify the operations � in
EndX .m; n/ themselves. Therefore, we can replace EndX0

.m; n/, EndX1
.m; n/ and
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EndX .m; n/ by P0.m; n/, P1.m; n/ and P .m; n/ to get the new pullback:

EndZ.P/.m; n/ //

��

P0.m; n/˚P1.m; n/

.d
˝m
0

/�˚.d
˝m
1

/�

��

.Z˝m/�˝Z˝n˝P .m; n/

.d
˝n
0
;d
˝n
1
/� ++
.Z˝m/�˝P0.m; n/˚ .Z

˝m/�˝P1.m; n/

The explicit formulae of the applications defining this pullback, given by Lemmas 2.5
and 2.6, show that these replacements do not break the prop structure transfer. Thus
we get the desired prop of P –diagrams EndZ.P/ having the same shape as that of
EndZ.X / and thus acting naturally on the associated diagram of P –algebras via the
evaluation morphism

evX W EndZ.P/! EndZ.X / :

2.5 The prop EndY.P/ and the functorial path object in P –algebras

Now let us define EndY.P/ . For every .m; n/ 2N2 , the pullback

EndY.X /.m; n/ //

��

EndZ.X /.m; n/

.s˝m/�ıpr
��

EndX .m; n/
.s˝n/�

// HomX ;Z.X /.m; n/

induces via the isomorphims explained at the beginning of Section 2.3 and Section 2.4.1
a pullback:

EndY.X /.m; n/ //

��

EndZ.X /.m; n/

.s˝m/�ıpr
��

EndX .m; n/
.s˝n/�

// Z˝n˝EndX .m; n/

In the same manner as before, given that sW X !Z˝X sends every x 2X to �˝x ,
the map .s˝m/� is of the form

.Z˝m/�˝Z˝n
˝EndX .m; n/!Z˝n

˝EndX .m; n/;

z�j ˝ z0i ˝ � 7!

�
z0i ˝ � if j 2K;

0 otherwise;
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where K is a certain subset of I and .s˝n/� is of the form

EndX .m; n/!Z˝n
˝EndX .m; n/;

� 7!
X
i2K 0

z0i ˝ �;

where K0 is a certain subset of I 0 . These two maps .s˝m/� ı pr and .s˝n/� , fixing
the prop structure on EndY.X /.m; n/ in function of those of EndZ.X /.m; n/ and
EndX .m; n/, do not modify the operations � 2 EndX .m; n/ themselves. Therefore, we
replace EndX .m; n/ by P .m; n/ and EndZ.X /.m; n/ by EndZ.P/.m; n/ to get this
new pullback:

EndY.P/.m; n/ //

��

EndZ.P/.m; n/

.s˝m/�ıpr
��

P .m; n/
.s˝n/�

// Z˝n˝P .m; n/

The explicit formulae of the applications defining this pullback show that these re-
placements do not break the prop structure transfer. Thus we get the desired prop
of P –diagrams EndY.P/ having the same shape as that of EndY.X / and thus acting
naturally on the associated diagram of P –algebras via the evaluation morphism

evX W EndY.P/! EndY.X / :

We finally obtain the following lemma:

Lemma 2.7 There is a commutative diagram of props:

EndY.P/
evX //

�

��

EndY.X /

��
P

D // P // EndV.X /

Now we want to prove that the morphism P ! EndV.X / lifts to a morphism

P ! EndY.P/
evX
��!EndY.X / :

Lemma 2.8 The map � is an acyclic fibration in the category of props.

Proof According to the model category structure on P , it is sufficient to prove that
for every .m; n/ 2N2 , �.m; n/ is an acyclic fibration of chain complexes. The map
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�.m; n/ is given by the base extension

�.m; n/D P .m; n/ �
HomP;Z.P/.m;n/

�.m; n/

�
HomZ.P/;P0

.m;n/˚HomZ.P/;P1
.m;n/

.P0.m; n/˚P1.m; n//

where

�.m; n/W EndZ.P/.m; n/! HomP;Z.P/.m; n/

�
P0.m;n/˚P1.m;n/

.HomZ.P/;P0
.m; n/˚HomZ.P/;P1

.m; n//

comes from the diagram:

EndZ.P/.m; n/

�.m;n/

&&

.s˝m/�

$$

.d
˝n
0
;d
˝n
1
/�

))
pullback

��

// HomZ.P/;P0
.m; n/˚HomZ.P/;P1

.m; n//

.s˝m/�˚.s˝m/�

��
HomP;Z.P/.m; n/

.d
˝n
0
;d
˝n
1
/�

// P0.m; n/˚P1.m; n/

That is:

.Z˝m/�

˝Z˝n˝P .m; n/

�.m;n/

&&

.s˝m/�

%%

.d
˝n
0
;d
˝n
1
/�

))
pullback

��

// .Z˝m/�˝ .P0.m; n/˚P1.m; n//

.s˝m/�˚.s˝m/�

��
Z˝n˝P .m; n/

.d
˝n
0
;d
˝n
1
/�

// P0.m; n/˚P1.m; n/

We have an isomorphism

P0.m; n/˚P1.m; n/
Š
�!.Kp0˚Kp1/˝P .m; n/;

p˚p0 7!p0˝pCp1˝p;
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where p0 and p1 are two generators of degree 0. The previous computations give

.d˝n
0
; d˝n

1
/�W Z

˝n
˝P .m; n/! .Kp0˚Kp1/˝P .m; n/;

z0i ˝p 7!

�
.p0˚p1/˝p if i 2 J 0;

p0˝p or p1˝p otherwise;

and the map

.s˝m/�˚ .s˝m/�W .Z˝m/�˝ .Kp0˚Kp1/˝P .m; n/! .Kp0˚Kp1/˝P .m; n/

is defined by

z�j ˝ .�p0˚�p1/˝p 7!

�
.�p0˚�p1/˝p or �p0˝p or �p1˝p if j 2K;

0D 0˝p otherwise:

We have similar results for the two maps starting from .Z˝m/�˝Z˝n˝P .m; n/.
We deduce that the previous diagram is the image under the functor �˝P .m; n/ of
the dual pushout-product

HomChK.Z
˝m;Z˝n/

.f �s ;.gd0;d1
/�/

))

f �s

((

.gd0;d1
/�

**
pullback

��

// HomChK.Z
˝m;Kp0˚Kp1/

f �s
��

HomChK.K;Z
˝n/

.gd0;d1
/�

// HomChK.K;Kp0˚Kp1/

modulo the isomorphisms

Z˝n
Š HomChK.K;Z

˝n/;

.Z˝m/�˝Z˝n
Š HomChK.Z

˝m;Z˝n/;

.Z˝m/�˝ .Kp0˚Kp1/Š HomChK.Z
˝m;Kp0˚Kp1/;

Kp0˚Kp1 Š HomChK.K;Kp0˚Kp1/:

The map gd0;d1
W Z˝n!Kp0˚Kp1 is surjective so it is a fibration of chain complexes.

Recall that we have a decomposition of Z into ZD zZ˚K� , where zZ is acyclic, which
implies a decomposition of Z˝m of the form Z˝m Š Sm˚K.�˝n/, where Sm is
acyclic because it is a sum of tensor products containing zZ . The map fs is an injection
sending K on K.�˝n/ so it is a cofibration, and Sm is acyclic so fs is an acyclic
cofibration. Applying the axiom MM1 0 in ChK we conclude that .f �s ; .gd0;d1

/�/ is
an acyclic fibration. Therefore �.m; n/ D .f �s ; .gd0;d1

/�/˝ idP.m;n/ is an acyclic
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fibration, and so is �.m; n/, given that the class of acyclic fibrations is stable by base
extension.

We have proved the following result:

Proposition 2.9 There is a functorial P –action P ! EndY.X / , and consequently
a functorial path object ZW .ChK/

P ! .ChK/
P in the category of cofibrant–fibrant

P –algebras .ChK/
P .

2.6 Proof of the final result

Consider now the square of inclusions of diagrams

T .X /� _
u

��

� � t // V.X /� _
v

��
Z.X / �

�

w
// Y.X /;

where V.X /, Z.X / and Y.X / are the diagrams defined previously and T .X / is the
diagram fX0;X1g consisting of two copies of X and no arrows between them. This
square of inclusions induces the commutative square of endomorphism props

EndY.X /
w� //

v�

��

EndZ.X /

u�

��
EndV.X /

t�
// EndT .X /;

where u� , v� , t� and w� are the maps induced by the inclusions of the associated
diagrams of P –algebras. We have a commutative diagram of props of P –diagrams
reflecting this square:

EndY.P/
w� //

v�

��

EndZ.P/

u�

��
EndV.P/ D P

t�
// EndT .P/ D P0 �P1;

where v� is the acyclic fibration � of Lemma 2.8 and u� is a fibration because it is
clearly surjective in each biarity (recall that the surjective morphisms are the fibrations
of ChK and that the fibrations of P are determined componentwise). Now we can use
this commutative square to prove the final result:
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Theorem 2.10 Let P be a cofibrant prop and '; W P ! P two homotopic prop
morphisms. Then there exists a diagram of functors

'�
�

 �Z
�

�!  �;

where Z is the path object functor defined in Proposition 2.9 and the natural transfor-
mations are pointwise acyclic fibrations.

Proof This proof follows the arguments of the proof of [7, Theorem 8.4]. We consider
a cylinder object of P fitting in a diagram of the form

P _P //
.d0;d1/

// zP
s0

� // // P:

The components d0 and d1 of the morphism .d0; d1/ are acyclic cofibrations because P

is cofibrant by assumption (see [4, Lemma 4.4]) and s0 an acyclic fibration. The fact
that ' and  are homotopic implies the existence of a lifting in

P _P
��

.d0;d1/ ��

.'; / // P

��
zP

h

<<

// 0:

We produce the lifting

I
��

��

// EndY.P/

� v�����
P

k
;;

'
// P

(by the axiom MC4 of model categories; see [4]) and form .' ı s0; h/W zP ! P0 �P1

to get the following commutative diagram:

P
k //

��

d0 ���

EndY.P/
w� // EndZ.P/

u�
����

zP

l

55

.'ıs0;h/

// P0 �P1

We have .' ıs0; h/ıd0D .' ıs0 ıd0; hıd0/D .'; '/ and u� ıw� ık D t� ıv� ık D

t� ı' D .'; '/ so this diagram is indeed commutative and there exists a lifting (axiom
MC4) l W zP ! EndZ.P/ . Then we form l ı d1W P ! EndZ.P/ and observe that
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u� ı l ıd1 D .' ı s0; h/ıd1 D .' ı s0 ıd1; hıd1/D .';  /, ie we obtain the diagram

EndZ.P/
evX //

u�

��

EndZ.X /

��
P

.'; /

//

lıd1

99

P0 �P1 evX

// EndT .X /

and consequently a diagram of functors '�
�� Z

�� � . The functorial path object Z

on ChK preserves weak equivalences and restrict to an endofunctor of w ChK , so
the associated functorial path object Z on ChP

K do the same. Moreover, the natural
transformations are weak equivalences in each component, so this diagram restricts to
the desired diagram of endofunctors of w ChP

K .

Now we can conclude the proof of Theorem 0.1 in the case E D ChK :

Theorem 2.11 Let ChK be the category of Z–graded chain complexes over a field K
of characteristic zero. Let 'W P

�

�!Q be a weak equivalence between two cofibrant
props. The map ' gives rise to a functor '�W w.ChK/

Q! w.ChK/
P which induces a

weak equivalence of simplicial sets N'�W Nw.ChK/
Q �

�!Nw.ChK/
P .

Proof Recall that P is the category of props in ChK . Let us suppose first that
'W P

�� Q is an acyclic cofibration between two cofibrants props of P . All objects
in ChK are fibrant, so by definition of the model category structure on P the prop P

is fibrant and thus we have the lifting

P
D //

��

' ���

P

����
Q //

s

>>

pt;

where sW Q
�

�! P satisfies �
s ı' D idP ;

' ı s � idQI

the relation � is the homotopy relation for the model category structure of P . These
maps induce functors '�W .wEcf /Q ! .wEcf /P and s�W .wEcf /P ! .wEcf /Q .
Applying the simplicial nerve functor, we obtain�

N.s ı'/� DN'� ıNs� D id.wEcf /P ;

N.' ı s/� DNs� ıN'� � id.wEcf /Q ;
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so N'� is a homotopy equivalence in sSet, which implies that it is a weak equivalence
of simplicial sets. The functor

P! sSet;

P 7!Nw.Ecf /P ;

is defined between two model categories and maps the acyclic cofibrations between
cofibrant objects to weak equivalences, so it preserves weak equivalences between
cofibrant objects according to Brown’s lemma.

2.7 The general case of a category E tensored over ChK

To complete our results we explain how the proof of Theorem 2.10 extends to a
category E tensored over ChK .

