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Connected sum at infinity and 4–manifolds

JACK S CALCUT

PATRICK V HAGGERTY

We study connected sum at infinity on smooth, open manifolds. This operation
requires a choice of proper ray in each manifold summand. In favorable circumstances,
the connected sum at infinity operation is independent of ray choices. For each m� 3 ,
we construct an infinite family of pairs of m–manifolds on which the connected
sum at infinity operation yields distinct manifolds for certain ray choices. We use
cohomology algebras at infinity to distinguish these manifolds.

57R19; 55P57

1 Introduction

There exist several natural operations for combining manifolds. These include classical
connected sum (CS), classical connected sum boundary (CSB), and the less familiar
connected sum at infinity (CSI). CSI is roughly what happens to manifold interiors
under CSB.

The CSI operation, also called end sum, was introduced by Gompf [7] to study smooth
manifolds homeomorphic to R4 . CSI is now a major tool for studying exotic smooth
structures on open 4–manifolds (see Gompf and Stipsicz [8, Section 9.4] and Gompf [6]).
It was also used by Ancel to study Davis manifolds in unpublished work during the
1980s and by Tinsley and Wright [22] and Myers [17] to study 3–manifolds. Recently,
Calcut, King, and Siebenmann [2] gave a general treatment of CSI that yielded a natural
proof of the Cantrell–Stallings hyperplane unknotting theorem.

Each of the above operations involves some choices. Under mild restrictions, CS and
CSB are independent of these choices [2, Section 2]. CSI requires a choice of proper
ray in each manifold summand. As a ray knots in Rm if and only if mD 3, it is not
surprising that the result of CSI depends on ray choices in dimension 3. In fact, one
may construct such examples where R3 is summed with itself for various rays (see
Myers [17] and the appendix below).
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For one-ended manifolds of dimension m� 4, the binary CSI operation yields a unique
manifold up to diffeomorphism provided either:

(1) One summand is smoothly collared at infinity by Sm�1 .

(2) Both summands satisfy the Mittag–Leffler condition. The Mittag–Leffler condi-
tion holds on a manifold M , for instance, if
(i) M is topologically collared at infinity, or

(ii) M admits an exhausting Morse function with only finitely many coindex-1
critical points.

Proofs of these two statements will appear in a subsequent paper.

The main purpose of this paper is to prove the following, which answers affirmatively
a conjecture of Siebenmann [2].

Main theorem There exist infinitely many pairs M and N of open, one-ended 4–
manifolds such that ray choice alters the proper homotopy type of the CSI of M

and N .

In our explicit examples, one CSI summand is collared at infinity and thus contains a
unique ray up to ambient isotopy. So ray choice is relevant even in just one summand.
In view of (1) and (2), our examples are, in a sense, the simplest possible.

A question arises: Given a cardinal number c , does there exist an open, one-ended
4–manifold M such that the CSI of M with itself yields at least c manifolds up to
proper homotopy? In Section 7, we exhibit an infinite collection of manifolds answering
this question in the affirmative for each at most countably infinite c . We conjecture
that this question has an affirmative answer when c is uncountable.

In each example used to prove the Main theorem, our ray choices do not alter the
homotopy type of the CSI sum. We conjecture that there exist open, one-ended
manifolds M and N such that ray choice alters the homeomorphism type but not the
proper homotopy type of the CSI of M and N . Further, we conjecture that there exist
open, one-ended 4–manifolds M and N such that ray choice alters the diffeomorphism
type but not the homeomorphism type of the CSI of M and N . A possible candidate
is the CSI of a ladder manifold (as defined in Section 3) and some exotic R4 , although
distinguishing the resulting manifolds up to diffeomorphism seems to be beyond present
4–manifold technology.

This paper is organized as follows. Section 2 defines CSI and fixes some notation.
Section 3 introduces ladder manifolds and computes their cohomology algebras at
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infinity. Section 4 defines stringer sum, an operation related to CSI. Section 5 studies
stringer sum for ladder manifolds based on lens spaces. Section 6 proves the Main the-
orem. Section 7 presents various ways of generalizing our examples, including a proof
of the Main theorem in each dimension at least 3. We close with an appendix on various
3–dimensional results.

Acknowledgement The first author thanks Larry Siebenmann for introducing him to
ladder manifolds of dimension m � 7, with stringers based on products of spheres,
during their earlier collaboration [2].

2 Notation and definitions

Throughout, spaces are assumed to be metrizable, separable, and either compact or
one-ended (R excepted). Manifolds are assumed to be smooth, connected, and oriented.
Manifold boundaries are oriented by the standard outward normal first convention. A
manifold without boundary is closed if it is compact and is open if it is noncompact.
Write A�B to mean A is diffeomorphic to B (not necessarily preserving orientation).
A map is proper provided the inverse image of each compact set is compact. A ray is a
proper embedding of Œ0;1/, where Œ0;1/�R is standardly oriented (see Guillemin
and Pollack [9, Chapter 3]).

Definition 2.1 (Connected sum at infinity) Let M and N be open manifolds of the
same dimension m � 2. Fix rays r �M and r 0 � N . Form the connected sum at
infinity (CSI) of .M; r/ and .N; r 0/, denoted .M; r/\.N; r 0/, as follows. Let �r �M

and �r 0�N be smooth, closed regular neighborhoods of r and r 0 respectively. Identify
M � Int �r and N � Int �r 0 along @�r �Rm�1 and @�r 0 �Rm�1 via an orientation
reversing diffeomorphism � as in Figure 2.1.

Figure 2.1: CSI summands .M; r/ and .N; r 0/ with �r and �r 0 hatched
(left). Result of CSI operation .M; r/ \ .N; r 0/ (right).

Remarks 2.2 (1) By common abuse, we consider the manifold .M; r/ \ .N; r 0/ to
be smooth (see Hirsch [13, page 184]).
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(2) Any diffeomorphism of Rm�1 is isotopic to a linear mapping (see Milnor [15,
page 34]). Together with uniqueness of regular neighborhoods (see Calcut, King
and Siebenmann [2, Section 3]), this shows that the diffeomorphism type of
.M; r/ \ .N; r 0/ is independent of the choices of �r , �r 0 , and � .

