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On connective KO–theory of
elementary abelian 2–groups

GEOFFREY POWELL

A general notion of detection is introduced and used in the study of the cohomology
of elementary abelian 2–groups with respect to the spectra in the Postnikov tower
of orthogonal K–theory. This recovers and extends results of Bruner and Greenlees
and is related to calculations of the (co)homology of the spaces of the associated
�–spectra by Stong and by Cowen Morton.

19L41, 20J06

1 Introduction

The orthogonal K–theory of elementary abelian 2–groups possesses a rich structure
and the spectra of the Postnikov tower of KO leads to interesting related functors
V 7!KOhni�.BV/: The study of these is, for example, a first step towards a systematic
analysis of KOhni�.BG/ for finite groups G . Bott periodicity reduces us to the
consideration of koDKOh0i, koh1i, koh2i and koh4i, of which the case ko has been
studied extensively (but nonfunctorially) by Bruner and Greenlees [5], based on their
earlier work on the complex case [4]. A key property is that ko�.BV/ is detected by the
periodic theory KO�.BV/ together with integral cohomology HZ�.BV/, via the zero
layer ko!HZ of the Postnikov tower. The main result of this paper (Theorem 9.1)
establishes the analogous property for the spectra KOhni using the Postnikov layers
KOhni !†nH.KOn/; this leads to a description of KOhni�.BV/ (see Corollary 9.2).
This recovers, in particular, the results of Bruner and Greenlees [5] for ko.

The functorial structure gives information on the spaces of the associated �–spectra:
Lannes’ theory (cf Henn, Lannes and Schwartz [6] and Schwartz [12]) implies that
V 7! kohnid .BV/ determines (up to F –isomorphism) the mod-2 cohomology of
the d th space of the �–spectrum associated to kohni. This establishes a relation with
results in the literature: the mod-2 cohomology rings of the connective covers of the
classifying space BO of the infinite orthogonal group were determined by Stong [13],
and the Hopf ring for ko and the Hopf module structures of the spectra kohni over
this Hopf ring were calculated by Cowen Morton [9]. Both these results establish
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an analogue of the detection property. Hence, the detection property for ko�.BV/ is
related to the unstable origin of the fact that ko!HZ induces a monomorphism in
homology HF�.ko/ ,!HF�HZ; a similar statement holds for KOhni.

The main results of the paper (see Section 9) give a description of the functors
KOhni�.BV/, based in part on the author’s previous work [11] on the case of complex
connective K–theory, which revisited the earlier work of Bruner and Greenlees [4] from
a functorial viewpoint using new techniques. The abstract treatment of the detection
property (given in Section 2) leads to an explicit relationship between the part of the
theory which is detected in the periodic theory and the torsion part (see Theorem 2.10).
These methods also apply to the study of KOhni�.BV/ for all n; this leads to a
conceptual understanding of the relationship between cohomology and homology via
the local cohomology spectral, generalising the results of [11] for ku. This will be
explained elsewhere.

The proof requires an understanding of the homology of a complex which arises from
the primary k–invariants of the Postnikov tower of KO, taking the cohomology of the
classifying spaces BV (see Section 4); the complex is derived from an exact complex E�
of A.1/–modules (recall that A.1/ is the subalgebra of the mod-2 Steenrod algebra A
generated by Sq1 and Sq2 ), related to the exact complex of Toda [14]. The restriction
to the category of A.1/–modules provides the tools for calculating the homology of
the cochain complex HomA.1/.E�;HF�.BV// (see Sections 5 and 6), based on ideas
of Ossa [10] developed in the thesis of Cherng-Yih Yu [15] and by Bruner [3].

The first step towards establishing detection is to treat the case of ko (see Section 8).
Much of the argument can be carried out using detection in periodic complex K–theory
and the known structure of ku�.BV/. However, this is not sufficient to treat the classes
which are divisible by � and which are detected in KO–cohomology; for these a general
argument (cf Proposition A.2) related to the �–Bockstein spectral sequence is used,
for which Proposition 7.4 is the crucial calculational input.

This leads to the determination of the functor ko�.BV/ (see Corollary 8.3); from this,
detection is deduced for kohni�.BV/ in general (Theorem 9.1), whence the functorial
description given in Corollary 9.2.
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2 Abstract detection

Consider a tower E� over F in the stable homotopy category:

� � � // En
en //

fn
))

En�1
en�1 //

fn�1

$$

En�2
//

fn�2

��

� � �

F

This has associated cofibre sequences

En
en //En�1

cn�1 //Cn�1
ın�1 //†En

with composite morphism �n playing the role of a primary k–invariant:

Cn
ın //

�n

44†EnC1

†cnC1//†CnC1

These fit into the following commutative diagram, in which the horizontal sequence is
the cofibre sequence:

(1)

†�1Cn�1

†�1�n�1

$$
†�1ın�1

��
En cn

// Cn

�n ##

ın // †EnC1
//

†cnC1

��

†En

†CnC1

Remark 2.1 The composite �n ı†
�1�n�1 is trivial.

Detection is defined with respect to a fixed object X by considering the behaviour of
ŒX;En�

�! ŒX;En�1�
� and ŒX;En�

�! ŒX;F �� , where Œ�;��� denotes the Z–graded
morphism groups.

Definition 2.2 For n 2 Z and a spectrum X , the tower satisfies:

(1) Level n detection if .fn; cn/W ŒX;En�
� ! ŒX;F �� ˚ ŒX;Cn�

� is a monomor-
phism.

(2) Weak level n detection if .en; cn/W ŒX;En�
� ! ŒX;En�1�

� ˚ ŒX;Cn�
� is a

monomorphism.
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Remark 2.3 One can also consider a family of spectra and define detection pointwise;
this reduces to the single object case by taking the coproduct of the family.

Example 2.4 The case of interest here is the family †1BV, as V ranges over a
skeleton of the category of finite-rank elementary abelian 2–groups.

Lemma 2.5 For n 2 Z:
(1) Level n detection) weak level n detection.
(2) Level n� 1 detection and weak level n detection) level n detection.

Proof The proof is straightforward.

From the construction, it is clear that cn�1W En�1! Cn�1 induces a morphism

ŒX;En�1�
�
! KerfŒX;Cn�1�

� �n�1
���! ŒX; †Cn�

�
g:

The following result gives an alternative formulation of weak detection.