Theorem 2.12 Let E be a cofibrantly generated symmetric monoidal model category
over ChK . Let 'W P

�

�!Q be a weak equivalence between two cofibrant props defined
in ChK . This morphism ' gives rise to a functor '�W w.Ec/Q ! w.Ec/P which
induces a weak equivalence of simplicial sets N'�W Nw.Ec/Q!Nw.Ec/P .

Proof The chain complex Z defined previously is itself the path object on C 0 , so we
have the following commutative diagram:

C 0

C 0

D
00

D ..

//
s

� // Z
d0

�

>> >>

d1

�     
C 0

Given that C 0 is the unit of ChK , for any X 2 E we have C 0 ˝X Š X , thus by
applying the functor �˝X we get the following commutative diagram:

X0

X

D
//

D //

//
s˝idX

� // Z˝X

d0˝idX

�

;;

d1˝idX

�
##
X1
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The axiom MM1 for the external tensor product ˝ implies that if X is cofibrant, then
the functor �˝X preserves acyclic cofibrations of ChK (all the objects of ChK are
cofibrant) and thus, by Brown’s lemma, it preserves the weak equivalences. Therefore
s˝ idX is still an acyclic cofibration and d0˝ idX , d1˝ idX are weak equivalences.
Moreover, given the properties of ˝ and the fact that endomorphism props in ChK for
objects of E are defined with the external hom bifunctor HomE.�;�/ of E , we have
the following isomorphisms:

EndZ˝X .m; n/D HomE..Z˝X /˝m; .Z˝X /˝n/

Š HomE.Z
˝m
˝X˝m;Z˝n

˝X˝n/

Š .Z˝m/�˝Z˝n
˝EndX .m; n/;

HomX ;Z˝X .m; n/D HomE.X
˝m; .Z˝X /˝n/

Š HomE.X
˝m;Z˝n

˝X˝n/

ŠZ˝n
˝EndX .m; n/;

HomZ˝X ;Xi
.m; n/D HomE..Z˝X /˝m;X˝n/

Š HomE.Z
˝m
˝X˝m;X˝n/

Š .Z˝m/�˝EndXi
.m; n/:

The proofs in Sections 2.3, 2.4 and 2.5 extend without changes to the case of a category
E tensored over ChK : we still work in ChK , and as before the operations associated
to s˝ idX , d0˝ idX and d1˝ idX in the pullbacks do not transform the elements
of EndX .m; n/ themselves, so that the replacement of EndX .m; n/ by P .m; n/ does
not break the transfer of prop structure in these pullbacks. We obtain a diagram of
endofunctors '�

�

 �Z
�

�!  � of .Ec/P where the natural transformations are weak
equivalences in each component, so this diagram restricts to the desired diagram of
endofunctors of w.Ec/P . Theorem 0.1 is proved in the general case.

3 Extension of the results in the colored prop setting

Definition 3.1 Let C be a nonempty set, called the set of colors, and C be a symmetric
monoidal category.

(1) A C–colored †–biobject M is a double sequence of objects fM.m;n/2Eg.m;n/2N2

where each M.m; n/ admits commuting left †m –action and right †n –action as well
as a decomposition

M.m; n/D colim
ci ;di2C

M.c1; : : : ; cmI d1; : : : ; dn/
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compatible with these actions. The objects M.c1; : : : ; cmI d1; : : : ; dn/ should be
thought as spaces of operations with colors c1; : : : ; cm indexing the m inputs and
colors d1; : : : ; dn indexing the n outputs.

(2) A C–colored prop P is a C–colored †–biobject endowed with a horizontal
composition

ıhW P .c11; : : : ; c1m1
I d11; : : : ; d1n1

/˝ � � �˝P .ck1; : : : ; ckmk
I dk1; : : : ; dkn1

/

! P .c11; : : : ; ckmk
I dk1; : : : ; dknk

/� P .m1C � � �Cmk ; n1C � � �C nk/

and a vertical composition

ıvW P .c1; : : : ; ck I d1; : : : ; dn/˝P .a1; : : : ; amI b1; : : : ; bk/

! P .a1; : : : ; amI d1; : : : ; dn/� P .m; n/

which is equal to zero unless bi D ci for 1� i � k . These two compositions satisfy
associativity axioms (we refer the reader to [10] for details).