(3) The given definition of CSI is just sufficient for our purposes. It is subsumed by
a more general definition [2] that:

(i) Applies to differentiable, piecewise linear, and topological manifolds.
(ii) Yields a manifold/ray pair.

(iii) Is defined on any countable number of summands (see also Gompf [7]).
(iv) Is commutative and associative.

We will use cohomology algebras at infinity to distinguish manifolds. Just as cohomol-
ogy is a homotopy invariant of spaces, the cohomology algebra at infinity is a proper
homotopy invariant of spaces (see Hughes and Ranicki [14, Chapter 3]). Throughout,
let R be a commutative, unital ring. If X is a topological space, then we define the
poset .K;�/, where K is the set of compact subsets of X and K�K0 means K �K0 .
We have a direct system of graded R–algebras H�.X �KIR/, where K 2K . The
morphisms of this direct system are restrictions. Define H�1.X IR/, the cohomology
algebra at infinity, to be the direct limit of this system. Similarly, we define zH�1.X IR/
using reduced cohomology.

If K1 �K2 � � � � is a compact exhaustion of X , then we may compute H�1.X IR/

using the direct system indexed by the Kj . Namely,

(2-1) H�1.X IR/Š lim
��!j

H�.X �Kj IR/:

We employ the standard explicit model of the direct limit where an element of
H�1.X IR/ is represented by an element of H�.X �KIR/ for some compact K . Two
representatives ˛ 2H�.X �KIR/ and ˛0 2H�.X �K0IR/ are equivalent if they
have the same restriction in some H�.X �K00IR/, where K;K0 �K00 .

3 Ladder manifolds

In this section, we define ladder manifolds and compute their cohomology algebras at
infinity. Ladder manifolds play a key role in our proof of the Main theorem. Fix closed
manifolds X and Y of the same dimension n� 2.

Definition 3.1 (Ladder manifold) The ladder manifold L.X;Y / of X and Y is the
oriented .nC1/–manifold obtained from the disjoint union

.Œ0;1/�X /t .Œ0;1/�Y /
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by performing countably many oriented 0–surgeries as in Figure 3.1.

X0

X1

X2

S0

S1

S2

Y0

Y1

Y2

Figure 3.1: Ladder manifold L.X;Y /

The manifolds Œ0;1/�X and Œ0;1/�Y are the stringers. Let Xt WD ftg �X and
Yt WD ftg � Y . The glued-in copies of D1 �Sn are the rungs, one for each integer
j � 0. Let Sj WD f0g �Sn be the central sphere in the j th rung.

More explicitly, fix closed n–balls BX �X and B0
X
� Int BX , and similarly for Y .

For each integer j � 0, perform an oriented 0–surgery using .nC 1/–disks, one in
Int.Œj ; j C 1��B0

X
/ (see Figure 3.2) and the other in Int.Œj ; j C 1��B0

Y
/.

{ { X0

X1

X2

BX

B0X

Figure 3.2: Circles indicating disks in Œ0;1/�X used for 0–surgeries

The ladder manifold L.X;Y / is canonically oriented. As X and Y are oriented, the
stringers Œ0;1/�X and Œ0;1/�Y are each given the product orientation. Note that
L.X;Y / has boundary X0 tY0 , oriented as �X0�Y0 (see Guillemin and Pollack [9,
Chapter 3]). Orient each Sj so that the oriented boundary of the first cobordism in
Figure 3.3 is XjC1 �Xj C Sj . It follows that the oriented boundary of the second
cobordism in Figure 3.3 is YjC1 � Yj � Sj . This completes our description of the
ladder manifold L.X;Y /.

The remainder of this section is devoted to computing the cohomology algebra at
infinity of L.X;Y /. For each integer j � 0, let Wj be the submanifold of L.X;Y /

Algebraic & Geometric Topology, Volume 14 (2014)
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Xj

XjC1

Sj Yj

YjC1

Sj

Figure 3.3: Two oriented cobordisms in L.X;Y /

consisting of points of height t � j (height is depicted vertically in Figure 3.1). Note
that W0 D L.X;Y /, Wj � L.X;Y / for each j ,

W0 �W1 �W2 � � � �

and
T
j

Wj D∅. The inclusions ij W WjC1!Wj induce the direct system

(3-1) zH�.W0IR/
i�
0
�! zH�.W1IR/

i�
1
�! zH�.W2IR/

i�
2
�! � � � :

Evidently,

(3-2) zH�1.L.X;Y /IR/Š lim
��!j

zH�.Wj IR/:

Let J � L.X;Y / be the noncompact n–complex shown in Figure 3.4. It is an iterated
wedge of n–spheres (the Sj from above), 1–spheres (the Tj shown), and a 1–cell
(bottom). The complex J is a variant of Jacob’s ladder (see Hughes and Ranicki [14,
page 25]).

S0

S1

S2

S0

S1

S2

T0

T1

J L.X;Y /

Figure 3.4: One-ended n–complex J � L.X;Y /

We remind the reader that R denotes a commutative, unital ring. Recall that RŒx�ŠL1
nD0 R and RŒŒx��Š

Q1
nD0 R as R–modules. In general, RŒx� is a free R–module,

but RŒŒx�� need not be. When R is a field, RŒŒx�� is an R–vector space and hence a
free R–module. However, ZŒŒx�� is not a free Z–module (see Schröer [18]).

The nonzero reduced integer homology groups of J are zHn.J /Š ZŒs� and zH1.J /Š

ZŒt �, where sk corresponds to the fundamental class of Sk and tk corresponds to the
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fundamental class of Tk . By the universal coefficient theorem, the nonzero reduced
cohomology groups of J are

zH n.J IR/Š HomZ.ZŒs�;R/ŠRŒŒ� ��;

zH 1.J IR/Š HomZ.ZŒt �;R/ŠRŒŒ� ��;

since the Ext terms vanish in all dimensions. All cup products in zH�.J IR/ vanish.

For each integer j � 0, let Jj denote the points in J of height t � j . Note that J0DJ

and Jj is homeomorphic to J for each j . Define

Vj WD .Xj _Jj /_Yj �Wj

as shown in Figure 3.5, where �j W Vj !Wj is inclusion.

