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The growth function of Coxeter dominoes
and 2–Salem numbers

YURIKO UMEMOTO

By the results of Cannon, Wagreich and Parry, it is known that the growth rate of
a cocompact Coxeter group in H2 and H3 is a Salem number. Kerada defined a
j –Salem number, which is a generalization of Salem numbers. In this paper, we
realize infinitely many 2–Salem numbers as the growth rates of cocompact Coxeter
groups in H4 . Our Coxeter polytopes are constructed by successive gluing of Coxeter
polytopes, which we call Coxeter dominoes.

20F55; 20F65, 11K16

1 Introduction

Let Hn denote hyperbolic n–space. A Coxeter polytope P �Hn is a convex polytope
of dimension n whose dihedral angles are all of the form �=m, where m � 2 is an
integer. By a well-known result, the group W generated by reflections with respect
to the hyperplanes bounding P is a discrete subgroup of the isometry group of Hn

whose fundamental domain is P , and W itself is called a hyperbolic Coxeter group.
If P is compact, W is called cocompact.

As typical quantities related to Coxeter groups, the growth series and their growth
rates have been studied. The growth series is a formal power series (see (3-1)), and
Steinberg [22] proved that the growth series of an infinite Coxeter group is an expansion
of a rational function (see (3-4)). As a result, the growth rate (see (3-2)), which is
defined as the reciprocal of the radius of convergence of the growth series, is an
algebraic integer.

The focus of this work is on arithmetic properties of the growth rates of cocompact
hyperbolic Coxeter groups. Cannon and Wagreich [2] and Parry [15] proved that
the growth rates of cocompact hyperbolic Coxeter groups in H2 and H3 are Salem
numbers. Here a Salem number is defined as a real algebraic integer ˛ > 1 such that
˛�1 is an algebraic conjugate of ˛ and all algebraic conjugates of ˛ other than ˛ and
˛�1 lie on the unit circle. This definition includes quadratic units as Salem numbers,
while the ordinary definition does not (see Section 3.2). We remark that the growth
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rates of cocompact hyperbolic Coxeter groups in H4 are not Salem numbers in general
(see [7]).

As a kind of generalization of a Salem number, Kerada [9] defined a j –Salem number.
In [25], T Zehrt and C Zehrt constructed infinitely many growth functions of cocompact
hyperbolic Coxeter groups in H4 , whose denominator polynomials have the same
distribution of roots as 2–Salem polynomials. More precisely, their Coxeter polytopes
are the Coxeter garlands in H4 built by the compact truncated Coxeter simplex described
by the Coxeter graph on the left side in Figure 1 (cf [25, Figure 1]). This polytope is
constructed from the extended Coxeter simplex (see Section 4.1) with two ultraideal
vertices described by the Coxeter graph on the right side in Figure 1.
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Figure 1: The Coxeter graphs of the compact truncated Coxeter 4–simplex
and its underlying extended 4–simplex

Inspired by the work mentioned above, in the main result of this paper, we realize
infinitely many 2–Salem numbers as the growth rates of hyperbolic Coxeter groups in
H4 as follows.

We focus on the compact Coxeter polytope T �H4 , whose Coxeter graph is on the
left side in Figure 2, and which was first described by Schlettwein [19]. The nodes
of the graph describe the facets of the Coxeter polytope, and the non-dotted edges
describe the dihedral angles formed by two intersecting facets (see Section 2).

This polytope is constructed from the extended Coxeter simplex of dimension 4 with all
vertices outside of H4 , whose Coxeter graph is on the right side in Figure 2, as follows
(see Section 4.1 and Section 4.2). We truncate all vertices of this simplex and replace
them by facets orthogonal to all facets intersecting them, which we call orthogonal
facets (see Section 4). This construction yields the compact Coxeter polytope T . This
kind of construction is explained by Vinberg [23, Proposition 4.4], for example. Since
we can glue many copies of this along isometric orthogonal facets, T is the building
block for infinitely many compact Coxeter polytopes, which we call Coxeter dominoes
(see Figure 3). Note that each orthogonal facet of T is one of the three types A, B

and C (see Section 5.1), and type C arises only once.
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Figure 2: The Coxeter graphs of the compact totally truncated Coxeter 4–
simplex T and its underlying extended 4–simplex
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Figure 3: A Coxeter domino T and Coxeter dominoes

Then we prove that all cocompact hyperbolic Coxeter groups with respect to Coxeter
dominoes built by T �H4 have growth functions whose denominator polynomials
Q`;m;n.t/ satisfy the following property: all the roots of Q`;m;n.t/ are on the unit
circle except two pairs of real roots (see Theorem 2). Finally, we prove our main result,
providing infinite families whose growth rates are 2–Salem numbers under certain
restrictions for .`;m; n/.

For the calculation of the growth functions of Coxeter dominoes, we adapt the formula
developed by T Zehrt and C Zehrt [25] (see Proposition 3), which allows us to compute
all the growth functions of such infinite families at once (see Corollary 1). For the
study of the denominator polynomials, we use the adaption of Kempner’s result [8]
to palindromic polynomials, due to T Zehrt and C Zehrt, about the distribution of the
roots of the polynomials. To show the irreducibility of denominator polynomials, we
analyze various cases by elementary arithmetic (cf Theorem 3).

The paper is organized as follows. In Section 2, we review hyperbolic spaces and
hyperbolic Coxeter groups. In Section 3.1, we collect some basic results of the growth
functions and growth rates of Coxeter groups, and in Section 3.2, we introduce 2–Salem
numbers and their properties. In Section 4, we describe the compact totally truncated
Coxeter simplex T in H4 giving rise to Coxeter dominoes. Finally, in Section 5, we
state and prove the main theorem. For the sake of completeness, consider the Coxeter
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garland associated to the Coxeter domino on the left side in Figure 1 (see [25]). By
using the same ideas, it can be shown that the growth rates of the resulting Coxeter
groups provide infinitely many distinct 2–Salem numbers as well. We omit the details.
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2 Cocompact hyperbolic Coxeter groups

2.1 Hyperbolic convex polytopes

Let Rn;1 be the real vector space RnC1 equipped with the Lorentzian inner product

x ıy WD x1y1C � � �Cxnyn�xnC1ynC1;

where x D .x1; : : : ;xnC1/, y D .y1; : : : ;ynC1/ 2 RnC1 . A vector x 2 Rn;1 is
space-like (resp. light-like, time-like) if x ıx > 0 (resp. x ıx D 0, x ıx < 0). The set