Lemma 2.6 For n 2 Z, the following conditions are equivalent:
(1) Weak level n detection holds.
(2) cn�1 induces a surjection ŒX;En�1�

�� Ker.�n�1/:

Proof (2) ) (1) Suppose that x 2 ŒX;En�
� lies in the kernel of .en; cn/; since x is

in the kernel of en , it is the image of some zx 2 ŒX; †�1Cn�1�
� and, moreover, zx lies

in the kernel of †�1�n�1 . Hence, by hypothesis (2), zx is the image of an element of
ŒX; †�1En�1�

� . This implies that zx 7! 0 in ŒX;En�
� , so that x D 0, thus weak level

n detection holds.

(1) ) (2) Consider an element y 2 ŒX; †�1Cn�1�
� which lies in the kernel of

†�1�n�1 and set xy WD †�1ın�1y 2 ŒX;En�
� . Since en†

�1ın�1 D 0, en xy D 0 and
the hypothesis on y implies that cn xyD†

�1�n�1yD 0. Hence, weak detection implies
that xy 2 ŒX;En�

� is zero; by exactness, y is the image of a class in ŒX; †�1En�1�
� ,

as required.

Notation 2.7 For n 2 Z, write ˆnŒX;F �
� for the image of ŒX;En�

�
fn
�! ŒX;F �� .

This gives the decreasing filtration

� � � �ˆnŒX;F �
�
�ˆn�1ŒX;F �

�
� � � � � ŒX;F ��:

Lemma 2.8 For n 2 Z, fn�1 induces a surjection

ImfŒX;En�
� en
�! ŒX;En�1�

�
g�ˆnŒX;F �

�:

If level n� 1 detection holds, then this is an isomorphism.
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Proof The first statement is clear, since fn D fn�1 ı en . The second statement is a
consequence of the fact that the composite

ŒX;En�
� en
�! ŒX;En�1�

� cn�1
���! ŒX;Cn�1�

�

is trivial, together with the hypothesis that level n� 1 detection holds.

Proposition 2.9 For n 2 Z, there are natural morphisms

Ker.ın/= Im.†�1�n�1/
� � �n //

Š

��

Ker.�n/= Im.†�1�n�1/

Im.en/= Im.en ı enC1/ �n

// // ˆnŒX;F �
�=ˆnC1ŒX;F �

�:

In particular, ˆnŒX;F �
�=ˆnC1ŒX;F �

� is a subquotient of Ker.�n/= Im.†�1�n�1/.
Moreover:

(1) Weak level nC 1 detection holds if and only if �n is an isomorphism.

(2) If level n� 1 detection holds, then �n is an isomorphism.

If both the above conditions hold, then

Ker.�n/= Im.†�1�n�1/ŠˆnŒX;F �
�=ˆnC1ŒX;F �

�:

Proof From diagram (1), there are inclusions Im.†�1�n�1/� Im.cn/D Ker.ın/�
Ker.�n/. The inclusion �n is induced by Ker.ın/ � Ker.�n/ and the equivalence be-
tween weak level nC1 detection and �n being an isomorphism follows from Lemma 2.6.

The surjection �n is given by Lemma 2.8, using the argument outlined in its proof to
show that it is an isomorphism under the hypothesis of level n� 1 detection.

Using the equality Im.cn/D Ker.ın/, the vertical morphism is induced by en , which
gives a well-defined surjection

(2) Ker.ın/� Im.en/= Im.en ı enC1/:

The cofibre sequence

†�1Cn�1

†�1ın�1
������!En

en
�!En�1

induces an exact sequence

ŒX; †�1Cn�1�
�
! ŒX;En�

�
! ŒX;En�1�

�;

and it is straightforward to deduce that the kernel of the surjection (2) is the image of
†�1�n�1 , as required.
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Theorem 2.10 Suppose that detection holds for all n 2 Z. Then there are short exact
sequences (natural in End.X /)

0! Im.†�1�n�1/! ŒX;En�
�
!ˆnŒX;F �

�
! 0

which are formed by pullback along the natural surjection

ˆnŒX;F �
��ˆnŒX;F �

�=ˆnC1ŒX;F �
�

of the short exact sequence

0! Im.†�1�n�1/! Ker.�n/!ˆnŒX;F �
�=ˆnC1ŒX;F �

�
! 0:

Proof By definition, fn induces a surjection ŒX;En�
� � ˆnŒX;F �

� . Since level
n� 1 detection holds, the kernel coincides with the kernel of ŒX;En�

�
en
�!ŒX;En�1�

�

(as in the proof of Lemma 2.8) and hence identifies with the image of

ŒX; †�1Cn�1�
� †�1ın�1
������! ŒX;En�

�:

By level n detection, this image is detected in ŒX;Cn�
� , where it identifies with the

image of †�1�n�1 , by definition of the latter.

Lemma 2.6, using the level nC 1 detection hypothesis, implies that cn induces a
surjection ŒX;En�� Ker.�n/. Combining this with Proposition 2.9 shows that there
is a pullback square

ŒX;En�
� // //

����

ˆnŒX;F �
�

����
Ker.�n/ // // ˆnŒX;F �

�=ˆnC1ŒX;F �
�;

level n detection ensuring that ŒX;En�
� embeds into ˆnŒX;F �

� ˚ Ker.�n/. This
proves the final statement.

3 Functors

This section introduces the categories of functors which feature in the paper and the
objects which occur, using the notation of [11]. Let F denote the prime field with two
elements and consider the category of functors from finite-dimensional F –vector spaces
to abelian groups; this contains the category F of functors from finite-dimensional
F –vector spaces to F –vector spaces as a full subcategory. A functor is finite if it has a
finite composition series and locally finite if it is the colimit of its finite subobjects.
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In order to consider only covariant functors, vector space duality (denoted here by
V 7! V ] ) is used where appropriate.

Example 3.1 A basic example is provided by the functor V 7!HF�.BV ]/ of group
cohomology with F –coefficients (cohomology is always taken to be reduced; where
necessary, a disjoint basepoint .�/C is added). In degree n > 0, this identifies with
the nth symmetric power functor Sn , which is finite.

Notation 3.2 Denote by:

(1) xPZ2
the augmentation ideal of the Z2 –group ring functor Z2ŒV �.

(2) xPF the augmentation ideal of the F –group ring functor F ŒV �.

(3) xPn
Z2

(respectively xPn
F ) the nth power of the augmentation ideal xPZ2

(resp. xPF ),
which is understood as xPZ2

(resp. xPF ) for 0� n 2 Z.

(4) xIF the subfunctor of V 7! FV ] of maps which send 0 to zero.

(5) pn
xIF �

xIF the largest subfunctor of xIF of polynomial degree n.

Remark 3.3 .1/ The functor xIF is locally finite and uniserial; explicitly, xIF D

lim! pn
xIF and pn

xIF is finite, uniserial with composition factors ƒ1; : : : ; ƒn , where
ƒj is the j th exterior power functor, which is an object of F and is simple.