Vj Wj

Xj Yj

Sj

SjC1

SjC2

Tj

TjC1 ij

sj

Xj

XjC1

XjC2

Sj

SjC1

SjC2

Yj

YjC1

YjC2

Figure 3.5: Strong deformation retract Vj of Wj

Lemma 3.2 For each j , there is a strong deformation retraction sj W Wj ! Vj .

Proof We begin by retracting the stringer portions of Wj , while fixing the rungs
pointwise. Figure 3.6 shows schematically how do this above Xj ; the same argument
applies above Yj . Next, simultaneously retract the remaining rung portions as shown
in Figure 3.7. This completes our description of sj .

We have the following diagram where the left maps are the obvious inclusions and
projections.

Xj

$$
Jj

//
Vj

�j //

dd

oo

zz

Wj
sj

oo

Yj

::
(3-3)
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(a) Region above Xj �BX

retracts to Xj �BX , while
region above BX �B0

X
re-

tracts to a hyperboloid

(b) Retraction of region un-
der hyperboloid

(c) Retraction of the region
above B0

X

(d) Result of prior three re-
tractions

Figure 3.6: Strong deformation retraction of portion of Wj above Xj to the
iterated wedge of Xj and an infinite string of n–spheres and intervals. Rungs
of Wj are fixed pointwise at all times.

Figure 3.7: Strong deformation retraction of a rung

Corollary 3.3 For each j , there is an isomorphism of graded R–algebras

zH�.Wj IR/Š zH
�.X IR/˚ zH�.Jj IR/˚ zH

�.Y IR/:

The cup product is coordinatewise in the direct sum.

Proof This follows immediately from Lemma 3.2, diagram (3-3), and the computation
of the cohomology algebra of a wedge sum (see Hatcher [12, page 215]).

Recall the direct system (3-1).

Lemma 3.4 Each i�j is surjective.
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Proof For each j � 0, there is an obvious retraction rj W Wj !WjC1 . It sends XjCt

to XjC2�t and YjCt to YjC2�t for t 2 Œ0; 1� and sends the bottom rung of Wj to the
bottom rung of WjC1 . Thus, rj ı ij D id, and so .rj ı ij /

� D i�j ı r�j D id� . As id� is
an isomorphism on zH�.WjC1IR/, i�j is surjective.

For j < k , let i�
k;j
WD i�

k
ı i�

k�1
ı � � � ı i�j . By Lemma 3.4, each element in the direct

limit (3-2) has a representative in zH�.W0IR/. Indeed, if ˛ 2 zH�.Wj IR/ represents
an element ! in the direct limit, then there exists some ˇ 2 zH�.W0IR/ such that
i�
j�1;0

.ˇ/D ˛ , so ˇ also represents ! . Thus we can write

(3-4) zH�1.L.X;Y /IR/Š lim
��!j

zH�.Wj IR/Š zH
�.W0IR/=�;

where ˛ � ˇ if and only if there exists j such that i�
j ;0
.˛/D i�

j ;0
.ˇ/.

Proposition 3.5 The cohomology algebra at infinity of L.X;Y / is

zH k
1.L.X;Y /IR/Š

8̂̂̂<̂
ˆ̂:
. zH n.X IR/˚RŒŒ� ��˚ zH n.Y IR//=K if k D n,
zH k.X IR/˚ 0˚ zH k.Y IR/ if 2� k � n� 1,
zH 1.X IR/˚RŒŒ� ��=RŒ� �˚ zH 1.Y IR/ if k D 1,

0 otherwise,

where K WD f.
P
ˇi ; ˇ;�

P
ˇi/ j ˇ D

P
ˇi�

i 2 RŒ� �g Š RŒ� �. The cup product is
coordinatewise in the direct sum.

Proof By the preceding discussion, it remains to describe �. As

zH�.Wj ;WjC1IR/ŠH�.Wj=WjC1IR/;

the long exact sequence for the pair .Wj ;WjC1/ and Lemma 3.4 imply that the
homomorphism i�j W

zH k.Wj IR/! zH
k.WjC1IR/ is an isomorphism for 2�k�n�1.

Thus zH k
1.L.X;Y /IR/Š zH

k.W0IR/ for 2� k � n� 1.

For each j , we have the following commutative diagram of spaces.

WjC1

ij // Wj

sj

��
VjC1

�jC1

OO

dj // Vj

�� �� ��
XjC1

??

JjC1

OO

YjC1

^^

Xj Jj Yj

(3-5)

Here, sj is the retraction from Lemma 3.2, �jC1 is inclusion, and dj WD sj ı ij ı �jC1 .
The bottom maps are again the obvious inclusions and projections.
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There are nine compositions in (3-5) that begin and end on the bottom row. The
geometry of these compositions is straightforward given our definition of sj . Recalling
our orientation conventions, these compositions induce a homomorphism on integer
homology

 W zH�.X /˚ zH�.JjC1/˚ zH�.Y /! zH�.X /˚ zH�.Jj /˚ zH�.Y /:

In dimensions other than n,  D id˚ inclusion˚ id. In dimension n,  is given by
.a; b; c/ 7! .a; .c � a/sj C b; c/ for b 2 sjC1ZŒs�.

As X and Y are closed and oriented n–manifolds, the group

zHn�1.Wj IZ/Š

�
zHn�1.X IZ/˚ 0˚ zHn�1.Y IZ/ if n> 2

zHn�1.X IZ/˚ tj ZŒt �˚ zHn�1.Y IZ/ if nD 2

is free abelian. Thus Ext. zHm�1.Wj IZ/;R/ D 0 for m D 1 and m D n � 1. The
universal coefficient theorem implies that i�j is the dual homomorphism of  in
these dimensions. Therefore, i�j is clear in dimension 1. In dimension n, i�j sends
.˛; ˇ; 
 / to .˛� ǰ ; ˇ� ǰ�

j ; 
 C ǰ /, where ˇ 2 �j RŒŒ� ��. To determine � in the
remaining dimensions 1 and n, it suffices to describe the subgroups of zH 1.W0IR/ and
zH n.W0IR/ consisting of elements that are sent to 0 by some i�j ;0 . By our description

of i�j as the dual of  , these subgroups are exactly 0˚RŒ� �˚ 0 in dimension 1 and
K in dimension n.