C WD fx 2Rn;1
j x ıx D 0g

is a cone in RnC1 formed by all light-like vectors. Space-like vectors lie outside C

and time-like vectors lie inside C . The set

Hn
WD fx D .x1; : : : ;xnC1/ 2Rn;1

j x ıx D�1;xnC1 > 0g

is a hyperboloid lying inside the upper half of C and is called hyperbolic n–space
when equipped with the metric

cosh dH.x;y/ WD �x ıy:

A nonempty subset H �Hn is a hyperplane of Hn if there exists an n–dimensional
vector subspace V �RnC1 such that H D V \Hn . It is equivalent to say that V is a
time-like subspace of Rn;1 , that is, V contains a time-like vector. So we can represent
V by the Lorentzian orthogonal complement eL WD fx 2Rn;1 j x ı e D 0g for some
unit space-like vector e 2Rn;1 (see Ratcliffe [16, Exercise 3.1, Number 10]). Hence
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H D eL\Hn and we often use the notation �H WD eL . In a similar way, we denote
by .eL/� WD fx 2 Rn;1 j x ı e � 0g the half space of Rn;1 bounded by �H , and put
H� WD .eL/�\Hn and �H� WD .eL/� .

A convex polytope P �Hn of dimension n is defined by the intersection of finitely
many closed half spaces of Hn ,

(2-1) P D
\
i2I

H�i ;

containing a nonempty open subset of Hn . We remark that Hi D eL
i \Hn for a unit

space-like vector ei 2Rn;1 such that ei is directed outwards with respect to P . We
always assume that for any proper subset J ¨ I , P ¨

T
j2J H�j is satisfied. For a

subset J � I , the nonempty intersection F WD P \ .
T

j2J Hj / is called a face of
P . Observe that F itself can be considered as a convex hyperbolic polytope of some
dimension. A face F � P of dimension n� 1, 1 or 0 is called a facet, edge or vertex
of P respectively.

The mutual disposition of hyperplanes bounding P is as follows (cf [16, pages 67–71;
23, page 41]). Two hyperplanes Hi and Hj in Hn intersect each other if and only if
jei ı ej j < 1, and the angle between Hi and Hj of P is defined as the real number
�ij 2 Œ0; �Œ satisfying

(2-2) cos �ij D�ei ı ej :

We call �ij the dihedral angle between Hi and Hj of P , and denote

†H�i H�j WD �ij :

The hyperplanes Hi and Hj do not intersect if and only if

ei ı ej � �1:

As a remark, ei ı ej 6� 1 since H�i 6� H�j for any i 6D j under the above as-
sumption. More precisely, if �Hi and �Hj do not intersect in Hn [ C n f0g, then
cosh dH.Hi ;Hj /D�ei ıej , where dH.Hi ;Hj / is the hyperbolic length of the unique
geodesic orthogonal to Hi and Hj .

The Gram matrix G.P / of P is defined as the symmetric matrix .gij / WD .ei ı ej /,
i; j 2 I , with gii D 1.

A convex polytope P �Hn of dimension n is called acute-angled if all of its dihedral
angles are less than or equal to �=2. For acute-angled polytopes in Hn , Vinberg [23]
developed a complete combinatorial description in terms of its Gram matrix G.P /.
We will discuss it in Section 4.1.

Algebraic & Geometric Topology, Volume 14 (2014)



2726 Yuriko Umemoto

2.2 Hyperbolic Coxeter polytopes and their associated hyperbolic
Coxeter groups

A Coxeter polytope P �Hn of dimension n is a convex polytope of dimension n all of
whose dihedral angles are of the form �=m, where m� 2 is an integer. For the Coxeter
polytope described by (2-1), the group W generated by the set S D fsi j i 2 Ig of
reflections with respect to the bounding hyperplanes Hi in Hn is a discrete subgroup
of the isometry group Isom.Hn/ of Hn , and P is a fundamental polytope of W .
Furthermore, .W;S/ is a Coxeter system (see Section 3.1) with relations s2

i D id,
and .sisj /

mij D id for i 6D j , if †H�i H�j D �=mij . If P is compact, we call W a
cocompact hyperbolic Coxeter group. It is convenient to associate a Coxeter graph
� to a Coxeter polytope P . Represent each bounding hyperplane Hi (or reflection
si 2 S ) by a node �i , and join two nodes �i and �j by a single edge labeled mij if
†H�i H�j D �=mij , mij � 3, or by a dotted edge if Hi and Hj do not intersect. We
do not join �i and �j if Hi and Hj are orthogonal, and we omit the label for mij D 3.

Example 1 The following Coxeter graph describes a compact hyperbolic Coxeter
triangle in H2 with angles �=2; �=3 and �=7:

7

Example 2 The following Coxeter graph represents a compact hyperbolic Coxeter
polytope in H4 .cf [25, Example 2]/:

5

5

5

3 Growth rates of cocompact hyperbolic Coxeter groups

3.1 Growth functions of Coxeter groups

In this section, we shall introduce the quantity � for the hyperbolic Coxeter groups.
At first, we shall consider the general situation. Let .W;S/ be a pair consisting of a
group W and its finite generating set S . The word length of an element w 2W with
respect to S is defined by

lS .w/ WDminfk 2N [f0g j w D s1s2 � � � sk ; si 2 Sg:
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By convention, lS .id/D 0. The growth series of .W;S/ is defined by the power series

(3-1) fS .t/ WD
X
w2W

t lS .w/ D

X
k�0

ak tk
D 1CjS jt C � � � ; t 2C;

where ak is the number of elements w 2 W with lS .w/ D k and jS j denotes the
number of S . The growth rate of .W;S/ is defined by

(3-2) � WD lim sup
k!1

k
p

ak ;

which is the inverse of the radius of convergence R of fS .t/, that is, � DR�1 .

From now on, we focus on the growth series and the growth rate of a Coxeter group,
wherefore we review the notions of Coxeter groups. A pair .W;S/ is called a Coxeter
system if generators s; t 2S satisfy relations of the type .st/ms;t D id, ms;t Dmt;s � 2

for s 6D t , and ms;s D 1. We call the group W itself a Coxeter group. In the sequel,
we often do not distinguish between Coxeter group and its underlying Coxeter system.
It is convenient to use the Coxeter graph � associated to .W;S/ whose nodes �s

correspond to the generators s 2 S , and two nodes �s; �t are joined as follows. They
are joined by a single edge labeled ms;t if ms;t � 3 and are not joined if ms;t D 2.
Usually, the label is omitted if ms;t D 3. Two nodes �s and �t are joined by a dotted
edge if the group generated by st is infinite. All connected Coxeter graphs with finite
associated Coxeter groups have been classified (Coxeter [4]).