.2/ The functor xPF is dual to xIF and hence is uniserial and not locally finite (for
duality, see Kuhn [7] and the author [11]); the filtration by powers of the augmentation
ideal induces short exact sequences 0! xPnC1

F ! xPn
F !ƒn! 0, for 0< n 2 Z.

Notation 3.4 Let F;G be finite functors.

.1/ Write ŒF � for the element of the Grothendieck group of finite functors correspond-
ing to F , so that ŒF �D

P
� a�ŒS��, where a� 2N is the multiplicity of the simple S�

in F ; the function a.�/ has finite support and the graded associated to a composition
series of F is gr.F /Š

L
� S
˚a�
�

.

.2/ Write ŒF �� ŒG� if gr.F / is a direct summand of gr.G/. (This can be interpreted
as an inequality of multiplicities of composition factors.)

Example 3.5 For t 2N , there are equalities in the Grothendieck group:

(1) Œpt
xIF �D

tP
jD1

Œƒj �:

(2) Œ xPF= xP
tC1
F �D Œpt

xIF �:
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The following is clear:

Lemma 3.6 If F is a subquotient of a finite functor G , then ŒF �� ŒG�.

The following result gives information on the filtration by powers of the augmentation
ideal of xPZ2

.

Proposition 3.7 [11] For n 2 N , the canonical inclusion xPnC1
Z2

,! xPn
Z2

induces a
short exact sequence

0! xPnC1
Z2

,! xPn
Z2
! pn

xIF ! 0:

In particular, the cokernel of the inclusion xPnC1
Z2

,! xPZ2
is a finite functor and

Œ xPZ2
= xPnC1

Z2
�D

Pn
jD1Œpj

xIF �.

The 2–adic filtration of xPZ2
and its relationship with the filtration by powers of the

augmentation ideal is of importance; there is a short exact sequence

0! xPZ2

2
�! xPZ2

! xPF ! 0

which restricts (for n> 0) to the short exact sequence

0! xPn
Z2

2
�! xPnC1

Z2
! xPnC1

F ! 0:

ƒnC1

pn
xIF

xP nC2
F

Figure 1: A representation of the subfunctors xP n
Z2
� xP nC1

Z2
� xPZ2

This is illustrated by Figure 1, in which the bounding square represents xPZ2
, xPnC1

Z2

is bounded by the heavy line and the shaded region indicates 2 xPn
Z2
� xPnC1

Z2
, which

is isomorphic to xPn
Z2

. The region above the dotted line represents the inclusion

Algebraic & Geometric Topology, Volume 14 (2014)
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2 xPZ2
� xPZ2

, whereas the region above the dashed line represents xPnC2
Z2
� xPnC1

Z2
,

which restricts in the shaded region to the inclusion xPnC1
Z2
� xPn

Z2
. The indicated

functors represent the subquotients corresponding to the respective areas. Hence the
bottom row corresponds to the exact sequence 0! xPnC2

F ! xPnC1
F !ƒnC1! 0 and

the diagonal to 0! pn
xIF ! pnC1

xIF !ƒnC1! 0.

Definition 3.8 For F 2Ob F taking finite-dimensional values, the Poincaré series pF

is
pF .t/ WD

X
i�0

dim F.F i/t i :

The following general result concerning functors of F (taking values in F –vector
spaces) is used in Section 6 to deduce functorial information from Poincaré series.

Lemma 3.9 Let F 2 Ob F be finite and suppose that pF .t/ D
P1

iD0 "i

�
t
i

�
, with

"i 2 f0; 1g. Then "i has finite support and ŒF �D
P1

iD0 "i Œƒ
i �:

Proof The Poincaré series pF only depends upon ŒF �, hence the result is a conse-
quence of the fact that, for each natural number n, there is a unique simple functor S

in F such that S.F i/ is trivial for i <n and dim S.Fn/D 1, namely the exterior power
functor ƒn , together with the fact that dimƒn.Fd /D

�
n
d

�
. The finiteness hypothesis

on F clearly implies that "i has finite support.

4 Background on the spectra associated to K–theory

4.1 The tower associated to KU–theory

As usual, ku is written for KUh0i and Bott periodicity gives the isomorphisms
KUh2ni Š†2nku and KUh2nC 1i Š KUh2nC 2i, for n 2 Z, so that the associated
cofibre sequences (as in Section 2) are determined by

†2ku
v
�! ku!HZ!†3ku;

where v is multiplication by the Bott element, where KU� Š ZŒv˙1�.

The functorial description given in [11] is a consequence of the fact that detection
holds in the Postnikov tower of KU: the morphisms ku ! KU and ku ! HZ
induce a monomorphism ku�.BV ]/ ,! HZ�.BV ]/˚ KU�.BV ]/: (This property
was observed by Bruner and Greenlees in [4].) Integral cohomology HZ�.BV ]/

embeds in HF�.BV ]/ as the kernel of the Bockstein, hence there is a monomorphism
ku�.BV ]/ ,! HF�.BV ]/ ˚ KU�.BV ]/. The structure of these functors can be
described explicitly.

Algebraic & Geometric Topology, Volume 14 (2014)
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Notation 4.1 (cf [5]) Let Q� (respectively TU� ) denote the image (resp. kernel) of
ku�.BV ]/! KU�.BV ]/.

Recall that the Milnor derivations Q0;Q1 are given by Q0 D Sq1 , Q1 D ŒSq2;Sq1�.

Theorem 4.2 [11] Detection holds for the Postnikov tower of KU at all levels. In
particular, there is a natural short exact sequence

0! TU�! ku�.BV ]/!Q�! 0;

where

Qn
Š

8̂<̂
:

0 n odd,
xPd

Z2
nD 2d � 0;

xPZ2
nD 2d � 0;

and TU� identifies with the image of Q0Q1W HF��4.BV ]/!HF�.BV ]/.

4.2 The tower associated to KO–theory

Recall that
KO� Š ZŒ�; ˛; ˇ˙1�=.2�; �3; �˛; ˛2

� 4ˇ/;

where j�j D 1, j˛j D 4 and ˇ is the Bott element, with jˇj D 8. Bott periodicity gives
KOhnC 8i Š†8KOhni for n 2 Z; the spectrum KOh0i is denoted ko.