The cup product structure of the algebra zH�1.L.X;Y /IR/ can be summarized as
Œ˛�[ Œˇ�D Œ˛[ˇ� for ˛; ˇ 2 zH�.W0IR/. This is a direct consequence of the definition
of a direct limit of algebras and the fact that every element of zH�1.L.X;Y /IR/ has
a representative in zH�.W0IR/. Combining these facts yields the claim about cup
products in the statement of this proposition.

Remark 3.6 Observe that the canonical map

� W zH n.X IR/˚ 0˚ zH n.Y IR/! . zH n.X IR/˚RŒŒ� ��˚ zH n.Y IR//=K

is injective. In particular, if R is a field, then the image of � is a 2–dimensional
R–vector subspace of an uncountably-infinite dimensional R–vector space.

4 Stringer sum

We now define stringer sum, an operation on a ladder manifold and a disjoint stringer
that yields a new ladder manifold. Recall that a manifold A is neatly embedded in
a manifold B if A\ @B D @A and this intersection is transverse. A straight ray in
Œ0;1/�A has the form Œ0;1/� fag.
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Definition 4.1 (Stringer sum) Fix a ladder manifold L.X;Y / and a disjoint stringer
Œ0;1/ �Z of the same dimension nC 1 � 3. Fix neatly embedded, straight rays
r � Œ0;1/�Z and r 0 � L.X;Y /, where r 0 lies in one of the stringers of L.X;Y /
and avoids BX and BY (see Figure 4.1). Define the stringer sum of .L.X;Y /; r 0/ and
.Œ0;1/�Z; r/, denoted

.L.X;Y /; r 0/ � .Œ0;1/�Z; r/;

as follows. Let �r � Œ0;1/ � Z and �r 0 � L.X;Y / be normal, closed tubular
neighborhoods of r and r 0 respectively. Identify .Œ0;1/�Z/� Int �r and L.X;Y /�
Int �r 0 along @�r and @�r 0 via an orientation reversing, fiber respecting diffeomorphism
so that connected sum is achieved at each height.

r r 0 r 00

Figure 4.1: Stringer Œ0;1/�Z with ray r and ladder manifold L.X;Y /
with rays r 0 and r 00 (left). Stringer sum .L.X;Y /; r 0/ �.Œ0;1/�Z; r/ (right).

With notation as in Figure 4.1, observe that

.L.X;Y /; r 0/ � .Œ0;1/�Z; r/� L.X # Z;Y /;

.L.X;Y /; r 00/ � .Œ0;1/�Z; r/� L.X;Y # Z/;

where # denotes oriented connected sum CS.

5 Examples: Lens spaces

For each positive integer k , let Lk denote the 3–dimensional lens space L.k; 1/,
which is obtained by performing �k –surgery on the unknot in S3 (see Gompf and
Stipsicz [8, page 158]). Recall that

zHi.Lk IZ/Š

8<:
Z if i D 3,
Zk if i D 1,
0 otherwise,

zH i.Lk IZ/Š

8<:
Z if i D 3,
Zk if i D 2,
0 otherwise,

and zH i.Lk IZk/Š Zk for i D 1; 2; 3.
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For computability, we now restrict to field coefficients. Fix a prime p> 0. By Poincaré
duality, if M is a closed m–manifold and 0¤ ˛ 2 zH i.M IZp/ where i < m, then
there exists ˇ 2 zH m�i.M IZp/ such that ˛ [ ˇ 2 zH m.M IZp/ is a generator (see
Hatcher [12, page 250]).

If M is an .nC1/–manifold, then define

�p.M / WD h˛[ˇ j deg˛; degˇ < ni � zH n
1.M IZp/

to be the vector subspace of zH n
1.M IZp/ generated by products of classes of degree

less than n in zH�1.M IZp/. The dimension of �p as a Zp –vector space, denoted
dimZp

�p , is a graded algebra invariant since an isomorphism of graded algebras
respects products and gradings.

By Proposition 3.5 and Remark 3.6, we have

dimZp
�p.L.X;Y //� 2

for any ladder manifold.

Proposition 5.1 The stringer sums

.L.Lp;S
3/; r 0/ � .Œ0;1/�Lp; r/� L.Lp # Lp;S

3/;

.L.Lp;S
3/; r 00/ � .Œ0;1/�Lp; r/� L.Lp;Lp/

have nonisomorphic Zp –cohomology algebras at infinity.

Proof Consider the algebras zH�1.L.Lp # Lp;S
3/IZp/ and zH�1.L.Lp;Lp/IZp/,

computed as in Proposition 3.5. Notice that

dimZp
�p.L.Lp # Lp;S

3//D 1 and dimZp
�p.L.Lp;Lp//D 2:

6 Proof of the main theorem

For each integer k � 1, let Ek be the D2 bundle over S2 with Euler number �k ,
which is a 0–handle union a 2–handle attached along a �k framed unknot (see Gompf
and Stipsicz [8, pages 119–120]). Note that @Ek DLk . Define

Yk WD L.Lk ;S
3/[@ Ek [@ D4;

Zk WD .Œ0;1/�Lk/[@ Ek � Int Ek :

Both Yk and Zk are smooth, open, one-ended 4–manifolds. We refer to Yk as a
capped ladder and Zk as a capped stringer (see Figure 6.1).
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r r 0 r 00

Figure 6.1: Capped stringer Zk , capped ladder Yk , and result of CSI opera-
tion .Yk ; r

0/ \ .Zk ; r/

Let r 0; r 00 �L.Lk ;S
3/� Yk and r � Œ0;1/�Lk �Zk be rays as in Proposition 5.1

and Figure 6.1.

Theorem 6.1 Let p > 0 be prime. The manifolds

M1 WD .Yp; r
0/ \ .Zp; r/ and M2 WD .Yp; r

00/ \ .Zp; r/

are not proper homotopy equivalent.

Proof First, note that

M1 � L.Lp # Lp;S
3/[@ .Ep #@ Ep/[@ D4;

M2 � L.Lp;Lp/[@ Ep [@ Ep;

where #@ denotes oriented connected sum boundary CSB. Thus

zH�1.M1IZp/Š zH
�
1.L.Lp # Lp;S

3/IZp/;

zH�1.M2IZp/Š zH
�
1.L.Lp;Lp/IZp/:

By Proposition 5.1, zH�1.M1IZp/ and zH�1.M2IZp/ are not isomorphic. Therefore
M1 and M2 are not proper homotopy equivalent.