First, we consider a finite Coxeter group .W;S/. It is obvious that its growth series
(3-1) is a polynomial. Solomon [21, Corollary 2.3] gave an explicit formula for the
growth polynomial of .W;S/, which allows us to compute it by using the exponents
m1;m2; : : : ;mk 2 Z, 1Dm1 �m2 � � � � �mk , of .W;S/, that is,

(3-3) fS .t/D

kY
iD1

Œmi C 1�;

where Œm�D 1C t C � � �C tm�1 .

Next we consider an infinite Coxeter group .W;S/. Steinberg [22, Corollary 1.29]
derived a formula for the growth series fS .t/ of .W;S/, which allows us to compute
it by using the growth polynomial fT .t/ of its finite Coxeter subgroups .WT ;T /

generated by a subset T � S , that is,

(3-4)
1

fS .t�1/
D

X
T�S
jWT j<1

.�1/jT j

fT .t/
D 1�

jS j

Œ2�
C � � � :
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Here each fT .t/ is of the form (3-3). This means that 1=fS .t
�1/ is expressible as a

rational function, say
1

fS .t�1/
D
zq.t/

zp.t/
;

where zq.t/; zp.t/ 2 ZŒt � are relatively prime and monic of the same degree, say n.
Furthermore, the constant term of zp.t/ is ˙1 by (3-3) and (3-4). Hence we have

(3-5) fS .t/D
p.t/

q.t/
;

where p.t/D tn zp.t�1/; q.t/D tnzq.t�1/ 2 ZŒt �. Both polynomials p.t/ and q.t/ are
relatively prime over Z, and we call the growth series fS .t/ described by the form
(3-5) the growth function of .W;S/. Observe that the smallest positive root of q.t/

equals the radius of convergence R. This means q.R/DRnzq.R�1/D 0, and since
zq.t/ 2 ZŒt � is monic, the growth rate � DR�1 is an algebraic integer.

Example 3 The growth function of the cocompact hyperbolic Coxeter group described
by the Coxeter graph in Example 1 is

(3-6) fS .t/D
.t C 1/2.t2C t C 1/.t6C t5C t4C t3C t2C t C 1/

t10C t9� t7� t6� t5� t4� t3C t C 1
:

Example 4 The growth function of the cocompact hyperbolic Coxeter group described
by the Coxeter graph in Example 2 is (cf [25, Theorem 1, nD 1])
(3-7)

fS .t/D
.t C 1/4.t2� t C 1/.t2C t C 1/.t4� t3C t2� t C 1/.t4C t3C t2C t C 1/

t16� 4t15C t14C t12C t11C 2t9C 2t7C t5C t4C t2� 4t C 1
:

3.2 Growth rates and 2–Salem numbers

In Section 3.1, we see that the growth rate of a Coxeter group is an algebraic integer.
Cannon, Wagreich and Parry (see [15], for example) showed that the growth rate of a
cocompact hyperbolic Coxeter group in H2 or H3 is a Salem number or a quadratic
unit. We recall the notion of Salem numbers.

A Salem number is a real algebraic integer ˛ > 1, all of whose other conjugate roots
! satisfy j!j � 1, and at least one of whose conjugate roots is on the unit circle
(cf Bertin, Decomps-Guilloux, Grandet-Hugot, Pathiaux-Delefosse and Schreiber [1,
Definition 5.2.2], and Ghate and Hironaka [5, page 293]). Call the minimal polynomial
p˛.t/ of ˛ a Salem polynomial. The following proposition is a well-known fact about
Salem polynomials (cf [5, page 294]).

Algebraic & Geometric Topology, Volume 14 (2014)



The growth function of Coxeter dominoes and 2–Salem numbers 2729

Proposition 1 A Salem polynomial p˛.t/ is palindromic of even degree, that is,
p˛.t/D tnp˛.t

�1/, where n is the degree of p˛.t/.

Proof Since p˛.t/ 2 ZŒt � has a root !0 on the unit circle, then !0 D !
�1
0

is also a
root of p˛.t/. Hence, tnp˛.t

�1/ is also the minimal polynomial of !0 and then there
exists a constant c 2 Z such that

p˛.t/D ctnp˛.t
�1/:

As a consequence, ˛�1 is also a root of p˛.t/, so that any root ! of p˛.t/ except ˛
and ˛�1 is on the unit circle, where !�1 is also a root of p˛.t/. Therefore the constant
term of p˛.t/ should be 1, which implies that c D 1, that is, p˛.t/D tnp˛.t

�1/. We
conclude that p˛.t/ is a palindromic polynomial of even degree.

Example 5 The growth rate of the cocompact hyperbolic Coxeter group described by
the Coxeter graph in Example 1 is a Salem number. More precisely, the denominator
polynomial

L.t/D t10
C t9
� t7
� t6
� t5
� t4
� t3
C t C 1

of its growth function (3-6) is a Salem polynomial, and its positive root ˛L � 1:17628,
which is a Salem number, is the growth rate. Note that L.t/ and ˛L are known as the
Lehmer polynomial and its Lehmer number, respectively (cf Lehmer [11] and Figure 4).

1:00:5�0:5�1:0

1:0

0:5

�0:5

�1:0

Figure 4: The distribution of the roots of L.t/

As we see, the minimal polynomial of a Salem number has roots on the unit circle
except for a reciprocal pair of positive real roots. Focussing on the numbers of roots
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outside the unit circle and the existence of a root on the unit circle, Kerada defined a
j –Salem number in [9, Definition 2.1], which is a generalization of a Salem number.
In this paper, we focus on a 2–Salem number. Note that Samet [17] also defined a set
of algebraic integers corresponding to 2–Salem numbers.

Definition 1 A 2–Salem number is an algebraic integer ˛ such that j˛j > 1 and ˛
has one conjugate root ˇ different from ˛ satisfying jˇj> 1, while other conjugate
roots ! satisfy j!j � 1 and at least one of them is on the unit circle. Call the minimal
polynomial p˛.t/ of ˛ a 2–Salem polynomial.

As in the case of a Salem polynomial, a 2–Salem polynomial p˛.t/ is a palindromic
polynomial of even degree. As a consequence, ˛�1 and ˇ�1 are roots of p˛.t/, and all
roots different from ˛; ˛�1; ˇ; ˇ�1 lie on the unit circle and are complex (cf Figure 5).
So a 2–Salem polynomial has even degree n� 6, and note that ˇ is also a 2–Salem
number.