The Postnikov tower for KO can be deduced by Bott periodicity from

(3)

†8ko
'
// koh8i

��

// †8HZ

koh4i

��

// †4HZ

dd

Sq5

ZZ

koh2i

��

// †2HF

dd

Sq3

ZZ

koh1i

��

// †1HF

dd

Sq2

ZZ

ko // HZ:

ee
Sq2

ZZ

(The dashed and curved arrows have the usual degree shift.) The curved arrows are the
associated k–invariants; the cohomology operations are interpreted as in [5, Section A.5]
(see Remark 4.3 below).
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The associated diagram in mod-2 singular cohomology is well understood (cf [5, Sec-
tion A.5] or Adams and Priddy [2]); in particular, HF�

2
.kohni/ is a cyclic module

over the mod-2 Steenrod algebra A and the morphism in cohomology induced by
kohni !†nH.KOn/ is surjective. It follows that the curved arrows induce a periodic,
exact sequence of A–modules; this is the key exact sequence of Toda [14] used by
Stong in [13].

Remark 4.3 The operation denoted Sq5 in (3) is an integral lift of Sq2Sq1Sq2 . The
equivalence of the two descriptions follows from the Adem relation Sq5

DSq2Sq1Sq2
C

Sq4Sq1 , since Sq4Sq1 lifts trivially to integral cohomology.

Notation 4.4 Recall that A.1/ (respectively A.0/) is the finite sub-Hopf algebra
of A generated by Sq1;Sq2 (respectively Sq1 ) and A.1/==A.0/ is the induced A.1/–
module A.1/˝A.0/ F .

The Toda exact complex is induced from an exact complex E� of A.1/–modules by
applying the induction functor A˝A.1/�. The complex E� is the periodic extension of

(4)

†�4.A.1/==A.0//oo

A.1/==A.0/

Sq2Sq1Sq2

OO

†1A.1/
Sq2

oo †2A.1/
Sq2

oo †4.A.1/==A.0//
Sq3

oo

†8.A.1/==A.0//

Sq2Sq1Sq2

OO

oo

in which each morphism is of degree 1. On the level of objects E0 D A.1/==A.0/,
E1 D†

1A.1/, E2 D†
2A.1/ and E3 D†

4.A.1/==A.0//; for 0� i � 3 and k 2 Z,
E4kCi D†

8kEi .

For an A.1/–module M , HomA.1/.E�;M / is a periodic (up to suspension) cochain
complex of F –vector spaces, which is of the form

(5)

// †4 Ann.Sq1/M

Sq2Sq1Sq2

��
Ann.Sq1/M

Sq2

// †�1M
Sq2

// †�2M
Sq3

// †�4 Ann.Sq1/M;

Sq2Sq1Sq2

��

†�8 Ann.Sq1/M
//

where the morphisms are of degree 1.
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Example 4.5 The cochain complex HomA.1/.E�;HF�.BV ]// (V an elementary
abelian 2–group) is isomorphic to the complex obtained by applying Œ†1BV ];��

to the sequence of curved arrows of diagram (3). Hence, by the techniques of
Section 2, the homology of HomA.1/.E�;HF�.BV ]// is central to understanding
V 7! KOhni�.BV ]/.

In applying the methods of Section 2, it is natural to reindex in terms of the order of
the spectra in the Postnikov tower, rather than connectivity:

Notation 4.6 For an integer nD 4kC i , (i; k 2 Z such that 0� i � 3), write

KOfng WD†8kKOfig;

where
KOfig D

�
kohii 0� i � 2;

koh4i i D 3:

4.3 The complexification-realification sequences

Complex and orthogonal K–theories are related by the equivalence KU' KO^C�,
which restricts to ku ' ko ^ C� (cf [5], for example). This yields the morphism
between the associated complexification-realification cofibre sequences:

(6)

†ko
�
//

��

ko
c
//

��

ku
R
//

��

†2ko

��

†KO
�
// KO

c
// KU

R

// †2KO:

Notation 4.7 (cf [5]) Let QO� (respectively ST � ) denote the image (resp. kernel)
of ko�.BV ]/! KO�.BV ]/.

There are natural short exact sequences (recall the notation of Notation 4.1):

0 // ST � // ko�.BV ]/ // QO� // 0;

0 // TU� // ku�.BV ]/ // Q� // 0:

Hence, diagram (6) induces a short exact sequence of complexes

(7)

� � � // ST �C1
� //

��

ST �
c //

��

TU�
R //

��

ST �C2 //

��

� � �

� � � // ko�C1.BV ]/
� //

��

ko�.BV ]/
c //

��

ku�.BV ]/
R //

��

ko�C2.BV ]/ //

��

� � �

� � � // QO�C1
�

// QO�
c

// Q�
R

// QO�C2 // � � �
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in which the middle complex is exact.

The top row can be considered as an exact couple, as in the Appendix; in particular,
there is an associated Bockstein operator: B�W TU�! TU�C2 . By Theorem 4.2, TU�

identifies explicitly as a subfunctor of HF�.BV ]/.

Proposition 4.8 [5] There is a natural commutative diagram

TU�
B�

//
� _

��

TU�C2
� _

��

HF�.BV ]/
Sq2

// HF�C2.BV ]/:

5 Cohomology of elementary abelian 2–groups

The results of this section are formulated in the category of bounded-below A.1/–
modules of finite type, which is abelian, closed under tensor products and has projective
covers.

Notation 5.1 For M an A.1/–module, let �M denote the first syzygy of M , namely
the kernel of the surjection PM � M from the projective cover of M . By convention,
�0M DM and, for n 2N , �nM is defined by iteration.
Notation 5.2 (1) Let P denote the reduced F –cohomology of BZ=2, which iden-

tifies with the augmentation ideal F2Œu� of HF�.BZ=2C/Š F Œu�.
(2) Let R denote the A.1/–module defined by the nonsplit extension 0! P !

R!†�1F ! 0 (cf [5, Section A.9]).
(3) Let P0 denote the A.1/–module defined by the nonsplit extension 0! F !

P0!R! 0.
Remark 5.3 (1) There is an isomorphism P Š†�1�P0 [3].

(2) The module P is Q0 –acyclic and R is Q1 –acyclic.
(3) The modules P0 and †R are stably idempotent [3].

Proposition 5.4 [3] For n 2 N , there is an isomorphism in the category of A.1/–
modules: P˝nC1 Š Fn˚†

�n�nP; where Fn is a free A.1/–module.

Proof (Indications) The proof is by induction upon n, starting with the case nD 0. It
is clear that P˝n is Q0 –acyclic; hence, by the criterion for A.1/–freeness in terms of
vanishing of Margolis homology (see Adams and Margolis [1]), P˝n˝R is A.1/–free.
The result follows by considering the short exact sequence

P˝n
˝ .P !R!†�1F/:
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Corollary 5.5 For an elementary abelian 2–group V of finite rank, there is a (non-
functorial) isomorphism of A.1/–modules

HF�.BV ]/Š FV ˚

M
i�1

.ƒi.V /˝†�i�iP /;

where ƒi.V / is concentrated in degree zero and FV is a free A.1/–module.

