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The homotopy theory of Khovanov homology

BRENT EVERITT

PAUL TURNER

We show that the unnormalised Khovanov homology of an oriented link can be
identified with the derived functors of the inverse limit. This leads to a homotopy
theoretic interpretation of Khovanov homology.

57M27; 55P42

Motivation and introduction

In order to apply the methods of homotopy theory to Khovanov homology there
are several natural approaches. One is to build a space or spectrum whose classical
invariants give Khovanov homology, then show its homotopy type is a link invariant,
and finally study this space using homotopy theory. Ideally this approach would begin
with some interesting geometry and lead naturally to Khovanov homology. One also
might hope to construct something more refined than Khovanov homology in this way
(see Lipshitz and Sarkar [12] for a combinatorial approach to this). Another approach
is to interpret the existing constructions of Khovanov homology in homotopy theoretic
terms. By placing the constructions into a homotopy setting one makes Khovanov
homology amenable to the methods and techniques of homotopy theory. In this paper
our interest is with the second of these approaches. Our aim is to show that Khovanov
homology can be interpreted in a homotopy theoretic way using homotopy limits and
to subsequently develop a number of results about the specific type of homotopy limit
arising. The latter will provide homotopy tools appropriate for studying Khovanov
homology.

Recall that the central combinatorial input for Khovanov homology is the decorated
“cube” of resolutions based on a link diagram D (see Section 1.1). As we explain
later, it is convenient to view this cube as a presheaf of abelian groups over a certain
poset Q, that is, as a functor FKHW Q

op! Ab.

In the first section we show that Khovanov homology can be described in terms of the
right derived functors of the inverse limit of this presheaf.
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Theorem 1.4 Let D be a link diagram and let FKHW Q
op ! Ab be the Khovanov

presheaf defined in Section 1.1. Then

KHi.D/Š lim
 �
Qop

iFKH:

On the left we have singly graded unnormalised Khovanov homology (see Section 1.1)
while on the right we have the i th derived functor of the inverse limit (see Section 1.2).
This result is central to the homotopy theoretic interpretation of Khovanov homology
but is also of independent interest: many cohomology theories are defined as the right
derived functors of some interesting partially exact functor, or at least can be described
in such terms. Examples include group cohomology, sheaf cohomology and Hochschild
cohomology. Obtaining a description in these terms for Khovanov homology reveals
its similarity to existing theories, not apparent from the original definition. Moreover
it opens up Khovanov homology to the many techniques available to cohomology
theories defined as right derived functors. Also the construction given in this paper
is functorial with respect to morphisms of presheaves, which, being more general,
may offer calculational advantage. By connecting with a more familiar description of
higher derived functors we also obtain a description of Khovanov homology as the
cohomology of the classifying space equipped with a system of local coefficients as
described in Proposition 1.6.

Right derived functors of a presheaf of abelian groups can be interpreted in homotopy
theoretic terms by way of the homotopy limit of the corresponding diagram of Eilenberg–
Mac Lane spaces. In the second section we recall basic facts about homotopy limits
before returning to Khovanov homology. We compose the Eilenberg–Mac Lane space
functor K.�; n/ with the Khovanov presheaf FKH of a link diagram to obtain a diagram
of spaces FnW Q

op! Sp whose homotopy limit YnD D holimQop Fn has homotopy
groups described in the following proposition.

Proposition 2.8

�i.YnD/Š

�
KHn�i.D/ if 0� i � n;

0 else.

For rather elementary reasons the space YnD is seen to be a product of Eilenberg–Mac
Lane spaces and thus determined by the Khovanov homology. Thus the problem of
defining an invariant space or spectrum (a homotopy type) is “solved” by the above as
well, but in an uninteresting way. Nevertheless we now find ourselves within a homotopy
theory context so we can apply its methods and techniques to Khovanov homology.

In the third section we develop this perspective further by isolating a result about
holim and homotopy fibres in this specific situation which may be useful in the study
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of Khovanov homology. One central point is that in the presheaf setting (or using
chain complexes) one has long exact sequences in homology arising from short exact
sequences of presheaves. Typically the latter arise from a given injection or surjection
and one requires some luck for this to be the case. In the homotopy setting, by contrast,
any map of spaces has a homotopy fibre and an attendant long exact sequence in
homotopy groups. We illustrate the use of this calculus in the last section where we
discuss the skein relation as the homotopy long exact sequence of the smoothing change
map, reprove Reidemeister invariance from the homotopy perspective and make an
explicit computation.

We have tried as far as possible to make this article readable both by knot theorists
interested in Khovanov homology and by homotopy theorists with a passing interest in
knot theory.
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1 Khovanov homology and higher inverse limits

The main result of this section is a reinterpretation of the (unnormalised) Khovanov
homology of a link as the derived functors of lim

 �
over a certain small category.

1.1 A modified Boolean lattice and the inverse limit

Let BD BA be the Boolean lattice on a set A: the poset of subsets of A ordered by
reverse inclusion. We write � for the partial order and � for the covering relation, ie
given subsets x and y , then x � y when x � y and x � y when x is obtained from
y by adding a single element.

Now let D be a link diagram and B the Boolean lattice on the set of crossings of D .
Each crossing of D can be 0– or 1–resolved

0 1

and if x is some subset of the crossings, then the complete resolution D.x/ is what
results from 1–resolving the crossings in x and 0–resolving the crossings not in x . It
is a collection of planar circles.
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Let V D ZŒ1;u� where ZŒS � is the free abelian group on the set S . This rank two
abelian group becomes a Frobenius algebra using the maps mW V ˝V ! V , �W V !Z
and �W V ! V ˝V defined by

mW 1˝ 1 7! 1; 1˝u 7! u; u˝ 1 7! u; u˝u 7! 0I

�W 1 7! 0; u 7! 1I

�W 1 7! 1˝uCu˝ 1; u 7! u˝u:

The “Khovanov cube” is obtained by assigning abelian groups to the elements of B
and homomorphisms between the groups associated to comparable elements. One says
“cube” as the Hasse diagram of the poset BA is the jAj–dimensional cube, with edges
given by the covering relations.

For x 2 B let FKH.x/D V ˝k , with a tensor factor corresponding to each connected
component of D.x/. If x � y in B then D.x/ results from 1–resolving a crossing
that was 0–resolved in D.y/, with the qualitative effect that two of the circles in D.y/

fuse into one in D.x/, or one of the circles in D.y/ bifurcates into two in D.x/. In
the first case FKH.x � y/W FKH.y/D V ˝k ! V ˝k�1 D FKH.x/ is the map using m

on the tensor factors corresponding to the fused circles, and the identity on the others.
In the second, FKH.x � y/W FKH.y/DV ˝k!V ˝kC1DFKH.x/ is the map using �
on the tensor factor corresponding to the bifurcating circles, and the identity on the
others.

All of this is most concisely expressed by regarding B as a category with objects the
elements of B and with a unique morphism x! y whenever x � y . The decoration
by abelian groups is then nothing other than a covariant functor, or presheaf,

FKHW Bop
! Ab;

where Ab is the category of abelian groups. The diagram D is suppressed from the
notation.