Remark 6.2 Observe that Yj 6� Yk and Zj 6�Zk for positive integers j ¤ k , and
Yj 6�Zk for any positive integers j and k . These observations hold by the following
facts:

.i/ zH 2
1.Yj IZ/Š Zj :

.ii/ zH 2
1.Zj IZ/Š Zj :

.iii/ zH 1
1.Yj IZ/Š ZŒŒ� ��=ZŒ� �:

.iv/ zH 1
1.Zk IZ/D 0:
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Facts (i) and (iii) follow from Proposition 3.5, while (ii) and (iv) follow from the basic
property that zH�1.Œ0;1/�X IR/Š zH�.X IR/ for each closed manifold X . Hence
Theorem 6.1 implies the Main theorem as there are infinitely many primes.

Remark 6.3 As noted by the referee, the Main theorem may be deduced from any
single example from Theorem 6.1 by using an infinite variety of caps. For instance, fix
a prime p > 0 and let Yp;q denote the result of replacing the D4 cap in Yp with a cap
Cq such that q � 2 and �1.Cq/Š Zq . Although the resulting pairs of manifolds Zp

and Yp;q (with p fixed and for various q ) are not homotopy equivalent by �1 , they
have diffeomorphic ends.

7 Generalizations of the main examples

Our main examples from Section 6 are readily modified to produce more 4–dimensional
examples as well as others of all dimensions at least 3. Define

T k
WD S1

� � � � �S1„ ƒ‚ …
k

:

(1) In Yp , S3 can be replaced with any Zp –homology 3–sphere †3 and D4 with
any smooth null-cobordism of †3 .

(2) For any j � 1, Zp can be replaced with Zjp since zH i.LjpIZp/ Š Zp for
i D 1; 2; 3.

(3) To obtain examples in all dimensions nC 1� 4, replace Lp with Lp �T n�3 in
both Yp and Zp , and replace S3 with Sn . Cap with Ep�T n�3 and DnC1 . Crossing
with S1 does not affect dimZp

�p . We obtain infinitely many examples this way by
the following observations derived from Remark 6.2 and the Künneth formula:

torsion zH 2
1.YpIZ/Š Zp; torsion zH 2

1.ZpIZ/Š Zp;

zH 1
1.YpIZ/Š Zn�3

˚ZŒŒ� ��=ZŒ� �; zH 1
1.ZpIZ/Š Zn�3:

(4) Let †g be the closed surface of genus g . Let Hg be the 3–dimensional handlebody
with @Hg D†g . Define

Yg WD L.†g;S
2/[@ Hg [@ D3;

Zg WD .Œ0;1/�†g/[@ Hg:

Let r 0; r 00 � Yg and r �Zg be straight rays as in Figure 6.1. For g; h 2 ZC , define

M1.g; h/ WD .Yg; r
0/ \ .Zh; r/;

M2.g; h/ WD .Yg; r
00/ \ .Zh; r/:
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Fix any prime p > 0. By Proposition 3.5,

dimZp
�p.M1.g; h//D 1;

dimZp
�p.M2.g; h//D 2:

Thus, M1.g; h/ and M2.g; h/ are not proper homotopy equivalent.

We can prove the Main theorem for 3–manifolds using the collection of pairs Y1 and
Zg for g 2 ZC . These manifolds are distinguished by the following facts:

zH 1
1.Y1IZ/Š Z2

˚ZŒŒ� ��=ZŒ� �;

zH 1
1.ZgIZ/Š Z2g:

Interestingly, we cannot distinguish Yg and Yg0 for any g ¤ g0 .

We obtain infinitely many new examples in all dimensions nC 1� 4 by considering
ladders and stringers based on †g � T n�2 and Sn . In these dimensions, one can
distinguish all of the summands. Details are left to the interested reader.

(5) Let p; q > 0 be distinct primes. Define

M.p; q/ WD L.Lp;Lq/[@ Ep [@ Eq:

Fix neat, straight rays r 0; r 00 � L.Lp;Lq/, one in each stringer. The same technique
used to prove Proposition 3.5 yields the following table where M WDM.p; q/.

dimZp
�p dimZq

�q

.M; r 0/ \ .M; r 0/ 1 2

.M; r 00/ \ .M; r 00/ 2 1

.M; r 0/ \ .M; r 00/ 2 2

Thus the CSI of M with itself yields at least 3 distinct manifolds up to proper homotopy.
We obtain infinitely many M with this property since

zH 2
1.M.p; q/IZ/Š Zp˚Zq:

(6) Given 3–dimensional lens spaces Lp1
;Lp2

; : : : ;LpmC1
, we define the generalized

capped ladder manifold M.p1;p2; : : : ;pmC1/ inductively as

M.p1;p2; : : : ;pmC1/

WD
�
M.p1;p2; : : : ;pm/; r

�
\
�
L.S3;LpmC1

/[@ .D
4
tEpmC1

/; r 0
�

where r and r 0 are neat, straight rays in the Lpm
and S3 stringers respectively. Now,

fix p1;p2; : : : ;pm > 0 to be distinct primes. A similar calculation to the one in the
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previous item shows that the CSI of M.p1;p2; : : : ;pm/ with itself yields at least
mC 1 distinct manifolds up to proper homotopy. We obtain infinitely many M with
this property since

zH 2
1.M.p1;p2; : : : ;pm/IZ/Š

mM
iD1

Zpi
:

(7) Fix p1;p2; : : : to be distinct positive primes. Define M.p1;p2; : : :/ in analogy
with the previous item. We will show that the CSI of M.p1;p2; : : :/ with itself yields
countably infinitely many distinct manifolds up to proper homotopy and that we obtain
infinitely many M with this property since

zH 2
1.M.p1;p2; : : :/IZ/Š

1Y
iD1

Zpi
:

One cannot compute zH�1.M.p1;p2; : : :/IR/ by taking Wj to be the points of height
at least j nor can Wj be the complement of the first j stringers since Wj must come
from a compact exhaustion of M.p1;p2; : : :/.