Proof This is a straightforward consequence of Proposition 5.4 and of the Künneth
theorem applied to BV ] ' .BZ=2/� rank.V / .

Remark 5.6 The functoriality with respect to V can be analysed by introducing a
filtration and considering the associated graded object. This is not required here, since
Lemma 3.9 can be applied in the case of interest.

6 Functorial cohomology calculations

The abstract detection results of Section 2 are applied to prove Proposition 6.7, which
gives a lower bound for the image of

KOhni�.BV ]/! KO�.BV ]/:

This relies upon calculating the cohomology of HomA.1/.E�;HF�.BV ]//: Since
projective A.1/–modules are also injective (cf Margolis [8, Chapter 12, Section 2]), this
reduces to the calculation of the cohomology of HomA.1/.E�; †

�n�nP /; for n 2N ,
by Corollary 5.5. This can be reduced further to the calculation of the cohomology of
HomA.1/.E�;P /, by the following result.

Proposition 6.1 Let M be an A.1/–module which is bounded below, of finite-type
and Q0 –acyclic. Then there is a natural isomorphism

H n.HomA.1/.E�; †
�1�M //ŠH n�1.HomA.1/.E�;M //

of graded vector spaces.

Proof Since M is Q0 –acyclic, applying the functor HomA.1/.E�;�/ to the short
exact sequence �M ! PM !M yields an exact sequence of cochain complexes

0! HomA.1/.E�; �M /! HomA.1/.E�;PM /! HomA.1/.E�;M /! 0;

as seen as follows. The only nonprojective terms of E� are suspensions of A.1/==A.0/;
since HomA.1/.A.1/==A.0/;�/ is naturally isomorphic to HomA.0/.F ;�/, the fact
that �M ! PM !M restricted to A.0/ splits (since M is Q0 –free, by hypothesis)
implies the exactness.
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The projective cover PM is also injective as an A.1/–module, thus the middle complex
is acyclic and the associated long exact sequence in cohomology provides the stated
isomorphism. The shift in degree corresponding to the †�1 arises from the degree of
the morphisms in E� .

Lemma 6.2 The cohomology of HomA.1/.E�;P / has Poincaré series given by

i H 4kCi
�
HomA.1/.E�;P /

�
0 t�8k

�
t4

1�t4

�
1 t�8k

�
1

1�t4

�
2 t�8k

�
t�1C

1
1�t4

�
3 t�8k

�
t�2C

1
1�t4

�
for integers k , 0 � i � 3. In particular, in any given cohomological and internal
bidegree, the cohomology is at most one-dimensional.

Proof By periodicity (up to suspension) of E� , it suffices to calculate the cohomology
of the following cochain complex:

// †4F Œu2�

Sq2Sq1Sq2

��

F Œu2�
Sq2

// †�1F Œu�
Sq2

// †�2F Œu�
Sq3

// †�4F Œu2�

Sq2Sq1Sq2

��

†�8F Œu2� //

The behaviour of the Steenrod operations on un depends on the congruence class of n

modulo 4; Sq2.un/ is nonzero if and only if n� 2; 3 .mod 4/, Sq3.un/ is nonzero if
and only if n� 3 .mod 4/ and the operation Sq2Sq1Sq2 is identically zero on F Œu2�.

It follows that the cohomology of the middle row is given by the classes

cohomological degree

0 u4.kC1/

1 †�1u4kC1

2 †�2u; †�2u4kC2

3 †�4u2; †�4u4.kC1/

where k 2N .
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Remark 6.3 The identification given in Example 4.5 and the application of the detec-
tion arguments of Section 2 imply that the cohomological degree n above corresponds
to classes from KOfng–cohomology; this notation is adopted below.

From this, the cohomology V 7!H�.HomA.1/.E�;HF�.BV ]/// can be deduced. The
calculation is summarised in Proposition 6.4 and illustrated in Table 1.

KOf�3g KOf�2g KOf�1g KOf0g KOf1g KOf2g KOf3g KOf4g

�4 Œp1
xIF �

�3

�2 Œƒ1� Œƒ2�

�1 Œƒ1� Œƒ2� Œƒ3�

0 Œp1
xIF � Œp2

xIF � Œp3
xIF � Œp4

xIF �

1

2

3

4 Œp1
xIF � Œp2

xIF � Œp3
xIF � Œp4

xIF � Œp5
xIF �

5

6 Œƒ1� Œƒ2� Œƒ3� Œƒ4� Œƒ5� Œƒ6�

7 Œƒ1� Œƒ2� Œƒ3� Œƒ4� Œƒ5� Œƒ6� Œƒ7�

8 Œp1
xIF � Œp2

xIF � Œp3
xIF � Œp4

xIF � Œp5
xIF � Œp6

xIF � Œp7
xIF � Œp8

xIF �

etc � � � � � � � � � � � � � � � � � � � � � � � �

Table 1: The Grothendieck group interpretation of the cohomology of
HomA.1/.E�;HF�.BV ]//

Proposition 6.4 The nonzero values in the Grothendieck group of the functor V 7!

H�.HomA.1/.E�;HF�.BV ]/// are given in bidegree KOfngd , for l 2 Z, by:

d KOfng

8l ŒpnC4l
xIF �

8l C 4 ŒpnC4lC1
xIF �

8l C 6 ŒƒnC4lC1�

8l C 7 ŒƒnC4lC2�

Proof The result follows from Lemma 6.2, Corollary 5.5 and Proposition 6.1. For
instance, the occurrence of the composition factors ƒ1 is given by Lemma 6.2; the
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décalage provided by Proposition 6.1 then shows that each factor of ƒ1 gives rise to a
factor of ƒ2 to the right in Table 1 and this pattern continues.

The proof that the result holds as a statement in the Grothendieck group is a straight-
forward application of Lemma 3.9.

Definition 6.5 For n 2 Z, define graded functors

C fng�W V 7! CokerfKOfng�.BV ]/! KO�.BV ]/g;

QOfng�W V 7! ImfKOfng�.BV ]/! KO�.BV ]/g:

In the notation of Proposition 2.9, ˆnŒBV ];KO�� D QOfng� ; also QOf0g� D QO�

of Notation 4.7.