Each square face of the cube B is sent by the functor FKH to a commutative diagram
of abelian groups. To extract a cochain complex from the decorated cube these squares
must anticommute, and this is achieved by adding ˙ signs to the edges of the cube so
that each square face has an odd number of � signs on its edges. We write Œx;y� for the
sign associated to the edge x � y of B. The Khovanov complex K� has n–cochains
Kn D

L
jxjDnFKH.x/, the direct sum over the subsets of size n (or rows of the cube),

and differential d W Kn�1!Kn given by d D
P
Œx;y�FKH.x � y/, the sum over all

pairs x � y with x of size n (or sum of all signed maps between rows n� 1 and n).
That d is a differential follows immediately from the anticommutativity of the signage.
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Definition 1.1 The unnormalised Khovanov homology of a link diagram D is defined
as the homology of the Khovanov cochain complex:

KH�.D/DH.K�; d/

The normalised Khovanov homology of an oriented link diagram D with c negative
crossings is a shifted version of the above:

KH�.D/D KH�Cc.D/

The normalised Khovanov homology is a link invariant. All of the above is standard
and there are several reviews of this material available (see for example Bar-Natan [1],
Turner [17] and Khovanov [11]).

A note on the q –grading Usually there is an internal grading on Khovanov homology
making it a bigraded theory. This “q–grading” is important in recovering the Jones
polynomial. A huge amount of information is retained however even if this grading
is completely ignored. For example Khovanov homology detects the unknot with or
without the q–grading. In this paper the q–grading plays no role and we consider the
Frobenius algebra V above as ungraded, resulting in a singly graded theory.

For what follows we need to modify the poset B in a seemingly innocuous way, but one
which has considerable consequences (see also the remarks at the end of Section 1.3).
There is a unique maximal element 1 2 B (corresponding to the empty subset of A)
with x � 1 for all x 2 B. Now formally adjoin to B an additional maximal element 10

such that x � 10 for all x 2 B with x 6D 1, and denote the resulting poset (category)
by QDQA . Extend FKH to a (covariant) functor

FKHW Q
op
! Ab

by setting FKH.10/D 0 and FKH.x! 10/W FKH.10/!FKH.x/ to be the only possible
homomorphism.

The construction of K� extends verbatim to Q: the chains are the direct sum over the
rows of Q (identical to B except for the top row where the zero group is added) and
the differential is the sum of signed maps between consecutive rows—again identical
except between the first and second rows; we adopt the convention Œx; 10�D�1 for an x

with x � 10 . The resulting homology is easily seen to be the unnormalised Khovanov
homology again.

It will be convenient later to identify Q with the poset of cells of a certain CW
complex. Recall that a CW complex X is regular if for any cell x the characteristic
map ˆx W .B

k ;Sk�1/! .X k�1[x;X k�1/ is a homeomorphism of Bk onto its image.
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Figure 1: Regular CW complex X (left) with cell poset QA (right) for jAj D 3

We can then define a partial order on the cells of X by x � y exactly when xx � y ,
where xx is the (CW) closure of the cell.

To realise QA as such a thing suppose that jAjDn and let �n�1 be an .n�1/–simplex.
Let X be the suspension S�n�1 , an n–ball, and take the obvious CW decomposition
of X with two 0–cells (the suspension points) and all other cells the suspensions Sx of
the cells x of �n�1 . As the suspension of cells preserves the inclusions xx � y and the
two 0–cells are maximal with respect to this, we get that X has cell poset Q. An x 2Q

corresponds to an jxj–dimensional cell of X ; the case nD 3 is depicted in Figure 1.

Using the signage introduced above, if x is a 1–cell we have Œx; 1�C Œx; 10� D 0;
if dim x�dim yD2 and z1; z2 are the unique cells with x�zi�y , then Œx; z1� Œz1;y�C

Œx; z2� Œz2;y�D 0. These properties then ensure that there are orientations for the cells
of X so that Œx;y� is the incidence number of the cells x and y (see Massey [13,
Chapter IX, Theorem 7.2]).

We finish this introductory subsection by recalling the definition of the inverse limit
of abelian groups. Let C be a small category and F W C! Ab a functor. Then the
inverse limit lim

 �C
F is an abelian group that is universal with respect to the property that

for all x 2 C there are homomorphisms lim
 �C

F ! F.x/ that commute with the homo-
morphisms F.x/!F.x0/ for all morphisms x! x0 in C. The limit is constructed by
taking the subgroup of the product

Q
x2C F.x/ consisting of those C–tuples .˛x/x2C

such that for all morphisms x! x0 , the induced map F.x/!F.x0/ sends ˛x to ˛x0 .

It is an easy exercise to see that lim
 �Qop

FKH D ker d0 , the degree zero differential of
the cochain complex K� , and so

(1) lim
 �
Qop

FKH Š KH0.D/ :
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1.2 Derived functors of the inverse limit

We have seen that presheaves of abelian groups provide a convenient language for
the construction of Khovanov homology, and that the inverse limit of the presheaf
FKHW Q

op! Ab captures this homology in degree zero. In this subsection we review
general facts about the category of presheaves, the inverse limit functor and its derived
functors. These “higher limits” give, by definition, the cohomology of a small cat-
egory C with coefficients in a presheaf. The moral is that they are computed using
projective resolutions for the trivial (or constant) presheaf, just as group cohomology,
say, is computed using projective resolutions for the trivial G–module. The material
here is standard (see eg Weibel [19, Chapter 2]) and obviously holds in greater generality;
rather than working in the category RMod of modules over a commutative ring R, we
content ourselves with Ab WD ZMod. In the following subsection we will show that
the higher limits capture Khovanov homology in all degrees, not just degree zero.

Recall that a presheaf on a small category C is a (covariant) functor F W Cop! Ab.
The category PreSh.C/D AbCop

has as objects the presheaves F W Cop! Ab and as
morphisms the natural transformations � W F !G . For x 2 C, we write F.x/ for its
image in Ab and �x for the map F.x/!G.x/ making up the component at x of the
natural transformation � .

PreSh.C/ is an abelian category having enough projective and injective objects. Many
basic constructions in PreSh.C/, such as kernels, cokernels, decisions about exact-
ness, etc, can be constructed locally, or “pointwise”, eg the value of the presheaf
ker.� W F ! G/ at x 2 C is ker.�x W F.x/ ! G.x//, and similarly for images. In
particular, a sequence of presheaves F !G!H is exact if and only if for all x 2 C
the local sequence F.x/!G.x/!H.x/ is exact.

The simplest presheaf is the constant one: if A 2 Ab, define �AW Cop ! Ab by
�A.x/ D A for all x , and for all morphisms x ! y in C let �A.x ! y/ D

1W �A.y/!�A.x/. If f W A! B is a map of abelian groups then there is a natural
transformation � W �A!�B with �x W �A.x/!�B.x/ the map f . Thus we have
the constant sheaf functor �W Ab! PreSh.C/ which is easily seen to be exact.