In [25], T Zehrt and C Zehrt found infinitely many cocompact Coxeter groups in H4

whose denominators q.t/ of the growth functions fS .t/ have the following property:
all the roots of the polynomial q.t/ are on the unit circle except exactly two pairs
of real roots. We notice that if q.t/ is irreducible, it is a 2–Salem polynomial. This
motivated us to investigate whether 2–Salem numbers appear as growth rates of such
groups. As a first observation, we get the following proposition.

Proposition 2 The growth rate of the cocompact hyperbolic Coxeter group described
by the Coxeter graph in Example 2 is a 2–Salem number.

Proof We prove that the denominator polynomial

D.t/D t16
� 4t15

C t14
C t12

C t11
C 2t9

C 2t7
C t5
C t4
C t2
� 4t C 1

of the growth function (3-7) is a 2–Salem polynomial. First, D.t/ has six pairs of
complex roots on the unit circle and two pairs of positive roots ˛; ˛�1 and ˇ; ˇ�1 ,
where ˛; ˇ > 1 (see [25, Theorem 2, nD 1] and Figure 5).

The irreducibility of D.t/ in ZŒt � is proved by Cohn’s Theorem (see Murty [14,
Theorem 1]) as follows. For a polynomial f .t/D tmC am�1tm�1C � � � C a1t C a0

of degree m in ZŒt �, set
H D max

0�i�m�1
jai j:

If f .n/ is prime for some integer n�HC2, then f .t/ is irreducible in ZŒt � by Cohn’s
criterion. In fact, H D 4 for D.t/, and D.186/D 20080678392852674723847588201

73242349 is a prime number. So D.t/ is irreducible. Furthermore, two positive roots
˛ � 3:70422 and ˇ � 1:24202 are 2–Salem numbers.
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Figure 5: The distribution of the roots of D.t/

In the next chapter, we construct families of infinitely many cocompact hyperbolic
Coxeter groups in H4 that are different from those constructed by T Zehrt and C Zehrt,
and prove that their growth rates are 2–Salem numbers.

4 Construction of a Coxeter domino T

T Zehrt and C Zehrt [25, Theorem 2] described the characteristic distribution of roots of
the denominator polynomials of the growth functions of Coxeter garlands in H4 built
by a particular compact truncated Coxeter 4–simplex with two orthogonal facets. In this
paper, we have similar, but more detailed results for the denominator polynomials of
the growth functions of Coxeter dominoes constructed by the Coxeter domino T �H4 .
This leads us to a connection with 2–Salem numbers.

To begin with, we are interested in the Coxeter system .W;S/ having the follow-
ing Coxeter graph � (see Figure 6). It was first described by Schlettwein in [19]
(unpublished).

5

5

Figure 6

At first, notice that this graph describes an infinite Coxeter group since it does not
belong to the well-known list of connected Coxeter graphs of finite Coxeter groups. In
Section 4.1, we will explain in detail how to realize .W;S/ as a geometric Coxeter
group in H4 .
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4.1 The Coxeter simplex P � H4 with ultraideal vertices

We consider the matrix G related to the Coxeter graph � in Figure 6, which is defined
by .gij /D .� cos.�=mij //:

(4-1) G D

0BBBBBB@
1 � cos �

5
0 �

1
2

0

� cos �
5

1 �
1
2

0 �
1
2

0 �
1
2

1 � cos �
5

0

�
1
2

0 � cos �
5

1 �
1
2

0 �
1
2

0 �
1
2

1

1CCCCCCA :

The signature of G equals .4; 1/. In fact, det G< 0 and the principal submatrix formed
by the first three rows and columns is positive definite (and related to the Cartan matrix
of H3 ). Therefore, G has precisely one negative and four positive eigenvalues (see
Satake [18], for example). By a result of Vinberg [23, Theorem 2.1], an indecomposable
symmetric real matrix G D .gij /, with gii D 1 and gij � 0 for i 6D j , is the Gram
matrix of an acute-angled polytope of dimension n in Hn (up to isometry) if the
signature of G equals .n; 1/. Therefore, G is the Gram matrix of a Coxeter polytope
P �H4 given by the Coxeter graph � (see Figure 6). However, P is not compact since
it is not in the list of Coxeter graphs of compact Coxeter simplices in H4 classified
by Lannér [10] (cf Humphreys [6, page 141]). In the sequel, we associate to P a new
compact polytope T �H4 by truncation.

Let P D
T

i2I H�i � H4 be the Coxeter polytope having a Coxeter graph � as
in Figure 6, where I D f1; : : : ; 5g. Represent Hi D eL

i \H4 as usual, such that
G D .ei ı ej /i;j2I . It follows that P is an extended 4–simplex (or a 4–simplex with 5

ultraideal vertices) in R4;1 , bounded by five hyperplanes, and of infinite volume in H4

(see [23, Chapter I, Section 4, section 8, line 5]). In fact, all vertices of P lie outside of
H4 . To see this, let us use Vinberg’s description of faces in terms of submatrices of G .

Observe that all principal submatrices of order four in G are of signature .3; 1/ and
described by the Coxeter graphs in Figure 9 (cf [10, page 53]). Furthermore, all
other principal submatrices of G , that is, those of order less than four, are positive
definite and described by positive definite graphs, that is, by certain finite Coxeter
groups. Then, by a result of Vinberg [23, Theorem 3.1], all the faces of P of positive
dimension are hyperbolic polytopes, while the vertices of P do not belong to H4 . In
fact,

T
j2Ii

Hj D ∅, for Ii WD I n fig, i D 1; : : : ; 5. However, the set
T

j2Ii

�Hj is
a one–dimensional subspace in R4;1 since ei ; i 2 I , are linearly independent. This
line can be represented by a positive space-like unit vector vi 2R4;1 such that vi is a
vertex of P outside H4 (see also (4-3)). We call vi an ultraideal vertex of P .
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4.2 Construct the compact totally truncated Coxeter simplex T � H4

from P

Now we will truncate all ultraideal vertices off from P in order to obtain a compact
Coxeter polytope T as follows. The set

T
j2Ii

�H�j is a 4–dimensional simplicial cone
in R4;1 , whose apex vi is outside of H4 . Moreover, the hyperplane Hvi