Lemma 6.6 For n 2 Z, there is a natural short exact sequence

0! QOfn� 1g�=QOfng�! C fng�! C fn� 1g�! 0

and, in a fixed degree d , C fngd admits a finite filtration with associated graded objectM
j<n

QOfj gd=QOfj C 1gd :

Proof By definition, there is a short exact sequence of graded functors

0! QOfng�! KO�.BV ]/! C fng�! 0:

The inclusion QOfng� ,! QO�fn� 1g induces the stated short exact sequence. The
second statement follows recursively, using the observation that, in a fixed degree d ,
C fngd D 0 for n� 0.

Proposition 6.7 For n; d 2Z, C fngd is a finite functor. Moreover, there are inequali-
ties in the Grothendieck group

ŒC fngd ��

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

4lCn�1P
sD1

Œps
xIF �D

�
xPZ2

= xP4lCn
Z2

�
d D 8l;

4lCnP
sD1

Œps
xIF �D

�
xPZ2

= xP4lCnC1
Z2

�
d D 8l C 4;

4lCnC1P
sD1

Œƒs �D
�
xPF= xP

4lCnC2
F

�
d D 8l C 6;

4lCnC2P
sD1

Œƒs �D
�
xPF= xP

4lCnC3
F

�
d D 8l C 7;
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and, in the remaining cases, C fngd D 0.

In a fixed degree d , equality holds if and only if, for all j < n,

QOfj gd=QOfj C 1gd Š Ker.�j /d= Im.†�1�j�1/
d :

Proof The stated equalities in the Grothendieck group follow from Proposition 3.7
and Example 3.5.

Lemma 6.6 gives ŒC fngd � D
P

j<nŒQOfj gd=QOfj C 1gd �; hence, to prove the in-
equality, it suffices to give an upper bound for ŒQOfj gd=QOfj C1gd �; this is provided
by Lemma 3.6.

Proposition 2.9 implies that QOfj gd=QOfj C 1gd is a subquotient of

Ker.�j /d= Im.†�1�j�1/
d

and the value of the latter in the Grothendieck group is given by Proposition 6.4; this
proves the inequalities.

Finally, since the functors involved are finite, equality holds in degree d if and only
QOfj gd=QOfj C 1gd Š Ker.�j /d= Im.†�1�j�1/

d for all j < n.

7 An Sq2–homology calculation

Recall that TU� identifies as the image of the iterated Milnor operation

Q0Q1W HF��4.BV ]/!HF�.BV ]/:

Proposition 4.8 implies that the operation Sq2 induces a complex

� � � ! TU��2 Sq2

��! TU�
Sq2

��! TU�C2
! � � � :

The work of Bruner and Greenlees [5] on the ko–(co)homology of elementary abelian
2–groups shows the importance of the calculation of the homology of this complex.
In [5, Proposition 9.7.2], they calculate the homology and their result can be interpreted
as a functorial calculation.

The purpose of this section is to show that the methods employed in Section 6 provide
an alternative, direct proof. However, it is no longer possible to reduce to a calculation
involving only P , since there is no analogue of Proposition 6.1 in this case. Thus
further precision is required on the structure of the A.1/–modules †�n�nP .
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Notation 7.1

(1) For n 2N , let Pn denote the A.1/–module †�n�nP0 , so that P1 D P .

(2) Let J denote the A.1/–module †�2A.1/=.Sq1Sq2/.

The module J is an element of the stable Picard group of A.1/–modules of order 2,
namely J ˝J Š F ˚F , where F is free (cf [2]).

Theorem 7.2 [3; 15] For n2N , there is an isomorphism of A.1/–modules PnC4Š

†8Pn .

Remark 7.3 The periodicity can be seen by establishing that there is an isomorphism
of A.1/–modules P0 ˝ J Š †�4P2 ˚ F 0; where F 0 is free. It follows also that
P ˝J Š†�4P3˚F 00 for a free A.1/–module F 00 .

Proposition 7.4 For n 2 Z,

KerfSq2
W TUn

! TUnC2
g= ImfSq2

W TUn�2
! TUn

g Š

8<:
ƒ4kC2 nD 8kC 6;

ƒ4kC3 nD 8kC 7;

0 otherwise:

Proof Consider the isomorphism HF�.BV ]/Š FV ˚
L

i�1ƒ
i.V /˝Pi in A.1/–

modules, where FV is a free A.1/–module (bounded below, of finite type); the
Sq2 –complex splits as a corresponding direct sum. Using the periodicity isomorphism
for the Pi ’s given by Theorem 7.2, this reduces the calculation of the Sq2 –homology
evaluated upon V ] to the calculation of the respective homologies for the A.1/–
modules: A.1/;P0;P1;P2;P3:

(1) The image of Q0Q1 applied to A.1/ has two classes, which are linked by the
operation Sq2 , hence the free summand contributes nothing to the homology.

(2) By inspection, the operation Q0Q1 acts trivially upon P0 and P1 , hence these
contribute nothing to the Sq2 –homology.

(3) The structure of P2 , P3 is described explicitly in [3; 15]. The relevant part
of the structure can be understood using Remark 7.3; the nontrivial morphism
F ,! P0 induces an embedding †4J ,! P2 and the surjection P ! †F
induces a surjection P3 �†5J . Upon restricting to the subalgebra E.1/ WD

ƒ.Q0;Q1/�A.1/, this gives isomorphisms

P2jE.1/ Š†
2E.1/˚L2;

P3jE.1/ Š†
3E.1/˚L3;

where L2;L3 are indecomposable E.1/–modules on which Q0Q1 acts trivially.
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Thus, for both P2 and P3 , the image of Q0Q1 is a single class and Sq2 acts
trivially on the associated complex. Explicitly, for P2 , the Sq2 –homology
is 1–dimensional, concentrated in degree 6 and, for P3 , is 1–dimensional,
concentrated in degree 7.

Lemma 3.9 implies that these classes correspond to the simple functors ƒ2 and ƒ3

in degrees 6 and 7 respectively. The general result follows, by using the periodicity
given by Theorem 7.2.

8 Detection for ko

This section determines the functorial structure of ko�.BV ]/ as a first step towards
the determination of KOhni�.BV ]/; the arguments use the abstract detection result,
Proposition 2.9, which depends upon understanding the image of KOhni�.BV ]/!

KO�.BV ]/.

In degrees which are multiples of four, a direct approach treating all the cases si-
multaneously is possible, using the fact that KO�.BV ]/! KU�.BV ]/ is injective
in these degrees, so that the known structure of ku�.BV ]/ can be used to provide
an upper bound for the image of KOhni�.BV ]/, which can be played off against
the lower bound provided by Proposition 6.7. In the remaining degrees in which
KO�.BV ]/ is nontrivial (those congruent to 6; 7 .mod 8/), the map to KU�.BV ]/ is
zero, hence this strategy cannot be applied. Instead, a Bockstein argument derived from
the complexification-realification cofibre sequence of Section 4.3 is used.

