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Simplicial structures and normal forms for
mapping class groups and braid groups

A J BERRICK

E HANBURY

In this paper we show that the mapping class groups of any surface with nonempty
boundary form a simplicial group as the number of marked points varies. This
extends the simplicial structure on braid groups of surfaces found by Berrick, Cohen,
Wong and Wu. We use the simplicial maps to construct compatible normal forms for
elements of the braid groups and mapping class groups of surfaces with boundary.

20F38; 20E22, 55U10

1 Introduction

Over the last decade, a number of results have revealed previously unsuspected relation-
ships among mapping class groups of surfaces, their braid groups and homotopy theory.
In particular, Berrick, Cohen, Wong and Wu [2] showed a linkage between the braid
groups of the disc and sphere and homotopy groups of spheres. This was obtained by a
study of the face maps between braid groups corresponding to the forgetting of strands
in a braid. In [3; 4], the present authors, together with J Wu, showed that generalising
such �–structures both to braid groups on all surfaces and to their mapping class
groups leads to more general relations involving homotopy theory.

Any discussion of �–structures naturally prompts the question as to whether the face
maps are part of a more comprehensive simplicial structure; that is, whether there are
also degeneracy maps present. In the most familiar case, of pure braid groups on the
disc, such a structure gives rise to semidirect products of the pure braid groups, and so
the important Artin combing, from which one deduces solubility of the word problem
in the braid groups. In this paper we explore the existence of degeneracies and normal
forms.

For a surface M (always connected, but not necessarily oriented or closed) and k � 0,
recall that the configuration space

Confk.M /D f.x0; : : : ;xk�1/ 2M k
j xi ¤ xj when i ¤ j g;
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consists of all ordered configurations of k points in M . Permuting the points gives a
natural action of †k (the symmetric group on k letters) on Confk.M /; the resulting
quotient space †knConfk.M / is the space of all unordered configurations in M . The
pure and full braid groups of M are given respectively by

Pk.M /D �1.Confk.M //;

Bk.M /D �1.†knConfk.M //:

Thus, elements of Pk.M / are homotopy classes of loops in the configuration space,
based at some chosen configuration, and elements of Bk.M / can be considered as
homotopy classes of paths in the configuration space that start at the chosen configuration
and end at some permutation of it. There is a natural map � W Bk.M /!†k given by
recording the permutation of the chosen configuration at which a path ends. Evidently
Ker.�/D Pk.M /.

In [2] the authors study the sequences

B.M /D fB1.M /;B2.M /; : : :g;

P .M /D fP1.M /;P2.M /; : : :g:

They describe functions di W BkC1.M /! Bk.M /, 0 � i � k , known as face maps,
given by deleting the i th strand of a braid. These are not group homomorphisms but they
satisfy the crossed identity di.ˇ1ˇ2/D di.ˇ1/di��.ˇ1/.ˇ2/ for all ˇ1; ˇ2 2BkC1.M /.
Here i ��.ˇ1/ denotes the result of performing the permutation �.ˇ1/ on i . Since �
is the identity on the pure braid group, then di restricts to a group homomorphism
di W PkC1.M /! Pk.M /.

In the case that M admits a nonvanishing vector field (equivalently, M has nonempty
boundary or zero Euler characteristic) there are also maps in the other direction, the so-
called degeneracy maps sj W Bk.M /! BkC1.M /. The map sj is given by “doubling
up” the j th strand of a braid; that is, we take another copy of the path in the j th

component and use the vector field to translate it a small distance from the original.
The nonvanishing vector field enables us to do this in a coherent fashion. Again, the
functions sj are not group homomorphisms but they do satisfy a crossed identity
analogous to the one above and when we restrict to the pure braid groups, we get a
group homomorphism.

The face maps and degeneracy maps just described satisfy the so-called simplicial
identities. Thus, for surfaces M admitting a nonvanishing vector field, B.M / is
a crossed simplicial group and P .M / is a simplicial group. Simplicial groups can
be considered as combinatorial models of spaces; any simplicial group G has an
associated sequence of homotopy sets �n.G/. One of the main results of [2] was that
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each �n.P .S
2// is a group and there are isomorphisms �n.P .S

2//Š �n.S
2/ for all

n� 4. This gives a new description and a possible new method of calculation for the
homotopy groups of spheres.

The braid groups Pk.M / and Bk.M / are closely related to (and indeed, with the
exception of a few low degree cases, are subgroups of) the important mapping class
groups �k.M / and �.k/.M /. We have

�.k/.M /D �0.Diff.M; Œmk �//;

where Diff.M; Œmk �/ is the group of self-diffeomorphisms of M that leave invariant
a set Œmk � of k marked points. If M has nonempty boundary, the diffeomorphisms
are required to fix it pointwise, and if M is orientable the diffeomorphisms are as-
sumed to be orientation-preserving. The group �k.M / � �.k/.M / is the subgroup
corresponding to those diffeomorphisms that also fix each of the marked points. These
definitions also make sense when k D 0, in which case we denote the mapping class
group by �.M /.

In [4] it was shown that for any surface M , the face maps on the braid groups of M

extend to maps di W �
.kC1/.M / ! �.k/.M /. Geometrically, the map di can be

described as forgetting the i th marked point. Again, it is not a group homomorphism,
but it satisfies a crossed identity and when we restrict to �kC1.M /, we get a group
homomorphism.