WD vL
i \H4

intersects all of the hyperplanes Hj , j 2 Ii , orthogonally, that is,

(4-2) †H�vi
H�j D

�

2
; j 2 Ii ;

since vi ı ej D 0 for all j 2 Ii by definition of vi , and by (2-2). In this situation, by
a result of Vinberg [23, Proposition 4.4], P \H�vi

is also a convex polytope in H4 .
By performing this operation for each ultraideal vertex vi , i D 1; : : : ; 5, we get a new
polytope

T WD P \

�\
i2I

H�vi

�
�H4

that we shall call totally (orthogonally) truncated simplex (see Figure 7). A facet
P \Hvi

is called an orthogonal facet of T .
v1

v2

v3

v4

v5
F1

F2

F3

F4

F5

Figure 7: The passage to the compact totally truncated Coxeter 4–simplex
T where each ultraideal vertex vi is replaced by the orthogonal facet Fi

Let us describe the ultraideal vertices v1; : : : ; v5 of P in the following explicit way
(cf [12]). Let cofij .G/ WD .�1/iCj det Gij be the cofactor of G , where Gij is the
submatrix obtained by removing the i th row and j th column of G . Since the ij th

coefficient of G�1 equals .1= det G/ cofji.G/, then by comparing the ij th coefficient
of G�1G D I ,

1

det G

5X
kD1

cofik.G/gkj D ıij ; and then
� 5X

kD1

cofik.G/ek

�
ı ej D ıij det G:

If we set wi WD

5P
kD1

cofik.G/ek , 1� i � 5, then

wi ıwj D cofij .G/ det G is
�
< 0 if i 6D j ,
> 0 if i D j .
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Hence, fw1; : : : ; w5g is a linearly independent set. Now, consider

(4-3) vi D
wi

p
wi ıwi

D
wip

cofii.G/ det G
:

Then, for each i ,

(4-4) vi ı vi D 1; vi ı ej D 0 for j 6D i ; vi ı ei D�

s
det G

cofii.G/
< 0:

So, for each i , fvj j j 2 Iig spans �Hi since it is a linearly independent set, and vi spansT
j2Ii

�Hj . Hence vi is indeed an ultraideal vertex of P .

By direct calculation, based on (4-1) and (4-4), we get vi ı ei < �1 for each i 2 I ,
which means that the orthogonal facet Hvi

and the facet Hi opposite to it are disjoint
in T [16, Section 3]:

(4-5) Hvi
\Hi D∅

Similarly,

vi ı vj D
� cofij .G/p

cofii.G/ cofjj .G/
< �1

for each j 2 Ii , which means that the orthogonal facets are mutually disjoint:

(4-6) Hvi
\Hvj

D∅ if i 6D j

By combining (4-2), (4-5) and (4-6), it follows that T is described by the Coxeter
graph �� in Figure 8. In particular, T is a Coxeter polytope.

5

5

Figure 8: The Coxeter graph �� of the compact totally truncated Coxeter
4–simplex T

Let I� D f1; : : : ; 10g be the indexed set of ten facets of T . For the compactness of
T , observe first that all order four subgraphs �.4/ of � are of signature .3; 1/, and
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each subgraph �.2/ of type in �� is of signature .1; 1/. Next, let J � I� be a
subset corresponding to one of the subgraphs �.j /, j D 2; 4, above. Consider J 0� I�

indexing all nodes in �� that are not connected to nodes in J . Form N.J / WD J [J 0 .
By applying Vinberg’s criterion [23, Theorem 4.1], T is compact because it is easily
checked that

T
i2N.J /

�Hi D f0g.

Since T will be the building block for new Coxeter polytopes (see Section 5.1), we
call T a Coxeter domino.

5 Main theorems

5.1 Growth functions of Coxeter dominoes

As we see, T has five orthogonal facets and each of them is one of the three kinds
of Coxeter 3–simplices in H3 described by the Coxeter graphs in Figure 9. More
precisely, T has two orthogonal facets of type A and B , and one orthogonal facet of
type C .

5

5

5

5

A B C
Figure 9: The three Coxeter graphs of the hyperbolic Coxeter simplex of
dimension 3 that describe the figures of three types of orthogonal facets of T

By gluing copies of T along the orthogonal facets of the same type, we obtain a
new polytope, which is again a Coxeter polytope. By gluing over and over again, we
obtain infinitely many Coxeter polytopes in H4 . This construction is established by
Makarov [13] and is also explained in [23, Chapter II, Section 5]. Vinberg uses the term
“garlands” (cf [23, page 62]) for the resulting Coxeter polytopes obtained by gluing
together the truncated Coxeter simplices having two orthogonal facets (see also [25]).

Let us consider the growth functions of the Coxeter groups with respect to the Coxeter
dominoes built by T . First, the growth function W .t/ of the Coxeter domino T itself
is calculated by using the formula (3-3) and (3-4):

(5-1)
1

W .t�1/
D

1

W .t/
D 1�

10

Œ2�
C

n
2

Œ2; 5�
C

4

Œ2; 3�
C

24

Œ2; 2�

o
�

n
6

Œ2; 6; 10�
C

3

Œ2; 3; 4�
C

6

Œ2; 2; 5�
C

12

Œ2; 2; 3�
C

13

Œ2; 2; 2�

o
C

n
12

Œ2; 2; 6; 10�
C

6

Œ2; 2; 3; 4�
C

2

Œ2; 2; 2; 2�

o
;
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where the first equality of (5-1) comes from [20] (and [3, Corollary]) since T is
compact. Then W .t/D P .t/=Q.t/, where

P .t/D Œ2; 4; 6; 10�Dˆ2.t/
4ˆ3.t/ˆ4.t/ˆ5.t/ˆ6.t/ˆ10.t/;(5-2)

Q.t/D t18
� 6t17

C 3t16
� 5t15

C 5t14
� t13

C 9t12
C 11t10

� 2t9
C 11t8(5-3)

C 9t6
� t5
C 5t4

� 5t3
C 3t2

� 6t C 1;

which is a palindromic polynomial of degree 18. Here ˆi.t/ is the i th cyclotomic
polynomial. To compute the growth functions for Coxeter dominoes, we use the
following key formula.

Proposition 3 [25, Corollary 2] Consider two Coxeter n–polytopes P1 and P2

having the same orthogonal facet of type F that is a Coxeter .n� 1/–polytope, and
their growth functions are W1.t/, W2.t/ and F.t/, respectively. Then the growth
function .W1 �F W2/.t/ of the Coxeter polytope obtained by gluing P1 and P2 along
F is given by

1

.W1 �F W2/.t/
D

1

W1.t/
C

1

W2.t/
C

t � 1

t C 1

1

F.t/
:

Now we have the formula for the growth functions of the Coxeter dominoes built by T

as follows.