Figure 7.1: Submanifold Wj (j D 2 depicted) of an infinite ladder manifold.
Points in the first j stringers of height less than j have been removed

Instead, define Wj as in Figure 7.1. In particular, W0 DM.p1;p2; : : :/, WjC1 �Wj

for all j � 0, and
T

j Wj D∅. Let ij W WjC1!Wj be inclusion. Unlike our previous
examples, there is no retraction Wj !WjC1 .

Similar to Lemma 3.2 above, there is a strong deformation retraction sj W Wj ! Vj

where Vj appears as in Figure 7.2. In particular, Vj is an iterated wedge of lens spaces,
3–spheres (the doubly indexed family Sk

i ), 1–spheres (the doubly indexed family T k
i ),
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Lp1
Lp2

U2 U3

S2
1

S3
1

T 2
1

T 3
1

S0
2

S1
2

S2
2

S3
2

T 2
2

T 3
2

S0
3

S1
3

S2
3

S3
3

T 0
3

T 1
3

T 2
3

T 3
3

Figure 7.2: Strong deformation retract Vj of Wj (j D 2 depicted)

2–spheres (the singly indexed family Ui ; recall that each cap Epi
is a D2 bundle over

S2 ) and 1–cells. Thus

zH1.Wj IR/Š

jM
iD1

zH1.Lpi
IR/˚

jM
iD1

t
j
i RŒti �˚

1M
iDjC1

RŒti �;

zH2.Wj IR/Š

jM
iD1

zH2.Lpi
IR/˚uj RŒu�

; zH3.Wj IR/Š

jM
iD1

zH3.Lpi
IR/˚

j�1M
iD1

s
j
i RŒsi �˚

1M
iDmaxfj ;1g

RŒsi �;

and

zH 1.Wj IR/Š

jY
iD1

zH 1.Lpi
IR/�

jY
iD1

�
j
i RŒŒ�i ���

1Y
iDjC1

RŒŒ�i ��;

zH 2.Wj IR/Š

jY
iD1

zH 2.Lpi
IR/��j RŒŒ���;

zH 3.Wj IR/Š

jY
iD1

zH 3.Lpi
IR/�

j�1Y
iD1

�
j
i RŒŒ�i ���

1Y
iDmaxfj ;1g

RŒŒ�i ��:

To compute the maps i�j , we write ij as a composition of inclusions. Let W 0j denote
Wj minus the interior of the cap EpjC1

, so Wj DW 0j [@EpjC1
. Let fj W WjC1!W 0j

and gj W W
0

j !Wj be inclusions, so ij D gj ıfj . There is a retract rj W W
0

j !WjC1 ,
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namely apply the process in Lemma 3.2 upwards to the region W 0j �WjC1 of W 0j and
then flip the exposed 3–spheres and 1–cells up or to the right. Thus, with R coefficients,
each f �j is surjective and, by the long exact sequence of the pair .W 0j ;WjC1/, f �j is
an isomorphism in dimension 2.

Excision and Thom’s isomorphism theorem yield isomorphisms

H kC2.Wj ;W
0

j IR/!H kC2.EpjC1
;LpjC1

IR/ H k.S2
IR/

for each k . So, with R coefficients, the long exact sequence of the pair .Wj ;W
0

j /

implies that g�j is surjective in dimension 2.

The Mayer–Vietoris sequence with Wj DW 0j [@EpjC1
and integer coefficients implies

that g�j is an isomorphism in dimension 1 and is not surjective in dimension 3. The
universal coefficient theorem implies that each of i�j , f �j , and g�j (with R coefficients)
in dimensions 1 and 3 is dual to the appropriate homomorphism on integer homology
since the relevant Ext terms vanish. In particular,

zH 1
1.M.p1;p2; : : :/IZ/Š

1Y
iD1

ZŒŒ�i ��=ZŒ�i �:

In dimension 2, the map i�j W
zH 2.Wj IZ/! zH 2.WjC1IZ/ is

Zp1
� � � � �Zpj

�Z��jC1ZŒŒ���! Zp1
� � � � �Zpj

�ZpjC1
��jC1ZŒŒ���;

where we have written Z � �jC1ZŒŒ��� for �j ZŒŒ���. This map is the identity on
each factor except Z maps to ZpjC1

surjectively. Thus zH 2
1.M.p1;p2; : : :/IZ/ is

isomorphic to
zH 2.W0IZ/Š ZŒŒ���Š Z�Z�Z� � � �

modulo the subgroup of elements eventually sent to zero, namely p1Z�p2Z�p3Z�� � � .
Hence

zH 2
1.M.p1;p2; : : :/IZ/Š

1Y
iD1

Zpi
:

One may write down explicitly the maps i�j in dimension 3 as well. Note that we have
a natural embedding

1Y
iD1

zH 3.Lpi
IR/! zH 3

1.M.p1;p2; : : :/IR/

induced by

.˛; ˇ; 
; : : :/ 7! �.˛�0
1 ; ˛�

0
2 Cˇ�

1
2 ; ˛�

0
3 Cˇ�

1
3 C 
�

2
3 ; : : :/ 2

zH 3.W0IR/:
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Let M DM.p1;p2; : : :/ and let ri be a neat, straight ray in the i th stringer of M .
For each i � 1, we have

dimZpi
�pi

.M /D 1:

If i and j are distinct positive integers, then

dimZpi
�pi

..M; ri/ \ .M; ri//D 1 and dimZpj
�pj

..M; ri/ \ .M; ri//D 2:

Hence the manifolds .M; ri/ \ .M; ri/, i � 1, are pairwise distinct up to proper
homotopy.

Appendix: CSI and R3

The purpose of this appendix is to give a simple proof in the smooth category that a
CSI of R3 with itself need not yield R3 .

Fix a smooth, proper embedding f W R2! R3 . Let H WD Imf be a hyperplane in
R3 . Let A and B denote the closures in R3 of the two components of R3�H . So
@AD @BDH , A\BDH and A[BDR3 . As we are interested in H up to ambient
isotopy of R3 , we assume f .0/D 0.