We saw at the end of Section 1.1 that the inverse limit lim
 �

F exists in Ab for any
presheaf F 2 PreSh.C/. Indeed, we have a (covariant) functor lim

 �
W PreSh.C/! Ab

by universality. For any A 2 Ab and any F 2 PreSh.C/ there are natural bijections

(2) HomPreSh.C/.�A;F /Š HomZ.A; lim
 �

F /;

so that lim
 �

is right adjoint to �. In particular lim
 �

is left exact, and we have the right
derived functors

lim
 �

i
WDRi lim

 �
W PreSh.C/! Ab .i � 0/
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with lim
 �

0 naturally isomorphic to lim
 �

.

A special case of the adjointness (2) is the following: For any presheaf F over C the uni-
versality of the limit gives a homomorphism HomPreSh.C/.�Z;F /! lim

 �
F that sends a

natural transformation � 2HomPreSh.C/.�Z;F / to the tuple .�x.1//x2C 2 lim
 �

F . This
is in fact a natural isomorphism, so we have a natural isomorphism of functors

lim
 �
Š HomPreSh.C/.�Z;�/

and thus

(3) lim
 �

i
ŠRi HomPreSh.C/.�Z;�/ for all i � 0.

If 0! F !G!H ! 0 is a short exact sequence in PreSh.C/ then there is a long
exact sequence in Ab:

(4) 0 �! lim
 �

F �! lim
 �

G �! lim
 �

H �! � � � lim
 �

iF �! lim
 �

iG �! lim
 �

iH �!

It turns out that the derived functors of the covariant Hom functor in (3) can be replaced
by the derived functors of the contravariant Hom functor. Let F;G be presheaves over
the small category C. Then

Ri HomPreSh.C /.F;�/.G/ŠRi HomPreSh.C /.�;G/.F /

for all i � 0. One thinks of this as a “balancing Ext” result for presheaves. The
corresponding result in RMod is [19, Theorem 2.7.6], and the reader can check that the
proof given there goes straight through in PreSh.C/. Summarising, for F 2PreSh.C/,

(5) lim
 �

i.F /Š
�
Ri HomPreSh.C/.�Z;�/

�
.F /Š

�
Ri HomPreSh.C/.�;F /

�
.�Z/:

To compute the right derived functors of a contravariant functor like HomPreSh.C/.�;F /,
we use a projective resolution. Let P�!�Z be a projective resolution for �Z, ie an
exact sequence

(6) � � �
ı
�! P2

ı
�! P1

ı
�! P0

"
�!�Z �! 0

with the Pi projective presheaves. Then the final term in (5) is the degree-i cohomology
of the cochain complex HomPreSh.C/.P�;F /:

(7) � � �
ı�
 �� HomPreSh.C/.P1;F /

ı�
 �� HomPreSh.C/.P0;F / � 0
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1.3 A projective resolution of �Z and the Khovanov complex

We return now to the particulars of Section 1.1 and compute the cochain complex (7)
when F D FKH , the Khovanov presheaf in PreSh.Q/ where Q is the poset of
Section 1.1. To do this we present a particular projective resolution for the constant
presheaf �Z on Q.

We start by constructing a presheaf Pn in PreSh.Q/ for each integer n> 0. Remem-
bering that Q is the cell poset of the regular CW complex X of Section 1.1, for x 2Q

set
Pn.x/ WD ZŒn–cells of X contained in the closure of the cell x � :

Thus if dim x < n then Pn.x/ D 0; if dim x D n then Pn.x/ D ZŒx� Š Z; and if
dim x > n then Pn.x/ is a direct sum of copies of Z, one copy for each n–cell in the
boundary of x . If x � y in Q then we take Pn.x � y/W Pn.y/! Pn.x/ to be the
obvious inclusion.

For a given presheaf F 2 PreSh.Q/ there is a nice characterisation of the group of
presheaf morphisms Pn! F :

Proposition 1.2 For F 2 PreSh.Q/ the map

f n
W HomPreSh.Q/.Pn;F /!

M
dim xDn

F.x/

defined by f n.�/D
P

dim xDn

�x.x/ is an isomorphism of abelian groups.

Proof That f n is a homomorphism is clear since .� C �/x D �x C �x . To show
injectivity, suppose that f n.�/D 0 from which it follows that �x.x/D 0 for all n–cells
x 2 Q. To show that � D 0 we must prove that �y W Pn.y/! F.y/ is zero for all
y 2Q. For dim y < n there is nothing to prove since Pn.y/D 0. For dim y D n we
have Pn.y/D ZŒy� and �y.y/D 0 since y is an n–cell. For dim y > n,

Pn.y/D ZŒy˛ j dim y˛ D n and y˛ in the closure of y�

and we have

�y.y˛/D �y
�
Pn.y � y˛/.y˛/

�
D F.y � y˛/

�
�y˛
.y˛/

�
D 0;

the first equality since Pn.y � y˛/W Pn.y˛/ ! Pn.y/ is an inclusion, the second
by naturality of � and the third since y˛ is an n–cell. Finally, f n is surjective
because Pn.x/ is free and so there is no restriction on the images �x.x/ 2 F.x/.
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The isomorphism given in Proposition 1.2 allows us to define a morphism � W Pn! F

by specifying a tuple
P
�x 2

L
F.x/, where the sum is over the n–cells x .

It is easy to see that the Pn are projective presheaves. Given the following diagram of
presheaves and morphisms (with solid arrows) and exact row:

Pn

�

��

y�

~~
G

� // F // 0

then the local maps G.x/
�x
��!F.x/ are surjections. Thus if

P
�x 2

L
F.x/ specifies

the map � then for each x there is a �x 2 G.x/ with �x.�x/ D �x . Hence there
exists a morphism b� W Pn!G specified by

P
�x , which clearly makes the diagram

commute. The Pn are thus projective presheaves.

We now assemble the Pn into a resolution of �Z by defining maps ınW Pn! Pn�1 .
For x 2Q let ın;x W Pn.x/! Pn�1.x/ be the homomorphism defined by

ın;x.y/D
X
y�z

Œy; z� z

for y an n–cell � xx and the sum being over the .n�1/–cells z� xy . Here, Œy; z�D˙1

is the incidence number of y and z given by the orientations chosen at the end of
Section 1.1. It is easy to check that these homomorphisms assemble into a morphism
of presheaves ınW Pn! Pn�1 . The sequence

� � �
ı
�! PnC1

ı
�! Pn

ı
�! Pn�1

ı
�! � � �

is exact at Pn if and only if each of the local sequences P�.x/ is exact at Pn.x/.
But P�.x/ is nothing other than the cellular chain complex of the dim.x/–dimensional
ball corresponding to the closure of x with the induced CW decomposition. In particular

HnP�.x/D

�
Z nD 0;

0 n> 0;

so that P�.x/, and hence P� , is exact in degree n> 0.

To define an augmentation P0
"
�!�Z! 0 take " to be the canonical surjection onto

coker.ı/:
P1

ı
�! P0

"
�! coker.ı/! 0

The computation of P�.x/ above immediately shows that coker.ı/Š�Z.

We now have our projective resolution (6) for �Z and hence a cochain complex (7)
that computes the derived functors lim

 �

i FKH . Proposition 1.2 gives an isomorphism of
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graded abelian groups f W HomPreSh.Q/.P�;FKH/!K� where K� is the Khovanov
cochain complex of Section 1.1. As the following lemma shows, f is in fact a chain
map and thus there is an isomorphism of cochain complexes

HomPreSh.Q/.P�;FKH/ŠK�:

Lemma 1.3 f is a chain map HomPreSh.Q/.P�;FKH/!K� .