A

A B

B

C

A A
B

B C
A

AB

B

C

A

AB

B
C

A A

B

B C

A

A

B

B

C

AA

B

B

C

A A
B

B C

Figure 10: The Coxeter polytope obtained by gluing T 7 times, satisfying
.`;m; n/D .3; 2; 7/

Corollary 1 Consider nC1 copies of T , and obtain from them one Coxeter polytope
by gluing n times. If this polytope is obtained by gluing ` times along the orthogonal
facet of type A, m times along B and .n�`�m/ times along C , where `Cm� n (cf
Figure 10), then n� `�m� .nC1/=2, and its growth function W`;m;n.t/ is given by

(5-4)
1

W`;m;n.t/
D

nC 1

W .t/
C

t � 1

t C 1

�
`

A.t/
C

m

B.t/
C

n� `�m

C.t/

�
:
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Indeed, the property n�`�m� .nC1/=2 in Corollary 1 follows from the fact that T

has only one facet of type C . Therefore, consecutive gluing along C is not possible.
Note that W`;m;n.t/ only depends on .`;m; n/ and does not directly depend on the
resulting polytope.

Theorem 1 The growth function W`;m;n.t/ is the rational function

P`;m;n.t/

Q`;m;n.t/
;

where

P`;m;n.t/D Œ2; 4; 6; 10�(5-5)

Dˆ2.t/
4ˆ3.t/ˆ4.t/ˆ5.t/ˆ6.t/ˆ10.t/

Q`;m;n.t/D t18
� .4nC 6/t17

C .2n�mC 3/t16
� .3n�mC `C 5/t15(5-6)

C .5n� 3mC 5/t14
� .n� 4mC 1/t13

C .8n� 4mC `C 9/t12

C .5m� `/t11
C .10n� 5mC `C 11/t10

� .2n� 6mC 2/t9

C .10n� 5mC `C 11/t8
C .5m� `/t7

C .8n� 4mC `C 9/t6

� .n� 4mC 1/t5
C .5n� 3mC 5/t4

� .3n�mC `C 5/t3

C .2n�mC 3/t2
� .4nC 6/t C 1:

Proof The growth function W .t/D P .t/=Q.t/ of T is already given by (5-2) and
(5-3). The growth functions A.t/, B.t/ and C.t/ of the orthogonal facets of types A,
B and C in Figure 9 are calculated by using the formula (3-3) and (3-4) as follows (cf
Worthington [24]):

A.t/D�
.t C 1/3.t2C 1/.t2� t C 1/.t4� t3C t2� t C 1/

.t � 1/.t10� 2t9C t8� 2t6C 2t5� 2t4C t2� 2t C 1/

B.t/D�
.t C 1/3.t2C 1/.t2� t C 1/.t4� t3C t2� t C 1/

.t � 1/.t10� 2t9C 2t8� 2t7C t6� t5C t4� 2t3C 2t2� 2t C 1/

C.t/D�
.t C 1/3.t2� t C 1/.t4� t3C t2� t C 1/

.t � 1/.t2C 1/.t6� 2t5� t4C 3t3� t2� 2t C 1/

Then by (5-4) in Corollary 1, (5-5) and (5-6) are obtained.

Remark 1 The polynomials P`;m;n and Q`;m;n in (5-5) and (5-6) are relatively
coprime. In fact, Theorem 2 below rules out common linear and quadratic factors,
while an adaption of the proof of Theorem 3 below (see (5-10) and (5-11)) allows
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us to rule out common quartic factors (of type ˆ5 and ˆ10 ) as follows. Consider
ˆ5.t/D t4Ct3Ct2CtC1 and ˆ10.t/D t4�t3Ct2�tC1 and suppose that ˆ5 , ˆ10

divide Q`;m;n according to (5-10). Then, for ˆ5 , one gets g`;m;n.1; 1/D�2�2nD 0

(see (2) following (5-11)) with unique solution nD�1. This contradicts n 2N [f0g.
For ˆ10 , one gets g`;m;n.�1; 1/D�6�2`�2m�2nD 0 leading to `CmCnD�3.
This contradicts `;m; n 2N [f0g.

5.2 Growth rates of Coxeter dominoes and 2–Salem numbers

Now, we will show that there are infinitely many 2–Salem numbers as growth rates of
W`;m;n.t/. Recall that `;m; n 2N [f0g satisfy the inequalities (see Corollary 1):

(5-7)
�
`Cm� n

n� `�m� .nC 1/=2

The next proposition is an adaption of Kempner’s result [8] to a palindromic polynomial
in ZŒt � to investigate its number of positive real roots and roots on the unit circle. It is
due to T Zehrt and C Zehrt.

Proposition 4 [25, Proposition 1 and Corollary 1] Let f 2 ZŒt � be a palindromic
polynomial of even degree n� 2 with f .˙1/ 6D 0, and let

g.t/D .t � i/nf

�
t C i

t � i

�
D .t C i/nf

�
t � i

t C i

�
:

Then g.t/ is a polynomial in ZŒt � of degree n and an even function. Furthermore, if
we consider g.t/ as a function of uD t2 , then the roots of f .t/ and g.u/ are related
as follows.

(1) f .t/ has 2k roots on the unit circle if and only if g.u/ has k positive real roots.

(2) f .t/ has 2` real roots if and only if g.u/ has ` negative real roots.

Applying Proposition 4, we have the following result about the roots of Q`;m;n.t/.

Theorem 2 (1) Q`;m;n.t/ has exactly seven pairs of complex roots on the unit
circle and exactly two pairs of real roots.

(2) The two pairs of real roots .˛`;m;n; 1=˛`;m;n/ and .ˇ`;m;n; 1=ˇ`;m;n/ satisfy

0<
1

˛`;m;n
<

1

ˇ`;m;n
< 1< ˇ`;m;n < ˛`;m;n D �`;m;n;

where �`;m;n is the growth rate. Furthermore, the sequence f�`;m;ng converges
to 1 as n!1.

(3) Q`;m;n.t/ does not have a quadratic factor in ZŒt �.
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Proof (1) We adapt Proposition 4 (cf [25, Theorem 2]) to Q`;m;n.t/. At first,

Q`;m;n.˙1/ 6D 0:

Consider the polynomial

K`;m;n.t/ WD .t � i/18Q`;m;n

�
t C i

t � i

�
;

and replace uD t2 . Then K`;m;n.u/ can be written as follows.