For the sequence �.M / D f�1.M /; �2.M /; : : :g, the existence of face homomor-
phisms makes it possible to define homotopy sets �n.�.M //. Thus, one of the main
results of [4] was that the homotopy sets of �.M / are isomorphic to those of P .M /,
except in a few low-degree cases.

We extend the results of [2; 4] by considering degeneracy maps on mapping class
groups. We show that for surfaces with nonempty boundary, it is possible to extend
the degeneracy maps for braid groups to maps of mapping class groups. We do this by
considering splittings

�.k/.M /Š �.M /ËBk.M / and �k.M /Š �.M /ËPk.M /

which hold for all surfaces M with nonempty boundary. Our main result is the
following.

Theorem A For a surface M with nonempty boundary, �sym.M / forms a crossed
simplicial group and �.M / forms a simplicial group. These simplicial structures
extend the known simplicial structures for braid groups.
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Li and Wu [10] used the crossed simplicial group structure on the classical braid
groups (on the disc) to show that the centre of Bk D Bk.D

2/ modulo the boundary
Brunnian braids is Z times the group of exponent 2 elements in �k.S

2/. On the other
hand, the centre of its associated pure braid group Pk modulo the boundary Brunnian
braids is Z��k.S

2/, as reflected in the conjugation action of Bk and Pk . A similar
situation occurs in Wu [11], where the crossed simplicial group structure is essentially
used for distinguishing the actions of Bk and Pk via the Artin representation on the
group whose centre is the homotopy group. Accordingly, the crossed simplicial group
structure of the mapping class group might aid understanding of its conjugation action
on Brunnian mapping classes.

As pointed out by the referee, there is a possible general categorical application of
crossed simplicial groups. One can consider a crossed simplicial group fGkgk�0

as a category G where the morphisms are endomorphisms of the Gk generated by
group translations and face and degeneracy operations. In the case of the crossed
simplicial group of finite cyclic groups, functors to an abelian category give rise to
cyclic homology theory; other crossed simplicial groups lead to their own associated
homology theories; see Fiedorowicz and Loday [8].

We use the simplicial structures on braid groups and mapping class groups to construct
semidirect product decompositions for these groups and normal forms for their elements.
In Section 3 we show that PkC1.M / is an iterated semidirect product of �1.M / and k

finitely generated free groups, and this allows us to read off the following normal form
for braids.

Theorem B Let M be a surface admitting a nonvanishing vector field. For k � 0,
every element of PkC1.M / can be written in a unique way as ˛0 � � �˛k , where ˛i

is represented by a path in ConfkC1.M / � M kC1 in which the first i points are
stationary and the remaining points move in parallel (with respect to the vector field),
tracing a path in M .

By considering the decomposition �kC1.M /Š �.M /ËPkC1.M /, we get the fol-
lowing normal form for mapping classes.

Theorem C Let M be a surface with boundary. For k � 0, every element of
�kC1.M / can be written in a unique way as ��0 � � ��k , where � is the identity
on a collar neighbourhood of a boundary component that contains the marked points
and �i is given by pushing the marked points around some ˛i as in Theorem B.

Alternative normal forms, analogous to Artin combing for braids over the disc, are given
in Section 3. Such forms derive from coface maps rather than simplicial maps, where
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coface maps are an aspect of the bi-�–group structure studied in Wu [12]. This suggests
interesting speculations on the relationships between simplicial group structures and bi-
�–group structures that enrich the same �–group structure. Developing a theme that
appears to originate in Cohen [5], Wu [12, Example 1.2.8] relates results in homotopy
theory concerning Hopf invariants to the theory of braids. In particular, one can use
normal forms on braids to determine the Cohen braids; see Bardakov, Mikhailov,
Vershinin and Wu [1].

The paper is organised as follows. In Section 2 we recall the simplicial structure on
the symmetric groups and the definition of a crossed simplicial group. We review the
simplicial group structure on the braid groups, as given in [2], and establish a preferred
set of generators for braids. Finally, we explain how to extend the degeneracy maps to
the mapping class groups, in the case of surfaces with nonempty boundary. In Section 3
we look at how these algebraic structures can be used to obtain semidirect product
decompositions for braid groups and mapping class groups of surfaces and we display
normal forms for elements of these groups.

Acknowledgements The authors are pleased to acknowledge the benefit of conversa-
tions with Jie Wu and Luis Paris at the early stages of preparing this paper, and are
grateful for the support of NUS research grants R-146-000-137-112 and R-146-000-
143-112. Comments of an anonymous referee have also enhanced the discussion.

2 Simplicial structures

A simplicial set is a sequence of sets X D fX0;X1; : : :g together with face maps
di W Xk !Xk�1 and degeneracy maps sj W Xk !XkC1 for each i; j D 0; : : : ; k . The
face maps and degeneracy maps must satisfy the simplicial identities

(1)

dj di D didjC1 whenever i � j ,

sisj D sjC1si whenever i � j ;

disj D

8<:
sj�1di whenever i < j ;

id whenever i D j or j C 1;

sj di�1 whenever i > j C 1:

If each Xk is a group and the face maps and degeneracy maps are group homomor-
phisms, then X is said to be a simplicial group. A sequence of sets equipped with
only face maps (that is, no degeneracy maps) is called a �–set. Similarly we have the
notion of �–group.
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2.1 Simplicial structure on the symmetric groups

The collection of symmetric groups † D f†kC1gk�0 is an important example of a
simplicial set. We regard †k as the group of permutations of Œk� D f0; : : : ; k � 1g

and write i � � for the result of evaluating � on i . Thus �� denotes the permutation
obtained by first applying � and then � .