The KO–cohomology KO�.BV ]/ can be deduced from the case of KU, which is
concentrated in even degrees, where KU2d .BV ]/Š xPZ2

.V / (see [11] and compare
Theorem 4.2), by using the long exact sequence associated to

†KO
�
�! KO

c
�! KU

R
�!†2KO:

Proposition 8.1 (cf [5]) There are isomorphisms

KO8kCl.BV ]/Š

8̂̂̂̂
<̂̂
ˆ̂̂̂:

xPF l D 7;

xPF l D 6;

xPZ2
l D 4;

xPZ2
l D 0;

0 otherwise.

(1) Complexification cW KO8kCl.BV ]/! KU8kCl.BV ]/ is zero unless we have
l � 0 .mod 4/ ; for l D 0 it is an isomorphism and, for l D 4, xPZ2

2
,! xPZ2

.
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(2) Realification RW KU8kCl�2.BV ]/!KO8kCl.BV ]/ is zero unless l 2f0; 4; 6g;
for l D 0 it is xPZ2

2
,! xPZ2

, for l D 4 is an isomorphism and for l D 6, it is the
surjection xPZ2

� xPF .

(3) Multiplication by �, KO�.BV ]/
�
�! KO��1.BV ]/, is zero except for

KO8.kC1/.BV ]/Š xPZ2

�
// //KO8kC7.BV ]/Š xPF

�

Š

//KO8kC6.BV ]/Š xPF :

The key to the calculation of ko�.BV ]/ is the short exact sequence of complexes (7)
of Section 4.3. Recall the functors Q�;QO� of Notation 4.1 and 4.7.

Proposition 8.2 For k 2 Z, there are isomorphisms

QO8kCl
Š

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

xP4kC3
F l D 7;

xP4kC2
F l D 6;

xP4kC1
Z2

l D 4;

xP4k
Z2

l D 0;

0 otherwise.

Moreover, the complexification QO8kCl c
�!Q8kCl is zero unless l � 0 .mod 4/, the

map QO8k c
�!Q8k is an isomorphism and the map QO8kC4 c

�!Q8kC4 is the inclusion

xP4kC1
Z2

,! xP4kC2
Z2

:

The complex � � � ! QO�C1 �
�! QO�

c
�!Q�

R
�! � � � is exact, except for the segments

QO8kC7
�
// QO8kC6

c
// Q8kC6

R
// QO8.kC1/

�
// QO8kC7

c
// Q8kC7

xP4kC3
F

� � // xP4kC2
F

0

//

��
��

xP4kC3
Z2

� � // xP4kC4
Z2

// xP4kC3
F

0

//

��
��

0

0 ƒ4kC2 0 0 ƒ4kC3 0;

where the homology is given by the bottom line, with the corresponding surjections
indicated by the dotted arrows.

Proof The morphism KO�.BV ]/
c
�! KU�.BV ]/ induces an inclusion

QO8kC4" ,!QU 8kC4"
Š xP4kC2"

Z2
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for " 2 f0; 1g. This gives

QO8k
� xP4k

Z2
;

QO8kC4
� xP4kC1

Z2
Š .2 xPZ2

/\ xP4kC2
Z2

;

as upper bounds and the inclusions QO8kC4" ,! KO8kC4".BV ]/ correspond respec-
tively to

QO8k ,! xP4k
Z2
,! xPZ2

;

QO8kC4 ,! xP4kC1
Z2

,! xPZ2
:

A comparison between the cokernels of xP4k
Z2
,! xPZ2

(respectively xP4kC1
Z2

,! xPZ2
) and

the bounds provided by Proposition 6.7 shows that the inequalities are isomorphisms,
by Proposition 3.7.

In the remaining nontrivial cases, in degrees congruent to 6; 7 .mod 8/, an upper bound
is obtained by appealing to the general method of the Appendix, as follows.

Multiplication by � gives the commutative diagram

QO8.kC1/
�

//

Š

��

QO8kC7
� _

��
xP

4.kC1/
Z2

� � // xPZ2
// // xPF ;

which identifies the image of QO8.kC1/ in QO8kC7 as xP4.kC1/
F .

The complexes

QO8.kC1/ �
�! QO8kC7

!Q8kC7
D 0;

QO8kC7 �
�! QO8kC6 0

�!Q8kC6;

(where the last morphism is zero, since Q8kC6 takes values in torsion-free abelian
groups and QO8kC6 is torsion) have homology appearing as a subquotient of the simple
functors ƒ4kC3 and ƒ4kC2 respectively, by Lemma A.1, using Proposition 7.4 and
the shift in homological degrees associated to the short exact sequence of complexes
(7) of Section 4.3. This provides the upper bounds

QO8kC7
� xP4kC3

F ;

QO8kC6
� xP4kC2

F ;
(8)

where both are equalities if QO8kC6
D xP4kC2

F .
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Realification

xP4kC2
Z2

ŠQ8kC4
R

//
� _

��

QO8kC6
� _

��
xPZ2
Š KU8kC4.BV ]/ // // KO8kC6.BV ]/Š xPF

gives a lower bound of xP4kC2
F for QO8kC6 , whence it follows that both the inequalities

in (8) are equalities.

Finally, using the structure of the functors xP t
F and xP t

Z2
(as reviewed in Section 3), it

is straightforward to calculate the homology of the complex

� � � ! QO�C1 �
�! QO�

c
�!Q�

R
�! � � � :

Corollary 8.3 Detection holds for ko–cohomology of elementary abelian 2–groups:
the morphisms ko! KO and ko!HZ induce a natural monomorphism

ko�.BV ]/ ,!HZ�.BV ]/˚KO�.BV ]/:

The functor ST � is the image of Sq2
W TU��2

!TU� and �W ST �C1!ST � is trivial.

Proof By applying the long exact sequence in homology associated to the short exact
sequence of complexes (7) of Section 4.3, Proposition 8.2 implies that the exact couple
� � � ! ST �C1! ST �! TU�! � � � has homology concentrated at the TU� term,
where it coincides with the Bockstein homology.

Therefore Proposition A.2 applies; it follows that ST �! TU� is a monomorphism
and that ST � is the image of the operator TU��2

! TU� , which is induced by Sq2 ,
by Proposition 4.8.

To show detection for ko, it suffices to show that ST � maps monomorphically to
HZ�.BV ]/. By the above, ko�.BV ]/!ku�.BV ]/ induces an injection ST �,!TU� ,
and the composite TU�! ku�.BV ]/!HZ�.BV ]/ is a monomorphism, by detection
for ku (Theorem 4.2), hence the result follows.