Definition 3.2 (1) Let fXcgC be a collection of objects of E . The C–colored
endomorphism prop EndfXcgC

is defined by

EndfXcgC
.c1; : : : ; cmI d1; : : : ; dn/D HomE.Xc1

˝ � � �˝Xcm
;Xd1

˝ � � �˝Xdn
/

with horizontal composition given by the tensor product of homomorphisms and vertical
composition given by the composition of homomorphisms with matching colors.

(2) Let P be a C–colored prop. A P –algebra is the data of a collection of ob-
jects fXcgC and a C–colored prop morphism P ! EndfXcgC

.

Example 3.3 Let I be a small category, P a prop in C . We can build an ob.I/–
colored prop PI such that the PI –algebras are the I –diagrams of P –algebras in E in
the same way as that of Markl [12].

To endow the category of colored props with a model category structure, the cofibrantly
generated symmetric monoidal model structure on C is not sufficient. We have to
suppose moreover that the domains of the generating cofibrations and acyclic generating
cofibrations are small (cf [8, 10.4.1]), that is to say, the model structure is strongly
cofibrantly generated:

Theorem 3.4 (cf [10, Theorem 1.1]) Let C be a nonempty set. Let C be a strongly
cofibrantly generated symmetric monoidal model category with a symmetric monoidal
fibrant replacement functor, and either

(1) a cofibrant unit and a cocommutative interval, or
(2) functorial path data.
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Then the category PC of C–colored props in C forms a strongly cofibrantly generated
model category with fibrations and weak equivalences defined componentwise in C .

This theorem works in particular with the categories of simplicial sets, simplicial
modules over a commutative ring and chain complexes over a ring of characteristic 0

(our main category in this paper).

This model structure is similar to that of 1–colored props, and we can define C–
colored endomorphism props of morphisms (see [10, Section 4]) and more generally
of any kind of diagram, so the lifting properties used in the previous section work
in the C–colored case. Moreover, in the proof of Theorem 0.1, the replacement of
the operations X˝m ! X˝n by P .m; n/ can be done using a C–colored prop P

instead of a 1–colored one without changing anything to the proof, therefore we finally
get the C–colored version of Theorem 0.1. We do not have to change anything to
Theorem 0.1, given that ChK satisfies the hypotheses of Theorem 3.4.

4 Afterword

Let E be a symmetric monoidal model category over ChK . Let P be a cofibrant prop
defined in ChK and X an object of E . One can consider the moduli space PfX g

of P –algebra structures on X , which is a simplicial set whose 0–simplexes are prop
morphisms P!EndX representing all the P –algebra structures on X . More precisely,
the moduli space of P –algebra structures on X is the simplicial set such that

PfX g DMorP0
.P ˝�Œ��;EndX /;

where .�/˝�Œ�� is a cosimplicial resolution of P . This space is a Kan complex
which is homotopy invariant under weak equivalences of cofibrant props at the source
(it follows from general arguments on simplicial mapping spaces in model categories;
see [8, Chapter 16]). Moreover, its connected components are exactly the homotopy
classes of P –algebra structures on X .

As a consequence of Theorem 0.1, one can follow arguments similar to those of Rezk
in [15] to characterize such a moduli space as a homotopy fiber of a map between
classifying spaces. To be explicit, we have a homotopy pullback of simplicial sets

PfX g

��

// N.f w.Ec/P /

��
fX g // N.wEc/;
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where f w.Ec/P is the subcategory of morphisms of P –algebras being acyclic fibra-
tions in E .

We will prove in a followup paper that the classifying space of acyclic fibrations
N.f w.Ec/P / is actually weakly equivalent to the whole classifying space N.w.Ec/P /.
We accordingly have a homotopy pullback which extends to the setting of algebras over
dg (colored) props the result obtained by Rezk [15, Theorem 1.1.5] in the operadic
case:

PfX g

��

// N.w.Ec/P /

��
fX g // N.wEc/

This result implies in particular that the moduli space admits a decomposition in
classifying spaces of homotopy automorphisms

PfX g �
a
ŒX �

SW Lw.Ec/P .X;X /;

where ŒX � ranges over the weak equivalence classes of P –algebras having X as
underlying object. An interesting set–theoretic consequence is that the homotopy
automorphisms of P –algebras Lw.Ec/P .X;X / are homotopically small in the sense
of Dwyer–Kan [3].
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