The face maps di W †k ! †k�1 (i D 0; 1; : : : ; k � 1) are defined by commutative
diagrams

(2)

Œn� 1�
d i
//

di�

��

Œn�

�

��
Œn� 1�

d i ��

// Œn�

where d i W Œn�1�! Œn� is the unique order-preserving map that misses i . If we represent
a permutation by a diagram of arrows as in Figure 1, then di removes the arrow that
starts at i .

0 1 2 3

0 1 2 3

d2

0 1 2

0 1 2

Figure 1: The face maps for the symmetric groups

On the other hand, we can define a degeneracy map sj W †k!†kC1 (jD0; 1; : : : ; k�1)
by doubling up the arrow that starts at j ; see Figure 2. This can be defined algebraically
by requiring that

j � sj .�/D j � �; .j C 1/ � sj .�/D j � � C 1

and that the following diagram commutes:

(3)

ŒnC 1�
sj //

sj�

��

Œn�

�

��
ŒnC 1�

sj �� // Œn�

Here sj W ŒnC 1�! Œn� is the unique order preserving map that hits j twice. It can
easily be checked that the simplicial identities hold.
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0 1 2

0 1 2

s1

0 1 2 3

0 1 2 3

Figure 2: The degeneracy maps for the symmetric groups

2.2 Definition of a crossed simplicial group

There is an intermediate notion between simplicial set and simplicial group, that of a
crossed simplicial group. This is a simplicial set X D fXkgk�0 for which each Xi is
a group and there are homomorphisms � W Xk ! †kC1 that commute with the face
and degeneracy maps and satisfy

di.x1x2/D di.x1/di��.x1/.x2/;

sj .x1x2/D sj .x1/sj ��.x1/.x2/:

(Note that there are several choices to be made with regards to which side the symmetric
group acts on f0; 1; : : : ; k�1g and how the face maps for symmetric groups are defined.
Different choices give rise to different versions of these identities.)

The symmetric groups with � as the identity map form the prototypical crossed
simplicial group. If X is any other crossed simplicial group then the homomorphisms
� W Xk!†kC1 fit together to give a morphism of crossed simplicial groups � W X!†,
that is, a collection of maps respecting the crossed simplicial group structure.

Any simplicial group is a crossed simplicial group with � taken to be the trivial
homomorphism. In the converse direction, a crossed simplicial group need not be a
simplicial group. There is a corresponding notion of crossed �–group when we have
only the face maps.

A useful fact about crossed simplicial groups is as follows.

Lemma 2.1 If X is a crossed simplicial (resp. �–) group and � W X ! † is the
associated morphism, then Ker� �X is a simplicial (resp. �–) group. �

2.3 Simplicial structure on braid groups

Let M be any surface. Select marked points m0;m1; : : : in M . We write mk for
the ordered set of marked points .m0; : : : ;mk�1/ and Œmk � for the corresponding
unordered set of points.
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To define face maps and degeneracy maps for the braid groups, we think of Bk.M /

as the set of path-homotopy classes Œ�� of paths � in Confk.M / that start at the
distinguished configuration mk and end at some permutation of it. To describe the
multiplication on Bk.M /, we use the map

� W Bk.M /!†k

that sends Œ�� 2 Bk.M / to the permutation �Œ�� defined by

�.1/D .m0��Œ��; : : : ;m.k�1/��Œ��/:

For Œ�� 2 Bk.M /, let .�0; : : : ; �k�1/ be the coordinates of �. There is a left action
of †k on Confk.M / given by

(4) � � .x0; : : : ;xk�1/D .x0�� ; : : : ;x.k�1/�� /

and this induces a left action of †k on Bk.M / given by

� � Œ��D Œ� ���,

where � � � denotes the path .�0�� ; : : : ; �.k�1/�� / in Confk.M /. Now the product
in Bk.M / is given by

Œ�1� Œ�2�D Œ�1 � .�Œ�1� ��2/�;

where � denotes the usual concatenation product of paths (read from left to right).
With this multiplication, the map � is a group homomorphism. The kernel of � is
Pk.M /D �1.Confk.M /;mk/, the k th pure braid group of M .

0 1 2 3

0 1 2 3

d2

0 1 2

0 1 2

t D 0

t D 1

Figure 3: The face maps for the braid groups

In [2] it is shown that for any surface M , the braid groups of M form a crossed
�–group B.M / with

B.M /k D BkC1.M /:

The homomorphism B.M /k !†kC1 is provided by the homomorphism � defined
above. The face map di W BkC1.M /! Bk.M / removes the i th component of a path
in ConfkC1.M /. Geometrically, we think of di as removing the i th strand of a braid,
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as in Figure 3. A slight modification to the endpoints is necessary so that the resulting
path represents an element of Bk.M /; see [4, Section 2.3] for details.

In the case that M admits a nonvanishing vector field, there are also degeneracy
maps for B.M /, defined using the vector field. The idea is that the degeneracy map
sj W Bk.M /!BkC1.M / is given by doubling up the j th string in a braid; see Figure 4.