K`;m;n.u/D 4f.8nC 8/u9
C .147nC 45mC 30`C 207/u8

� .3068nC 360mC 160`C 3148/u7
C .11256nC 364m� 184`C 7208/u6

� .10124n� 616m� 480`� 6724/u5
� .7162nC 722m� 532`C 32018/u4

C .12268nC 40m� 96`C 27964/u3
� .4608n� 428mC 120`C 8528/u2

C .532n� 168mC 32`C 836/u� .17n� 13mC 2`C 21/g

By considering the signs of K`;m;n.u/ on the real line, it has seven positive real roots
and two negative real roots:

u �41 �31 0 1
10

1
3

1
2

1 2 3 9

sign.K`;m;n.u// � C � C � C � C � C

For example, by (5-7),

1
4
K`;m;n.0/D�21�2`C13m�17n��21�2`C13n�17nD�21�2`�4n< 0:

Then by Proposition 4, Q`;m;n.t/ has exactly four real roots, and all other roots are
complex and on the unit circle.

(2) Observe that Q`;m;n.0/D 1> 0, Q`;m;n.
1
2
/ < 0 and Q`;m;n.1/D 32C32n> 0.

Hence

0<
1

˛`;m;n
<

1

2
<

1

ˇ`;m;n
< 1< ˇ`;m;n < ˛`;m;n :

Furthermore,

Q`;m;n

�
1

4nC 5

�
< 0 and Q`;m;n

�
1

4nCmC `C 6

�
> 0;

that is,
1

4nCmC `C 6
<

1

˛`;m;n
D

1

�`;m;n
<

1

4nC 5
;

for all n� 0. This implies �`;m;n!1 as n!1.
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(3) Let us fix .`;m; n/. Assume that Q`;m;n.t/ is written as

Q`;m;n.t/D .1C at C t2/

�
1C

8X
kD1

bk tk
C

7X
kD1

b8�k tkC8
C t16

�
;

where a and bk are integers. Then by comparing the coefficients of both sides, we get
the following simultaneous equations for a; b1; b2; : : : ; b8 :

(5-8)

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

b1 D�aC .�6� 4n/

b2 D�ab1� 1C .3�mC 2n/

b3 D�ab2� b1C .�5� `Cm� 3n/

b4 D�ab3� b2C .5� 3mC 5n/

b5 D�ab4� b3C .�1C 4m� n/

b6 D�ab5� b4C .9C `� 4mC 8n/

b7 D�ab6� b5C .�`C 5m/

b8 D�ab7� b6C .11C `� 5mC 10n/

ab8C 2b7� .�2C 6m� 2n/D 0

By using the method of successive substitution inductively, the last equation of (5-8) is

(5-9) f`;m;n.a/ WD a9
C .4nC 6/a8

C .2n�m� 6/a7
C .�29n�mC `� 43/a6

C .�9nC 4mC 11/a5
C .63nC 2m� 6kC 91/a4

C .11n� 3mC `� 4/a3
C .�41nC 2mC 10`� 55/a2

C .�3n�m� 2`� 3/aC .6n� 2m� 4`C 6/

D 0:

On the other hand, the signs of f`;m;n.t/ on the real line are as follows:

t �.4nC 6/ �.4nC 5/ �3 �2 �1 �
1
2

0 1
2

1 8
5

2

sign.f`;m;n.t// � C C � C � C � C � C

For example:

� f`;m;n.�3/D 5784C 308`C 748mC 7368n> 0

� f`;m;n.�2/D�32� 32n< 0

Hence f`;m;n.t/ has one root in the open interval .�.4nC 6/;�.4nC 5//, and has
eight roots in the open interval .�3; 2/, while �2;�1; 0; 1 are not roots of f`;m;n.t/.
Therefore f`;m;n.t/D 0 cannot have an integer solution, which contradicts (5-9).
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Now we are interested in whether the growth rates �`;m;n are 2–Salem numbers or
not. To show this, by means of Theorem 2(1), it is sufficient to prove Q`;m;n.t/ is
irreducible over Z. It is already shown in Theorem 2(3) that Q`;m;n.t/ is not described
as a product of two palindromic polynomials of degree two and sixteen. For the
irreducibility of Q`;m;n.t/, the next proposition plays an important role in view of the
main theorem.

Proposition 5 If Q`;m;n.t/ is not irreducible, then Q`;m;n.t/ is described as a product
of two distinct monic palindromic polynomials in ZŒt � of even degree.

Proof By Theorem 2(1), Q`;m;n.t/ can be written as

Q`;m;n.t/D .t �˛`;m;n/
�
t �

1

˛`;m;n

�
.t �ˇ`;m;n/

�
t �

1

ˇ`;m;n

�
.t �!1/.t �!1/

� � � � � .t �!7/.t �!7/;

where ˛`;m;n; 1=˛`;m;n , ˇ`;m;n; 1=ˇ`;m;n are two pairs of real roots and !1; !1; : : : ;

!7; !7 are seven pairs of complex roots lying on the unit circle, and each pair of roots
that are an inversive pair are algebraically conjugate to each other. Hence if Q`;m;n.t/

is not irreducible, each of its factors is of even degree, and the claim follows.

It is not easy to examine the irreducibility for all .`;m; n/, but we have the following
result under certain restrictions.

Theorem 3 For n� 1 (mod 3), Q0;n;n.t/ and Qn;0;n.t/ are irreducible over Z. As
a consequence, the growth rates �0;n;n and �n;0;n are 2–Salem numbers.

Proof It is sufficient by Proposition 5 to prove that Q0;n;n.t/ and Qn;0;n.t/ do not
have a monic palindromic factor of degree 4, 6 or 8 for n � 1 .mod 3/. Since the
method for each case is the same, we will explain the case of degree 4, only.