Proof We must show that the following diagram commutes.

HomPreSh.C/.PnC1;FKH/

f nC1

��

HomPreSh.C/.Pn;FKH/
ıoo

f n

��
KnC1 Kndoo

Let � 2 HomPreSh.Q/.Pn;FKH/ and write F for FKH . If x is an n–cell, write �x WD

�x.x/ 2 F.x/ so that f n sends � to the tuple
P

x �x , the sum over the n–cells of X .
Applying the Khovanov differential d we get

d.f n.�//D
X

x

X
y�x

Œx;y�F.y � x/.�x/:

Consider now ı.�/D �ı 2 HomPreSh.C/.PnC1;FKH/. For y an .nC 1/–cell we have
ıy.y/D

P
x�y Œx;y�x and by an argument similar to that in the proof of Proposition 1.2,

for x an n–cell we have �y.x/D F.y � x/.�x/. Thus f nC1.ı.�// is equal toX
dim yDnC1

.�yıy/.y/D
X

y

X
x�y

Œx;y��y.x/D
X

y

X
x�y

Œx;y�F.y � x/.�x/D d.f n.�//:

Summarising: to compute the higher limits of the Khovanov presheaf we use the
complex HomPreSh.Q/.P�;FKH/, which is isomorphic to K� , and this in turn computes
the unnormalised Khovanov homology. We have therefore proved the first theorem:

Theorem 1.4 Let D be a link diagram and let FKHW Q
op ! Ab be the Khovanov

presheaf defined in Section 1.1. Then

KHi.D/Š lim
 �
Qop

iFKH:

Remark It is essential that we use the modified Boolean lattice Q rather than just B:
if we work with the Khovanov presheaf over B then the higher limits all vanish. This
follows from the general fact that for a presheaf over a finite poset with unique maximal
element the higher limits all vanish; see Mitchell [15].
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1.4 Aside on the cohomology of classifying spaces with coefficients in a
presheaf

Although not central to what follows it is worthwhile making the connection with a
more topological description of higher limits in which lim

 �

iFKH is identified with the
cohomology of a classifying space equipped with a system of local coefficients. We
recall that the classifying space BC is the geometric realisation of the nerve of the
small category C. This point of view is novel in the context of Khovanov homology,
so we give a brief presentation of it, but otherwise we make no particular claim to
originality here.

Starting with a presheaf F 2 PreSh.C/, the cochain complex C �.BC;F / is defined
on the nerve of C to have cochains

C n.BC;F /D
Y

x0!���!xn

F.x0/;

the product over sequences of morphisms x0
f1
��! � � �

fn
��! xn in C. If � 2 C n write

� � .x0 ! � � � ! xn/ for the component of � in the copy of F.x0/ indexed by the
sequence x0! � � � ! xn . The coboundary map d W C n.BC;F /! C nC1.BC;F / is
given by

d� �
�
x0

f1
��! � � �

fnC1
����! xnC1

�
D F

�
x0

f1
��! x1

��
� �
�
x1

f2
��! � � �

fnC1
����! xnC1

��
C

nX
iD1

.�1/i� �
�
x0

f1
��! � � �xi�1

fifiC1
�����! xiC1 � � �

fnC1
����! xnC1

�
C .�1/nC1� �

�
x0

f1
��! � � �

fn
��! xn

�
:

Write H�.BC;F / for the cohomology of C �.BC;F /. The following result of
Moerdijk [16, Proposition II.6.1] shows that this cochain complex computes the higher
limits.

Proposition 1.5 Let F 2 PreSh.C/. Then H�.BC;F /Š lim
 �

C

�F .

From Theorem 1.4 we immediately get the following description of unnormalised
Khovanov homology in terms of the cohomology of the classifying space BQ with a
system of local coefficients induced by the Khovanov presheaf:

Proposition 1.6 Let D be a link diagram and let FKHW Q
op! Ab be the Khovanov

presheaf defined in Section 1.1. Then

KH�.D/ŠH�.BQIFKH/:
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Remark Proposition 1.6 is very similar in spirit to the main result of the authors’ [6,
Theorem 24], which gives an isomorphism between a homological version of Khovanov
homology and a slight variation on the homology of a poset with coefficients in a
presheaf (termed “coloured poset homology” in [6]; see also [7]).

2 Interpreting higher limits in homotopy-theoretic terms

2.1 Homotopy limits

Limits and colimits exist in the category of spaces but are problematic in the homotopy
category: deforming the input data up to homotopy may not result in the same homotopy
type. This problem is resolved by the use of homotopy limits and homotopy colimits,
which are now standard constructions in homotopy theory. In this section we will use
homotopy limits to build spaces whose homotopy groups are Khovanov homology. We
begin by recalling the key properties of homotopy limits, and while we will adopt a
black box approach to the actual construction (leaving the inner workings firmly inside
the box), we will provide references to the classic text by Bousfield and Kan [3].

We briefly return to the generality of a small category, but later will again specialise to
posets. Let Sp denote the category of pointed spaces. All spaces from now on will be
pointed. Let C be a small category and let SpC be the category of diagrams of spaces
of shape C : an object is a (covariant) functor XW C ! Sp and a morphism f W X!Y

is a natural transformation. Thus a diagram of spaces associates to each object of C

a (pointed) space and to each morphism of C a (pointed) continuous function such
that these fit together in a coherent way. Given a morphism f W X!Y we will use the
notation fx for the component at x . The trivial diagram takes as values the one-point
space ? for all objects of C and the identity map ?! ? for all morphisms.

For our purposes holim is a covariant functor

holimC W SpC
! Sp

whose main properties are recalled below in Propositions 2.1–2.5 . For a morphism
f W X!Y we denote by xf the induced map holim X! holim Y. The holim construc-
tion is natural with respect to change of underlying category: a functor F W C 0!C

induces a map holimC X! holimC 0 X ıF .

Remark We adopt the convention of Bousfield and Kan [3], where if pressed on the
matter, space means “simplicial set”. Furthermore, if thus pressed, we will also assume
that diagrams take as values fibrant simplicial sets [3, VIII, 3.8]. Indeed there are
models of Eilenberg–Mac Lane spaces that are simplicial groups, and hence fibrant.
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The reader should be aware however that in the proper generality the propositions
below require fibrant objects.

The first important property of holim is its well-definedness in the homotopy category;
it is robust with respect to deformation by homotopy [3, XI, 5.6]:

Proposition 2.1 (Homotopy) Let f W X!Y be a morphism in SpC such that for all
x 2 X the map fx W X.x/! Y.x/ is a homotopy equivalence. Then

xf W holim X! holim Y

is a homotopy equivalence.

Next, a morphism of diagrams which is locally a fibration induces a fibration on holim
[3, XI, 5.5]:

Proposition 2.2 (Fibration) Let f W X! Y be a morphism in SpC such that for all
x 2 X the map fx W X.x/! Y.x/ is a fibration. Then xf W holim X! holim Y is a
fibration.