0 1 2

0 1 2

s0

0 1 2 3

0 1 2 3

Figure 4: The degeneracy maps for the braid groups

This can be described explicitly on the configuration space level by sending a path
.�0; : : : ; �k�1/ in Confk.M / to

.�0; : : : ; �j ; �j
C �; : : : ; �k�1/

where �j C � is obtained by sliding �j a small distance in the direction of the vector
field. Again, a small modification regarding the basepoints is necessary to make this
properly defined; for full details see [2, Section 3.2].

Now recall that the kernel of � W B.M /!† is P .M / where P .M /k D PkC1.M /.
The situation as to when B.M / and P .M / admit simplicial structures may be sum-
marised as follows.

Theorem 2.2 Let M be an arbitrary surface.

(a) The collection B.M /D fBkC1.M /gk�0 forms a crossed �–group, and

P .M /D fPkC1.M /gk�0

forms a �–group.

(b) The following are equivalent:

(i) B.M / is a crossed simplicial group.
(ii) P .M / is a simplicial group.

(iii) M admits a nonvanishing vector field.

Algebraic & Geometric Topology, Volume 14 (2014)
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Proof Part (a) is simply [2, Proposition 4.2.1 (1), (2)]. For (b), [2, Corollary 3.2.7,
Theorem 3.2.12] show that (iii) ) (i), while (i) ) (ii) by Lemma 2.1 above. It
remains to show that the existence of a nonvanishing vector field is also a necessary
condition for the existence of degeneracies. For surfaces other than S2 , this follows
from the fact (see Gonçalves and Guaschi [9, Theorem 2]) that there is no section
of dk W PkC1.M /! Pk.M / when k � 3 (by means of the simplicial identities in
Section 2 above). For S2 , further analysis [2, Proposition 3.2.14] gives the result.

To conclude this section, we explain how the face and degeneracy maps can be used
to construct preferred generating sets for Pk.M / and Bk.M /. We begin with a
generating set X for �1.M /. First, fix a basepoint x0 2M away from all the marked
points mi , and take representatives for the elements of X that are loops based at x0

that avoid all points mi . Now, for each i � 0, let us choose a generating set X i for
�1.M �mi ;mi/. If i D 0, mi is assumed to be empty; the set X 0 is obtained by
conjugating elements of X by a path from m0 to x0 . If i � 1, the set X i consists of
loops of the following two types. Those of the first type are given by concatenating a
fixed path ı from mi to x0 , a generator in X for �1.M;x0/ and ı�1 . The second
type are small, simple loops, based at mi , each of which encircles one of the marked
points m0; : : : ;mi�1 . See Figure 5.

x0

m0 mi�1 mi

Figure 5: Generating set X i for �1.M �mi ;mi/

Next, recall from [3, Lemma 3.11] that for each j � 0 the map

M �mj �! ConfjC1.M /;

x 7�! .m0; : : : ;mj�1;x/;
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induces the injection �j in the short exact sequence

(5) 1 �! �1.M �mj ;mj /
�j
�! PjC1.M /

dj
�! Pj .M / �! 1:

Let cmi
denote a constant path at mi . On the group level, �j sends a loop  in M �mj

to the loop .cm0
; : : : ; cmj�1

;  / in the configuration space. We take Conf0.M / to be
a point so that P0.M / is trivial. In the case j D 0, �j is the identity map from
�1.M;m0/ to P1.M /.

For 0� i � k � 2, define

Y i
k D sk�2 ı � � � ı si ı �i.X i/� Pk.M /,

while Yk�1
k
D �k�1.X k�1/� Pk.M /. By considering the action of � and s , we can

see that every element of Y i
k

is a path in Confk.M / of the form

.cm0
; : : : ; cmi�1

; ;  C �; : : : ;  C .k � 1/�/;

where  2 X i . Thus, elements of Y i
k

are represented by paths in which the first i

points remain stationary and the remaining k � i points move “in parallel”, tracing an
element of X i .

Lemma 2.3 For any surface M that admits a nonvanishing vector field, the set
Yk D

Sk�1
iD0 Y i

k
is a finite generating set for Pk.M /.

Proof The result certainly holds for k D 1 when Pk.M /D �1.M;m0/ and Yk D

Y0
1
D X 0 . Using the exact sequence (5) with k substituted for j , we proceed by

induction on k . Suppose that k � 1.

First observe that because dk W PkC1.M /! Pk.M / has dk ı sk�1 D idPk.M / , we
have

dk.Y i
kC1/D Y i

k for each i 2 f0; : : : ; kg.

Thus, by the induction hypothesis, dk.
Sk�1

iD0 Y i
kC1

/D Yk generates Pk.M /. Finally,
since Yk

kC1
D �k.X k/ generates Im �k D Ker dk , the set YkC1 does after all generate

PkC1.M /.

Let Sk �Bk.M / be a set of elements such that �.Sk/ generates †k . We may assume
that the paths representing the elements of Sk are contained in a small neighbourhood
of the marked points.