Let us fix .`;m; n/. Suppose that

(5-10) Q`;m;n.t/D .1CatCbt2
Cat3

C t4/

�
1C

7X
kD1

ck tk
C

6X
kD1

c7�k tkC7
C t14

�
where a, b and ck are integers. Then by comparing the coefficients of both sides, we
get the simultaneous equations for a; b; c1; c2; : : : ; c7 :
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(5-11)

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

c1 D�aC .�6� 4n/

c2 D�ac1� bC .3�mC 2n/

c3 D�ac2� bc1� aC .�5� `Cm� 3n/

c4 D�ac3� bc2� ac1� 1C .5� 3mC 5n/

c5 D�ac4� bc3� ac2� c1C .�1C 4m� n/

c6 D�ac5� bc4� ac3� c2C .9C `� 4mC 8n/

c7 D�ac6� bc5� ac4� c3C .�`C 5m/

c6 D�ac7� bc6� ac5� c4C .11C `� 5mC 10n/

c5 D�ac6� bc7� ac6� c5C .�2C 6m� 2n/

By using the method of successive substitution inductively, the last two equations in
(5-11) are described as follows:

f`;m;n.a; b/ WD �1�a8
�b4
�mCa7.�6�4n/Cb2.1C2m�3n/(1)

C a6.�8C7bCm�2n/Cb.`Cm�n/CnCb3.2�mC2n/

C a4
�
�11�15b2

C6m�11nCb.30�5mC10n/
�
Ca
�
15C2`

C 2mCb.�46�8m�30n/Cb2.�15�3`C3m�9n/C9n

C b3.24C16n/
�
Ca2

�
2C10b3

�`C3m

C b2.�24C6m�12n/�5nCb.9�12mC21n/
�

C a5
�
�29�`Cm�19nCb.36C24n/

�
Ca3

�
13�2`C6m

C b2.�60�40n/C9nCb.68C4`�4mC44n/
�

D 0

g`;m;n.a; b/ WD 12Ca7.2�b/C2mCb2.�23�4m�15n/(2)

C b3.�5�`Cm�3n/C8nCb4.6C4n/Ca5
�
12C6b2

�2m

C b.�18Cm�2n/C4n
�
Ca6

�
12Cb.�6�4n/C8n

�
C b.15C2`C2mC9n/Ca3

�
6�10b3

�8m

C b.�35C12m�23n/C14nCb2.36�4mC8n/
�

C a
�
4b4
C2`C2mCb.4�`C7m�11n/Cb3.�14C3m�6n/

� 2nCb2.10�10mC18n/
�
Ca4

�
34C2`�2m

C b.�77�`Cm�51n/C22nCb2.30C20n/
�

C a2.�46�8mCb3.�36�24n/Cb.�7�6`C10m�3n/

� 30nCb2.87C3`�3mC57n//

D 0
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First, consider the case .`;m; n/D .0; n; n/, that is, Q0;n;n.t/, which is the denominator
of the growth function of the Coxeter polytope obtained by gluing together nC1 copies
of T only along the facets of type B (cf Figure 11).
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B

C
A

AB

B

C

A

A

B

B

C

A

A

BB

C

A

A B

B C

Figure 11: The Coxeter polytope obtained by gluing T 4 times, satisfying
.`;m; n/D .0; 4; 4/
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C
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Figure 12: The Coxeter polytope obtained by gluing T 4 times, satisfying
.`;m; n/D .4; 0; 4/

By the assumption, there exist a; b 2Z that depend on n and satisfy the two equations
(1) and (2). If .a; b/� .0; 0/ .mod 3/, then f0;n;n.a; b/� f0;n;n.0; 0/D�1 .mod 3/,
which contradicts (1). Hence .a; b/ � .0; 0/ .mod 3/ is impossible. If .a; b/ �
.1; 0/ .mod 3/, then f0;n;n.a; b/ � f0;n;n.1; 0/ D �.26C 4n/ � 1� n .mod 3/. So
it is possible to satisfy (1) only if n� 1 .mod 3/. On the other hand, g0;n;n.a; b/�

g0;n;n.1; 0/ D 32C 8n � �.1C n/. Hence it is possible to satisfy (2) only if n �

�1 .mod 3/, which is contradiction. So .a; b/ � .1; 0/ .mod 3/ is also impossible.
Table 1 lists the values of f0;n;n.a; b/ and g0;n;n.a; b/, and whether it is possible
for .a; b/ to satisfy (1) and (2), for all the cases of .a; b/ modulo 3. (We leave the
box for the value of g0;n;n.a; b/ empty if the value of f0;n;n.a; b/ gives us sufficient
information.)

Therefore there are no integers a and b satisfying

f0;n;n.a; b/D g0;n;n.a; b/D 0
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if n� 1 (mod 3), which implies that Q0;n;n.t/ has no monic palindromic factor of
degree 4 if n� 1 (mod 3).

.a; b/ f0;n;n.a; b/ g0;n;n.a; b/

.0; 0/ �1 impossible

.1; 0/ �26� 4n� 1� n 32C 8n��.1C n/ impossible

.�1; 0/ �12� 12n� 0 �8� 8n� 1C n possible only if n��1

.0; 1/ 1 impossible

.0;�1/ �3� 2n� n �15� 14n� n possible only if n� 0

.1; 1/ 0 �2� 2n� 1C n possible only if n��1

.�1; 1/ 0 �6� 4n��n possible only if n� 0

.1;�1/ �280� 114n��1 impossible

.�1;�1/ 48C 54n� 0 78C 82n� n possible only if n� 0

Table 1: The list of the values of f0;n;n.a; b/ and g0;n;n.a; b/ , and whether
it is possible for .a; b/ to satisfy f0;n;n.a; b/D g0;n;n.a; b/D 0 , for all the
cases of .a; b/ modulo 3

.a; b/ fn;0;n.a; b/ gn;0;n.a; b/

.0; 0/ �1C n 12C 8n��n impossible

.1; 0/ �26� 24n� 1 impossible

.�1; 0/ �12� 12n� 0 �8� 8n� 1C n possible only if n��1

.0; 1/ 1 impossible

.0;�1/ �3� 4n��n �15� 10n��n possible only if n� 0

.1; 1/ 0 �2� 2n� 1C n possible only if n��1

.�1; 1/ 0 �6� 4n��n possible only if n� 0

.1;�1/ �280� 182n��1C n 378C 248n��n impossible

.�1;�1/ 48C 50n��n 78C 74n��n possible only if n� 0

Table 2: The list of the values of fn;0;n.a; b/ and gn;0;n.a; b/ , and whether
it is possible for .a; b/ to satisfy fn;0;n.a; b/D gn;0;n.a; b/D 0 , for all the
cases of .a; b/ modulo 3

Next consider the case .`;m; n/D .n; 0; n/, that is, Qn;0;n.t/, which is the denominator
of the growth function of the Coxeter polytope obtained by gluing together nC1 copies
of T only along the facets of type A (cf Figure 12).

Table 2 is the list for all the cases of .a; b/ modulo 3 as for the case .`;m; n/D .n; n; 0/.

Therefore there are no integers a and b satisfying fn;0;n.a; b/ D gn;0;n.a; b/ D 0

if n � 1 .mod 3/, which implies that Qn;0;n.t/ has no monic palindromic factor of
degree 4 if n� 1 .mod 3/.
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