There is also a nice description of holim for diagrams over a product of categories [3,
XI, 4.3]:

Proposition 2.3 (Product) Let XW C �D ! Sp be a diagram of spaces over the
product category C �D . Then

holimC holimD X' holimC�D X' holimD holimC X:

We also need to be able to compare diagrams of different shape, ie where the base
categories are different. The result turns out to be easier to state in the context of posets
than for small categories, and this suffices for us [3, XI, 9.2]:

Proposition 2.4 (Cofinality) Let f W P2!P1 be a map of posets.

(i) Let XW P1!Sp be a diagram of spaces and suppose that for any x2P1 the poset
f �1fy 2P1 j y � x g �P2 is contractible. Then holimP2

Xıf ' holimP1
X.

(ii) Let XW P
op
1
! Sp be a diagram of spaces and suppose that for any x 2P1 the

poset f �1fy 2 P1 j y � x g � P2 is contractible. Then holimP
op
2

X ı f '

holimP
op
1

X.
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Here a poset is contractible if its geometric realisation BP is contractible, so in
particular BP , and hence P , is nonempty. For example if P has an extremal (ie
maximal or minimal) element then BP is a cone. Statement (ii) above is simply a
restatement of (i), but the potential confusion in taking opposites makes it worth while
stating both.

For a simple application of Proposition 2.4 let P2 be a contractible poset and X the
constant diagram over P2 having as values the space X at each x and the identity
map X ! X at each morphism x! y . Let P1 be the single element poset and Y

the diagram having value X at this single element. If f W P2 ! P1 is the only
possible map, then XDYıf and the conditions of Proposition 2.4 are satisfied. Thus
holim X' holim Y'X .

The final basic property of holim is that it commutes with mapping spaces (of pointed
maps between pointed spaces); see [3, XI, 7.6]:

Proposition 2.5 (Mapping) Let X be a diagram of spaces in SpC and let Y be a
(pointed) space. Then

Map.Y; holim X/' holim Map.Y;X/:

Here Map.Y;�/ is the functor that takes a pointed space Z to the space of pointed
maps from Y to Z and Map.Y;X/ 2 SpC is the composition Map.Y;�/ ıX.

2.2 Spaces for Khovanov homology

Bousfield and Kan give an interpretation of derived functors of the inverse limit as
follows. Consider the Eilenberg–Mac Lane functor K.�; n/W Ab! Sp for which we
adopt the construction given by Weibel [19, 8.4.4] where there is an obvious choice of
basepoint for K.A; n/. For more details on Eilenberg–Mac Lane spaces, see May [14,
Chapter V] or Hatcher [9, Chapter 4]. The following proposition [3, XI, 7.2] gives an
interpretation of lim

 �

i F in homotopy theoretic terms where C is a small category.

Proposition 2.6 Let F W C ! Ab be a (covariant) functor. Then there are natural
isomorphisms

�i

�
holimC K.�; n/ ıF

�
Š

�
lim
 �

n�i

C
F if 0� i � n;

0 else.

The spaces holimC K.�; n/ ı F contain no more information than higher derived
functors of F . Indeed, as a consequence of the Dold–Kan theorem (see [19, Section 8.4]
or Curtis [4, Section 5]) we have:
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Proposition 2.7 For n big enough the space holimC K.�; n/ ıF has the homotopy
type of a product of Eilenberg–Mac Lane spaces:

holimC K.�; n/ ıF '
Y
m

K
�

lim
 �

n�m

C
F;m

�
For a self-contained and elementary argument proving the appropriate result needed
here we refer the reader to [5].

After these preliminaries on homotopy limits we return to Khovanov homology. As-
sociated to a link diagram D we have the Khovanov presheaf FKHW Q

op ! Ab of
Section 1.1. Let n 2N and let FnW Q

op! Sp be the diagram of spaces defined by
Fn D K.�; n/ ıFKH , the composition of FKH with the Eilenberg–Mac Lane space
functor K.�; n/. We can now define a space YnD as the homotopy limit of this
diagram:

YnD D holimQop Fn D holimQop K.�; n/ ıFKH

Remark The homotopy limit above, taken over the augmented Boolean lattice Q, is
what Goodwillie [8], in his theory of calculus of functors, calls the total fibre of the
(decorated) Boolean lattice B.

From Theorem 1.4 and Proposition 2.6 we see that YnD is a space whose homotopy
groups are isomorphic to the unnormalised Khovanov homology of D :

Proposition 2.8

(8) �i.YnD/Š

�
KHn�i.D/ if 0� i � n;

0 else.

Indeed by Proposition 2.7 we have

YnD '
Y
m

K
�
KHn�m.D/;m

�
:

In order to normalise Khovanov homology a global degree shift is applied. As
�i�X Š �iC1X for a pointed space X , we see that degree shifts are implemented at
the space level by taking loop spaces. Suppose now D is oriented and has c negative
crossings. The collection of spaces Y�DfYnDg is an �–spectrum which may be
delooped c times to obtain a new �–spectrum X�D D�

�cY�D whose homotopy
groups are normalised Khovanov homology:

�i.X�D/Š KH�i.D/
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3 Diagrams over Boolean lattices and homotopy limits

This section develops some results on the homotopy limits of diagrams defined over
(modified) Boolean lattices. These will then provide tools applicable to Khovanov
homology, and in the next section we illustrate this with homotopy theoretic proofs of
some Khovanov homology results. In light of the remark after Proposition 2.7 some of
the conclusions of this section are consequences of Goodwillie’s calculus of functors,
but we prefer to (re)prove the results we need in a self-contained manner.

We make extensive use of homotopy fibres and so record here some of their properties.
Given a map (of pointed spaces) f W X ! Y we define the homotopy fibre of f as a
homotopy limit by

(9) hofibre
�
X

f
��! Y

�
D holim

�
X

f
��! Y  �� ?

�
:

By lifting the lid of the black box only a fraction (see [3, Chapter XI]) one sees that
this has the homotopy type of the usual homotopy fibre: namely defining

(10) Ef Df .x; ˛/ jx 2X; ˛W Œ0; 1�!Y a continuous map such that ˛.0/Df .x/ g;

then this is a space homotopy equivalent to X and the map Ef ! Y sending
.x; ˛/ 7! ˛.1/ is a fibration whose fibre is homotopy equivalent to the hofibre (9).