Lemma 2.4 For any surface M that admits a nonvanishing vector field, the set Sk[Yk

is a finite generating set for Bk.M /.
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Proof This is immediate from Lemma 2.3 since Bk.M / fits into the short exact
sequence

1 �! Pk.M / �! Bk.M /
�
�!†k �! 1:

2.4 Simplicial structure on mapping class groups

We use x �� (respectively x �� ) to denote the result of evaluating a diffeomorphism �

on the point x 2M (resp. x 2ConfkC1.M /) and �} to denote the diffeomorphism
given by first performing � and then  . The right action of the diffeomorphism group
on the surface is thereby compatible with our other choices of actions.

In [4], it is shown that �sym.M / defined by

�sym.M /k D �
.kC1/.M /

is a crossed �–group and that �.M / given by

�.M /k D �
kC1.M /

is a �–group. The face map di W �
.kC1/.M /!�.k/.M / is given by forgetting the i th

marked point, and similarly for di W �
kC1.M /! �k.M /. This definition must be

modified slightly to ensure that for a mapping class � , both di� and dj� fix the same
set of marked points; see [4, Section 2.4] for details. The map to the symmetric group
�W �.kC1/.M /!†kC1 is defined by

.m0; : : : ;mk/ � D .m0��. /; : : : ;mk��. //

for Œ � 2 �.kC1/.M /. Thus, � records how the diffeomorphisms permute the marked
points. Full details are given in [4, Section 2.4].

In this section we deal with surfaces with nonempty boundary; we extend the degeneracy
maps for braid groups to give degeneracies for mapping class groups and thus prove
that �sym.M / (resp. �.M /) is in fact a crossed simplicial group (resp. simplicial
group).

In what follows we make use of the so-called push-map pW Bk.M /! �.k/.M /; see
for example Farb and Margalit [7, Section 4.2]. For a path � D .�0; : : : ; �k�1/ in
the configuration space, define p.Œ��/D Œ‰�.1/�, where ‰� is the diffeotopy of M

given by simultaneously pushing a small disc containing mi around the path �i for
i D 0; : : : ; k � 1 (this extends the homomorphism @P W Pk.M / ! �k.M / given
in [4, Section 3]).
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Lemma 2.5 For all surfaces M with boundary and for all k � 1, there are split short
exact sequences

1 // Bk.M /
p // �.k/.M / // �.M / // 1;

1 // Pk.M /
p // �k.M / // �.M / // 1:

Hence �.k/.M /Š �.M /ËBk.M / and �k.M /Š �.M /ËPk.M /.

Proof There is a fibration sequence

Diff.M; Œmk �/ ,! Diff.M /
evŒmk �

����!†knConfk.M /:

Here Diff.M / is the group of (orientation-preserving) diffeomorphisms of M that
fix the boundary pointwise and evŒmk � is given by evaluating a diffeomorphism at
the distinguished (unordered) configuration Œmk �. The first exact sequence in the
theorem is part of the long exact sequence associated to this fibration, using the fact
that �1.Diff.M //D 1 for all surfaces M with boundary; see Earle and Schatz [6, The-
orem 1D]. A splitting cW �.M / ! �.k/.M / is given by gluing a cylinder with k

marked points to one of the boundary components of M , extending diffeomorphisms
by the identity, and then smoothing. The proof in the case of the pure groups is entirely
analogous.

Remark 2.6 When M has genus greater than or equal to 2, the lemma above requires
that M have boundary. For otherwise, [7, Corollary 5.11] shows that the epimorphsm

�1.M /� �.M /

fails to split.

Implicit in our notation for the semidirect product is the fact that the mapping class
group is acting on the right of the braid groups; the action determined by the split exact
sequence is

(6) ˇ �� D p�1.c.�/�1}p.ˇ/} c.�//

for a braid ˇ and a mapping class � . Here cW �.M /! �k.M / ,! �.k/.M / is the
splitting map introduced in the proof of Lemma 2.5. Also, our convention for the
multiplication in the semidirect product is

.�1; ˇ1/.�2; ˇ2/D .�1}�2; .ˇ1 ��2/ˇ2/:

Another way to describe the decompositions in Lemma 2.5 is to say that

(7) �.k/.M /D c.�.M //}p.Bk.M // and �k.M /D c.�.M //}p.Pk.M //
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and every element of the mapping class group can be written in a unique way as an
element of the product. Thus, the decomposition tells us that any mapping class in
�.k/.M / can be written in a unique way as a product �1}�2 , where �1 is fixed on
a collar neighbourhood of the chosen boundary component that contains the marked
points and �2 is given by pushing the marked points around paths in M .

Let us now give a geometric description of the right action (6) of �.M / on Bk.M /

that is used to form the semidirect product �.M /ËBk.M /. Consider the action of
Diff.M / on the right of Confk.M / given by

.x0; : : : ;xk�1/ �� D .x0 � c.�/; : : : ;xk�1 � c.�//:

Recall that we think of Bk.M / as the set of homotopy classes of paths that start at
the configuration .m0; : : : ;mk�1/ and end at some permutation of it. Because c.�/

is the identity on a neighbourhood of the boundary that contains the marked points,
the action just described induces an action of Diff.M /, and subsequently of �.M /,
on Bk.M /. We denote this action of �.M / on the right of Bk.M / by � sending ˇ
to ˇc.�/ . The notation is intended to remind us that ˇc.�/ is the image of ˇ under the
diffeomorphism c.�/.

Lemma 2.7 The action of �.M / on Bk.M / arising from the split exact sequence is
the natural geometric one; that is, p�1.c.�/�1}p.ˇ/} c.�//D ˇc.�/ .