9 Detection for KOhni

Throughout this section, the reindexing of the spectra KOhni introduced in Notation 4.6
is used; for example, as in Definition 6.5, QOfng is the image of KOfng.BV ]/ in
KO.BV ]/. Similarly, �n denotes the stable cohomology operation derived from the
Postnikov tower of KO, as in Section 2.
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Theorem 9.1 For each n2Z, detection of level n with respect to the family of spectra
f†1B.Z=2/˚d j 1� d 2 Zg holds for the Postnikov tower KOfng.

Proof The result follows from the general result on detection, Proposition 2.9. Using
the notation of the proposition, the functorial homology Ker.�n/= Im.†�1�n�1/ is a
finite functor in each degree, hence to prove weak detection at each level, it is sufficient
to show that the filtration quotient ˆnŒBV ];KO��=ˆn�1ŒBV ];KO�� is abstractly iso-
morphic to Ker.�n/= Im.†�1�n�1/, for each n. Here, by definition ˆnŒBV ];KO�� is
the graded functor QOfng.

Proposition 8.2 establishes that the inequalities of Proposition 6.7 are equalities for
nD 4m, m 2 Z. To conclude, one argues as in Proposition 6.7: Lemma 6.6 provides
the equality

ŒkerfC f4.mC 1/g�� C f4mg�g�D

4mC3X
jD4m

ŒQOfj g�=QOfj C 1g��(9)

�

4mC3X
jD4m

ŒKer.�j /�= Im.†�1�j�1/
��

and Proposition 2.9 provides the inequality. As explained above, the left-hand side is
determined by Proposition 6.7 and coincides with the lower term (9), by Proposition 6.4;
the functors occurring are finite in each degree, so the inequality is in fact an equality.
Hence, the final statement of Proposition 6.7 provides the required isomorphism, thus
proving weak detection.

Finally, Lemma 2.5 establishes detection at each level, since detection has been proved
for ko by Corollary 8.3, hence holds by Bott periodicity for all of the theories KOf4sg,
s 2 Z.

From this one derives the explicit description of the functors KOfng�.BV ]/, in partic-
ular recovering the results of [5] for ko.

Corollary 9.2 For n 2 Z, there is a natural short exact sequence

0! Im.†�1�n�1/! KOfng�.BV ]/! QOfng ! 0;

which is determined as a pullback of the short exact sequence associated to the quotient
Ker.�n/= Im.†�1�n�1/, by Theorem 2.10.

The nonzero functors QOfig8kCl , for 0� i � 3 and 0� l � 7, are given by
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i 8k 8kC 4 8kC 6 8kC 7

0 xP4k
Z2

xP4kC1
Z2

xP4kC2
F

xP4kC3
F

1 xP4kC1
Z2

xP4kC2
Z2

xP4kC3
F

xP
4.kC1/
F

2 xP4kC2
Z2

xP4kC3
Z2

xP
4.kC1/
F

xP
4.kC1/C1
F

3 xP4kC3
Z2

xP
4.kC1/
Z2

xP
4.kC1/C1
F

xP
4.kC1/C2
F

which determines the functors QOfng, for all n 2 Z, by Bott periodicity.

The subfunctors Im.†�1�n/ are given for 0� n� 3 by

n Im.†�1�n/

0 ImfHZ��5.BV ]/
Sq2Sq1Sq2

�������!HZ�.BV ]/g

Š ImfHF��6.BV ]/
Sq2Sq2Sq2

�������!HF�.BV ]/g

1 ImfHZ��1.BV ]/
Sq2

��!HZ�C1.BV ]/g

Š ImfHF��2.BV ]/
Sq2Sq1

����!HF�C1.BV ]/g

2 ImfHF�.BV ]/
Sq2

��!HF�C2.BV ]/g

3 ImfHF�C1.BV ]/
Sq3

��!HF�C4.BV ]/g

which extends to all integers n by Bott periodicity.

Proof The short exact sequence is provided by Proposition 2.9 and Theorem 2.10, as
a consequence of detection established in Theorem 9.1.

The identification of the functors QOfig is a straightforward consequence of the
equalities derived from Proposition 6.7 in the proof of Theorem 9.1 above, using the
structure of the functors xP t

Z2
reviewed in Section 3.

Appendix: General Bockstein results

Fix an exact couple in an abelian category, considered as a complex of the form

� � � !DnC1 inC1

���!Dn qn

�!En @n

�!DnC2
! � � � :

The associated Bockstein-type operator (the differential associated to the exact couple)
is BnW En!EnC2 , defined by Bn WD qnC2 ı @n .

The following is clear:

Lemma A.1 For n 2 Z,

Im.Bn�2/� Im.qn/� Ker.@n/� Ker.Bn/;

Algebraic & Geometric Topology, Volume 14 (2014)
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hence H n WD Ker.@n/= Im.qn/ is a subquotient of H n
B WD Ker.Bn/= Im.Bn�2/.

Moreover if H n
B has a finite composition series, then H n Š H n

B if and only if
Im.Bn�2/D Im.qn/ and Ker.Bn/D Ker.@n/.

This is applied in the following basic result.

Proposition A.2 Suppose that the exact couple D�C1 i
�!D�

q
�!E�

@
�!D�C2 satisfies

the following hypotheses:

(1) Dn D 0 for n� 0.

(2) The complex is exact except at the terms En , where the homology H n coincides
with H n

B .

(3) H n
B has a finite composition series, for all n 2 Z.

Then in D 0 for all n 2 Z and the complex decomposes as complexes of the form

Dn ,!En � DnC2:

In particular, Dn identifies with the image of the operator Bn�2 .

Proof The result follows by an increasing induction upon n, using the hypothesis
Dn D 0 for n� 0 for the initial step.

Suppose that inW Dn!Dn�1 is zero. Exactness of En�2 @n�2

���!Dn in

�!Dn�1 implies
that @n�2 is an epimorphism; the hypothesis H n

BDH n gives Ker.Bn�2/DKer.@n�2/,
by Lemma A.1.

Using this fact, inspection of

En�2

Bn�2

""
@n�2

��
��

DnC1

inC1

// Dn

qn

// En

shows that qn is a monomorphism and exactness of DnC1 inC1

���!Dn
qn

�! T n implies
that inC1W DnC1!Dn is zero. Finally, the above identifies the image of Dn in En

with the image of Bn�2 . This completes the inductive step.

Remark A.3 The proof only requires that Ker.Bn�2/D Ker.@n�2/; for the applica-
tion, the equivalent homological formulation is convenient.
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