Relevant examples of homotopy fibres are

hofibre.X ! ?/'X;(11)

hofibre.?! Y /'�Y:(12)

Using the long exact homotopy sequence for a fibration and the Whitehead theorem
one immediately gets:

Lemma 3.1 For Y connected, if hofibre.X ! Y /' ? then X ' Y:

If f W X ! Y is a map of pointed spaces with Y contractible, then (11) extends to

(13) hofibre
�
X

f
��! Y

�
'X;

and similarly if X is contractible then (12) extends to

(14) hofibre
�
X

f
��! Y

�
'�Y:

From now on we assume that C is a connected category. Given diagrams X;Y 2 SpC

(of pointed spaces) and a morphism f W X! Y one may form the homotopy fibre
diagram hof.f / by (locally) defining hof.f /.x/ D hofibre.fx W X.x/! Y.x// and
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hof.f /.x ! y/W hofibre.fx/ ! hofibre.fy/ the map induced by taking homotopy
limits of the two rows of the diagram

X.x/ //

��

Y.x/

��

?oo

��
X.y/ // Y.y/ ?oo

with the left-hand square commuting courtesy of f . It is a standard trick in homotopy
theory to compute the homotopy limit of a diagram of homotopy fibres as a homotopy
fibre. In the interest of completeness we have included the details, but the main point is
that the homotopy fibre is an example of a homotopy limit and homotopy limits enjoy
the product property of Proposition 2.3:

Proposition 3.2 Let f W X! Y be a morphism in SpC . Then

holim
�
hof.f /

�
' hofibre

�
holim X

xf
��! holim Y

�
:

Proof Let D be the three element category a
˛
�! c

ˇ
 � b . Define ZW C �D! Sp by

Z.x; a/D ?;

Z.x; b/D X.x/;

Z.x; c/D Y.x/:

On morphisms let

Z
�
.id; ˛/W .x; a/! .x; c/

�
D ?! Y.x/;

Z
�
.id; ˇ/W .x; b/! .x; c/

�
D fx;

and

Z
�
.�; z

1
�! z/W .x; z/! .x0; z/

�
D

8<:
?! ?; z D a;

X.�/; z D b;

Y.�/; z D c:

We then have

holimD Z.x;�/D holim
�
X.x/

fx
��! Y.x/ � ?

�
D hofibre

�
fx W X.x/! Y.x/

�
D hof.f /.x/

[by (9)]

from which we get holimC holimD Z' holim hof.f /. Going the other way we have
holimC Z.�; a/'?, holimC Z.�; b/D holimC X, and holimC Z.�; c/D holimC Y;
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so
holimD holimC ZD holim

�
holim X

xf
��! holim Y � ?

�
' hofibre

�
holim X

xf
��! holim Y

�
:

The result now follows from Proposition 2.3.

Later we will use this result in the form: if f W X ! Y is a map of diagrams, the
space holim Y is connected and holim hof.f / contractible, then the induced map
xf W holim X! holim Y is a homotopy equivalence.

Notation for diagrams of spaces We introduce a convenient notation that we will
use extensively. We recall that space means pointed space and diagrams of spaces take
values in pointed spaces. A Boolean lattice B will be represented by the circle below
left and a diagram XW Bop! Sp by the pictogram below right:

X

Extending this to Qop by defining X.10/D ? we obtain a diagram of spaces, with Q

and XW Qop! Sp represented as:

X

The trivial diagram will be denoted by ? .

Let B D BA be Boolean of rank r , ie the lattice of subsets of f1; : : : ; rg. For each
1 � k � r there is a splitting of B into two subposets, both isomorphic to Boolean
lattices of rank r � 1: one consists of those subsets containing k and the other of
those not containing k . Below we see the splittings for r D 3, with (from left to right)
k D 1; 2 and 3:

Algebraic & Geometric Topology, Volume 14 (2014)



2766 Brent Everitt and Paul Turner

A diagram XW Bop! Sp determines (and is determined by) two diagrams of spaces X1

and X2 over these rank r � 1 Boolean lattices along with a morphism of diagrams
f W X1 ! X2 . We denote this situation (and the obvious extension to Qop ) by the
pictograms:

X1

X2

f and

X1

X2

f

This process can be iterated with each of the smaller Boolean lattices to give pictures
that are square, cubical, etc.

Lemma 3.3 Let XW Bop! Sp be a diagram of spaces. Then:

holim

0BBBBB@
X

?

1CCCCCA' holim X

Proof If B has rank r then the diagram on the left-hand side is over a Boolean lattice
of rank r C 1. Let Q be the extended version of this Boolean lattice and suppose that
it has been split as above. Collapsing the bottom Boolean lattice to a point we obtain a
new poset P :

QD DP

f

The poset map f W Q!P which collapses the lower Boolean lattice to a single point
satisfies the hypotheses of Proposition 2.4 (ii). Moreover we have the following equality
of diagrams of spaces (of shape Qop ):

X

?

D
X

?

ıf
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Let Q0 be the poset obtained from Q by removing the lower Boolean lattice; then the
obvious inclusion i W Q0!P satisfies the hypotheses of Proposition 2.4. Hence we
have

holim

0BBBBB@
X

?

1CCCCCA' holim

0B@ X

?

1CA' holim X

using Proposition 2.4 twice (with f and i ).

A somewhat more general version of this result is the following.

Lemma 3.4 Let X;YW Bop! Sp be diagrams of spaces such that Y.x/ is contractible
for all x 2 Bop . Then:

holim

0BBBBB@
X

Y

f

1CCCCCA' holim X

Proof Let � be the morphism of diagrams defined by:

X X

Y ?

f

1

As the map Y.x/! ? is a homotopy equivalence for all x , the result follows from
Proposition 2.1 and Lemma 3.3.

Lemma 3.5 Let XW Bop! Sp be a diagram of spaces. Then:

holim

0BBBBB@
X

X

1

1CCCCCA' ?
Proof Let Q be an extended Boolean lattice of rank one bigger than the rank of B and
split as above. Let P be obtained from B by adding an element 100 which is greater
than all other elements (including the existing maximal element in B). Pictorially:
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QD DP

100

f

The poset map f W Q!P which identifies elements of the Boolean lattices and sends
10 7! 100 satisfies the hypotheses of Proposition 2.4. Moreover we have the following
equality of diagrams of spaces (of shape Qop ).

X

X

D X

?

ıf

Since P op has a minimal element it follows from [3, XI, 4.1 (iii)] that

holim

0B@
X

?
1CA' ?

whence the result on applying Proposition 2.4.

Proposition 3.6 Let f W X �! Y be a morphism of diagrams of spaces over
a Boolean lattice. Then

holim

0BBBBB@
X

Y

f

1CCCCCA' hofibre
�

holim X
xf
��! holim Y

�
:

Proof Let g be the following morphism of diagrams of spaces:

X

f

Y

f

1

Y

1

Y
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We have holim.hof.g// is homotopy equivalent to

hofibre

0BBBBB@holim

0BBBBB@
X

Y

f

1CCCCCA xg
�! holim

0BBBBB@
Y

Y

1

1CCCCCA

1CCCCCA' holim

0BBBBB@
X

Y

f

1CCCCCA
by Proposition 3.2, Lemma 3.5 and (13). On the other hand, writing

hof.g/D

Z1

Z2

we see that Z2.x/ is contractible for all x . Thus, by Lemma 3.4 and Proposition 3.2
we have

holim
�
hof.g/

�
' holim Z1 ' hofibre

�
holim X

xf
��! holim Y

�
:

Corollary 3.7 Let f W X �! Y be a morphism of diagrams of spaces over a
Boolean lattice. Then

holim

0BBBBB@
X

Y

f

1CCCCCA' holim

 
hof

�
X

f
��! Y

�!
:

Lemma 3.3 can be generalised as in the first part of the following:

Proposition 3.8 Let YW Bop ! Sp be a diagram of spaces with holim Y ' ?.
Then:

.i/ holim

0BBBBB@
X

Y

1CCCCCA' holim X .ii/ holim

0BBBBB@
Y

X

1CCCCCA'� holim X
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Proof For (ii) we have

holim

0BBBBB@
Y

X

g

1CCCCCA' hofibre
�

holim Y
xg
�! holim X

�
'� holim X

by Proposition 3.6 and Equation (14). Part (i) is similar.