In view of the lemma, we later denote both of these quantities by ˇ �� .

Proof It is enough to look at the actions of �.M / on the set Sk [
Sk�1

iD0 Y i
k

of
generators for Bk.M /. First suppose that ˇ 2 Sk ; recall from the text preceding
Lemma 2.4 that the elements of Sk are represented by paths that are contained in a
neighbourhood of the marked points. Thus ˇc.�/ D ˇ since c.�/ is the identity on a
collar neighbourhood of the boundary that contains the marked points. Also, p.ˇ/ is
supported on a neighbourhood of the marked points so it commutes with c.�/ and we
have that

p�1.c.�/�1}p.ˇ/} c.�//D ˇ D ˇc.�/:

Now suppose that ˇ2
Sk�1

iD0 Y i
k

so ˇ is represented by a path in the configuration space
in which, for some 0� i � k � 1, the first i points are stationary and the remaining
points move in parallel, tracing a generator  of �1.M �mi ;mi/. We claim that
c.�/�1} p.ˇ/} c.�/ D p.ˇc.�// from which it is immediate that p�1.c.�/�1}
p.ˇ/} c.�//D ˇc.�/ .

To see the claim, let us first assume that ˇ 2Yk�1
k
D �k�1.X k�1/, say ˇD �k�1. / for

 2 X k�1 . Thus, in the braid ˇ , the first k � 1 points are stationary and the last point
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traces the path  . Hence p.ˇ/D p. / and for similar reasons p. c.�//D p.ˇc.�//.
Furthermore, p. / D �1

} ��1
2

where 1 and 2 form the boundary of a tubular
neighbourhood of  . Here we use �ı to denote the (positive) Dehn twist around ı for
a simple loop ı in M . For this last equality, see [7, Fact 4.7].

If �W M!M is a diffeomorphism and ı is a simple curve in M then ��1}�ı}�D�ı�
(see for example [7, Fact 3.7]). Here ı� denotes the image of the curve ı under the
diffeomorphism � . Now we have that

c.�/�1}p.ˇ/} c.�/D c.�/�1}p. /} c.�/

D c.�/�1} �1
} ��1

2
} c.�/

D �


c.�/

1

} ��1


c.�/

2

D p. c.�//D p.ˇc.�//

as claimed. In the case that ˇ 2 Y i
k

for 0 � i < k � 1, the diffeomorphism p.ˇ/ is
given by pushing the last k � i marked points in parallel along some path  2 X i .
Similar reasoning shows that c.�/�1}p.ˇ/}c.�/Dp.ˇc.�// in this case as well.

We are now in a position to define the degeneracy maps for mapping class groups.
From [2] we have degeneracy maps sj W Bk.M / ! BkC1.M / given by doubling
the j th string, and we know that these maps satisfy the simplicial identities (1). This
gives us a map

idËsj W �.M /ËBk.M / �! �.M /ËBkC1.M /

and using Lemma 2.5 we get a map sj W �
.k/.M /! �.kC1/.M /. More explicitly,

if we write an element of �.k/.M / in the form c.�/} p.ˇ/ for � 2 �.M / and
ˇ 2 Bk.M / then we define

sj .c.�/}p.ˇ//D c.�/}p.sj .ˇ//:

This construction restricts to give a degeneracy map on the pure mapping class
group �k.M /.

Before checking that the degeneracy maps for mapping class groups behave as desired,
we prove the following lemma.

Lemma 2.8 If we define z� W �.M / ËBk.M /! †k by z�.�; ˇ/ D �.ˇ/ then the
following diagram commutes:

�.M /ËBk.M /
z� //

Š

��

†k

�.k/.M /

�

88
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Proof The isomorphism is given by .�; ˇ/ 7! c.�/}p.ˇ/, and it is evident from the
definitions that �.c.�/}p.ˇ//D �.p.ˇ//D �.ˇ/D z�.�; ˇ/.

Proposition 2.9 The degeneracy map sj W �
.k/.M /!�.kC1/.M / satisfies the crossed

identity, that is, for all �1; �2 2 �
.k/.M / we have

sj .�1} �2/D sj .�1/} sj ��.�1/.�2/:

Hence, the degeneracy map sj W �
k.M /! �kC1.M / is a homomorphism.

Proof By the definition of the degeneracy map and Lemma 2.8, it is enough to show
that

(8) .idËsj /
�
.�1; ˇ1/.�2; ˇ2/

�
D .idËsj /.�1; ˇ1/.idËsj ��.ˇ1//.�2; ˇ2/:

The left-hand side of (8) is

.idËsj /
�
�1}�2; .ˇ1 ��2/ˇ2

�
D
�
�1}�2; sj ..ˇ1 ��2/ˇ2/

�
D
�
�1}�2; sj .ˇ1 ��2/sj ��.ˇ1��2/.ˇ2/

�
D
�
�1}�2; sj .ˇ1 ��2/sj ��.ˇ1/.ˇ2/

�
:

Here we have used the fact that the degeneracy map for the braid groups satisfies
the crossed identity and the fact that for � 2 �.M / and ˇ 2 Bk.M /, we have that
�.ˇ ��/D �.ˇ/, which is immediate from Lemma 2.7.