Definition A.1 (Nice 2–disk) A 2–disk D � R3 is nice provided: (i) D is neatly
embedded in A or in B , and (ii) @D is essential in H �f0g.

Lemma A.2 Let K �R3 be compact. Then, there exists a nice 2–disk D �R3�K .

Proof Let D3 � R3 be a 3–disk centered at 0 and containing K . By replacing K

with D3 , we may assume K is connected. Let B2 � R2 be a disk centered at 0
containing f �1.K/. Let K0 WD K [ f .B2/, which is compact and connected. Let
S �R3 be a 2–sphere such that K0 lies inside S , and S meets H transversely. So,
S \H is a finite disjoint union of circles disjoint from K0 , at least one of which
is essential in H � f0g. If there exist components of S \H that are inessential in
H � f0g, then let C be one that is innermost in H � f0g. Then, C bounds 2–disks
��H �f0g and D1;D2 � S (see Figure A.3). Note that � is disjoint from K0 .

Each of �[D1 and �[D2 is a (piecewise smooth) embedded 2–sphere in R3 . Let
B1 and B2 be the 3–disks in R3 with boundaries �[D1 and �[D2 respectively. As
K0 is connected, K0 � Int B1 or K0 � Int B2 , but not both. Without loss of generality,
assume K0 lies in Int B1 . Using B2 , isotop D2 past � to a parallel copy of �. The
hyperplane H is fixed in the background during this isotopy of S . The isotoped sphere
is again called S . Note that K0 remains inside S and C has been eliminated from
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S

S

S

S

K0

K0

K0

K0

�

�

D2

D1

D2

D1

Figure A.3: Two possibilities: � inside or outside S (left) and resulting
2–sphere S after isotopy across B2 (right)

S \H . Repeat this procedure until all components of S \H are essential in H �f0g.
Now, let C be a component of S \H that bounds a disk D � S disjoint from any
other components of S \H . The disk D is nice.

Let R3
C denote closed upper half-space.

Lemma A.3 Either A�R3
C or B �R3

C .

Proof Use Lemma A.2 to obtain a proper, disjoint collection Dk , k 2 ZC , of nice
2–disks. As each Dk lies in A or in B , we may assume, without loss of generality,
that infinitely many Dk lie in A.

A

H

R3
C

Figure A.4: Diffeomorphism A!R3
C

To build a diffeomorphism A!R3
C , proceed as indicated in Figure A.4 using repeatedly

these tools: (i) the 2– and 3–dimensional smooth Schoenflies theorems (see Hatcher [11,
Theorem 1.1] and Cerf [3, Chapter III]) and (ii) the fact that every diffeomorphism of
S2 extends to the 3–disk (see Munkres [16] and Smale [20], and also Thurston [21,
Theorem 3.10.11]).

Lemma A.4 Let r � H be a ray. Then A or B is ambient isotopic to a smooth
regular neighborhood of r in R3 . In particular, the ambient isotopy class of H in R3

is determined by the ambient isotopy class of r in R3 and conversely.
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Proof By Lemma A.3, either A or B is diffeomorphic to R3
C . Without loss of

generality, let gW A!R3
C be a diffeomorphism. Let s� Int R3

C be any straight ray, so
R3
C is a smooth regular neighborhood of s in R3 . As g.r/�R2 � f0g is necessarily

unknotted (see Calcut, King and Siebenmann [2, page 1845]), s is ambient isotopic to
g.r/ in R3 . It follows that A is a smooth regular neighborhood of g�1.s/ in R3 and
r is ambient isotopic to g�1.s/ in R3 . This proves the first claim in the lemma. The
second claim now follows by uniqueness of regular neighborhoods [2, Section 3].

Proposition A.5 Let r �H be any ray. The following are equivalent:

(1) H is unknotted in R3 .

(2) r is unknotted in R3 .

(3) A�R3
C and B �R3

C .

Proof (1), (2) by Lemma A.4. (1)) (3) is obvious. For (3)) (1), the hypotheses
give orientation preserving diffeomorphisms gW A!R3

C and hW B!R3
� . Identify

R2 � f0g with R2 . Define the diffeomorphism

 WD g ı h�1
jW R2

!R2:

So the diffeomorphism
k WD . � id/ ı hW B!R3

�

satisfies kjH D gjH . Thus we have a homeomorphism �W R3!R3 , where �jAD g

and �jB D k are diffeomorphisms. By standard collaring results in Hirsch [13,
page 184], we may assume � is a diffeomorphism and �.H /DR2 . The result follows
since � is isotopic to the identity by Milnor [15, page 34].

Example A.6 Let s �R3 be a straight ray and let r �R3 be a knotted ray (see Fox
and Artin [5, page 983]). Clearly .R3; s/ \ .R3; s/�R3 . Consider

M WD .R3; r/ \ .R3; r/:

As r is knotted, R3� Int �r 6�R3
C by Proposition A.5. Let H �M be the hyperplane

determined by @�r . By Lemma A.3, M 6�R3 .

Remarks A.7 (1) Lemma A.3 was proved by Harrold and Moise [10] in the piecewise
linear category (see also Sikkema [19]). This lemma can also be deduced in the
topological (locally flat) category as follows. Consider the 2–sphere H [f1g with at
most one singular point embedded in S3DR3[f1g. If neither side of the 2–sphere is
a 3–ball, then their union cannot be S3 . This can be deduced from Eaton’s Mismatch
Theorem [4] and a result of Bing on tame surfaces [1].
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(2) In the piecewise linear category, Myers [17] showed that the CSI of R3 with itself
yields uncountably many distinct 3–manifolds.

(3) While R3� Int �r 6�R3
C in Example A.6, its interior is diffeomorphic to R3 . In

particular, M is contractible. More generally, if L�R3 is a smooth proper multiray
with at most countably many components, then R3�L�R3 . To see this, it suffices
to prove that each compact K �R3�L is contained in a ball. So, let K �R3�L be
compact. Let B �R3 be a ball containing K . Let F W R3� Œ0; 1�!R3 be an ambient
isotopy such that:

(i) F0 D id.

(ii) Ft .L/�L for each t 2 Œ0; 1�.

(iii) Ft jK D id for each t 2 Œ0; 1�.

(iv) F1.L/ is disjoint from B .