Corollary 3.9 Let X;YW Bop ! Sp be diagrams of spaces such that Y.x/ is con-
tractible for all x 2 Bop . Then,

holim

0BBBBB@
Y

X

f

1CCCCCA'� holim X :

Proof Let � be the morphism of diagrams defined by:

?

X
1

Y

X

As the map ?! Y.x/ is a homotopy equivalence for all x , the result follows from
Propositions 2.1 and 3.8 (ii).

Notation for presheaves We adopt a similar notation for presheaves to that for dia-
grams of spaces, with the difference that the circles are white rather than shaded. Thus
a presheaf F W Bop! Ab and its extension F W Qop! Ab (with F.10/D 0) will be
represented by:

F and F

Given a presheaf F we will denote the diagram of spaces K.�; n/ ıF by F .

Remark For n sufficiently large the space holim F is path connected. To see this,
one may use Proposition 2.6 to calculate

�0

�
holim F

�
Š lim
 �

nF:
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So long as n is chosen to be greater than the rank of Q the right-hand side is trivial by
Theorem 1.4 (recall that the underlying poset is always assumed connected). We will
always assume that n is large enough in this sense.

Proposition 3.10 Let F
f

� G
g

� H be a short exact sequence in PreSh.Q/.
Then:

(i) hofibre
�

holim G
xg
�! holim H

�
' holim F

(ii) hofibre
�

holim F
xf
��! holim G

�
'� holim H

Proof For part (i) the left-hand side is homotopy equivalent to holim.hof.g// by
Proposition 3.2. Here hof.g/ is the diagram obtained by taking homotopy fibres
after applying K.�; n/ to the surjection g in the statement of the proposition, so
hof.g/.x/ D hofibre.K.G.x/; n/ ! K.H.x/; n//. We can identify this homotopy
fibre with K.ker.gx/; n/DK.F.x/; n/. The maps in the diagram hof.g/ under this
identification correspond to the maps induced by F ; this follows since maps on such
Eilenberg–Mac Lane spaces are completely determined by their effect on �n and by
the naturality of the hofibre construction. Thus the diagram hof.g/ is equivalent to

F and the result follows by Proposition 2.1. Part (ii) is similar.

Combining Proposition 3.10, Lemma 3.1 and the remark preceding Proposition 3.10
gives the following very useful lemma.

Corollary 3.11 Let F
f

� G
g

� H be a short exact sequence in PreSh.Q/.
Then:

(i) If holim F ' ? then xg W holim G ' holim H is a homotopy equivalence.

(ii) If holim H ' ? then xf W holim F ' holim G is a homotopy equivalence.

Another result that will prove useful comes from combining Propositions 3.10 and 3.6:

Corollary 3.12 Let F
f

� G
g

� H be a short exact sequence in PreSh.Q/.
Then:

.i/ holim

0BBB@
G

H

g

1CCCA' holim F .ii/ holim

0BBB@
F

G

f

1CCCA'� holim H
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4 Applications to Khovanov homology

The results of the previous section give a collection of tools for Khovanov homology,
and in this section we illustrate it with a few simple examples. First we isolate the
two most useful results. One is Corollary 3.11, which is just a presheaf theoretic
reformulation of standard arguments involving chain complexes:

Presheaf computational tool Let

H � F � G

be a short exact sequence. If holim H
�

resp. holim G
�

is contractible then

holim F ' holim G
�

resp. holim H ' holim F
�
:

An arbitrary morphism of presheaves (not necessarily injective or surjective) can-
not be slotted into a short exact sequence. Our second result, which follows from
Proposition 3.2 and the discussion preceeding it, along with the remark right before
Proposition 3.10, gets around this by using the homotopy theory in a more essential
way:

Homotopy computational tool Let F ! G be a morphism in PreSh.Q/ with

H D hof
�

F ! G
�
:

If holim H
�

resp. holim G
�

is contractible then

holim F ' holim G
�

resp. holim H ' holim F
�
:

Notation for the Khovanov presheaf of a link diagram We extend our notation to
the specific case of the Khovanov presheaf FKH associated to a link diagram. It is
convenient to have the link diagram back in the picture: given a link diagram D we
denote the associated Khovanov presheaf FKH and diagram of spaces K.�; n/ıFKH by:

D and D

If, as is often the case, we are interested in a link diagram with a specified local piece
we simply display it inside the circle. Thus for example the unit map �W Z! V , which
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is defined by �.1/D 1, extends to an injective morphism of presheaves over a Boolean
lattice of appropriate rank which we denote by:

�

We have link diagrams D and D0 that are identical outside of one part where they
differ by the local piece shown. On the left we have the presheaf FKHW Bop! Ab, the
cube for D , and on the right F 0KHW Bop! Ab, the cube for D0 . For x 2 B we have
F 0KH.x/D FKH.x/˝V and the map

�x W FKH.x/D FKH.x/˝Z! FKH.x/˝V D F 0KH.x/

is the map 1˝ �. These local �x stitch together to form a morphism of presheaves
�W FKH! F 0KH . This is what we mean by the picture above.

Similarly the counit map �W V ! Z, defined by �.1/ D 0, �.u/ D 1, extends to a
surjective morphism of presheaves over B

�

and there is a short exact sequence of presheaves

(15)
� �

:

The multiplication mW V ˝V ! V is surjective with ker.m/Š V , and this analysis
similarly extends to give a short exact sequence of presheaves

(16)
m

:

The composition mı� is the identity map. Finally, the comultiplication �W V !V ˝V

is injective, coker.�/Š V , and this extends to a short exact sequence of presheaves

(17) �
:

The composition � ı� is the identity map.

Occasionally the link diagram D will be too large for the circle notation above (eg in
Section 4.3), and so we will just write D , or a shaded version. For example if D1;D2

are unoriented link diagrams then (15) extends to

D1 D2 D1 D2 D1 D2
"�

and there are similar sequences for m and �.
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D D0 D D0 D D0 D D0

.IC/ .I�/ .II/ .III/

Figure 2: Reidemeister moves

4.1 The skein relation

By choosing a crossing there is an evident smoothing change morphism of presheaves:

'
��!

In general this is neither surjective nor injective. There is however an induced map of
spaces

holim x'
��! holim

and we can easily describe its homotopy fibre to give a homotopy theoretic incarnation
of the skein relation:

Proposition 4.1 hofibre
�

holim ! holim
�
' holim .

Proof We have

holim ' holim

0BBBBB@ '

1CCCCCA
and the result follows immediately from Proposition 3.6.

The associated long exact homotopy sequence can be identified with the usual long
exact skein sequence in Khovanov homology (see [18] and [17]).

4.2 Reidemeister invariance.

We now give a homotopy theoretic proof of the invariance of Khovanov homology by
Reidemeister moves (Figure 2). The original proofs can be found in [10] (see also [1])
and more a geometrical argument can be found in [2]. We recall that the rank of the
underlying Boolean lattice is the number of crossings in the given diagram, thus moves
.I˙/ and .II/ alter the underlying Boolean lattice.
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Recalling from the remarks at the end of Section 2.2 that a negative degree shift in
Khovanov homology is equivalent to taking the loop space, we see that we must prove
.IC/ YnD ' YnD0 , .I�/ YnD '�YnD0 , .II/ YnD '�YnD0 , .III/ YnD ' YnD0 .