The right-hand side of (8) is�
�1; sj .ˇ1/

��
�2; sj �.�.ˇ1//.ˇ2/

�
D
�
�1}�2; .sj .ˇ1/ ��2/sj ��.ˇ1/.ˇ2/

�
:

Thus we are reduced to checking that sj .ˇ1 ��2/D sj .ˇ1/ ��2 ; this is immediate when
we consider the description of the action given in Lemma 2.7.

We are now ready for the main theorem.

Theorem 2.10 For a surface M with nonempty boundary, �sym.M / forms a crossed
simplicial group and �.M / forms a simplicial group. These simplicial structures
extend the known simplicial structures for braid groups.

Proof In [4], it is shown that �sym.M / forms a �–group and that the �–group struc-
ture extends the one on B.M / that is given in [2]. We also know from Proposition 2.9
that the degeneracy maps for the mapping class groups satisfy the crossed identity, and
it is immediate from the construction that they restrict to those on the braid groups.
Thus, to complete the proof we just need to check that the simplicial identities hold.
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Let us define an alternative face map zdi W �
.k/.M /! �.k�1/.M /. From [2] we have

face maps di W Bk.M /! Bk�1.M / given by deleting the i th string. This gives us a
map

idËdi W �.M /ËBk.M / �! �.M /ËBk�1.M /

and using Lemma 2.5 we get a map zdi W �
.k/.M / ! �.k�1/.M /. Since the face

maps and degeneracy maps for braid groups satisfy the simplicial identities, so do the
maps sj and zdi for mapping class groups. We claim that zdi is the same as the face
map di W �

.k/.M /! �.k�1/.M / defined by forgetting the i th marked point. Given
the claim, the proof that �sym.M / is a crossed simplicial group is complete. The
statement for �.M / follows by Lemma 2.1.

To see that the claim holds, observe that

zdi.c.�/}p.ˇ// WD c.�/}p.di.ˇ//D c.�/} di.p.ˇ//D di.c.�/}p.ˇ//:

For the third equality we have used the fact that the face map for the mapping class
group restricts to that for the braid group.

Observe that in the proof of Lemma 2.5 there are different choices of splitting maps
corresponding to the different choices of the boundary component to which we glue
the cylinder. These different splittings give rise to different semidirect product decom-
positions and thus different degeneracy maps. Hence the degeneracy maps are actually
bi-indexed.

A relationship between the different splitting maps can be described as follows. Let
ci W �.M /! �.k/.M / be the splitting map given by gluing a cylinder with k marked
points to the i th boundary component of M and let M.i/ denote the surface obtained
by doing this gluing.

Let � W M ! M be a diffeomorphism that carries the i th boundary component to
the j th boundary component and x� W M.i/!M.j / the natural extension of � . The
diffeomorphism � does not represent an element of �.M / but it does represent an
element of a larger mapping class group in which �.M / is normal (namely the group
of isotopy classes of all diffeomorphisms of M ). Define conj� W �.M /! �.M / by
conj� .�/ D � } �} ��1 . Similarly we can define conjx� W �

k.M /! �k.M / if we
think of the domain as the mapping class group of M.j / and the codomain as the
mapping class group of M.i/.
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Lemma 2.11 The splitting maps ci and cj fit into the following commutative diagram:

�.M /
cj //

conj�
��

�k.M /

conjx�
��

�.M /
ci // �k.M /

An entirely analogous result holds in the case of the full mapping class groups �.k/.M /.

3 Normal forms

3.1 Algebraic background

Recall that if we have a split exact sequence

1 // N
� // G

d //
Q //

s
oo 1;

then G is isomorphic to the semidirect product QËN . Alternatively, we can say that
G D s.Q/ � �.N / and every element of G can be written in a unique way as an element
of this product.

Suppose that we have two sequences of groups N0;N1; : : : and G0;G1; : : : and for
each k � 1 there is a split exact sequence

1 // Nk�1

�k // Gk

dk //
Gk�1

//
sk�1

oo 1:

By iterating, we obtain that for each k � 1, Gk is isomorphic to the semidirect product

.� � � ..G0 ËN0/ËN1/Ë � � � /ËNk�1:

Alternatively, we may express this by saying that Gk is the product

(9) Gk D sk�1 � � � s0.G0/ �

� k�1Y
iD1

sk�1 � � � si�i.Ni�1/

�
� �k.Nk�1/

and every element of Gk can be written in a unique way as an element of this product.
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3.2 Normal forms for braid groups

Fix a surface M . For each k � 1, there are short exact sequences (see for exam-
ple [3, Lemma 3.11])

(10) 1 �! �1.M �mk/
�k
�! PkC1.M /

dk
�! Pk.M / �! 1:

If M admits a nonvanishing vector field, these sequences are split: the degeneracy
map sk�1W Pk.M /! PkC1.M / provides a splitting. Thus, from the general theory
in Section 3.1 we have the following.

Theorem 3.1 For every surface M that admits a nonvanishing vector field and for
every k � 0, there is a semidirect product decomposition

PkC1.M /Š
�
� � � ..�1.M /Ë�1.M �m1//Ë�1.M �m2//Ë � � �

�
Ë�1.M �mk/:

In particular, the pure braid group is a semidirect product of k finitely generated free
groups and �1.M /. �

Recall that the map �k sends a path  in M �mk to the path in the configuration
space that is constant in the first k coordinates with the .k C 1/st point tracing the
path  . The map sj is given by introducing a new string, close to the j th , that moves
in parallel with the j th string with respect to the vector field. Taking into account
the behaviour of the maps �j and sj , in the present case the expression in (9) gives
Theorem B of the Introduction, as follows.