Such an F is obtained by integrating a suitable vector field tangent to L and vanishing
on K . The required ball is F�1

1
.B/.

References
[1] R H Bing, A surface is tame if its complement is 1–ULC, Trans. Amer. Math. Soc. 101

(1961) 294–305 MR0131265

[2] J S Calcut, H C King, L C Siebenmann, Connected sum at infinity and Cantrell–
Stallings hyperplane unknotting, Rocky Mountain J. Math. 42 (2012) 1803–1862
MR3028764

[3] J Cerf, Sur les difféomorphismes de la sphère de dimension trois .�4 D 0/ , Lecture
Notes in Mathematics 53, Springer, Berlin (1968) MR0229250

[4] W T Eaton, The sum of solid spheres, Michigan Math. J. 19 (1972) 193–207
MR0309116

[5] R H Fox, E Artin, Some wild cells and spheres in three-dimensional space, Ann. of
Math. 49 (1948) 979–990 MR0027512

[6] R E Gompf, Minimal genera of open 4–manifolds arXiv:1309.0466

[7] R E Gompf, An infinite set of exotic R4 ’s, J. Differential Geom. 21 (1985) 283–300
MR816673

[8] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathe-
matics 20, Amer. Math. Soc. (1999) MR1707327

[9] V Guillemin, A Pollack, Differential topology, Prentice-Hall, Englewood Cliffs, NJ
(1974) MR0348781

Algebraic & Geometric Topology, Volume 14 (2014)

http://www.ams.org/mathscinet-getitem?mr=0131265
http://dx.doi.org/10.1216/RMJ-2012-42-6-1803
http://dx.doi.org/10.1216/RMJ-2012-42-6-1803
http://www.ams.org/mathscinet-getitem?mr=3028764
http://www.ams.org/mathscinet-getitem?mr=0229250
http://dx.doi.org/10.1307/mmj/1029000892
http://www.ams.org/mathscinet-getitem?mr=0309116
http://dx.doi.org/10.2307/1969408
http://www.ams.org/mathscinet-getitem?mr=0027512
http://arxiv.org/abs/1309.0466
http://projecteuclid.org/euclid.jdg/1214439566
http://www.ams.org/mathscinet-getitem?mr=816673
http://www.ams.org/mathscinet-getitem?mr=1707327
http://www.ams.org/mathscinet-getitem?mr=0348781


Connected sum at infinity and 4–manifolds 3303

[10] O G Harrold, Jr, E E Moise, Almost locally polyhedral spheres, Ann. of Math. 57
(1953) 575–578 MR0053504

[11] A Hatcher, Notes on basic 3–manifold topology (2000) Available at http://
www.math.cornell.edu/~hatcher/3M/3M.pdf

[12] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR1867354

[13] M W Hirsch, Differential topology, Graduate Texts in Mathematics 33, Springer, New
York (1994) MR1336822

[14] B Hughes, A Ranicki, Ends of complexes, Cambridge Tracts in Mathematics 123,
Cambridge Univ. Press (1996) MR1410261

[15] J W Milnor, Topology from the differentiable viewpoint, Princeton Univ. Press (1997)
MR1487640

[16] J Munkres, Differentiable isotopies on the 2–sphere, Michigan Math. J. 7 (1960)
193–197 MR0144354

[17] R Myers, End sums of irreducible open 3–manifolds, Quart. J. Math. Oxford Ser. 50
(1999) 49–70 MR1673256

[18] S Schröer, Baer’s result: The infinite product of the integers has no basis, Amer. Math.
Monthly 115 (2008) 660–663 MR2444943

[19] C D Sikkema, A duality between certain spheres and arcs in S3 , Trans. Amer. Math.
Soc. 122 (1966) 399–415 MR0199851

[20] S Smale, Diffeomorphisms of the 2–sphere, Proc. Amer. Math. Soc. 10 (1959) 621–626
MR0112149

[21] W P Thurston, Three-dimensional geometry and topology, Vol. 1 , Princeton Mathe-
matical Series 35, Princeton Univ. Press (1997) MR1435975

[22] F C Tinsley, D G Wright, Some contractible open manifolds and coverings of mani-
folds in dimension three, Topology Appl. 77 (1997) 291–301 MR1451590

Department of Mathematics, Oberlin College
Oberlin, OH 44074, USA

Department of Mathematics, Indiana University
Bloomington, IN 47405, USA

jcalcut@oberlin.edu, phaggert@indiana.edu

http://www.oberlin.edu/faculty/jcalcut/

Received: 30 April 2013 Revised: 26 January 2014

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2307/1969738
http://www.ams.org/mathscinet-getitem?mr=0053504
http://www.math.cornell.edu/~hatcher/3M/3M.pdf
http://www.math.cornell.edu/~hatcher/3M/3M.pdf
http://www.ams.org/mathscinet-getitem?mr=1867354
http://www.ams.org/mathscinet-getitem?mr=1336822
http://dx.doi.org/10.1017/CBO9780511526299
http://www.ams.org/mathscinet-getitem?mr=1410261
http://www.ams.org/mathscinet-getitem?mr=1487640
http://dx.doi.org/10.1307/mmj/1028998426
http://www.ams.org/mathscinet-getitem?mr=0144354
http://dx.doi.org/10.1093/qjmath/50.197.49
http://www.ams.org/mathscinet-getitem?mr=1673256
http://www.ams.org/mathscinet-getitem?mr=2444943
http://www.ams.org/mathscinet-getitem?mr=0199851
http://www.ams.org/mathscinet-getitem?mr=0112149
http://www.ams.org/mathscinet-getitem?mr=1435975
http://dx.doi.org/10.1016/S0166-8641(96)00122-8
http://dx.doi.org/10.1016/S0166-8641(96)00122-8
http://www.ams.org/mathscinet-getitem?mr=1451590
mailto:jcalcut@oberlin.edu
mailto:phaggert@indiana.edu
http://www.oberlin.edu/faculty/jcalcut/
http://msp.org
http://msp.org



	1. Introduction
	2. Notation and definitions
	3. Ladder manifolds
	4. Stringer sum
	5. Examples: Lens spaces
	6. Proof of the main theorem
	7. Generalizations of the main examples
	Appendix: CSI and R3
	References