4.2.1 Reidemeister moves .I˙/. Let D and D0 be two (unoriented) link dia-
grams locally described as in .I�/ in Figure 2. The short exact sequence (17) and
Corollary 3.12 (ii) give

YnD D holim

0BBBBB@ �

1CCCCCA'� holim D�YnD0:

A very similar argument, using (16) and Corollary 3.12 (i), gives Reidemeister .IC/.

4.2.2 Reidemeister move .II/. Let D and D0 be two link diagrams locally described
as in .II/ and let FKH be the Khovanov presheaf for D . There is a short exact sequence
H � FKH � G :

0

0

0
1

� d1 d2

d3 d4 "

1 d2

D

We leave it to the reader to check that G and H are indeed presheaves. All missing
horizontal maps are either the identity or zero (it should be clear which is which), �
and � are the unit and counit, and we are using the short exact sequence (15). To check
that we have morphisms of presheaves we need to show that "d1 D 1 and d3� D 1.
The former follows from "�D 1 and the latter from m�D 1.

We have

holim H D holim

0BBBBBBBBB@

?

?

1

1CCCCCCCCCA
'� holim

0BBBBB@ 1

1CCCCCA' ?;
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with the homotopy equivalences by Propositions 3.10 (i), 3.8 and Lemma 3.5 respec-
tively. The map induced by FKH � G is thus a homotopy equivalence by the presheaf
computational tool, and so YnD equals

holim

0BBBBBBB@

1CCCCCCCA
' holim

0BBBBBBB@
?

1CCCCCCCA
'� holim

0BBB@
?

1CCCA

with the last homotopy equivalent to � holim D�YnD0 by Proposition 3.8 (ii)
and Lemma 3.3.

4.2.3 Reidemeister move .III/. Let D and D0 be two (unoriented) link diagrams
locally described as in .III/ in Figure 2 and let FKH be the Khovanov presheaf for D .
We start with a short exact sequence G0 � FKH

�� G defined by:

0

0

0

0 0

0

D

1

"d5

0

"d8

� "

d1 d2 d3

d4

d5

d6 d7

d8

d9

d10 d11 d12

d1 d2 d3

d4
d6 d7 d9

One can check that G is indeed a presheaf and that � is surjective. All missing
horizontal maps are either the identity or zero. Proposition 3.8 (ii) gives

holim G0 '�
2?' ?;

hence holim F ' holim G by the presheaf tool (abbreviating FKH to F ).

We now define another presheaf H and a presheaf map � W G!H where all missing
maps are either the identity or zero as before. For this we note that in G we have
"d5 D "d8 D�"D 1 and d1 D d3 :
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0

1

1

0

1 1

d1 d2 d1

d4
d6 d7 d9

d9

d9

d1 d2 d9d1

d4

d9

d6 d7

Now, � is neither injective or surjective so we turn to the homotopy tool. Using the
contractibility of many of the hofibres we have from Lemma 3.4 and Corollary 3.9 that

holim
�

hof.�/
�
'� holim

0BBBBBB@hof

0BBBBB@
d9

1

d9

1

1CCCCCA

1CCCCCCA'�?' ?

with the second to last homotopy equivalence from Corollary 3.7, Lemma 3.5 and
Proposition 3.8. Thus by Proposition 3.2:

hofibre
�

holim G
x�
�! holim H

�
' holim hof.�/' ?

It follows that x� is a homotopy equivalence from which we obtain

YnD D holim F ' holim G ' holim H :

Now repeat the entire process starting with F 0KH , the Khovanov presheaf for D0 : a
short exact sequence G0

0
� F 0KH � G0 and a morphism � 0W G0!H 0 can be defined

in a completely analogous way and the homotopy tool invoked to give

YnD0 D holim F 0 ' holim G0 ' holim H 0 :

Comparing H and H 0 , it turns out that the vertex groups are visibly identical, as are
the edge maps except for an occurrence of d9d1 in H and d7d2 in H 0 . However the
front top face of F shows that d9d1 D d7d2 and so H and H 0 are in fact identical
diagrams. Thus, YnD ' YnD0 , completing the proof of Reidemeister .III/.
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4.3 An example.

We take the technology for a test drive by showing that

holim D1 D2 ' holim D1 D2 ��
2 holim D1 D2

where D1;D2 are (unoriented) link diagrams and we are simplifying our pictograms
as in the remarks immediately before Section 4.1. The conclusions for Khovanov
homology are at the end of this calculation, and although they could be achieved at the
level of chain complexes, our purpose here is to illustrate our machinery in action.

The Skein relation (Proposition 4.1) gives

holim D1 D2 ' hofibre

0@holim D1 D2 ! holim D1 D2

1A
which in turn is homotopy equivalent to:

(|) holim

0BBBBBB@holim

0BBBBB@
D1 D2

D1 D2

m

1CCCCCA �! holim

0BBBBB@
D1 D2

D1 D2

�

1CCCCCA � ?
1CCCCCCA

Consider the following two diagrams over Q�D (with D D � �! � � �) and the
morphism between them:

D1 D2 ? ?

? D1 D2 ?

D1 D2 D1 D2 ?

D1 D2 D1 D2 ?

�

�

�

m

m

ker m
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where ? is the trivial diagram of spaces. We have the short exact sequence
H � F � G of presheaves:

D1 D2 D1 D2 D1 D2

0 D1 D2 D1 D2

1

1

ker m

m

m

Here 0 the trivial presheaf, and H 0� F 0� G0 :

D1 D2

D1 D2 D1 D20

D1 D2 D1 D2

� 1

1

"�

As G;G0 ' ? by Lemma 3.5, the presheaf computational tool gives H' F, H0 ' F0 .
Proposition 2.1 applied to the morphism of diagrams over Q�D thus gives that .|/
is homotopy equivalent to

hofibre

0BBBBBB@holim

0BBBBB@
D1 D2

?

1CCCCCA ?
��! holim

0BBBBB@
?

D1 D2

1CCCCCA

1CCCCCCA
where ?

��! indicates that the induced map of the holim’s factors through a point. The
result then follows using hofibre.X ?

��! Y /'X ��Y , Lemma 3.3 and Corollary 3.9.

To convert to a statement about Khovanov homology let D1;D2 now be oriented, with

D1##D2 D D1 D2 and D1#D2 D D1 D2 :

Then by the discussion at the end of Section 2.2

Y�.D1##D2/' Y�.D1#D2/��
2Y�.D1#D2/

so that
X�.D1##D2/'X�.D1#D2/��

2X�.D1#D2/
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as the two additional crossings in D1##D2 are both positive. Thus

KHi.D1##D2/Š ��i.X�.D1#D2/��
2X�.D1#D2//

Š ��iX�.D1#D2/˚��iC2X�.D1#D2/

Š KHi.D1#D2/˚KHi�2.D1#D2/:

For example

KHi

0@ D

1AŠ KHi.D/˚KHi�2.D/:
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