Theorem 3.2 Let M be a surface admitting a nonvanishing vector field. For k � 0,
every element of PkC1.M / can be written in a unique way in the form ˛0 � � �˛k

where ˛i is represented by a path in ConfkC1.M / in which the first i points are
stationary and the remaining points move in parallel (with respect to the vector field),
tracing a path in M . �

Note that different decompositions and normal forms can be obtained by using differ-
ent face maps and degeneracy maps in the split exact sequences (10). In particular,
using d0; s0 and the map x 7! .x;m1;m2; : : : ;mk/ yields a “left-weighted” version
of the normal form in Theorem 3.2.

If the surface M has nonempty boundary, an alternative splitting for the sequence (10)
is provided by the map zsk�1W Pk.M /!PkC1.M / given by ˛ 7! .˛; cmk

/. Here cmk

is the map which is constant at the marked point mk , and mk is considered as being
close to a chosen boundary component @0M . (In the terminology of [12, page 24], zsk�1

is the final coface map dk .) These splittings yield another semidirect decomposition
of the form in Theorem 3.1 and the following normal forms.
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Theorem 3.3 Let M be a surface with boundary and @0M one of its boundary
components. For k � 0, every element of PkC1.M / can be written in a unique way
in the form ˇ0 � � �ˇk , where ˇi is represented by a path in ConfkC1.M /�M kC1 in
which every coordinate is constant, except for the i th coordinate which follows a path
in M avoiding a neighbourhood of @0M that contains miC1; : : : ;mk . �

In the case of the disc, this is the well-known Artin combing of braids, as has previously
been noted by J Wu, who used coface maps to obtain a bi-�–group structure on the
collection of pure braid groups PkC1.M /. He showed [12, Proposition 1.2.9] that
every bi-�–group decomposes into iterated semidirect products in a way that parallels
the arguments above.

We can also describe normal forms for elements of the full braid group. Let P�Bn.M /

be a collection of braids such that �jP W P!†n is a bijection.

Corollary 3.4 Any element of Bk.M / can be written in a unique way as �˛ for ˛
of the form given in Theorem 3.2 and � 2 P . Alternatively, any element can be written
in a unique way as �ˇ for ˇ of the form given in Theorem 3.3 and � 2 P .

Proof This is an immediate consequence of the fact that Bn.M / fits into an exact
sequence

1 �! Pn.M / �! Bn.M / �!†n �! 1:

3.3 Normal forms for mapping class groups

We can use Lemma 2.5 to create semidirect product decompositions and normal forms
for �kC1.M /.

Theorem 3.5 Let M be a surface with boundary. For k � 0, �kC1.M / has the
semidirect product decomposition

�.M /Ë
��
� � � ..�1.M /Ë�1.M �m1//Ë�1.M �m2//Ë � � �

�
Ë�1.M �mk/

�
:

Proof This is an immediate consequence of Lemma 2.5 and Theorem 3.1.

This leads to Theorem C of Section 1, as follows.

Theorem 3.6 Let M be a surface with boundary. For k � 0, every element of
�kC1.M / can be written in a unique way as � } �0} � � �} �k , where �i D p.˛i/

for ˛i as in Theorem 3.2 and � is the identity on a collar neighbourhood of the chosen
boundary component that contains the marked points.

Proof This follows from Equation (7) and Theorem 3.2.
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Theorem 3.7 Let M be a surface with boundary. For k � 0, every element of
�kC1.M / can be written in a unique way as � } 0} � � �} k where  i D p.ˇi/

for ˇi as in Theorem 3.3 and � is fixed on a collar neighbourhood of the chosen
boundary component that contains the marked points.

Proof This is a consequence of Equation (7) and Theorem 3.3.

These normal forms can also be obtained independently of the results on braid groups.
One considers the following exact sequences, valid for k � 1 (see [3, Lemma 3.13]):

1 �! �1.M �mk/
@�

�! �kC1.M /
dk
�! �k.M / �! 1:

Here @� is the connecting homomorphism in the long exact sequence associated to the
fibration Diff.M;mk/!M �mk given by evaluation at mk . As for braid groups,
there are splitting maps given either by the degeneracy sk�1W �

k.M /! �kC1.M /

or by zsk�1W �
k.M /! �kC1.M /. Here zsk�1 is defined by gluing a cylinder with

one marked point to @0M and extending diffeomorphisms by the identity, and may be
considered as a final coface map, as was done for the braid groups.

We can also describe normal forms for elements of the full mapping class group �.k/.M/.
Let ‚ � �.k/.M / be a collection of mapping classes such that �j‚W ‚! †k is a
bijection, where �W �.k/.M /!†k is as in Section 2.4 above.

Corollary 3.8 Any element of �.k/.M / can be written in a unique way as � } �
for � of the form given in Theorem 3.6 and � 2‚. Alternatively, any element can be
written in a unique way as � }�0 for �0 of the form given in Theorem 3.7 and � 2‚.

Proof This is an immediate consequence of the fact that �.k/.M / fits into the exact
sequence

1 �! �k.M / �! �.k/.M /
�
�!†k �! 1:
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